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REFINING TREE-DECOMPOSITIONS SO THAT THEY DISPLAY THE k-BLOCKS

SANDRA ALBRECHTSEN

Abstract. Carmesin and Gollin proved that every finite graph has a canonical tree-decomposition (T,V)

of adhesion less than k that efficiently distinguishes every two distinct k-profiles, and which has the further

property that every separable k-block is equal to the unique part of (T,V) in which it is contained.

We give a shorter proof of this result by showing that such a tree-decomposition can in fact be ob-

tained from any canonical tight tree-decomposition of adhesion less than k. For this, we decompose the

parts of such a tree-decomposition by further tree-decompositions. As an application, we also obtain a

generalization of Carmesin and Gollin’s result to locally finite graphs.

1. Introduction

A k-block in a graph G, for some k ∈ N, is a maximal set of at least k vertices no two of which can be

separated in G by removing fewer than k other vertices. For large k, the k-blocks of a graph are examples

of highly connected substructures.

Another example of such a substructure, one which also indicates high local connectivity but is of a more

fuzzy kind than blocks, is that of a tangle. Tangles were introduced by Robertson and Seymour in [10].

Formally, a k-tangle in a graph G is a consistent orientation of all the separations {A,B} of G of order less

than k, as (A,B) say, such that no three such oriented separations together cover the whole graph by the

subgraphs induced on their ‘small sides’ A.

Since k-blocks cannot be separated by deleting fewer than k vertices, they induce an orientation of every

separation of order less than k: towards that side which contains the k-block. Although these orientations

are consistent in that they all point towards the same k-block, they need not be tangles if the k-block is

too small. But they are k-profiles : a common generalization of tangles and blocks, in that every k-tangle

is a k-profile, and every k-block induces a k-profile in the way described above.

Robertson and Seymour [10] proved that every finite graph has a tree-decomposition of adhesion less

than k that distinguishes all its k-tangles, in that they ‘live’ in distinct parts of that tree-decomposition.

Carmesin, Diestel, Hamann and Hundertmark [1] generalized this result by showing that every finite graph

has a tree-decomposition of adhesion less than k that distinguishes all its regular k-profiles. In addition,

the tree-decomposition they constructed has the additional property that it is canonical : it is invariant

under the automorphisms of the graph.

Carmesin and Gollin improved this result even further and showed that every finite graph G admits a

tree-decomposition (T,V) as above which additionally displays the structure of the k-blocks in G, in that

every k-block in G which can be isolated by any tree-decomposition at all1 appears as a bag of (T,V):
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1We call such k-blocks separable.
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Theorem 1. [2, Theorem 1] Every finite graph G has a canonical tree-decomposition (T,V) of adhesion

less than k that efficiently distinguishes every two distinct regular k-profiles, and which has the further

property that every separable k-block is equal to the unique bag of (T,V) that contains it.

They also proved the following related result:

Theorem 2. [2, Theorem 2] Every finite graph G has a canonical tree-decomposition (T,V) that efficiently

distinguishes every two distinct maximal robust profiles, and which has the further property that every

separable block inducing a maximal robust profile is equal to the unique bag of (T,V) that contains it.

See Section 2 for a definition of ‘robust’.

In this paper we give a short proof of Theorems 1 and 2 by showing the following more general result,

which allows us to decompose the parts of a given tree-decomposition further, so that the resulting tree-

decomposition displays the structure of the blocks:

Theorem 3. Let G be any graph, and let B a set of separable blocks in G. Suppose that G has a tight tree-

decomposition (T̃ , Ṽ) that distinguishes all the blocks in B. Then there exists a tree-decomposition (T,V)

that refines (T̃ , Ṽ) and is such that every block in B is equal to the unique bag of (T,V) that contains it.

Moreover, (T,V) is canonical if B and (T̃ , Ṽ) are canonical.

For the proof of Theorem 1 Carmesin and Gollin gave one particular algorithm to construct a canonical

tree-decomposition which distinguishes all k-profiles efficiently and which displays all separable k-blocks.

However, there are a number of different algorithms to construct canonical tree-decompositions that distin-

guish all the k-profiles in a graph [1, 4, 7]. By Theorem 3, we can now choose whichever algorithm we like

to construct an initial tree-decomposition, perhaps in order to have some control over the structure of those

parts that do not contain any blocks, and we can still conclude that the tree-decomposition extends to one

which additionally displays all separable k-blocks.

Moreover, Theorem 3 also applies to infinite graphs. Carmesin, Hamann and Miraftab [3] and Elbracht,

Kneip and Teegen [8] showed that every locally finite graph has a canonical tree-decomposition that distin-

guishes all its k-profiles. Moreover, Jacobs and Knappe [9] showed that every locally finite graph without

half-grid minor has a canonical tree-decomposition that distinguishes all its maximal robust profiles. Ap-

plying Theorem 3 to these tree-decompositions yields the following generalizations of Theorems 1 and 2:

Theorem 4. Every locally finite graph G has a canonical tree-decomposition (T,V) of adhesion less than k

that efficiently distinguishes every two distinct k-profiles, and which has the further property that every

separable k-block is equal to the unique bag of (T,V) that contains it.

Theorem 5. Every locally finite graph G without half-grid minor has a canonical tree-decomposition (T,V)

that efficiently distinguishes every two distinct maximal robust profiles, and which has the further property

that every separable block inducing a maximal robust profile is equal to the unique bag of (T,V) that contains

it.

2. Preliminaries

We mainly follow the notions from [5]. In what follows, we recap some definitions which we need later.

All graphs in this paper may be infinite unless otherwise stated. Recall that a graph is locally finite if all

its vertices have finite degree.
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2.1. Separations. Let G be any graph. A separation of G is a set {A,B} of subsets of V (G) such that

A ∪ B = V (G) and there is no edge in G between Ar B and B r A. A separation {A,B} of G is proper

if neither A nor B equals V (G). Moreover, {A,B} is tight if both G[A r B] and G[B r A] contain a

component of G− (A ∩B) whose neighbourhood in G equals A ∩B.

The orientations of a separation {A,B} are the oriented separations (A,B) and (B,A). We refer to A

as the small side of (A,B) and to B as the big side of (A,B). If the context is clear, we will simply refer

to both oriented and unoriented separations as ‘separations’.

The order of a separation {A,B} is the size |A ∩B| of its separator A ∩B. For some k ∈ N ∪ {ℵ0}, we

define Sk(G) to be the set of all separations of G of order < k and Sk (G) := {(A,B) : {A,B} ∈ Sk(G)} to

be the set of all their orientations.

The oriented separations of a graph G are partially ordered by (A,B) 6 (C,D) if A ⊆ C and B ⊇ D. A

set σ ⊆ Sℵ0 (G)r {(V (G), V (G))} of separations is called a star if for any (A,B), (C,D) ∈ σ it holds that

(A,B) 6 (D,C). The interior of a star σ ⊆ Sℵ0 (G) is the intersection int(σ) :=
⋂

(A,B)∈σ B.

The partial order on Sℵ0 (G) also relates the proper stars in Sℵ0 (G): if σ, τ ⊆ Sℵ0 (G) are stars of

proper separations, then σ 6 τ if and only if for every (A,B) ∈ σ there exists some (C,D) ∈ τ such that

(A,B) 6 (C,D). Note that this relation is again a partial order [6].

2.2. Profiles. An orientation of Sk(G) is a set O ⊆ Sk (G) which contains, for every {A,B} ∈ Sk(G),

exactly one of its orientations (A,B) and (B,A). A subset O ⊆ Sk (G) is consistent if it does not contain

both (B,A) and (C,D) whenever (A,B) < (C,D) for distinct {A,B}, {C,D} ∈ Sk(G).

For some k ∈ N, we call a consistent orientation P of Sk(G) a k-profile in G if it satisfies that

for all (A,B), (C,D) ∈ P the separation (B ∩D,A ∪C) does not lie in P .

A profile is regular if it does not contain (V (G), A) for any subset A ⊆ V (G). For some n ∈ N, a

profile in G is n-robust if for every (A,B) ∈ P and every {C,D} ∈ Sn(G) the following holds: if both

(A∪C,B∩D) and (A∪D,B∩C) have order less than |A∩B|, then one of them is contained in P . Clearly,

every k-profile is k-robust. A profile is robust if it is n-robust for every n ∈ N.

A separation {A,B} of G distinguishes two profiles in G if they orient {A,B} differently. {A,B}

distinguishes them efficiently if they are not distinguished by any separation of G of smaller order.

Lemma 2.1. [8, Lemma 6.1] Let P, P ′ be two distinct regular profiles in an arbitrary graph G. If {A,B}

is a separation of finite order that efficiently distinguishes P and P ′, then {A,B} is tight.

2.3. Tree-decompositions. A tree-decomposition of a graph G is a pair (T,V) of a tree T together with a

family V = (Vt)t∈V (t) of subsets of V (G) such that
⋃

t∈T G[Vt] = G, and such that for every vertex v ∈ V (G),

the graph T [{t ∈ T : v ∈ Vt}] is connected. We call the sets Vt ∈ V the bags and their induced subgraphs

G[Vt] the parts of this tree-decomposition. The adhesion of (T,V) is the maximal size of a set Vt ∩ Vt′ for

edges {t, t′} ∈ E(T ).

It is well-known (see e.g. [5, Ch. 12.3] for a proof) that if e = {t1, t2} is an edge of T , then Vt1 ∩ Vt2

separates U1 :=
⋃

s∈V (T1)
Vs and U2 :=

⋃

s∈V (T2)
Vs where T1 ∋ t1 and T2 ∋ t2 are the two components of

T − e. We say that e induces the separation se := {U1, U2} of G. Let further s(t1,t2) := (U1, U2) be the

separation of G induced by the oriented edge (t1, t2).

It is easy to check that the separations induced by the (inwards oriented) edges incident with a node

t ∈ T form a star. We call this star σt := {s(u,t) : (u, t) ∈ E(T )} the star associated with the node t.
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A tree-decomposition (T,V) is tight if every separation induced by an edge of T is tight. (T,V) (effi-

ciently) distinguishes two profiles if there is an edge e ∈ E(T ) such that se distinguishes them (efficiently).

A tree-decomposition (T,V) of G is canonical if the construction Ψ of (T,V) commutes with all isomor-

phisms ϕ : G → G′: if ϕ maps the bags Vt of (T,V) to bags V ′
t′ of (T

′,V ′) := Ψ(G′) such that t 7→ t′ is an

isomorphism T → T ′.

If (T,V) and (T̃ , Ṽ) are both tree-decompositions of G, then (T,V) refines (T̃ , Ṽ) if the set of separations

induced by the edges of T is a superset of the set of separations induced by the edges of T̃ .

2.4. Blocks. For some k ∈ N, a k-block in a graph G is a maximal set b of at least k vertices such that

no two vertices v, w ∈ b can be separated in G by removing fewer than k vertices other than v, w. A set

b ⊆ V (G) is a block if it is a k-block for some k ∈ N.

It is straightforward to check that every k-block in G induces a regular k-profile in G by orienting

{A,B} ∈ Sk(G) as (A,B) if and only if b ⊆ B. Moreover, distinct k-blocks induce distinct k-profiles. We

say that a tree-decomposition of G (efficiently) distinguishes two blocks in G if it (efficiently) distinguishes

their induced profiles.

A k-block b in G is separable if it is the interior of some star in Sk(G), i.e. if there exists a star σ ⊆ Sk (G)

such that int(σ) = b. We need the following equivalent characterization of separable k-blocks:

Lemma 2.2. [2, Lemma 4.1] Let b be a k-block in a graph G. Then b is separable if and only if |NG(C)| < k

for all components C of G− b.

3. Refining tree-decompositions

In this section we prove Theorem 3 and then derive Theorems 1, 2, 4 and 5 from it. For this, we first show

the following lemma. It asserts that given a part of a tight tree-decomposition which contains a k-block,

then we can further decompose that part in a star-like way so that the central bag of that decomposition

is equal to the k-block:

Lemma 3.1. Let k ∈ N, and let b be a separable k-block in a graph G. Further, let σ ⊆ Sℵ0 (G) be a

star of tight separations such that b ⊆ int(σ). Then there exists a star ̺σb ⊆ Sk (G) such that σ 6 ̺σb and

int(̺σb ) = b. Moreover, ̺σb can be chosen so that if ϕ : G → G′ is an isomorphism, then ϕ(̺σb ) = ̺
ϕ(σ)
ϕ(b) .

Proof. Let C′ := {C ∈ C(G − b) : V (C) ∩ B 6= ∅ for all (A,B) ∈ ̺} be the set of all components of G − b

that are not completely contained in the strict small side G[ArB] of some (A,B) ∈ σ. Further, for every

component C ∈ C′, let σC := {(A,B) ∈ σ : A ∩ V (C) 6= ∅}, and set

(XC , YC) :=

(

V (C) ∪NG(C) ∪
⋃

(A,B)∈σC

ArB, V (G)r

(

V (C) ∪
⋃

(A,B)∈σC

ArB

))

(see Figure 1). Note that NG(C) ⊆ b ⊆ B for all (A,B) ∈ σ, and thus XC ∩ YC = NG(C).

Let us first show that {XC , YC} is a separation of G. Clearly, its sides cover V (G), so it remains to prove

that NG(XC r YC) ⊆ XC . By the definition of {XC , YC}, this is the case if NG(A rB) ⊆ V (C) ∪NG(C)

for all (A,B) ∈ σC . So let (A,B) ∈ σC be given. Then V (C) ∩ A 6= ∅, and moreover V (C) ∩ B 6= ∅

because C ∈ C′, which implies that V (C) ∩ (A ∩B) 6= ∅ as C is connected. Since {A,B} is tight, there is

a component C̃A ⊆ G[A r B] of G− (A ∩B) such that NG(C̃A) = A ∩ B. In particular, there is an edge

between C̃A and C. As C is a component of G− b and C̃A is connected and disjoint from b by assumption,
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C ′ ∈ C(G− b)r C ′

C̃A

C ∈ C ′

N(C) = XC ∩ YC

b

XC

YC

σ

(A,B) ∈ σC

(A′, B′) 6∈ σC

Figure 1. A component C ∈ C′ and the arising separation (XC , YC). The separations

(A,B) ∈ σC are indicated with solid lines, the separations (A′, B′) ∈ σ r σC are indicated

with dashed lines. The component C̃A of G− (A ∩B) is contained in C.

this implies that C̃A ⊆ C. Hence, NG(A r B) = A ∩ B = NG(C̃A) ⊆ NG(C) ∪ V (C), and thus {XC , YC}

is a separation of G. In particular, {XC , YC} has order |NG(C)|.

Since |NG(C)| < k by Lemma 2.2, this implies that {XC , YC} ∈ Sk(G). Now set

̺σb := {(XC , YC) : C ∈ C′} ∪ {(A,B) ∈ σ : A ∩B ⊆ b}.

Since every (A,B) ∈ σ is tight, Lemma 2.2 implies that every (A,B) ∈ σ with A ∩ B ⊆ b has order less

than k. As also every {XC , YC} for C ∈ C′ is of order less than k by the argument above, it follows that

̺σb ⊆ Sk (G). We claim that ̺σb is as desired.

First, we prove that ̺σb is a star. For this, we show that (XC , YC) 6 (YC′ , XC′) for distinct C 6= C′ ∈ C′

and that (XC , YC) 6 (B,A) for all C ∈ C′ and (A,B) ∈ σ with A∩B ⊆ b. Since σ is a star itself, this then

concludes the proof that ̺σb is a star.

We first show the former. To this end, let two distinct components C 6= C′ ∈ C′ be given. Then they

cannot both meet the small side A of the same separation (A,B) ∈ σ, as otherwise C̃A ⊆ C ∩ C′ by the

argument above, and then C = C′. Therefore, σC ∩σC′ = ∅, and thus XC rYC = V (C)∪
⋃

(A,B)∈σC
ArB

and XC′ r YC′ = V (C′) ∪
⋃

(A,B)∈σC′
ArB are disjoint. Hence (XC , YC) 6 (YC′ , XC′).

Now let C ∈ C′ and (A,B) ∈ σ with A ∩ B ⊆ b be given. Then V (C) ∩ B 6= ∅ by the definition of C′,

which implies that V (C) ⊆ B rA as C is connected and avoids b ⊇ A ∩B. Thus, (XC , YC) 6 (B,A).

Second, we show that σ 6 ̺σb . For this, let (A,B) ∈ σ be given. We need to find a separation

(A′, B′) ∈ ̺σb with (A,B) 6 (A′, B′). If A∩B ⊆ b, then (A,B) ∈ ̺σb is as desired. Otherwise, A∩B meets

a component C of G− b, which then has to lie in C′. In particular, (A,B) ∈ σC and (A,B) 6 (XC , YC) by

the definition of {XC , YC}. Since (XC , YC) ∈ ̺σb as C ∈ C′, this completes the proof that σ 6 ̺σb .

Next, we show that int(̺σb ) = b. For this, we first observe that b is disjoint from every component C

of G− b and from every strict small side ArB of every (A,B) ∈ σ by assumption. By the definition of ̺σb ,

this implies that b ⊆ int(̺σb ). Moreover, every vertex v ∈ V (G)r b is contained in a component C of G− b.
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If C ∈ C′, then v lies in the strict small side XC r YC of (XC , YC) by definition, and hence v /∈ int(̺σb ).

Otherwise, there is a separation (A,B) ∈ σ such that v ∈ V (C) ⊆ A r B. Since σ 6 ̺σb as show earlier,

this implies that v /∈ int(̺σb ). Therefore, int(̺
σ
b ) ⊆ b.

We are left to show the ‘moreover’-part. For this, let ϕ : G → G′ be an isomorphism. We show that

(ϕ(XC), ϕ(YC)) = (Xϕ(C), Yϕ(C)), which clearly implies the assertion. For this, note that ϕ(b) is a k-block

in G′, that ϕ(C) is a component of G′ − ϕ(b), and that ϕ(σ) is a star of tight separations in Sk (G
′) with

ϕ(b) ⊆ int(ϕ(σ)). Thus, {Xϕ(C), Yϕ(C)} is defined. Moreover, if V (C) ∩ A 6= ∅ for some (A,B) ∈ σ, then

ϕ(V (C)) ∩ ϕ(A) 6= ∅. Hence, ϕ(σ)ϕ(C) = ϕ(σC), which, by the definition of {XC , YC} and because ϕ is an

isomorphism, implies that (ϕ(XC), ϕ(YC)) = (Xϕ(C), Yϕ(C)). �

We can now prove Theorem 3.

Proof of Theorem 3. Applying Lemma 3.1 to every star σt that is associated with a node t ∈ T̃ such that Ṽt

contains a block b in B yields stars ̺σt

b with σt 6 ̺σt

b and int(̺σt

b ) = b.

We now construct the desired tree-decomposition (T,V). For this, we first define tree-decompositions

(T t,Vt) of the parts G[Ṽt] as follows. If Ṽt does not contain a block from B, then we set T t := ({t}, ∅) and

V t
t := Ṽt. Otherwise, if b is the (unique) block from B that is contained in Ṽt, then we let T t be the star with

centre t and with |̺σt

b | many leaves u(A,B), one for each (A,B) ∈ ̺σt

b . Further, we set V t
t := b = int(̺σt

b )

and V t
u(A,B)

:= A∩Ṽt for all (A,B) ∈ ̺σt

b . It is straightforward to check that (T t,Vt) is a tree-decomposition

of G[Vt].

We then let T be the tree obtained from the disjoint union over the trees T t by adding for every edge

{t1, t2} ∈ T̃ the edge {v1, v2} where vi = ti if T ti = ({ti}, ∅) and vi := u(A,B) where (A,B) ∈ ̺
σti

b is

the unique separation with s(t3−i,ti) = (U3−i, Ui) 6 (A,B) otherwise. Note that such a separation exists

because (U3−i, Ui) ∈ σti 6 ̺
σti

b . Further, we set Vs := V t
s for all s ∈ T where t is the unique node of T̃

such that s ∈ T t. It is straightforward to check that (T,V) is a tree-decomposition of G. Moreover, by

construction, for every edge {t1, t2} ∈ T̃ , the edge {v1, v2} of T induces the same separation of G, i.e.

s(t1,t2) = s(v1,v2), so (T,V) refines (T̃ , Ṽ). Finally, by the ‘moreover’-part of Lemma 3.1, (T,V) is canonical

if (T̃ , Ṽ) is canonical. Hence, (T,V) is as desired. �

Proof of Theorem 4. By [3,8], G admits a canonical tree-decomposition (T̃ , Ṽ) that efficiently distinguishes

all the k-profiles in G.2 In particular, (T̃ , Ṽ) is tight by Lemma 2.1. Moreover, since every k-block induces

a k-profile, and since distinct k-blocks induce distinct k-profiles, (T̃ , Ṽ) distinguishes all k-blocks in G.

Apply Theorem 3 to (T̃ , Ṽ) and the set B of all separable k-blocks in G. �

Proof of Theorem 5. By [8, Theorem 6.6] and [9, Theorem 5.4]3, G admits a canonical tree-decompo-

sition (T̃ , Ṽ) that efficiently distinguishes all its maximal robust profiles. In particular, (T̃ , Ṽ) is tight by

Lemma 2.1. Apply Theorem 3 to (T̃ , Ṽ) and the set B of all separable blocks in G that induce a maximal

robust profile. �

Proof of Theorem 1. Apply Theorem 4. �

Proof of Theorem 2. Apply Theorem 5. �

2In [3, Theorem 7.3] Carmesin, Hamann and Miraftab prove that G admits a canonical tree-decomposition that distin-

guishes efficiently all its robust k-profiles. In [8, Theorem 6.6] Elbracht, Kneip and Teegen give an independent proof of this

result. Here, it can be seen from the proof that one may omit ‘robust’, as the authors remark in the preliminary section.
3See also [9, Theorem 1 and the comment after the proof of Theorem 1].
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