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Abstract

Recent advances in stochastic optimization have yielded the interacting parti-
cle Langevin algorithm (IPLA), which leverages the notion of interacting particle
systems (IPS) to efficiently sample from approximate posterior densities. This
becomes particularly crucial within the framework of Expectation-Maximization
(EM), where the E-step is computationally challenging or even intractable. Al-
though prior research has focused on scenarios involving convex cases with gra-
dients of log densities that grow at most linearly, our work extends this frame-
work to include polynomial growth. Taming techniques are employed to produce
an explicit discretization scheme that yields a new class of stable, under such
non-linearities, algorithms which are called tamed interacting particle Langevin
algorithms (tIPLA). We obtain non-asymptotic convergence error estimates in
Wasserstein-2 distance for the new class under an optimal rate.

1 Introduction

The Expectation-Maximization (EM) algorithm is widely used for locating maximizers
of posterior distributions. Applications span, but are not confined to, hyperparameter
estimation, mixture models, hidden variable models, and variational inference [5]. At
its essence, each iteration of the EM algorithm consists of two fundamental steps: the
Expectation (E) and the Maximization (M) step. The algorithm is defined by alter-
nating iteratively between these two steps. Given a data specification pθ(x, y) param-
eterized by θ, where x represents the latent variable (interpreted as incomplete data)
and y the observed data, our aim is to find θ∗ that maximizes the marginal likelihood
qθ(x) =

∫

Rdx pθ(x, y)dy.
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When the integral in the E-step is computationally challenging or intractable, Markov
Chain Monte Carlo (MCMC) methods are often employed, traditionally using Metropolis-
Hastings-type algorithms [4]. However, these approaches introduce scalability concerns
and are susceptible to local mode entrapment.

In this landscape, a new method was introduced by [2], such that samples of the la-
tent space variable were generated via an Unadjusted Langevin Algorithm (ULA) chain.
Nevertheless, the general applicability of these results is curtailed by particular choices of
step sizes. An alternative avenue was pioneered in [12], in which the study of the limiting
behaviour of various gradient flows associated with appropriate free energy functionals
led to an interacting particle system (IPS) that provides efficient estimates for maxi-
mum likelihood estimations. Further, [1] thoughtfully expanded on this framework by
injecting noise into the dynamics of the parameter θ itself, thereby transitioning from
deterministic to stochastic dynamics. This key modification provides a stochastic system
with an invariant measure, allowing the establishment of non-asymptotic convergence to
θ∗, the maximizer of the marginal likelihood.

In our work, while the convexity assumption is maintained, we address the challenge
posed by superlinear growth exhibited by gradients of log densities, which makes other
known algorithms, such as vanilla Langevin based algorithms, unstable. To counteract
this, we implement taming techniques, initially researched for non-globally Lipschitz
drifts for SDEs in [10] and subsequently in [18] and [19]. The latter approach has
found applications in optimization and machine learning and led to the design of new
MCMC algorithms as one typically deals with high nonlinear objective function, see
e.g. [3],[16],[14],[20]. The underlying principle of all these algorithms is the rescaling of
ULA’s drift coefficient in such a way that maintains stability without significantly in-
creasing computational complexity as in the case of implicit schemes, or by introducing
additional constrains via adaptive stepsizes.

In this paper, we study two new algorithms from the tIPLA class, namely the coor-
dinate wise version, known as tIPLAc, and the uniformly tamed version tIPLAu. Those
algorithms are tamed versions of IPLA (developed in [1]) as explained in Subsection 2.2.
The optimal rate of convergence is recovered for both algorithms and our estimates are
explicit regarding their dependencies on dimension and the number of particles employed
N .

1.1 Notation

We conclude this subsection with some basic notation. For u, v ∈ R
d, define the scalar

product 〈u, v〉 =∑d
i=1 uivi and the Euclidian norm |u| = 〈u, u〉1/2. For all continuously

differentiable functions f and we denote by ∇f it’s gradient. The integer part of a real
number x is denoted by ⌊x⌋. For any p ∈ N, we denote by P(Rd) the set of probability
measures on B(Rd) and by Pp(R

d) = {π ∈ P :
∫

Rd |x|ppdπ(x) < ∞} the set of all
probability measures over B(Rd) with finite p-th moment. For any two Borel probability
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measures µ and ν, we define the Wasserstein distance of order p ≥ 1 as

Wp(µ, ν) =

(

inf
ζ∈

∏
(µ,ν)

∫

Rd×Rd

|x− y|pdζ(x, y)
)1/p

,

where by
∏

(µ, ν) we denote the set of transference plans of µ and ν. Moreover, for all
µ, ν ∈ Pp(R

d), there exists a transference plan ζ∗ ∈
∏

(µ, ν) such that for any coupling
(X, Y ) distributed according to ζ∗, Wp(µ, ν) = E

1/p [|X − Y |p].

2 Setting and Definitions

2.1 Initial setup

Let pθ(x, ·) be the aforementioned joint probability density function of the latent variable
x and for fixed (observed) data y. The goal of maximum marginal likelihood estimation
(MMLE) is to find the parameter θ∗ that maximises the marginal likelihood (Dempster et
al.)[5]. To deal with the aforementioned log-density we define the negative log-likelihood
for fixed y ∈ R

dy as follows

Uy(θ, x) := − log pθ(x, y),

thus gaining the following notation for the quantity we are interested in maximizing
ky(θ) = qθ(y) =

∫

pθ(x, y)dx =
∫

e−Uy(θ,x)dx. Lastly, for matters of clarity we also denote
hy(v) = ∇Uy(v) so that hx

y(v) = ∇xUy(v) and hθ
y(v) = ∇θUy(v), where v := (θ, x).

Henceforth, we drop the reference to the (fixed) data, i.e. to y, for reasons of brevity.
Following the convention of [12], N particles X i,N

t for i ∈ {1, . . . , N} are used to estimate
the gradient of qθ, which are governed by following continuous-time dynamics:

dϑN
t = − 1

N

N
∑

j=1

∇θU(ϑN
t ,X j,N

t ) +

√

2

N
dB0,N

t , (1)

dX i,N
t = −∇xU(ϑN

t ,X i,N
t ) +

√
2dBi,N

t , (2)

for i = 1, .., N , where {(Bt)
i,N
t≥0}0≤i≤N is a family of independent Brownian motions. The

discrete time Markov chain associated with the above IPS (1)-(2) is obtained by the
corresponding Euler-Maruyama discretization scheme of the given Langevin SDEs:

θλ0 =θ0, θλn+1 = θλn −
λ

N

N
∑

i=1

hθ(θλn, X
i,λ
n ) +

√

2λ

N
ξ
(0)
n+1,

X i,λ
0 =xi

0, X i,λ
n+1 = X i,λ

n − λhx(θλn, X
i,λ
n ) +

√
2λξ

(i)
n+1, ∀i ∈ {1, ..., N},

where θ0 ∈ R
dθ , xi

0 ∈ R
dx , λ > 0 the step-size parameter and for i = 0 and ∀i ∈

{1, . . . , N}, (ξ(i)n )n∈N are i.i.d. standard dθ and dx respectively dimensional Gaussian
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variables. For reasons that become apparent after the introduction of the taming func-
tions in Subsection 2.2.2 we also consider the following dynamics which are a different
time-scaled version of the original equations (1)-(2):

dϑN
t =− 1

Np+1

N
∑

j=1

∇θU(ϑN
t ,X j,N

t ) +

√

2

Np+1
dB0,N

t , (3)

dX i,N
t =− 1

Np
∇xU(ϑN

t ,X i,N
t ) +

√

2

Np
dBi,N

t , (4)

where p = 2ℓ + 1 is controlled by the order of polynomial growth ℓ in ∇U(θ, x), see
Remark 1. Such an adjustment allows the generalization of the results in [1] to the case
of superlinear drift coefficients while keeping the underlying stationary distribution of
the dynamics identical.

2.2 Taming approach

2.2.1 Introduction of the underlying taming technique

For a fixed T > 0, consider an SDE given by

dY (t) = b(t, Y (t))dt+ σ(t, Y (t))dBt, ∀t ∈ [0, T ], (5)

where b(t, y) and σ(t, y) are assumed to be B(R+)×B(Rd)−measurable functions. Then,
the discrete time Markov chain associated with the ULA algorithm is obtained by the
Euler-Maruyama discretization scheme of SDE(5) and is defined for all n ∈ N by:

Y (tn+1) = Y (tn)− λb(tn, Y (tn)) +
√
λσ(tn, Y (tn))ξn+1,

where λ > 0 is the stepsize and (ξn)n≥1 are i.i.d. standard Gaussian random variables. In
the case where the drift coefficient b is superlinear, it is shown in [9] that ULA is unstable
in the sense that any p−absolute moment of the algorithm (p ≥ 1) diverges to infinity.
In the SDE approximation literature, a new class of explicit numerical schemes has been
introduced to study the case of non-globally Lipschitz conditions by modifying both the
drift and diffusion coefficients in such a way that they grow at most linearly, for example
see, [19], [21] and [11]. The efficiency of such schemes and their respective properties
of Lp convergence create a strong incentive to extend those techniques to sampling and
optimization. This adjustment is key to the development of algorithms that approximate
non-linear systems while remaining computationally tractable. Typically tamed schemes
are given by,

Y (tn+1) = Y (tn)− λbλ(tn, Y (tn)) +
√
λσλ(tn, Y (tn))ξn+1,

for an appropriate choice of taming functions bλ : Rd 7→ R
d and σλ : Rd 7→ R

d×d.
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2.2.2 Application in the IPLA framework

We extend this notion of taming to our setting when dealing with the superlinear nature
of∇U and a constant diffusion coefficient. To this end, we introduce a family of a taming
functions (hλ)λ≥0 with hλ : Rdθ × R

dx → R
dθ × R

dx which are close approximations of
∇U in a sense made precise below.

We suggest two such taming functions hλ(v), one of which is uniformly tamed and
another by using a coordinate-wise approach:

hλ,u(v) =
h(v)− µv

1 + λ1/2N−p/2|h(v)− µv| + µv, (6)

hλ,c(v) =

(

h(i)(v)− µv(i)

1 + λ1/2|h(i)(v)− µv(i)| + µv(i)
)

i∈{1,...,dθ+dx}

, (7)

where µ is the strong convexity constant given in A2. In [3] it’s experimentally estab-
lished that the coordinate-wise version outperforms the uniform taming approach. This
is in agreement with the observation that uniform taming cannot distinguish between
the different levels of contribution each coordinate offers to the gradient. However, there
is a trafeoff for using the coordinate-wise approach, as in order to obtain an appropri-
ate dissipativity condition for the tamed function hλ, one needs to require additional
smoothness on the potential U .

We propose two different algorithms for the EM implementation within the tIPLA
class, which are determined by the choice of the taming function and the stochastic dy-
namics. We find that when the uniform taming is used, then the time-scaled dynamics
(3)-(4) are more suitable as the addition of the exponent in the number of particles N is
essential to guarantee convergence. Hence (3)-(4) paired with (6) leads to the following
scheme:

θλ,u0 = θ0, θλ,un+1 = θλ,un − λ

Np+1

N
∑

i=1

hθ
λ,u(θ

λ,u
n , X i,λ,u

n ) +

√

2λ

Np+1
ξ
(0)
n+1, (8)

X i,λ,u
0 = xi

0, X i,λ,u
n+1 = X i,λ,u

n − λ

Np
hx
λ,u(θ

λ,u
n , X i,λ,u

n ) +

√

2λ

Np
ξ
(i)
n+1, ∀i ∈ {1, ..., N}. (9)

In the case of the coordinate-wise taming, the extra smoothness required obviates any
modification to the original dynamics. Therefore one uses (1)-(2) with (7) to obtain the
second algorithm:

θλ,c0 = θ0, θλ,cn+1 = θλ,cn − λ

N

N
∑

i=1

hθ
λ,c(θ

λ,c
n , X i,λ,c

n ) +

√

2λ

N
ξ
(0)
n+1, (10)

X i,λ,c
0 = xi

0, X
i,λ,c
n+1 = X i,λ,c

n − λhx
λ,c(θ

λ,c
n , X i,λ,c

n ) +
√
2λξ

(i)
n+1, ∀i ∈ {1, ..., N}. (11)

It is important to note that despite the differences in their setup, both algorithms yield
the same non-asymptotic convergence behavior and dependence on the dimension of the
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Algorithm 1 Tamed Interacting Particle Langevin Algorithm (tIPLAu)

Require: N,λ,πinit ∈ P(Rdθ)×P((Rdx)N)
Draw (θ0, {X i,N

0 }1≤i≤N) from πinit

for n = 0 to nT = ⌊T/λ⌋ do

θλ,un+1 = θλ,un − λ

Np+1

∑N
i=1 h

θ
λ,u(θ

λ,u
n , X i,λ,u

n ) +

√

2λ

Np+1
ξ
(0)
n+1

X i,λ,u
n+1 = X i,λ,u

n − λ

Np
hx
λ,u(θ

λ,u
n , X i,λ,u

n ) +

√

2λ

Np
ξ
(i)
n+1, ∀i ∈ 1, ..., N

end for

return θnT+1

E optimization challenge. Both schemes are summarised in the algorithms (tIPLAu) and
(tIPLAc) given below. It is apparent that the newly proposed algorithms, designated
as tIPLAu and tIPLAc, incorporate foundational elements that exist in [12], which
employed deterministic dynamics in the θ component. Their design profits also from the
approach in [1] which introduced stochastic noise in the θ−direction, allowing for the
explicit calculation of the invariant measure. A pivotal enhancement that comes with

Algorithm 2 Tamed Interacting Particle Langevin Algorithm - Coordinatewise
(tIPLAc)

Require: N,λ,πinit ∈ P(Rdθ)×P((Rdx)N)
Draw (θ0, {X i,N

0 }1≤i≤N) from πinit

for n = 0 to nT = ⌊T/λ⌋ do

θλ,cn+1 = θλ,cn − λ

N

∑N
i=1 h

θ
λ,c(θ

λ,c
n , X i,λ,c

n ) +

√

2λ

N
ξ
(0)
n+1

X i,λ,c
n+1 = X i,λ,c

n − λhx
λ,c(θ

λ,c
n , X i,λ,c

n ) +
√
2λξ

(i)
n+1, ∀i ∈ 1, ..., N

end for

return θnT+1

this approach involves the application of a taming technique via the recalibration of the
original drift terms, hx and hθ, into tamed counterparts, as described in (6) and (7).
This adjustment is instrumental in deriving nonasymptotic results, particularly in cases
characterized by superlinear gradients in the log-likelihood function.

2.3 Essential quantities and proof strategy of main result

In this subsection, we lay out the analytical framework and convergence properties of
the sequences (θλ,·n )n≥0 of either tIPLAu (θλ,un )n≥0 or tIPLAc (θλ,cn )n≥0, resulting in their
convergence to the minimiser θ∗. A central concept of the technical analysis is the
rescaling of the original dynamics of the following form

ZN
t =

(

ϑN
t , N

−1/qX 1,N
t , . . . , N−1/qXN,N

t

)

, (12)
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along with the corresponding rescaling that is required for the algorithms and their
continuous time interpolations, see more details in Appendix A. This rescaled version of
the particle system is pivotal in bridging the dynamics represented by either (1)-(2) or
(3)-(4) with the pairs V i,N

t := (ϑN
t ,X i,N

t ) generated by the algorithms. The essence of this
rescaling lies in its ability to equate the moments of ZN

t with the averaged moments of
the pairs V i,N

t across any L
q norm. However, given our focus on Wasserstein-2 distance,

we opt for a rescaling factor of q = 2. This choice yields the critical property:

|Zt|2 =
1

N

N
∑

i=1

|V i
t |2.

It is imperative to note that this convenient rescaling does not detract from the analysis
objectives, as our primary interest is in the convergence of the θ−component. The in-
troduction of particles serves primarily to facilitate sampling, hence their specific scaling
does not impact the core convergence analysis.

In the present analysis, the interacting particle systems defined in equations (1)-(2)
and (3)-(4) are deliberately constructed to target the same invariant measure πN

∗ charac-
terized by the density Z−1 exp(−∑N

i=1 U(θ, xi)). This aspect is critical as it assigns the
number of particles N a role akin to the inverse temperature parameter encountered in
simulated annealing algorithms, thereby regulating the concentration of the θ−marginal
of the invariant measure πN

Θ , towards the minimizer θ∗. This behavior, wherein πN
Θ → δθ∗

as N → ∞, is established in Proposition 2.
Moreover, the convergence rate of the Langevin diffusion to its invariant measure is

a standard result, one could consult [7] and the references within. This is further gener-
alized to particle systems in the research conducted by [1]. By integrating their findings
into our framework, we arrive at Proposition 3 and 4. Equipped with these guarantees,
we can now theoretically approximate the minimizer θ∗, and subsequently, our analysis
focuses to the discretization errors inherent in the proposed schemes.

One expects a dimensional scaling of at least O(d1/2) for the Wasserstein-2 numerical
error of Langevin based algorithms, for example [6]. In the context of the E optimization
where N particles are generated, the true dimentionality of the problem is dθ +N · dx,
which can be naively interpreted as the need to increase the number of iterations to
achieve convergence as N increases. However, this dependency on N is effectively mit-
igated by making use of the implied symmetry within the dynamics of the interacting
particle system by considering only the θ-marginal in the analysis. Such an approach
enables us to attain the classical Euler-Maruyama convergence rate for the numerical
solutions of stochastic differential equations, as demonstrated in Proposition 5 and 6.

In closing, one decomposes the global L2-error, denoted as E
1/2
[

|θ∗ − θλ,·n |2
]

, into
three distinct components:

E
1/2
[

|θ∗ − θλ,·n |2
]

≤ W2(δθ∗ , π
N
Θ ) +W2(π

N
Θ ,L(ϑN

nλ)) +W2(L(ϑN
nλ),L(θλ,·n )),

where θλ,·n stands for the iterates of either of the algorithms, tIPLAu and tIPLAc alike.
Moreover, W2(δθ∗ , π

N
Θ ) quantifies the deviation of the invariant measure from the min-

imizer, W2(π
N
Θ ,L(ϑN

nλ)) captures the discrepancy between the law of the dynamics and

7



their invariant measure, and W2(L(ϑN
nλ),L(θλ,·n )) encompasses the error induced by the

discretization scheme, namely, the divergence between the law of the iterations of our
algorithms and their continuous counterparts.

3 Main Assumptions and Results

In this section we provide the assumptions on the potential U and it’s gradient ∇U that
define the framework, under which the main results for the non-asymptotic behaviour
of the newly proposed algorithms, tIPLAu and tIPLAc, are derived.
Let d := dθ + dx, U be a C1

(

R
d
)

function and recall that h(v) := h(θ, x) := ∇U(θ, x) is
a locally Lipschitz function in θ and x.

A1. There exist L > 0 and ℓ > 0 such that

|h(v)− h(v′)| ≤ L
(

1 + |v|ℓ + |v′|ℓ
)

|v − v′|, ∀v, v′ ∈ R
d.

Additionally we require U to be µ−strongly convex.

A2. There exists µ > 0 such that

〈v − v′, h(v)− h(v′)〉 ≥ µ|v − v′|2, ∀v, v′ ∈ R
d.

Assumption A1 is a significant relaxation of the global Lipschitz condition which is
widely used in the literature. It allows the gradient h to grow polynomially fast at
infinity. Assumption A2 guarantees that U has a unique minimiser and also can be
seen as a monotonicity type condition which is satisfied by the drift coefficients of the
corresponding SDEs.

We also present a growth condition for the gradient ∇U , which is essential in the
case where the coordinate-wise taming function (7) is used.

A3. For each i in {1, . . . , d} there exists µ > 0 such that

h(i)(v)v(i) ≥ µ

2
|v(i)|2 − 1

2µ
|h(i)

0 |2.

Assumption A3 is a coordinate-wise dissipativity type condition which plays a crucial
role in establishing moment bounds for tIPLAc. Its need stems from the fact that
Remark 2 does not guarantee that the taming function (7) preservers the dissipativity
of the drift h(v) = ∇U(v).

Here, we emphasize that Assumption A3 is primarily influenced by the structural
properties of the taming function. This assumption could potentially be relaxed to
necessitate only argument-wise dissipativity, as described by the following mathematical
formulation:

hθ(v)θ ≥ µ

2
|θ|2 − 1

2µ
|hθ

0|2 and hx(v)x ≥ µ

2
|x|2 − 1

2µ
|hx

0|2.

8



This relaxation is applicable if one considers the taming function

hw
λ,a(v) =

hw(v)− µw

1 + λ1/2|hw(v)− µw| + µw for w = θ, x,

which represents an intermediate scenario bridging the uniform and coordinate-wise ap-
proaches. Such consideration leads to an alternative formulation of the tIPLA algorithm.
However, this variant of the tIPLA algorithm does not capture our interest, primarily
due to its inherent limitations. Specifically, it fails to adequately discriminate between
the components of the gradient that exhibit explosive behavior and those that do not.
While simultaneously, this alternative formulation imposes more stringent requirements
than those necessitated by the uniform case.

A4. The initial condition zN0 =
(

θ0, N
−1/2x1

0, . . . , N
−1/2xN

0

)

is such that

E
[

|zN0 |2p0
]

< ∞,

where p0 = 2(ℓ+ 1) and ℓ being the order of polynomial growth of ∇U(θ, x) as given in
Assumption A1.

Remark 1. One notices that Assumption A1 allows for control of the growth of h(v) =
∇U(v), i.e., for every v ∈ R

d,

h(v) ≤ K(1 + |v|ℓ+1),

where K = 2L+ |h0|.

Remark 2.In view of Assumption A2, strong convexity implies dissipativity, i.e, for
every v ∈ R

d,

〈v, h(v)〉 ≥ µ

2
|v|2 − b,

where b =
1

2µ
|h0|2.

3.1 Taming functions and inherited properties

Important properties of the suggested taming functions, which act as drift coefficients
in the corresponding numerical schemes, are established in this subsection.

Property 1. For all λ > 0 and v ∈ R
d one has

|hλ,u(v)| ≤ µ|v|+ λ−1/2Np/2.

The original and tamed functions are sufficiently close for λ > 0 small enough.

9



Property 2.For all λ > 0 and v ∈ R
d one has

|hλ,u(v)− h(v)| ≤ C1λ
1/2N−p/2(1 + |v|2(ℓ+1)),

where C1 = 22(ℓ+3/2) max{K2, µ2}.

The tamed function hλ,u(v) inherits the dissipativity condition established in Remark 2.

Property 3. For all λ > 0 and v ∈ R
d one has

〈v, hλ,u(v)〉 ≥
µ

2
|v|2 − b,

where b is given in Remark 2. To see this consider the cases in which 〈h(v)− µv, v〉 is
greater or less than 0 separately.
In the context of unified framework established in [15], the properties 1-3 therein are
recovered for δ = 2 and γ = 1/2 which is on par with THǫO POULA [13] and TUSLA
[16] aglorithms.

Comment. Regarding tIPLAc, where the coordinate-wise taming function (7) is used,
Properties 1-2 are also guaranteed without the N -factor and also a slightly worse coef-
ficient in Property 1, that is: |hλ,c(v)| ≤ µ|v|+ (dθ + dx)λ−1/2. However for Property 3
to be recovered, we require the additional smoothness provided by Assumption A3.

3.2 Preliminary Theoretical Statements

Both interacting SDEs defined by (1)-(2) and (3)-(4) respectively, admit a strong solution
under A1-A2. This follows since each of the drift coefficients of the SDEs are locally
Lipschitz functions and dissipative in view of Remark 2 whereas the diffusion coefficients
are constant, one could consult [17](Theorem 2.3.5) for more details. Moreover, they
exhibit the same invariant measure, as one would expect from a standard Langevin
diffusion.

Proposition 1. Let A1 and A2 hold. Then, the measure πN
∗ characterized by the

density Z−1 exp−
∑N

i=1
U(θ,xi), with Z being the normalizing constant, is the invariant

measure for both the interacting particles systems (1)-(2) and (3)-(4).

Proof. The existence of an invariant measure is established by invoking the Krylov-
Bogoliubov Theorem, as presented in Theorem 7.1 [8]. This theorem guarantees the
existence of an invariant measure for a Markov process generated by it’s corresponding
semigroup, given a tightness condition on the sequence of probability measured associ-
ated with that process. According to Da Prato’s Proposition 7.10 [8], the establishment
of uniform moment bounds serves as a sufficient condition for tightness, which is provided
in Lemma 1. The uniqueness of the invariant measure follows from Theorem 7.16(ii) [8],
as Hypothesis 7.13 is satisfied due to A1 and A2. Furthermore, one can verify that πN

∗
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is indeed the invariant measure in discussion by checking that for any φ ∈ C∞
c (Rd) one

has
∫

Rd Lφ dπN
∗ = 0, where L is the infinitesimal generator of the process. See the proof

of Proposition 2 in [1] for more details.

Henceforward we consider exclusively the θ−marginal of the invariant measure and we
show that indeed the number of particles N plays the role of the inverse temperature
parameter in temperature annealing algorithms in the sense that it grants us control on
the marginal’s concentration around the minimiser.

Proposition 2. Let πN
Θ denote the θ−marginal of the invariant measure and θ∗ as the

maximiser of k(θ). Then, under A2, for any N ∈ N, one has the bound

W2(π
N
Θ , δθ∗) ≤

√

2dθ

µN
.

Proof. Follows from Proposition 3 in [1].

Lastly we need the following ergodicity result to obtain the convergence of the law of
the IPS to the invariant measure.

Proposition 3. Let A1, A2 and A4 hold and consider the first component, namely ϑN
t ,

of the continuous dynamics (3)-(4). Then, for any N ∈ N,

W2

(

L(ϑN
t ), π

N
Θ

)

≤ e−µt

(

E
1/2
[

|zN0 − z∗|2
]

+

(

dxN + dθ

µNp

)1/2
)

.

Proof. Follows closely from the proof of Proposition 4 in [1]. One can easily verify
that although the corresponding A1 in [1] invokes global Lipschitz continuity rather
than local, its need there is solely to ensure the existence of a unique global solution,
a fact that is already established at the start of Subsection 3.2. A further difference is
the additional factor N−p instead of N−1 which appears in the last term of the upper
bound.

Proposition 4. Let A1, A3 and A4 hold and consider the first component, namely ϑN
t ,

of the continuous dynamics (1)-(2). Then, for any N ∈ N,

W2

(

L(ϑN
t ), π

N
Θ

)

≤ e−µt

(

E
1/2
[

|zN0 − z∗|2
]

+

(

dxN + dθ

µN

)1/2
)

.

Proof. Follows also closely from the proof of Proposition 4 in [1] with the note that A3
implies A2.
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3.3 Discretisation Error Estimates

We consider the continuous interpolation of the algorithm tIPLAu which approximates

the time-scaled version of the continuous dynamics (3)-(4) denoted as Z
λ,u

t . We note
that the law of the discretized process and it’s interpolation coincide at grid-points, i.e.

L(Zλ,u
n ) = L(Zλ,u

n ). The continuous-time interpolation of the tIPLAu can be defined as:

θ
λ,u

0 =θ0, dθ
λ,u

t = − λ

Np+1

N
∑

i=1

hθ
λ,u(θ

λ,u
⌊t⌋ , X

i,λ,u
⌊t⌋ )dt+

√

2λ

Np+1
dB0,λ

t , (13)

X
i,λ,u

0 =xi
0, dX

i,λ,u

t = − λ

Np
hx
λ,u(θ

λ,u
⌊t⌋ , X

i,λ,u
⌊t⌋ )dt+

√

2λ

Np
dBi,λ

t , (14)

for all i ∈ {1, . . . , N}, while the time-changed SDEs (3)-(4)are given by:

dϑN
λt = − λ

Np+1

N
∑

i=1

hθ(ϑN
λt,X i,N

λt )dt+

√

2λ

Np+1
dB0,λ

t , (15)

dX i,N
λt = − λ

Np
hx(ϑN

λt,X i,N
λt )dt+

√

2λ

Np
dBi,λ

t , (16)

where in both cases Bλ
t := Bλt/

√
λ, t ≥ 0, is a Brownian motion under its completed

natural filtration Fλ
t := Fλt.

Proposition 5. Let A1, A2 and A4 hold and consider the process ϑN
λt as given by the

dynamics (15)-(16). Then, for every λ0 < N2ℓ+1/4µ, there exists a constant C > 0
independent of N, n, λ such that for any λ ∈ (0, λ0),

E
1/2
[

|θλ,un − ϑN
nλ|2
]

≤ λ1/2C|z0|,µ,b,ℓ,L(1 + dθ/N + dx)
ℓ+1

,

for all n ∈ N.

Proof. The proof is postponed to Appendix A.

Following the same lines we define the corresponding auxiliary processes for the iterates
of tIPLAc. The continuous-time interpolation is given by:

θ
λ,c

0 = θ0, dθ
λ,c

t = − λ

N

N
∑

i=1

hθ
λ,c(θ

λ,c
⌊t⌋ , X

i,λ,c
⌊t⌋ )dt+

√

2λ

N
dB0,λ

t , (17)

X
i,λ,c

0 = xi
0, dX

i,λ,c

t = −λhx
λ,c(θ

λ,c
⌊t⌋ , X

i,λ,c
⌊t⌋ )dt+

√
2λdBi,λ

t , (18)

and the time changed SDEs of (1)-(2) by

dϑN
λt = − λ

N

N
∑

i=1

hθ(ϑN
λt,X i,N

λt )dt+

√

2λ

N
dB0,λ

t , (19)

dX i,N
λt = −λhx(ϑN

λt,X i,N
λt )dt+

√
2λdBi,λ

t , (20)
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where the Brownian motions are defined as in (15)-(16).

Proposition 6. Let A1, A3 and A4 hold and consider the process ϑN
λt as given by

the dynamics (19)-(20). Then, for every λ0 < 1/4µ, there exists a constant C > 0
independent of N, n, λ such that for any λ ∈ (0, λ0),

E
1/2
[

|θλ,cn − ϑN
nλ|2
]

≤ λ1/2C|z0|,µ,b,ℓ,L(1 + dθ + dx)
ℓ+1

,

for all n ∈ N.

Proof. The proof is postponed to Appendix A.

3.4 Main results and global error

Theorem 1. Consider the iterates (θλ,un )n≥0 as given in tIPLAu, and let A1, A2 and
A4 hold. Then, for every λ0 < N2ℓ+1/4µ, there exists a constant C > 0 independent of
N, n, λ such that, for any λ ∈ (0, λ0),

E
1/2
[

|θ∗ − θλ,un |2
]

≤
√

2dθ

µN
+ e−µnλ/N2ℓ+1

(

E
1/2
[

|zN0 − z∗|2
]

+

(

dxN + dθ

µN2ℓ+1

)1/2
)

+ λ1/2C|z0|,µ,b,ℓ,L(1 + dθ/N + dx)ℓ+1,

for all n ∈ N.

Proof. Combining the results from Propositions 2, 3 and 5, we are able to decompose
the expectation into a term describing the concentration of the πN

Θ around θ∗, a term
describing the convergence of the IPS to its invariant measure, and a term describing
the error induced by the time discretisation:

E
1/2
[

|θ∗ − θλ,·n |2
]

= W2(δθ∗ ,L(θλ,·n ))

≤ W2(δθ∗ , π
N
Θ ) +W2(π

N
Θ ,L(ϑN

nλ)) +W2(L(ϑN
nλ),L(θλ,·n )). (21)

Substituting the bounds from the aforementioned Propositions yields the final inequality.

Theorem 2. Consider the iterates (θλ,cn )n≥0 as given in tIPLAc, and let A1, A3 and A4
hold. Then, for every λ0 < 1/4µ, there exists a constant C > 0 independent of N, n, λ
such that, for any λ ∈ (0, λ0),

E
1/2
[

|θ∗ − θλ,cn |2
]

≤
√

2dθ

µN
+ e−µnλ

(

E
1/2
[

|zN0 − z∗|2
]

+

(

dxN + dθ

µN

)1/2
)

+ λ1/2C|z0|,µ,b,ℓ,L(1 + dθ + dx)ℓ+1,

for all n ∈ N.

13



Proof. To prove the above inequality, one replaces the bound for W2(π
N
Θ ,L(ϑN

nλ)) in (21)
given by Proposition 3 by the bound given by Proposition 4 and respectively the bound
for W2(L(ϑN

nλ),L(θλ,·n )) given by Proposition 5 by the bound given by Proposition 6.

It is observed that the dependence on the dimension dθ of the parameter space in The-
orem 2 exhibits a slight deterioration compared to that presented in Theorem 1 and in
Theorem 1 of [1]. Notably, the factor 1/N is absent in the third term of Theorem 2.
This is interpreted as a compromise entailed by the use of the coordinate-wise taming
function (7), which requires the direct derivation of moment bounds for the pairs V i,N

t ,
as discussed in Subsection 2.3. Consequently, this approach results in the loss of the
symmetrical structure that is attained by considering the N -particle system X i,N

t in its
entirety.
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[3] Nicolas Brosse, Alain Durmus, Éric Moulines, and Sotirios Sabanis. “The tamed
unadjusted Langevin algorithm”. In: Stochastic Processes and their Applications
129.10 (2019), pp. 3638–3663. issn: 0304-4149.
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A Proofs of subsection 3

A.1 Uniform moments bounds

Lemma 1. Consider either the dynamics given by (1)-(2) or (3)-(4) and let Assumptions
A1-A2 hold, then there exists a constant C > 0 such that

sup
t≥0

E
[

|ZN
t |2
]

≤ C.

Proof. Consider the rescaling dynamics as given in (12) for the original system of equa-
tions (1)-(2):

|ZN
t |2 = |ϑN

t |2 +
1

N

N
∑

i=1

|X i,N
t |2.

By applying standard arguments using stopping times, Grönwall’s lemma and Fatou’s
lemma, one obtains that there is a constant c, which depends on time, such that
sup0≤t≤T E

[

|ZN
t |2
]

≤ c for any T > 0. Moreover, through the use of Itô’s formula
one derives

|ZN
t |2 ≤ |ϑN

0 |2 − 2

∫ t

0

〈ϑN
s ,

1

N

N
∑

i=1

hθ(V i,N
s )〉ds+ 2dθt

N
+ 2

√

2

N

∫ t

0

ϑN
s dB

0,N
s

+
1

N

N
∑

i=1

|X i,N
0 |2 − 2

N

N
∑

i=1

∫ t

0

〈X i,N
s , hx(V i,N

s )〉ds+ 2dxt+
2
√
2

N

N
∑

i=1

∫ t

0

X i,N
s dBi,N

s ds

≤ |ZN
0 |2 − 2

∫ t

0

1

N

N
∑

i=1

〈V i,N
s , h(V i,N

s )〉ds+ 2(dθ/N + dx)t

+ 2

√

2

N

∫ t

0

ϑN
s dB

0,N
s +

2
√
2

N

N
∑

i=1

∫ t

0

X i,N
s dBi,N

s ds

≤ |ZN
0 |2 − µ

∫ t

0

|ZN
s |2ds+ 2bt + 2(dθ/N + dx)t

+ 2

√

2

N

∫ t

0

ϑN
s dB

0,N
s +

2
√
2

N

N
∑

i=1

∫ t

0

X i,N
s dBi,N

s ds.
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Taking the expectation on both sides results in

E
[

|ZN
t |2
]

≤ E
[

|ZN
0 |2
]

− µ

∫ t

0

E
[

|ZN
s |2
]

ds+ 2(b+ dθ/N + dx)t.

One notices that

d

dt
eµtE

[

|ZN
t |2
]

≤ eµtC,

which via integrating implies

E
[

|ZN
t |2
]

≤ C/µ ⇒ sup
t≥0

E
[

|ZN
t |2
]

≤ C,

as C is a constant independent of time. The corresponding result regarding equations
(3)-(4) follows by going through the same steps, where the calculations differ only up to
a constant in the SDEs coefficients.

A.2 Uniformly tamed scheme - tIPLAu

A.2.1 Key quantities for the proof of the main Lemmas.

The following definitions that refer to the rescaled dynamics (13)-(14) of the algorithm
tIPLAu and its continuous time interpolations (15)-(16) are given as:

Zλ,u
n =

(

θλ,un+1, N
−1/2X1,λ,u

n+1 , . . . , N−1/2XN,λ,u
n+1

)

, (22)

Z
λ,u

t =
(

θ
λ,u

t , N−1/2X
1,λ,u

t , . . . , N−1/2X
N,λ,u

t

)

, (23)

ZN
λt =

(

ϑN
λt, N

−1/2X 1,N
λt , . . . , N−1/2XN,N

λt

)

. (24)

A.2.2 Moment and increment bounds

Lemma 2. Let A1, A2 and A4 hold. Then, for any 0 ≤ λ < Np/4µ, it holds that

E
[

|Zλ,u
n |2

]

≤ C|z0|,µ,b(1 + dθ/N + dx),

for a constant C > 0 independent of N, n, λ, dx and dθ, which is given in the proof.

17



Proof. Consider the rescaled iterates as described in (22):

∣

∣

∣
Zλ,u

n+1

∣

∣

∣

2

=
∣

∣

∣
θλ,un+1

∣

∣

∣

2

+
1

N

N
∑

i=1

∣

∣

∣
X i,λ,u

n+1

∣

∣

∣

2

=

∣

∣

∣

∣

∣

θλ,un − λ

Np+1

N
∑

i=1

hθ
λ,u(θ

λ,u
n , X i,λ,u

n )

∣

∣

∣

∣

∣

2

+
2λ

Np+1
|ξ(0)n+1|2

+2

√

2λ

Np+1

〈

θλ,un − λ

Np+1

N
∑

i=1

hθ
λ,u(θ

λ,u
n , X i,λ,u

n ), ξ
(0)
n+1

〉

+
1

N

N
∑

i=1

(

∣

∣

∣

∣

X i,λ,u
n − λ

Np
hx
λ,u(θ

λ,u
n , X i,λ,u

n )

∣

∣

∣

∣

2

+
2λ

Np
|ξ(i)n+1|2

+ 2

√

2λ

Np

〈

X i,λ,u
n − λ

Np
hx
λ,u(θ

λ,u
n , X i,λ,u

n ), ξ
(i)
n+1

〉

)

.

Taking the conditional expectation on both sides with respect to the filtration generated
by Zλ,u

n the cross terms are vanishing to 0 due to the independence between the ξ
(i)
n+1’s

and Zλ,u
n , yielding

E

[

∣

∣

∣
Zλ,u

n+1

∣

∣

∣

2

|Zλ,u
n

]

= E

[

∣

∣θλ,un

∣

∣

2 |Zλ,u
n

]

− 2λ

Np+1

N
∑

i=1

E
[

〈θλ,un , hθ
λ,u(θ

λ,u
n , X i,λ,u

n )〉|Zλ,u
n

]

+
λ2

N2(p+1)
E





∣

∣

∣

∣

∣

N
∑

i=1

hθ
λ,u(θ

λ,u
n , X i,λ,u

n )

∣

∣

∣

∣

∣

2

|Zλ,u
n



+
2λdθ

Np+1

+
1

N

N
∑

i=1

E

[

∣

∣X i,λ,u
n

∣

∣

2 |Zλ,u
n

]

− 2λ

Np+1

N
∑

i=1

E
[

〈X i,λ
n , hx

λ,u(θ
λ,u
n , X i,λ,u

n )〉|Zλ,u
n

]

+
λ2

N2p+1

N
∑

i=1

E
[

|hx
λ,u(θ

λ,u
n , X i,λ,u

n )|2|Zλ,u
n

]

+
2λdx

Np
.

Furthermore by using the elementary inequality (t1+ . . .+ tm)
p ≤ mp−1(tp1+ . . . , tpm) and

the fact that all of the expressions within the conditional expectations are measurable
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we obtain

E

[

∣

∣

∣
Zλ,u

n+1

∣

∣

∣

2

|Zλ,u
n

]

≤ |θλ,un |+ 1

N

N
∑

i=1

|X i,λ,u
n |2 + 2λdθ

Np+1
++

2λdx

Np

− 2λ

Np+1

N
∑

i=1

〈θλn, hθ
λ,u(θ

λ,u
n , X i,λ,u

n )〉

− 2λ

Np+1

N
∑

i=1

〈X i,λ,u
n , hx

λ,u(θ
λ,u
n , X i,λ,u

n )〉

+
λ2

N2p+1

N
∑

i=1

|hθ
λ(θ

λ,u
n , X i,λ,u

n )|2 + λ2

N2p+1

N
∑

i=1

|hx
λ,u(θ

λ,u
n , X i,λ,u

n )|2.

Recalling that (hθ
λ,u, h

x
λ,u) = hλ,u, further leads to

E

[

∣

∣

∣
Zλ,u

n+1

∣

∣

∣

2

|Zλ,u
n

]

≤
∣

∣Zλ,u
n

∣

∣

2 − 2λ

Np+1

N
∑

i=1

〈V i,λ,u
n , hλ,u(V

i,λ,u
n )〉+ λ2

N2p+1

N
∑

i=1

|hλ,u(V
i,λ,u
n )|2

+
2λ

Np
(dθ/N + dx).

Now using Properties 1 and 3 of the taming function, we get

E

[

∣

∣

∣
Zλ,u

n+1

∣

∣

∣

2

|Zλ,u
n

]

≤
∣

∣Zλ,u
n

∣

∣

2 − µλ

Np+1

N
∑

i=1

∣

∣V i,λ,u
n

∣

∣

2
+

2λb

Np

+
2λ2µ2

N2p+1

N
∑

i=1

∣

∣V i,λ,u
n

∣

∣

2
+

2λ2λ−1Np

N2p
+

2λ

Np
(dθ/N + dx)

≤
(

1− λµ

Np
+

2λ2µ2

N2p

)

∣

∣Zλ,u
n

∣

∣

2
+

2λ

Np

(

b+ 1 + dθ/N + dx
)

.

By considering the restriction λ <
Np

4µ
and iterating the above bound, we conclude with

E

[

∣

∣

∣
Zλ,u

n+1

∣

∣

∣

2
]

≤
(

1− µλ

2Np

)n

E

[

∣

∣

∣
Zλ,u

0

∣

∣

∣

2
]

+
1− (1− µλ/2)n

µλ/2Np

2λ

Np
(b+ 1 + dθ/N + dx)

≤ E

[

∣

∣

∣
Zλ,u

0

∣

∣

∣

2
]

+
4

µ
(b+ 1 + dθ/N + dx)

≤
(

E

[

∣

∣

∣
Zλ,u

0

∣

∣

∣

2
]

+
4

µ
(b+ 1)

)

(1 + dθ/N + dx)

≤ C|z0|,µ,b(1 + dθ/N + dx).
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Lemma 3. Let A1, A2 and A4 hold. Then, for any 0 ≤ λ < Np/4µ and q ∈ [2, 2ℓ+1)∩N,
it holds that,

E
[

|Zλ,u
n |2q

]

≤ C|z0|,b,q,µ(1 + dθ/N + dx)q,

for a constant C > 0 independent of N, n, λ, dx and dθ.

Proof. To make the forthcoming calculations more readable we define the following aux-
iliary processes:

∆λ,θ
n = θλ,un − λ

Np+1

N
∑

i=1

hθ
λ,u

(

θλn, X
i,λ
n

)

, Gλ,θ
n =

√

2λ

Np+1
ξ
(0)
n+1,

∆λ,x,i
n = X i,λ,u

n − λ

Np
hx
λ,u

(

θλn, X
i,λ
n

)

, Gλ,x,i
n =

√

2λ

Np
ξ
(i)
n+1,

but from this point onwards till the completion of the proof we denote λ/Np by just λ
to make the computations less hectic. Recall that have already established via Lemma
2 the bound

Aλ
n := |∆λ,θ

n |2 + 1

N

N
∑

i=1

|∆λ,i,x
n |2 ≤

(

1− λµ

2

)

|Zλ,u
n |2 + 2λC,

and lastly let us define the quantity

Bλ
n = 2〈∆θ

n, G
λ,θ
n 〉+ 2

N

N
∑

i=1

〈∆λ,x,i
n , Gλ,x,i

n 〉+ |Gλ,θ
n |2 + 1

N

N
∑

i=1

|Gλ,x,i
n |2.

Regarding the 2q-th moment one writes

|Zλ,u
n+1|2q =

(

Aλ
n +Bλ

n

)q

≤ (Aλ
n)

q + 2q(Aλ
n)

q−1Bλ
n +

q
∑

k=2

(

q

k

)

|Aλ
n|q−k|Bλ

n|k. (25)

We shall deal with each term separately

E
[

(Aλ
n)

q|Zλ,u
n

]

= (Aλ
n)

q ≤
((

1− λµ

2

)

|Zλ,u
n |2 + 2λC

)q

≤
(

1 +
λµ

4

)q−1(

1− λµ

2

)q

|Zλ,u
n |2q +

(

1 +
4

λµ

)q−1

2qλqCq

≤
(

1− λµ

4

)q−1(

1− λµ

2

)

|Zλ,u
n |2q +

(

λ+
4

µ

)q−1

λ(2C)q

≤ rλq |Zλ,u
n |2q + wλ

q . (26)

where rλq = (1−λµ/4)q−1(1−λµ/2) and wλ
q = (λ+4/µ)q−1λ(2C)q. Notice that we made

use of the elementary equation (r + s)q ≤ (1 + ǫ)q−1rq + (1 + 1/ǫ)q−1sq for the choice
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ǫ = λµ/4. Additionally for the shake of simplicity, let us denote d = dθ/N + dx. Now
on a similar note with the previous term

E
[

2q(Aλ
n)

q−1Bλ
n|Zλ,u

n

]

= 2q(Aλ
n)

q−1
E
[

Bλ
n|Zλ,u

n

]

= 4qλ
(

dθ/N + dx
)

(Aλ
n)

q−1

≤ 4qλ
(

dθ/N + dx
) (

rλq−1|Zλ,u
n |2(q−1) + wλ

q−1

)

≤ 4qλd
(

rλq−1|Zλ,u
n |2(q−1) + wλ

q−1

)

. (27)

The 3rd term on (25) can be further expanded to

q
∑

k=2

(

q

k

)

|Aλ
n|q−k|Bλ

n|k =
q−2
∑

m=0

(

q

m+ 2

)

|Aλ
n|q−2−m|Bλ

n|m+2

=
q

m+ 2

q − 1

m+ 1

q−2
∑

m=0

(

q − 2

m

)

|Aλ
n|q−2−m|Bλ

n|m|Bλ
n|2

≤ q(q − 1)
(

|Aλ
n|+ |Bλ

n|
)q−2 |Bλ

n|2

≤ q(q − 1)2q−3|Aλ
n|q−2|Bλ

n|2 + q(q − 1)2q−3|Bλ
n|q

:= D + F. (28)

Taking the expectation of the above terms yields

E[D|Zλ,u
n ] = q(q − 1)2q−3|Aλ

n|q−2
E
[

|Bλ
n|2|Zλ,u

n

]

,

where

E
[

|Bλ
n|2|Zλ,u

n

]

= E





∣

∣

∣

∣

∣

2〈∆θ
n, G

λ,θ
n 〉+ 2

N

N
∑

i=1

〈∆λ,x,i
n , Gλ,x,i

n 〉|Gλ,θ
n |2 + 1

N

N
∑

i=1

|Gλ,x,i
n |2

∣

∣

∣

∣

∣

2

|Zλ,u
n





≤ 4

(

E
[

4|∆λ,θ
n |2|Gλ,θ

n |2|Zλ,u
n

]

+ E

[

4

N

N
∑

i=1

|∆λ,x,i
n |2|Gλ,x,i

n |2|Zλ,u
n

]

+ E
[

|Gλ,x,i
n |4|Zλ,u

n

]

+ E

[

1

N

N
∑

i=1

|Gλ,x,i
n |4|Zλ,u

n

])

≤ 4

(

4|∆λ,θ
n |2E

[

|Gλ,θ
n |2|Zλ,u

n

]

+
4

N

N
∑

i=1

|∆λ,x,i
n |2E

[

|Gλ,x,i
n |2|Zλ,u

n

]

+ E
[

|Gλ,x,i
n |4|Zλ,u

n

]

+ E

[

1

N

N
∑

i=1

|Gλ,x,i
n |4|Zλ,u

n

])

.
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Recalling that each Gλ,·,i
n is distributed according to a Gaussian distribution, we subse-

quently derive

E
[

|Bλ
n|2|Zλ,u

n

]

≤ 4

(

4(2λdθ/N)|∆λ,θ
n |2 + 4

N

N
∑

i=1

(2λdx)|∆λ,x,i
n |2 + 3(2λdθ/N)2 + 3(2λdx)2

)

≤ 16(2λd)

(

|∆λ,θ
n |2 + 1

N

N
∑

i=1

|∆λ,x,i
n |2

)

+ 24(2λd)2

≤ 16(2λd)Aλ
n + 24(2λd)2.

By substituting this result, the term D can be expressed as follows

E[D|Zλ,u
n ] = q(q − 1)2q−3|Aλ

n|q−2
(

16(2λd)Aλ
n + 24(2λd)2

)

= 16(2λd)q(q − 1)2q−3
(

rλq−1|Zλ,u
n |2(q−1) + wλ

q−1

)

+ 24(2λd)2q(q − 1)2q−3
(

rλq−2|Zλ,u
n |2(q−2) + wλ

q−2

)

. (29)

Additionally,

E[F |Zλ,u
n ] = q(q − 1)2q−3|Bλ

n|q

= q(q − 1)2q−3
E

[∣

∣

∣

∣

∣

2〈∆θ
n, G

λ,θ
n 〉+ 2

N

N
∑

i=1

〈∆λ,x,i
n , Gλ,x,i

n 〉

+|Gλ,θ
n |2 + 1

N

N
∑

i=1

|Gλ,x,i
n |2

∣

∣

∣

∣

∣

q

|Zλ,u
n

]

≤ q(q − 1)2q−34q−1
(

E
[

2q|∆λ,θ
n |q|Gλ,θ

n |q|Zλ,u
n

]

+ E

[

2q

N q

∣

∣

∣

∣

∣

N
∑

i=1

|∆λ,x,i
n ||Gλ,x,i

n |
∣

∣

∣

∣

∣

q

|Zλ,u
n

]

+ E
[

|Gλ,θ
n |2q|Zλ,u

n

]

+E

[

1

N q
N q−1

N
∑

i=1

|Gλ,x,i
n |2q|Zλ,u

n

])

. (30)

We handle the second term in (30) by applying the multinomial expansion:

∣

∣

∣

∣

∣

N
∑

i=1

|∆λ,x,i
n ||Gλ,x,i

n |
∣

∣

∣

∣

∣

q

=
∑

k1+...+kN=q

(

q

k1, . . . , kN

) N
∏

i=1

(

|∆λ,x,i
n ||Gλ,x,i

n |
)ki

,
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and using the fact that ∆λ,x,i
n are Zλ,u

n −measurable, hence

2q

N q
E

[∣

∣

∣

∣

∣

N
∑

i=1

|∆λ,x,i
n |Gλ,x,i

n |
∣

∣

∣

∣

∣

q

|Zλ,u
n

]

=
2q

N q
E

[

∑

k1+...+kN=q

(

q

k1, . . . , kN

) N
∏

i=1

(

|∆λ,x,i
n ||Gλ,x,i

n |
)ki |Zλ,u

n

]

=
2q

N q

∑

k1+...+kN=q

(

q

k1, . . . , kN

) N
∏

i=1

|∆λ,x,i
n |ki

N
∏

i=1

E
[

|Gλ,x,i
n |ki|Zλ,u

n

]

=
2q

N q

∑

k1+...+kN=q

(

q

k1, . . . , kN

) N
∏

i=1

|∆λ,x,i
n |ki

N
∏

i=1

(

(2λdx)ki/2ki!!
)

=
2q

N q

∑

k1+...+kN=q

(

q

k1, . . . , kN

) N
∏

i=1

|∆λ,x,i
n |ki(2λdx)

∑N
i=1

ki/2ki!!

≤ 2qq!!(2λdx)q/2

N q

∑

k1+...+kN=q

(

q

k1, . . . , kN

) N
∏

i=1

|∆λ,x,i
n |ki

=
2qq!!(2λdx)q/2

N q

(

N
∑

i=1

|∆λ,x,i
n |

)q

≤ 2qq!!(2λdx)q/2

N q−1

(

N
∑

i=1

|∆λ,x,i
n |2

)q/2

≤ 2qq!!(2λdx)q/2

(

1

N

N
∑

i=1

|∆λ,x,i
n |2

)q/2

.

Plugging these results into (30) we get

E[F |Zλ,u
n ] ≤ q(q − 1)23q−5

(

2qq!!(2λdθ/N)q/2
(

|∆λ,θ
n |2

)q/2

+2qq!!(2λdx)q/2

(

1

N

N
∑

i=1

|∆λ,x,i
n |2

)q/2

+ (2q)!!(2λdθ/N)q + (2q)!!(2λdx)q





≤ q(q − 1)23q−5



2qq!!(2λd)q/2

(

|∆λ,θ
n |2 + 1

N

N
∑

i=1

|∆λ,x,i
n |2

)q/2

+ 2(2q)!!(2λd)q





≤ q(q − 1)24q−5(2q)!!
(

(2λd)q/2
∣

∣Aλ
n

∣

∣

q/2
+ (2λd)q

)

≤ q(q − 1)24q−5(2q)!!(2λd)q/2
(

rλq/2|Zλ,u
n |q + wλ

q/2

)

+ q(q − 1)24q−5(2q)!!(2λd)q. (31)
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Combining (29),(31) yields the following bound for (28),

E

[

q
∑

k=2

(

q

k

)

|Aλ
n|q−k|Bλ

n|k
]

≤ 16(2λd)q(q − 1)2q−3
(

rλq−1|Zλ,u
n |2(q−1) + wλ

q−1

)

+ 24(2λd)2q(q − 1)2q−3
(

rλq−2|Zλ,u
n |2(q−2) + wλ

q−2

)

+ (2q)!!(2λd)q/2q(q − 1)24q−5
(

rλq/2|Zλ,u
n |q + wλ

q/2

)

+ (2q)!!(2λd)qq(q − 1)24q−5. (32)

Hence one obtains for (25) via (26),(27) and (32),

E
[

|Zn+1|2q|Zn

]

≤ rλq |Zλ,u
n |2q + wλ

q

+ 4q (2λd) (1 + 4(q − 1)2q−3)
(

rλq−1|Zλ,u
n |2(q−1) + wλ

q−1

)

+ 24(2λd)2q(q − 1)2q−3
(

rλq−2|Zλ,u
n |2(q−2) + wλ

q−2

)

+ (2q)!!(2λd)q/2q(q − 1)24q−5
(

rλq/2|Zλ,u
n |q + wλ

q/2

)

+ (2q)!!(2λd)qq(q − 1)24q−5. (33)

Consider |Zλ,u
n | ≥

√

2d

µ/4
{(2q)!!q(q − 1)24q−5}1/2 ≥

√

2d

µ/4
{(2q)!!q(q − 1)24q−5}1/q. Then

one observes

E

[

|Zλ,u
n+1|2q|Zn

]

≤ rλq |Zλ,u
n |2q + wλ

q

+
λµ

2 · 4 |Z
λ,u
n |2

(

rλq−1|Zλ,u
n |2(q−1)

)

+
(λµ)2

2 · 42 |Z
λ,u
n |4

(

rλq−2|Zλ,u
n |2(q−2)

)

+
(λµ)q/2

2 · 4q/2 |Z
λ,u
n |q

(

rλq/2|Zλ,u
n |q

)

+ (2q)!!q(q − 1)24q−5(2λd)q

+ (2q)!!q(q − 1)24q−5
(

(2λd)wλ
q−1 + (2λd)2wλ

q−2 + (2λd)q/2wλ
q/2

)

≤ rλq/2

(

(

1− λµ

4

)q/2

+
1

2

(

λµ

4

)(

1− λµ

4

)q/2−1

+
1

2

(

λµ

4

)2(

1− λµ

4

)q/2−2

+
1

2

(

λµ

4

)q/2
)

|Zλ,u
n |2q

+ wλ
q + (2q)!!q(q − 1)24q−5(2λd)q

+ (2q)!!q(q − 1)24q−5
(

(2λd)wλ
q−1 + (2λd)2wλ

q−2 + (2λd)q/2wλ
q/2

)

.
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Using the fact that λµ ≤ 1 we get

E

[

|Zλ,u
n+1|2q|Zn

]

≤
(

1− λµ

2

)

|Zλ,u
n |2q

+ wλ
q + (2q)!!q(q − 1)24q−5(2λd)q

+ (2q)!!q(q − 1)24q−5
(

(2λd)wλ
q−1 + (2λd)2wλ

q−2 + (2λd)q/2wλ
q/2

)

≤
(

1− λµ

2

)

|Zλ,u
n |2q + (2q)!!q(q − 1)24q−2(8/µ)q−1λ(2C)q.

Consequently, on {|Zλ,u
n | ≤

√

2d

µ/4
{(2q)!!q(q − 1)24q−5}1/2}, we have

E

[

|Zλ,u
n+1|2q|Zn

]

≤
(

1− λµ

2

)

|Zλ,u
n |2q

+ (2q)!!q(q − 1)24q−2(8/µ)q−1λ(2C)q

+
(

(2q)!!q(q − 1)24q−2
)q/2

(8/µ)q−1λ(2C)q.

So all in all (33) results to

E

[

|Zλ,u
n+1|2q

]

≤
(

1− λµ

2

)

E
[

|Zλ,u
n |2q

]

+Mq(8/µ)
qCq

≤ C|z0|,b,q,µ(1 + dθ/N + dx)q,

where C|z0|,b,q,µ = E
[

|Zλ
0 |2q
]

Mq(8/µ)
q(b+ 1)q and Mq = (2q)!!q(q − 1)26q−5.

Lemma 4. Let A1, A2 and A4 hold. Then, for every λ0 < Np/4µ, there exists a
constant C > 0 independent of N, n, λ such that for any λ ∈ (0, λ0) one has

E

[

|Zλ,u
n+1 − Zλ,u

n |4
]

≤ λ2N−2pC|z0|,µ,b(1 + dθ/N + dx)2.

Proof.

|Zλ,u
n+1 − Zλ,u

n |4 =
(

|θλ,un+1 − θλ,un |2 + 1

N

N
∑

i=1

|X i,λ,u
n+1 −X i,λ,u

n |2
)2

=





∣

∣

∣

∣

∣

−λ

Np+1

N
∑

i=1

hθ
λ,u(θ

λ,u
n , X i,λ,u

n ) +

√

2λ

Np+1
ξ
(0)
n+1

∣

∣

∣

∣

∣

2

+
1

N

N
∑

i=1

∣

∣

∣

∣

∣

− λ

Np
hx
λ(θ

λ,u
n , X i,λ,u

n ) +

√

2λ

Np
ξ
(i)
n+1

∣

∣

∣

∣

∣

2




2
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Moreover

|Zλ,u
n+1 − Zλ,u

n |4 ≤
(

λ2

N2(p+1)
|

N
∑

i=1

hθ
λ,u(θ

λ,u
n , X i,λ,u

n )|2 + λ2

N2p+1

N
∑

i=1

|hx
λ(θ

λ,u
n , X i,λ,u

n )|2

−2〈 λ

Np+1

N
∑

i=1

hθ
λ,u(θ

λ,u
n , X i,λ,u

n ),

√

2λ

Np+1
ξ
(0)
n+1〉

−2
λ

Np+1

N
∑

i=1

〈hx
λ,u(θ

λ,u
n , X i,λ,u

n ),

√

2λ

Np
ξ
(i)
n+1〉+

2λ

Np+1
|ξ(0)n+1|2 +

2λ

Np+1

N
∑

i=1

|ξ(i)n+1|2
)2

≤ λ4

N4p+2

(

N
∑

i=1

|hλ,u(θ
λ,u
n , X i,λ,u

n )|2
)2

+ 2

(

λ2

N2p+1

N
∑

i=1

|hλ,u(θ
λ,u
n , X i,λ,u

n )|2
)

×
(

−2〈 λ

Np+1

N
∑

i=1

hθ
λ,u(θ

λ,u
n , X i,λ,u

n ),

√

2λ

Np+1
ξ
(0)
n+1〉

−2
λ

Np+1

N
∑

i=1

〈hx
λ,u(θ

λ,u
n , X i,λ,u

n ),

√

2λ

Np
ξ
(i)
n+1〉+

2λ

Np+1
|ξ(0)n+1|2 +

2λ

Np+1

N
∑

i=1

|ξ(i)n+1|2
)

+

∣

∣

∣

∣

∣

−2〈 λ

Np+1

N
∑

i=1

hθ
λ,u(θ

λ,u
n , X i,λ,u

n ),

√

2λ

Np+1
ξ
(0)
n+1〉

−2
λ

Np+1

N
∑

i=1

〈hx
λ,u(θ

λ,u
n , X i,λ,u

n ),

√

2λ

Np
ξ
(i)
n+1〉+

2λ

Np+1
|ξ(0)n+1|2 +

2λ

Np+1

N
∑

i=1

|ξ(i)n+1|2
∣

∣

∣

∣

∣

2

. (34)

The first term in (34) is immediately bounded by the moments of Zλ,u
n ,

E





λ4

N4p+2

(

N
∑

i=1

|hλ,u(θ
λ,u
n , X i,λ,u

n )|2
)2

|Zλ,u
n



 ≤ λ4

N4p+2

(

2µ2
N
∑

i=1

|V i,λ,u
n |2 + 2λ−1Np

)2

≤ 4µ4 λ4

N4p

1

N2

(

N
∑

i=1

|V i,λ,u
n |2

)2

+ 4
λ2

N2p

≤ µ2 λ2

N2p
|Zλ,u

n |4 + 4
λ2

N2p
. (35)

where the last inequality follows due to the restriction λ < Np/4µ.
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Notice that in the second term the inner products 〈·, ·〉 vanish under expectation

2

(

λ2

N2p+1

N
∑

i=1

|hλ,u(θ
λ,u
n , X i,λ,u

n )|2
)(

2λ

Np+1
E

[

|ξ(0)n+1|2|Zλ,u
n

]

+
2λ

Np+1

N
∑

i=1

E

[

|ξ(i)n+1|2|Zλ,u
n

]

)

≤ 2
λ2

N2p

(

2µ2|Zλ,u
n |2 + 2λ−1Np

)

(

2
λ

Np
dθ/N + 2

λ

Np
dx
)

≤ 8
λ3

N3p
d(µ2|Zλ,u

n |2 + λ−1Np)

≤ 2dµ
λ2

N2p
|Zλ,u

n |2 + 8d
λ2

N2p
. (36)

Using the usual elementary inequality and the Cauchy-Schwartz on the last term of (34)
we get

16λ2

N2p+2

∣

∣

∣

∣

∣

N
∑

i=1

hθ
λ,u(θ

λ,u
n , X i,λ,u

n )

∣

∣

∣

∣

∣

2

E

[

|
√

2λ

Np+1
ξ
(0)
n+1|2

]

+
16λ2

N2p+1

N
∑

i=1

|hx
λ(θ

λ,u
n , X i,λ,u

n )|2E
[

|
√

2λ

Np
ξ
(i)
n+1|2

]

+
16λ2

N2p+2
E

[

|ξ(0)n+1|4
]

+
16λ2

N2p+1

N
∑

i=1

E

[

|ξ(i)n+1|4
]

≤ 16
λ2

N2p

(

2
λ

Np
dθ/N

)

1

N

N
∑

i=1

|hθ
λ,u(θ

λ,u
n , X i,λ,u

n )|2

+ 16
λ2

N2p

(

2
λ

Np
dx
)

1

N

N
∑

i=1

|hx
λ(θ

λ,u
n , X i,λ,u

n )|2

+ 16
λ2

N2p
(dθ/N)2 + 16

λ2

N2p
(dx)2

which by using Property 1 of the taming function, can be further written as

16λ2

N2p+2

∣

∣

∣

∣

∣

N
∑

i=1

hθ
λ,u(θ

λ,u
n , X i,λ,u

n )

∣

∣

∣

∣

∣

2

E

[

|
√

2λ

Np+1
ξ
(0)
n+1|2

]

≤ 16
λ3

N3p
(2d)

1

N

N
∑

i=1

(

2µ2|V i,λ,u
n |2 + 2λ−1Np

)

+ 16
λ2

N2p
d2

≤ 16 · 4 λ3

N3p
µ2d|Zλ,u

n |2 + 16 · 4 λ2

N2p
d+ 16

λ2

N2p
d2

≤ 16dµ
λ2

N2p
|Zλ,u

n |2 + 64
λ2

N2p
d+ 16

λ2

N2p
d2. (37)
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Hence (34) in view of (35),(36) and (37) can be further bounded as

E

[

|Zλ,u
n+1 − Zλ,u

n |4|Zλ,u
n

]

≤ µ2 λ2

N2p
|Zλ,u

n |4 + 18dµ
λ2

N2p
|Zλ,u

n |2 + 4
λ2

N2p
(4 + 18d+ d2)

≤ λ2

N2p

(

µ2|Zλ,u
n |4 + 18dµ|Zλ,u

n |2 + 4(4 + 18d+ d2)
)

.

The final result follows by taking the expectation and using the Lemmas 2-3

E

[

|Zλ,u
n+1 − Zλ,u

n |4
]

≤ λ2

N2p
81
(

µ2C2
|z0|,µ,b

+ 18µC|z0|,b,2,µ + 4
)

(1 + dθ/N + dx)2.

A.2.3 Proof of Proposition 5

Proof. Consider the usual split on the difference between the interpolation and the scaled
dynamics and apply the Itô’s formula for x → |x|2

|Zλ,u

t −Zλt|2 = |θλ,ut − ϑλt|2 +
1

N

N
∑

i=1

|X i,λ,u

t − X i
λt|2

= −2λ

∫ t

0

〈

1

Np+1

N
∑

i=1

hθ
λ,u(θ

λ,u
⌊t⌋ , X

i,λ,u
⌊t⌋ )− 1

Np+1

N
∑

i=1

hθ(ϑλ
λt,X i

λt), θ
λ,u

t − ϑλt

〉

ds

− 2λ

Np+1

N
∑

i=1

∫ t

0

〈

hx
λ,u(θ

λ,u
⌊t⌋ , X

i,λ,u
⌊t⌋ )− hx(ϑλ

λt,X i
λt), X

i,λ,u

t −X i
λt

〉

ds

= − 2λ

Np+1

N
∑

i=1

∫ t

0

〈hλ,u(V
i,λ,u
⌊t⌋ )− h(V i

λt), V
i,λ,u

t − V i
λt〉ds.

In order to make the forthcoming calculations more readable we define the following
quantities:

eit = V
i,λ,u

t − V i
λt and et = Z

λ,u

t − Zλt,

so that it follows: 1/N
∑N

i=1 |eit|2 = |et|2. Then by taking the derivative of the above
expansion we obtain

d

dt
|et|2 = − 2λ

Np+1

N
∑

i=1

〈hλ,u(V
i,λ,u
⌊t⌋ )− h(V i

λt), e
i
t〉

= − 2λ

Np+1

N
∑

i=1

〈h(V i,λ,u

t )− h(V i
λt), e

i
t〉 −

2λ

Np+1

N
∑

i=1

〈hλ,u(V
i,λ,u
⌊t⌋ )− h(V i,λ,u

⌊t⌋ ), eit〉

− 2λ

Np+1

N
∑

i=1

〈h(V i,λ,u
⌊t⌋ )− h(V

i,λ,u

t ), eit〉

:= k1(t) + k2(t) + k3(t). (38)
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The first term k1(t) is controlled through the convexity of the initial potential, the
taming error k2(t) can be controlled via the properties of the taming function and the
additional moment bounds that we have established, which are also used to control the
discretisation error k3(t). In particular ,

k1(t) = − 2λ

Np+1

N
∑

i=1

〈h(V i,λ,u

t )− h(V i
λt), e

i
t〉

≤ − 2λµ

Np+1

N
∑

i=1

|eit|2 = −2λµ

Np
|et|2. (39)

Using the Cauchy-Schwarz inequality and the ǫ-Young inequality for ǫ = µ/2 yields

k2(t) = − 2λ

Np+1

N
∑

i=1

〈hλ,u(V
i,λ,u
⌊t⌋ )− h(V i,λ,u

⌊t⌋ ), eit〉

≤ 2λ

Np+1

N
∑

i=1

(

µ

4
|eit|2 +

1

µ
|hλ,u(V

i,λ,u
⌊t⌋ )− h(V i,λ,u

⌊t⌋ )|2
)

≤ 2λµ

4Np
|et|2 +

2λ

µNp+1

N
∑

i=1

λC1

Np
(1 + |V i,λ,u

⌊t⌋ |4(ℓ+1))

≤ λµ

2Np
|et|2 +

2λ2C1

µN2p
+

2λ2C1

µNp

(

1

N

N
∑

i=1

|V i,λ,u
⌊t⌋ |2

)2(ℓ+1)

≤ λµ

2Np
|et|2 +

2λ2C1

µNp
+

2λ2C1

µNp
|Zλ,u

⌊t⌋ |4(ℓ+1). (40)

Note that the constant C1 was introduced in Property 2 and that we choosed p = 2ℓ+1
in order to get an expression with a power of |Zλ,u

⌊t⌋ |. Similarly for the last term we get

k3(t) = − 2λ

Np+1

N
∑

i=1

〈h(V i,λ,u
⌊t⌋ )− h(V

i,λ,u

t ), eit〉

≤ 2λ

Np+1

N
∑

i=1

(

µ

4
|eit|2 +

1

µ
|h(V i,λ,u

⌊t⌋ )− h(V
i,λ,u

t )|2
)

≤ λµ

2Np
|et|2 +

2λC2

µNp+1

N
∑

i=1

(

(1 + |V i,λ,u
⌊t⌋ |2ℓ + |V i,λ,u

t |2ℓ)|V i,λ,u
⌊t⌋ − V

i,λ,u

t |2
)

≤ λµ

2Np
|et|2 +

2λC2

µNp+1

N
∑

i=1

(

1 + |V i,λ,u
⌊t⌋ |2ℓ + |V i,λ,u

t |2ℓ
)

N
∑

i=1

|V i,λ,u
⌊t⌋ − V

i,λ,u

t |2.
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By reordering, taking the expectation and using the Holder’s inequality we further get:

E [k3(t)] ≤
λµ

2Np
E
[

|et|2
]

+
2λC2

µN (p+1)/2
E

[

1

N ℓ

N
∑

i=1

(

1 + |V i,λ,u
⌊t⌋ |2ℓ + |V i,λ,u

t |2ℓ
) 1

N

N
∑

i=1

|V i,λ,u
⌊t⌋ − V

i,λ,u

t |2
]

≤ λµ

2Np
E
[

|et|2
]

+
2λC2

µ
E

[(

1 + |Zλ,u
⌊t⌋ |2ℓ + |Zλ,u

t |2ℓ
)

|Zλ,u
⌊t⌋ − Z

λ,u

t |2
]

≤ λµ

2Np
E
[

|et|2
]

+
6λC2

µ
E
1/2
[(

1 + |Zλ,u
⌊t⌋ |4ℓ + |Zλ,u

t |4ℓ
)]

E
1/2
[

|Zλ,u
⌊t⌋ − Z

λ,u

t |4
]

≤ λµ

2Np
E
[

|et|2
]

+
6λ2C2C3

µNp
E
1/2
[(

1 + |Zλ,u
⌊t⌋ |4ℓ + |Zλ,u

t |4ℓ
)]

(1 + dθ/N + dx)

≤ λµ

2Np
E
[

|et|2
]

+
6λ2C2C3C4

µNp
(1 + dθ/N + dx)ℓ+1. (41)

Taking the expectation for the rest of the terms in (39) and (40) respectively and com-
bining them with (41), one obtains in view of (38),

d

dt
E
[

|et|2
]

≤ −µλ

Np
E
[

|et|2
]

+
2λ2C1

µNp
+

2λ2C1C5

µNp
(1 + dθ/N + dx)2(ℓ+1)

+
6λ2C2C3C4

µNp
(1 + dθ/N + dx)ℓ+1

≤ −µλ

Np
E
[

|et|2
]

+
λ2C6

µNp
(1 + dθ/N + dx)2(ℓ+1),

by multiplying both sides by the integrating factor eλµt/N
p

and rearranging the term one
gets

d

dt

(

eλµt/N
p

E
[

|et|2
])

≤ λ2C6

µNp
(1 + dθ/N + dx)2(ℓ+1)eλµt/N

p

E
[

|et|2
]

≤ λ
C6

µ2
(1 + dθ/N + dx)2(ℓ+1).

A.3 Coordinate-wise tamed scheme - tIPLAc

A.3.1 Key quantities for the proof of the main Lemmas.

The following definitions that refer to the rescaled dynamics (17)-(18) of the algorithm
tIPLAc and its continuous time interpolations (19)-(20) are given as:

Zλ,c
n =

(

θλ,cn+1, N
−1/2X1,λ,c

n+1 , . . . , N
−1/2XN,λ,c

n+1

)

, (42)
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Z
λ,c

t =
(

θ
λ,c

t , N−1/2X
1,λ,c

t , . . . , N−1/2X
N,λ,c

t

)

, (43)

ZN
λt =

(

ϑN
λt, N

−1/2X 1,N
λt , . . . , N−1/2XN,N

λt

)

. (44)

A.3.2 Moment and increment bounds

Lemma 5. Let A1, A3 and A4 hold. Then, for any 0 ≤ λ < 1/4µ, it holds that,

E
[

|V i,λ,c
n |2

]

≤ C|z0|,µ,b(1 + dθ + dx),

for a constant C > 0 independent of N, n, λ, dx and dθ, ∀i ∈ {1, . . . , N}.

Proof.

∣

∣

∣
V i,λ,c
n+1

∣

∣

∣

2

=
∣

∣

∣
θλ,cn+1

∣

∣

∣

2

+
∣

∣

∣
X i,λ,c

n+1

∣

∣

∣

2

=

∣

∣

∣

∣

∣

θλ,cn − λ

N

N
∑

i=1

hθ
λ,c(θ

λ,c
n , X i,λ,c

n )

∣

∣

∣

∣

∣

2

+
2λ

N
|ξ(0)n+1|2

+ 2

√

2λ

N

〈

θλ,cn − λ

N

N
∑

i=1

hθ
λ,c(θ

λ,c
n , X i,λ,c

n ), ξ
(0)
n+1

〉

+
∣

∣X i,λ,c
n − λhx

λ,c(θ
λ,c
n , X i,λ,c

n )
∣

∣

2
+ 2λ|ξ(i)n+1|2

+ 2
√
2λ
〈

X i,λ,c
n − λhx

λ,c(θ
λ,c
n , X i,λ,c

n ), ξ
(i)
n+1

〉

.

Taking the conditional expectation on both sides with respect to the filtration generated
by V i,λ,c

n the cross terms are vanishing to 0, yielding

E

[

∣

∣

∣
V i,λ,c
n+1

∣

∣

∣

2

|V i,λ,c
n

]

= E

[

∣

∣θλ,cn

∣

∣

2 |V i,λ,c
n

]

− 2λ

N

N
∑

i=1

E
[

〈θλ,cn , hθ
λ,c(θ

λ,c
n , X i,λ,c

n )〉|V i,λ,c
n

]

+
λ2

N2
E





∣

∣

∣

∣

∣

N
∑

i=1

hθ
λ,c(θ

λ,c
n , X i,λ,c

n )

∣

∣

∣

∣

∣

2

|V i,λ,c
n



+
2λdθ

N
+ E

[

∣

∣X i,λ,c
n

∣

∣

2 |V i,λ,c
n

]

− 2λE
[

〈X i,λ,c
n , hx

λ,c(θ
λ,c
n , X i,λ,c

n )〉|V i,λ,c
n

]

+ λ2
E
[

|hx
λ,c(θ

λ,c
n , X i,λ,c

n )|2|V i,λ,c
n

]

+ 2λdx.

Furthermore by using the elementary inequality (t1+ . . .+ tm)
p ≤ mp−1(tp1+ . . . , tpm) and

the fact that all of the expressions within the conditional expectations are measurable
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we obtain

E

[

∣

∣

∣
V i,λ,c
n+1

∣

∣

∣

2

|V i,λ,c
n

]

≤ |θλ,cn | − 2λ

N

N
∑

i=1

〈θλ,cn , hθ
λ,c(θ

λ,c
n , X i,λ,c

n )〉+ λ2

N

N
∑

i=1

|hθ
λ(θ

λ,c
n , X i,λ,c

n )|2

+
2λdθ

N
+ |X i,λ,c

n |2 − 2λ〈X i,λ,c
n , hx

λ,c(θ
λ,c
n , X i,λ,c

n )〉

+ λ2|hx
λ,c(θ

λ,c
n , X i,λ,c

n )|2 + 2λdx

≤
∣

∣V i,λ,c
n

∣

∣

2 − 2λ

N

N
∑

i=1

dθ
∑

j=1

θλn,j · h
θj
λ,c(θ

λ,c
n , X i,λ,c

n )

+
λ2

N

N
∑

i=1

dθ
∑

j=1

|hθj
λ,c(θ

λ,c
n , X i,λ,c

n )|2 − 2λ

dx
∑

j=1

X i,λ
n,j · h

xj

λ,c(θ
λ,c
n , X i,λ,c

n )

+ λ2

dx
∑

j=1

|hxj

λ,c(θ
λ,c
n , X i,λ,c

n )|2 + 2λ(dθ/N + dx)

≤
∣

∣V i,λ,c
n

∣

∣

2 − 2λ

N

N
∑

i=1

dθ
∑

j=1

(µ

2
|θλ,cn,j|2 − b

)

+
λ2

N

N
∑

i=1

dθ
∑

j=1

(

2µ2|θλ,cn,j|2 + 2λ−1
)

− 2λ

dx
∑

j=1

(µ

2
|X i,λ,c

n,j |2 − b
)

+ λ2
dx
∑

j=1

(

2µ2|X i,λ,c
n,j |2 + 2λ−1

)

+ 2λ(dθ/N + dx).

Executing the summations yields

E

[

∣

∣

∣
V i,λ,c
n+1

∣

∣

∣

2

|V i,λ,c
n

]

≤
∣

∣V i,λ,c
n

∣

∣

2 − λµ|θλ,cn |2 − λµ|X i,λ,c
n |2 + 2λ2µ2|θλ,cn |2 + 2λ2µ2|X i,λ,c

n |2

+ 2λb(dθ + dx) + 2λ(dθ + dx) + 2λ(dθ/N + dx)

≤ (1− λµ+ 2λ2µ2)
∣

∣V i,λ,c
n

∣

∣

2
+ 2λ(b+ 1)(dθ + dx) + 2λ(dθ/N + dx).

Consider the restriction λµ < 1/4, then this implies that

E

[

∣

∣

∣
V i,λ,c
n+1

∣

∣

∣

2
]

≤ (1− λµ/2)E
[

∣

∣V i,λ,c
n

∣

∣

2
]

+ 2λ(b+ 1)(dθ + dx) + 2λ(dθ/N + dx).

Iterating the above bound finally yields

E

[

∣

∣

∣
V i,λ,c
n+1

∣

∣

∣

2
]

≤ (1− λµ/2)n
∣

∣

∣
V i,λ,c
0

∣

∣

∣

2

+
1− (1− λµ/2)n

λµ/2
4λ(b+ 1)(dθ + dx)

≤
(

|V0|2 + (8/µ)(b+ 1)
)

(1 + dθ + dx).
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Lemma 6. Let A1, A3 and A4 hold. Then, for any 0 ≤ λ < 1/4µ and q ∈ [2, 2ℓ+1)∩N,
it holds that,

E
[

|V i,λ,c
n |2q

]

≤ C|z0|,µ,b,p(1 + dθ + dx)q,

for a constant C > 0 independent of N, n, λ, dx and dθ, ∀i ∈ {1, . . . , dθ +Ndx}.

Proof. Similarly as in the proof of Lemma 3 we define the following auxiliary quantities:

Aλ
n := |∆λ,θ

n |2 + |∆λ,i,x
n |2,

Bλ
n = 2〈∆θ

n, G
λ,θ
n 〉+ 2〈∆λ,x,i

n , Gλ,x,i
n 〉+ |Gλ,θ

n |2 + |Gλ,x,i
n |2.

Now for the 2q-th Moment one writes:

|V i,λ,c
n+1 |2q =

(

Aλ
n +Bλ

n

)q

≤ (Aλ
n)

q + 2q(Aλ
n)

q−1Bλ
n +

q
∑

k=2

(

q

k

)

|Aλ
n|q−k|Bλ

n|k (45)

We shall deal with each term separately,

E
[

|Aλ
n|q|Zλ

n

]

= (Aλ
n)

q ≤
(

(1− λµ/2)
∣

∣V i,λ,c
n

∣

∣

2
+ 2λ(b+ 1)(dθ + dx)

)q

≤
(

1 +
λµ

4

)q−1(

1− λµ

2

)q

|V i,λ,c
n |2q +

(

1 +
4

λµ

)q−1

2qλqCq

≤
(

1− λµ

4

)q−1(

1− λµ

2

)

|V i,λ,c
n |2q +

(

λ+
4

µ

)q−1

λ(2C)q

≤ rλq |V i,λ,c
n |2q + wλ

q . (46)

where rλq = (1− λµ/4)q−1(1− λµ/2) and wλ
q = (λ+ 4/µ)q−1λ(2C)q.

On a similar note,

E
[

2q(Aλ
n)

q−1Bλ
n|V i,λ,c

n

]

= 2q(Aλ
n)

q−1
E
[

Bλ
n|Zλ

n

]

= 4qλ
(

dθ/N + dx
)

(Aλ
n)

q−1

≤ 4qλ
(

dθ/N + dx
) (

rλq−1|V i,λ,c
n |2(q−1) + wλ

q−1

)

≤ 4q (2λd)
(

rλq−1|V i,λ,c
n |2(q−1) + wλ

q−1

)

. (47)

The 3rd term on (45) can be further expanded to

q
∑

k=2

(

q

k

)

|Aλ
n|q−k|Bλ

n|k =
q−2
∑

ℓ=0

(

q

ℓ+ 2

)

|Aλ
n|q−2−k|Bλ

n|k+2

=
q

ℓ+ 2

q − 1

ℓ+ 1

q−2
∑

ℓ=0

(

q

ℓ

)

|Aλ
n|q−2−k|Bλ

n|k|Bλ
n|2

≤ q(q − 1)
(

|Aλ
n|+ |Bλ

n|
)q−2 |Bλ

n|2

≤ q(q − 1)2q−3|Aλ
n|q−2|Bλ

n|2 + q(q − 1)2q−3|Bλ
n|q.

= D + F (48)
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Taking the expectation of the above terms yields

E[D|V i,λ,c
n ] = q(q − 1)2q−3|Aλ

n|q−2
E
[

|Bλ
n|2|V i,λ,c

n

]

,

where

E
[

|Bλ
n|2|V i,λ,c

n

]

= E

[

∣

∣2〈∆θ
n, G

λ,θ
n 〉+ 2〈∆λ,x,i

n , Gλ,x,i
n 〉+ |Gλ,θ

n |2 + |Gλ,x,i
n |2

∣

∣

2 |V i,λ,c
n

]

≤ 4
(

E
[

4|∆λ,θ
n |2|Gλ,θ

n |2|V i,λ,c
n

]

+ E
[

4|∆λ,x,i
n |2|Gλ,x,i

n |2|V i,λ,c
n

]

+ E
[

|Gλ,x,i
n |4|V i,λ,c

n

]

+ E
[

|Gλ,x,i
n |4|V i,λ,c

n

])

≤ 4
(

4(2λdθ/N)|∆λ,θ
n |2 + 4(2λdx)|∆λ,x,i

n |2 + 12(2λdθ/N)2 + 12(2λdx)2
)

≤ 16(2λd)
(

|∆λ,θ
n |2 + |∆λ,x,i

n |2
)

+ 96(2λd)2

≤ 16(2λd)Aλ
n + 96(2λd)2.

with d = max{dθ/N, dx}. plugging in this result for the term D we get

E[D|V i,λ,c
n ] = q(q − 1)2q−3|Aλ

n|q−2
(

16(2λd)Aλ
n + 96(2λd)2

)

= 16(2λd)q(q − 1)2q−3
(

rλq−1|V λ
n |2(q−1) + wλ

q−1

)

+ 96(2λd)2q(q − 1)2q−3
(

rλq−2|V λ
n |2(q−2) + wλ

q−2

)

.

Finally,

E[F |V i,λ,c
n ] = q(q − 1)2q−3|Bλ

n|q

= q(q − 1)2q−3
E
[∣

∣2〈∆θ
n, G

λ,θ
n 〉+ 2〈∆λ,x,i

n , Gλ,x,i
n 〉+ |Gλ,θ

n |2 + |Gλ,x,i
n |2

∣

∣

q |V i,λ,c
n

]

≤ q(q − 1)2q−34q−1
(

E
[

2q|∆λ,θ
n |q|Gλ,θ

n |q|V i,λ,c
n

]

+ E
[

2q|∆λ,x,i
n |q|Gλ,x,i

n |q|V i,λ,c
n

]

+E
[

|Gλ,θ
n |2q|V i,λ,c

n

]

+ E
[

|Gλ,x,i
n |2q|V i,λ,c

n

])

≤ q(q − 1)23q−5
(

2q(2λdθ/N)q/2q!!
(

|∆λ,θ
n |2

)q/2
+ 2qq!!(2λdx)q/2

(

|∆λ,x,i
n |2

)q/2

+(2q)!!(2λdθ/N)q + (2q)!!(2λdx)q
)

≤ (q(q − 1))q+124q−5
(

(2λd)q/2
(

|∆λ,θ
n |2 + |∆λ,x,i

n |2
)q/2

+ 2(2λd)q
)

≤ (q(q − 1))q+124q−5
(

(2λd)q/2
∣

∣Aλ
n

∣

∣

q/2
+ 2(2λd)q

)

≤ (q(q − 1))q+124q−5(2λd)q/2
(

rλq/2|V λ
n |q + wλ

q/2

)

+ (q(q − 1))q+124q−52(2λd)q.

Combining the above results in view of (48) yields

E

[

q
∑

k=2

(

q

k

)

|Aλ
n|q−k|Bλ

n|k
]

≤ 16(2λd)q(q − 1)2q−3
(

rλq−1|V λ
n |2(q−1) + wλ

q−1

)

+ 96(2λd)2q(q − 1)2q−3
(

rλq−2|V λ
n |2(q−2) + wλ

q−2

)

+ (q(q − 1))q+124q−5(2λd)q/2
(

rλq/2|V λ
n |q + wλ

q/2

)

+ (q(q − 1))q+124q−4(2λd)q. (49)

34



Substituting (46),(47) and (49) into (45) also yields

E

[

|V i,λ,c
n+1 |2q|V i,λ,c

n

]

≤ rλq |V i,λ,c
n |2q + wλ

q

+ 4q (2λd) (1 + 4(q − 1)2q−3)
(

rλq−1|V i,λ,c
n |2(q−1) + wλ

q−1

)

+ 96(2λd)2q(q − 1)2q−3
(

rλq−2|V i,λ,c
n |2(q−2) + wλ

q−2

)

+ (q(q − 1))q+124q−5(2λd)q/2
(

rλq/2|V i,λ,c
n |q + wλ

q/2

)

+ (q(q − 1))q+124q−4(2λd)q. (50)

Consider |V i,λ,c
n | ≥

√

2d

µ/4

{

2(q(q − 1))q+124(q−1)
}1/2 ≥

√

2d

µ/4

{

2(q(q − 1))q+124(q−1)
}1/q

.

Then one observes

E

[

|V i,λ,c
n+1 |2q|V i,λ,c

n

]

≤ rλq |V i,λ,c
n |2q + wλ

q +
λµ

2 · 4 |V
i,λ,c
n |2

(

rλq−1|V i,λ,c
n |2(q−1)

)

+
(λµ)2

2 · 42 |V
i,λ,c
n |4

(

rλq−2|V i,λ,c
n |2(q−2)

)

+
(λµ)q/2

2 · 4q/2 |V
i,λ,c
n |q

(

rλq/2|V i,λ,c
n |q

)

+ (q(q − 1))q+124(q−1)(2λd)q

+ (q(q − 1))q+124(q−1)
(

(2λd)wλ
q−1 + (2λd)2wλ

q−2 + (2λd)q/2wλ
q/2

)

≤ rλq/2

(

(

1− λµ

4

)q/2

+
1

2

(

λµ

4

)(

1− λµ

4

)q/2−1

+
1

2

(

λµ

4

)2(

1− λµ

4

)q/2−2

+
1

2

(

λµ

4

)q/2
)

|V i,λ,c
n |2q

+ wλ
q + (q(q − 1))q+124(q−1)(2λd)q

+ (q(q − 1))q+124(q−1)
(

(2λd)wλ
q−1 + (2λd)2wλ

q−2 + (2λd)q/2wλ
q/2

)

.

Using the fact that λµ ≤ 1 we get

E

[

|V i,λ,c
n+1 |2q|V i,λ,c

n

]

≤
(

1− λµ

2

)

|V i,λ,c
n |2q

+ wλ
q + (q(q − 1))q+124(q−1)(2λd)q

+ (q(q − 1))q+124(q−1)
(

(2λd)wλ
q−1 + (2λd)2wλ

q−2 + (2λd)q/2wλ
q/2

)

≤
(

1− λµ

2

)

|V i,λ,c
n |2q + (q(q − 1))q+124(q−1)10qCq(dλ)q.
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Consequently, on {|V i,λ,c
n | ≤

√

2d

µ/4

{

2(q(q − 1))q+124(q−1)
}1/2}, we get

E

[

|V i,λ,c
n+1 |2q|V i,λ,c

n

]

≤
(

1− λµ

2

)

|V i,λ,c
n |2q

+ (q(q − 1))q+124(q−1)10qCq(dλ)q

+ 3
(

q(q − 1)q+124(q−1)
)q

(2d)q
(

4

µ

)q

2q−1.

Hence the bound in (50) is further improved to

E

[

|V i,λ,c
n+1 |2q

]

≤
(

1− λµ

2

)

E
[

|V i,λ,c
n |2q

]

+ C(d, q, λ, µ),

and the usual bound for recursive sequences follows.

A.3.3 Proof of Proposition 6

Proof. Consider the usual split on the difference between the interpolation and the scaled
dynamics and apply the Itô’s formula for x → |x|2

|Zλ,c

t −Zλt|2 = |θλ,ct − ϑλt|2 +
1

N

N
∑

i=1

|Xi,λ,c

t −X i
λt|2

= −2λ

∫ t

0

〈

1

N

N
∑

i=1

hθ
λ,c(θ

λ,c
⌊t⌋ , X

i,λ,c
⌊t⌋ )− 1

N

N
∑

i=1

hθ(ϑλ
λt,X i

λt), θ
i,λ,c

t − ϑi
λt

〉

ds

−2λ

N

N
∑

i=1

∫ t

0

〈

hx
λ,c(θ

λ,c
⌊t⌋ , X

i,λ,c
⌊t⌋ )− hx(ϑλ

λt,X i
λt), X

i,λ,c

t −X i
λt

〉

ds

= −2λ

N

N
∑

i=1

∫ t

0

〈hλ,c(V
i,λ,c
⌊t⌋ )− h(V i

λt), V
i,λ,c

t − V i
λt〉ds.

In order to make the forthcoming calculations more readable we define the following
quantities:

eit = V
i,λ,c

t − V i
λt and et = Z

λ,c

t −Zλt,

so that it follows: 1/N
∑N

i=1 |eit|2 = |et|2.
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Then by taking the derivative of the above expansion we obtain

d

dt
|et|2 = −2λ

N

N
∑

i=1

〈hλ,c(V
i,λ,c
⌊t⌋ )− h(V i

λt), e
i
t〉

= −2λ

N

N
∑

i=1

〈h(V i,λ,c

t )− h(V i
λt), e

i
t〉

− 2λ

N

N
∑

i=1

〈hλ,c(V
i,λ,c
⌊t⌋ )− h(V i,λ,c

⌊t⌋ ), eit〉

− 2λ

N

N
∑

i=1

〈h(V i,λ,c
⌊t⌋ )− h(V

i,λ,c

t ), eit〉

= k1(t) + k2(t) + k3(t). (51)

The first term k1(t) is controlled through the convexity of the initial potential, the
taming error k2(t) can be controlled via the properties of the taming function and the
additional moment bounds that we have established, which are also used to control the
discretisation error k3(t). In particular,

k1(t) = −2λ

N

N
∑

i=1

〈h(V i,λ,c

t )− h(V i,λ
λt ), e

i
t〉

≤ −2λµ

N

N
∑

i=1

|eit|2 = −2λµ|et|2. (52)

Using the Cauchy-Schwarz inequality and the ǫ-Young inequality for ǫ = µ/2 yields

k2(t) = −2λ

N

N
∑

i=1

〈hλ,c(V
i,λ,c
⌊t⌋ )− h(V i,λ,c

⌊t⌋ ), eit〉

≤ 2λ

N

N
∑

i=1

(

1

µ
|hλ,c(V

i,λ,c
⌊t⌋ )− h(V i,λ,c

⌊t⌋ )|2 + µ

4
|eit|2

)

≤ 2
λµ

4
|et|2 +

2λ

µN

N
∑

i=1

2λC2
2 (1 + |V i,λ,c

⌊t⌋ |4(ℓ+1))

≤ 2
λµ

4
|et|2 +

4λ2

µ
C2

2 +
4λ2

µN

N
∑

i=1

|V i,λ,c
⌊t⌋ |4(ℓ+1). (53)

37



Similarly for the last term we get

k3(t) = −2λ

N

N
∑

i=1

〈h(V i,λ,c
⌊t⌋ )− h(V

i,λ,c

t ), eit〉

≤ 2λ

N

N
∑

i=1

(

1

µ
|h(V i,λ,c

⌊t⌋ )− h(V
i,λ,c

t )|2 + µ

4
|eit|2

)

≤ 2
λµ

4
|et|2 +

2λL2

µN

N
∑

i=1

(

(1 + |V i,λ,c
⌊t⌋ |ℓ + |V i,λ,c

t |ℓ)2|V i,λ,c
⌊t⌋ − V

i,λ,c

t |2
)

. (54)

By combining the above bounds (52),(53) and (54) in view of (51) and taking the
expectation, one obtains

d

dt
E
[

|et|2
]

≤ −µλE
[

|et|2
]

+
4λ2C2

2

µ
+

4λ2

µ

1

N

N
∑

i=1

E

[

|V i,λ,c
⌊t⌋ |4(ℓ+1)

]

+
2λL2

µ

1

N

N
∑

i=1

E
1/2
[

(1 + |V i,λ,c
⌊t⌋ |ℓ + |V i,λ,c

t |ℓ)4
]

E
1/2
[

|V i,λ,c
⌊t⌋ − V

i,λ,c

t |4
]

≤ −µλE
[

|et|2
]

+
4λ2(C2

2 + C3)

µ

+
2λL2

µ
(6max{1, 2C4})λ

(

µC5 + 6
√

dµC6 + 10d+ 2
)

≤ −µλE
[

|et|2
]

+ λ2M(L, µ, d, ℓ) ≤ λ
(

−µ

2
E
[

|et|2
]

+ λM
)

.

by multiplying both sides by the integrating factor eλµt/2 and rearranging the term one
gets

d

dt

(

eλµt/2E
[

|et|2
])

≤ λ2Meλµt/2

E
[

|et|2
]

≤ λ
2M

µ
.
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