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Abstract. This paper revives Densely Connected Convolutional Net-
works (DenseNets) and reveals the underrated effectiveness over pre-
dominant ResNet-style architectures. We believe DenseNets’ potential
was overlooked due to untouched training methods and traditional de-
sign elements not fully revealing their capabilities. Our pilot study shows
dense connections through concatenation are strong, demonstrating that
DenseNets can be revitalized to compete with modern architectures.
We methodically refine suboptimal components - architectural adjust-
ments, block redesign, and improved training recipes towards widening
DenseNets and boosting memory efficiency while keeping concatenation
shortcuts. Our models, employing simple architectural elements, ulti-
mately surpass Swin Transformer, ConvNeXt, and DeiT-III — key archi-
tectures in the residual learning lineage. Furthermore, our models exhibit
near state-of-the-art performance on ImageNet-1K, competing with the
very recent models and downstream tasks, ADE20k semantic segmenta-
tion, and COCO object detection/instance segmentation. Finally, we pro-
vide empirical analyses that uncover the merits of the concatenation over
additive shortcuts, steering a renewed preference towards DenseNet-style
designs. Our code is available at https://github.com/naver-ai/rdnet.

1 Introduction

The “ImageNet moment” was sparked by the emergence of Convolutional Neural
Networks (ConvNets), starting with the milestone AlexNet [38]. Subsequently,
VGG [62] and GoogleNet [65] further highlighted the benefits of stacking multi-
ple convolutional layers in ConvNets. In the same era, a monumental architecture
ResNet [27] and its family [28, 87] stands out for introducing a groundbreaking
concept - additive skip connections (also known as additive shortcuts or identity
mapping [28]), which allowed for the stacking of up to 1,000 layers. The introduc-
tion of residual learning with it was a game-changer, diminishing the gradient
vanishing problem by ensuring the input gradient always remained at one from
the derivative of the identity mapping. This innovation sparked a series of succes-
sors, including the milestone ConvNets - EfficientNet [67] and ConvNeXt [48]; it
paved the way for the next leap, such as Transformers [75], Vision Transformers
(ViTs) [19], and Hierarchical ViTs [47], which accentuates the lasting influence
of additive shortcuts.
⋆ Equal contribution. Correspondence to Dongyoon Han.
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In the early stage of this period governed by residual learning, Densely Con-
nected Convolutional Networks (DenseNets [32]) introduced a novel approach:
maintaining shortcut connections through feature concatenation instead of using
additive shortcuts. This led to the concept of feature reuse [32], allowing more
compact models and reducing overfitting through explicit supervision propaga-
tion to the early layers. DenseNets showcased efficiency and superior perfor-
mance in tasks like semantic segmentation [36]. The evolution of architectural
designs post-DenseNet appeared to challenge the dominance of ResNets but saw
a decline in their popularity, shaded by the advantages of additive shortcuts.

Successors of DenseNets [40,76,79] revisited DenseNets to advance its design
spirit but struggled against more dominant architectural trends again. We argue
the potential of DenseNets still remained underexplored due to low accessibility,
being gradually hindered by outdated training methods and the limitations of
low-capacity components; they struggled to keep pace with the advancements
in modern architectures that benefited from years of evolutionary refinements.
Furthermore, we presume DenseNets requires an overhaul due to its limited
applicability and memory challenges caused by increasing feature dimensionality.
While the authors addressed memory concerns [32, 53], these issues continue to
restrict the expansion of the architecture, particularly for width scaling. Despite
the drawbacks, we conjecture the core design concept is still highly potent.

Bearing this in mind, this paper revitalizes DenseNets by highlighting the
undervalued efficacy of concatenations. Through a comprehensive pilot study
training with over 10k random networks across varied setups, we validate our
claim that concatenation can surpass the additive shortcut. Afterward, we mod-
ernize DenseNet with a more memory-efficient design to widen it, abandon-
ing ineffective components and enhancing architectural and block designs, while
preserving the essence of dense connectivity via concatenation. We employ con-
temporary strategies that synergize with DenseNets as well. Our methodology
eventually exceeds strong modern architectures [21, 25, 42, 45, 57, 97] and some
milestones like Swin Transformer [47], ConvNeXt [48], and DeiT-III [71] in per-
formance trade-offs on ImageNet-1K [59]. Our models demonstrate competitive
performance on downstream tasks such as ADE20K semantic segmentation and
COCO object detection/instance segmentation. Remarkably, our models do not
exhibit slowdown or degradation as the input size increases. Ultimately, our
empirical analyses shed light on the unique benefits of concatenation.

2 Related Work

Densely Connected Neural Networks (DenseNets) [32] pioneered dense
connections within Convolutional Neural Networks (ConvNets) beyond additive
shortcuts, highlighted by parameter efficiency and enhanced precisions. Building
on this framework, some variants were proposed. PeleeNet [79] successfully pro-
posed modifications to achieve real-time inference capabilities upon DenseNet.
VovNet [40] departed from DenseNets’ dense feature reuse in favor of a sparser
one-shot aggregation aimed at real-time object detection. CSPNet [76], by omit-
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ting features and later concatenating them at cross-stage layers, reduces com-
putational demands, barely affecting precision. DenseNets were further high-
lighted with the effectiveness on dense prediction tasks, for example, Jegou et
al. [36] showed the effectiveness of DenseNets on semantic segmentation. MDU-
Net [94] exploited the dense connectivity for enhanced biomedical image seg-
mentation. DCCT [52] integrated dense connections into a Transformer archi-
tecture [75] to facilitate image dehazing. For video snapshot compressive imag-
ing, EfficientSCI [78] also leveraged the benefits of dense connectivity. Wang et
al. [82] utilized dense connections to improve the detection of small objects.

We believe these references demonstrate DenseNet-based designs’ potential,
to our knowledge, but none recently challenged the ImageNet benchmarks using
the principle of dense connections.

Modern architectures. DeiT [69] and AugReg [64] exhibited modernized
training recipes [5,67,84] could replace massive training data for ViT [19] train-
ing. Descendant hierarchical ViTs [18,47,80,81,88,89], which got closer to Con-
vNets, showed locality offers efficacy along with computational efficiency. Hybrid
architectures [14,25,43,74,97] then explicitly equip convolutions for the locality.
Ironically, incomers have become closer to ConvNets, aiming not to forsake the
proven effectiveness of simple convolution, albeit using Transformers.

ConvNets [6,27,56,67] initially predominated due to strong capability along
with efficiency. Interestingly, advancements from the ViT side have also con-
tributed to modernizing ConvNets; many recent architectures [23,70,73,90] were
inspired by ViT’s designs but armed with locality, demonstrating the contin-
ued high competitiveness of convolutions. Successors like RepLKNet [17] and
SLaK [46] employed large-scale kernel convolutions built upon the predecessor’s
legacy to emulate the globality of attention [19], offering to learn enhanced global
representations. RevCol [7] introduced a new concept to mix multi-level features
repeatedly through multiple columns. InceptionNeXt [91] adopted the inception
module [65] inside ConvNeXt to show improved performance. HorNet [57] and
MogaNet [42] both have presented remarkable performance by employing mul-
tiple gated convolution and multi-level features, respectively, which also took
advantage of multi-scale features for globality.

Those architectures surpassed ViTs on ImageNet and dense prediction tasks
as well, but similarities like using additive shortcuts and architectural complexity
continue to restrict architectural diversity and innovation. Furthermore, network
modernization methods [5,48,79,84] have successfully revisited existing architec-
tures but did not handle beyond baselines using additive shortcuts. This work
follows a general direction but ensures our starts from a distinct baseline, ac-
knowledging uncertainties about the effectiveness of existing roadmaps.

3 Methodology: Revitalizing DenseNets
This section starts with our conjecture that DenseNet may not fall behind mod-
ern architectures and proves it by substantiating revised DenseNet architectures.
Based on our conjecture with our pilot experiments, we propose our methodol-
ogy, which encompasses some modernized materials to revive DenseNet.
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3.1 Preliminary

Motivation. ResNets [27] have renowned due to the simple formulation at l-th
layer: Xl+1 = Xl + f(XlW), where the input Xl and the weight W. A pivotal
element is the residual connection (i.e., additive shortcut, +), which facilitates
modularized architectural designs as evidenced in Swin [47], ConvNeXt [48], and
ViT [19]. While DenseNets [32] follow the formulation: Xl+1 = [Xl, f(XlW)]
based on the dense connection through concatenation having explicit parameter
efficiency. However, this formulation should constrain feature dimensionality due
to memory concerns, making it challenging to scale in width.

DenseNets [32] initially outperformed ResNets [27] but failed to realize a
complete paradigm shift, losing initial momentum due to the applicability. In
particular, despite the efforts for memory [40,53], width scaling remains problem-
atic for DenseNets, with wider models like DenseNet-161/-233 consuming more
memory [32]. Nonetheless, inspired by the prior works [5, 48, 84] and motivated
by successes in dense prediction tasks such as semantic segmentation [94], we
believe DenseNets would outperform popular architectures and warrant further
exploration of their potential: 1) feature concatenation merits strong capability;
2) the above concerns in DenseNets can be mitigated through strategic design.

Our conjecture. Concatenation shortcut is an effective way of increasing rank.
Consider the layer output f(XW) with the weight W∈Rdin×dout and the input
X∈RN×din with a nonlinearity f , where we assume the number of instances
N≫din. As focusing on the matrix rank of f , rank(f(XW)) generally gets
closer to dout due to the nonlinearity when din is not that small [24]. Litera-
ture [10, 22, 24] manifested the layer W with dout > din offers increased rep-
resentational capacity. Intriguingly, DenseNets enjoy a similar aspect because
we can decompose W = [WP, I], where WP and I denote the weights in the
building block and concatenation. We further argue that increasing rank like
this frequently would be more beneficial. The output dimension of WP is called
growth rate.

A strategic design mitigates memory concerns. Consider the output of stacked
layers XW1f(W2), where the weights W1∈Rdin×dr , W2∈Rdr×dout , dr < din, dout,
and a nonlinearity f after W2. Likewise, the rank is likely preserved as dr is
not that small. This suggests that using intermediate dimension reducers like
W1 (i.e., transition layer) may not impact the rank significantly. We argue a
frequent application would effectively address memory concerns.

Pilot study. We conduct a pilot study to verify our conjecture by sampling
over 15k networks on Tiny-ImageNet [39], where their shortcuts are either addi-
tive like ResNets [27] or concatenation in DenseNets [32]. We carefully control
experiments regarding computational costs and involve diverse training setups
to ensure a balanced and comprehensive comparison. Intriguingly, concatenation
shortcuts all outperform additive ones with the averaged Tiny-ImageNet accu-
racy - 54.3±3.7 (concat) vs. 52.7±4.2 (add), thereby empirically supporting
our claim. Detailed results and setups are provided in §5.1.
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Table 1: ImageNet-1K performance progressions. Beginning from the basleine
- DenseNet-201 [32], we report every performance change throughout progressions.
We uphold DenseNet’s principle of feature reuse through concatenation as the core of
the model progression. +α denotes a new element α was added to each prior model.
Both enhancements in efficiency or accuracy are colored in red, while degradations are
marked in blue.; GR denotes the growth rate, the amount of feature concatenation [32].

Elements Top-1 Param FLOPs Lat (ms) Lat (ms) Lat (ms) Mem (GB)
Acc (%) (M) (G) (b1, Infer) (b128, Infer) (Train) (Train)

(a) DenseNet-201 [32] 79.7 20.0 4.3 38.4 190 131 3.9

(b) (a) + Wider & shallower 79.5 (−0.2) 21.8 (+1.8) 11.1 (+6.8) 8.5 (−29.9) 170 (−20) 85 (−46) 3.2 (−0.7)
(c) (b) + Modernized blocks 80.4 (+0.9) 12.9 (−8.9) 4.8 (−6.3) 10.4 (+ 2.9) 230 (+60) 112 (+27) 3.4 (+0.2)
(d) (c) + Channel dim

x(GR
y) 80.8 (+0.4) 19.9 (+7.0) 4.7 (−0.1) 11.8 (+ 1.4) 184 (−46) 88 (−24) 3.1 (−0.3)

(e) (d) + Trans. layers
x(GR

x) 82.3 (+1.5) 21.2 (+1.3) 5.0 (+0.3) 11.0 (+ 0.8) 183 (− 1) 90 (+ 2) 3.4 (+0.3)
(f) (e) + Patchification stem 82.4 (+0.1) 21.2 (−0.0) 4.9 (−0.1) 11.0 (− 0.0) 179 (− 6) 88 (− 2) 3.2 (−0.2)
(g) (f) + Refined Trans. layers 82.6 (+0.2) 22.4 (+1.2) 4.9 (+0.0) 13.6 (+ 2.6) 170 (− 9) 97 (+ 9) 3.1 (−0.1)
(h) (g) + Channel re-scaling 82.8 (+0.2) 23.9 (+1.5) 5.0 (+0.1) 14.0 (+ 0.4) 175 (+ 5) 99 (+ 2) 3.1 (+0.0)

3.2 Revitalizing DenseNets

We revisit DenseNets while maintaining its core principle via concatenation. Our
strategy explores ways to widen DenseNets and identify effective elements. Ele-
ments that contribute to the performance improvements are detailed in Table 1.

Baseline. As the series of revisiting ResNets [5, 84] showed, refined training
recipes bring significant improvements. Likewise, we train DenseNet-201 with
a modern training setup, establishing it as our baseline. Following the well-
explored setups [47, 48, 68, 69, 84], we include Label Smoothing [66], RandAug-
ment [13], Random Erasing [16, 95], Mixup [93], Cutmix [92], and Stochastic
Depth [33]; we use AdamW [50] with the cosine learning rate schedule [49] and
linear warmup [20] with a popular large epochs training setup (300).

Going wider and shallower. DenseNets originally proposed exceedingly deep
architectures (e.g., DenseNet-265 [32]), which effectively showed the scaliblity.
We argue that enhancing feature dimension through a high growth rate (GR) and
increasing depth is hardly achieved simultaneously under resource constraints.
Prior works [24, 40, 48, 56, 79] designed shallower networks to achieve efficiency,
particularly latency. Inspired by this, we modify DenseNet to a favorable base-
line accordingly; widening the network by augmenting GR while diminishing its
depth. Specifically, we vastly increase GR - from 32 to 120 here - to achieve it;
we adjust the number of blocks per stage, being reduced from (6, 12, 48, 32) to
a much smaller (3, 3, 12, 3) for a depth adjustment. We do not shrink the depth
as much to maintain minimal nonlinearity. Table 1(b) shows this strategic mod-
ification has led to notable latencies and memory efficiency - around 35% and
18% decreases in training speed and memory, respectively. The marked increase
in GFLOPs to 11.1 will be adjusted through the later elements. Further study
supports our decision - prioritizing width while balancing depth (see Table 8a).

Improved feature mixers. We employ the base block [48] for our feature mixer
block, which has been extensively studied to reveal its effectiveness. Before using
it, we should reevaluate the studies for our case because 1) DenseNets did not use
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Fig. 1: Schematic illustration of RDNet. RDNet features a unique design distin-
guishing it from ResNet-style architectures, primarily due to the use of feature concate-
nation. We design four stages in RDNet across all scales, where each stage-N comprises
3LN feature mixers and one additional transition layer. Feature mixer f denotes our
building block combines previously concatenated features to compress them into GR-
dimensional features for concatenation. The growth rate (GR) adjusts the amount of
concatenated features and is predetermined for each stage. Transition layers for down-
sampling are positioned after each stage as before. S and C denote stride and channel
size. This figure illustratively sets GR to two.

additive shortcuts, and 2) the building block was originally designed to reduce
dimensions successively. We find using the following setups still holds: using 1)
Layer Normalization (LN) [2] instead of Batch Normalization (BN) [35]; 2) post-
activation; 3) depthwise convolution [31] 4) fewer normalizations and activations;
5) a kernel size of 7. A unique aspect of our block is that the output channel
(GR) is smaller than the input channel (C); mixed features are eventually more
compressed features. As can be seen in Table 1(c), our design improves accuracy
by a large margin (+0.9%p) while slightly increasing computational costs. We
supplement factor analyses for our study here (see Table 8b).

Larger intermediate channel dimensions. A large input dimension for the
depthwise convolution is crucial [60]. By adeptly modulating expansion ratio
(ER) for inverted bottlenecks in the previous works [24,48,60,67,68] successfully
achieved significant performance, by enlarging intermediate tensor size within
the block beyond input dimensions (e.g., ER was tuned to 6).

DenseNets similarly employed the ER concept; however, they distinctively
applied it to the growth rate (GR) (e.g., ER=4×GR) rather than to the input
dimension to reduce both input and output dimensions. We argue that this
harms the capability of encoded features through the nonlinearity [24]. Thus, we
reengineer the approach by directing ER proportional to the input dimension
(i.e., decoupling ER from GR). This change results in increased computational
demands from a larger intermediate dimension; thus, halving GR (e.g., from
120 to 60) manages these demands without compromising accuracy. Namely,
we enrich the features before applying nonlinearity and further compress the
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channels to control computational costs. Thereafter, we achieve both a faster
training speed of 21% and 0.4%p improvement in accuracy shown in Table 1.
Additionally, we conduct a factor analysis to ascertain whether reducing ER
and increasing GR is preferable, or conversely, elevating ER and decreasing GR;
Table 8c displays employing GR of 4 ultimately yields the optimal results.
More transition layers The transition layers [32] between stages are intended
to reduce the number of channels. Due to the dense connections in every block,
the intensified accumulation of features does not allow a high growth rate (GR).
This gets worse as multiple blocks are stacked within a single stage, such as in the
third stage, where numerous blocks are accumulated in a single stage with low
GRs. We introduce a novel aspect using more transition layers to address it. To
be specific, we propose to use a transition layer in a stage, not solely after each
stage, but after every three blocks with a stride of 1. These transition layers do
not concern downsampling but dimension reduction. This modification evidently
reduces the computational costs substantially; therefore, we successfully increase
overall GRs thanks to it1. This is further supported by the results in Table 8e,
which reveals using transition layers frequently often improves accuracy.

Additionally, we note that the models exhibit low parameter counts com-
pared to their FLOPs. We remedy this by introducing variable GR at different
stages (e.g., 64, 104, 128, 192) instead of a uniform GR. Our further study in
Table 8d suggests that a uniform growth rate (GR) compromises both accuracy
and efficiency. Finally, Table 1(e) shows our design achieves significant accuracy
improvements without greatly affecting computational costs.
Patchification stem Recent advancements revealed the effectiveness of using
image patches as inputs within a stem [48,57,70]. We use the identical setup of a
patch size 4 with a stride 4 as the patchification (LN [2] follows). Our empirical
findings suggest that employing the patchification yields a notable acceleration
in computational speed without loss of precision (see Table 1(f)).
Refined transition layers Another role of the transition layers was downsam-
pling, and extra average poolings to downsample were adopted. We refine the
transition layers, removing the average pooling and replacing the convolution by
adjusting the kernel size and stride with the stride (LN replaces BN as well).
Therefore, our transition layers play two additional roles: 1) dimension reduc-
tion, as aforementioned; 2) downsampling. Placing the transition layer after each
stage exhibits +0.2%p gain, barely hurting efficiency (see Table 1(g)). For the
dimension reduction ratio, we reexamine the impact, previously explored in [32];
Table 8f reconfirms 0.5 is optimal; higher transition ratios degrade precision.
Channel re-scaling. We investigate if channel re-scaling is required due to the
diverse variance of concatenated features. We examine our proposed re-scaling
approach, which has a similar formulation by merging the channel layer-scale [69]
and an effective squeeze-excitation network [41]. Table 1(h) indicates it achieves
a slight +0.2%p improvement, albeit with very minor inefficiency.
1 Increase in GR aims to address the overall low GR in the baseline at an architecture

level, whereas the abovementioned GR decrease was to boost ER on a block level.
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3.3 Revitialized DenseNet (RDNet)

We finally introduce Revitalized DenseNet (dubbed RDNet), illustrated in Fig. 1.
Our final model achieves both enhanced precision and efficiency, particularly
enjoying significantly faster speed (see Table 1(h) vs. Table 1(a)). We construct
the RDNet model family, aligned with the widely-adopted scales [27,47,48]. Our
models distinctively include the Growth Rate - GR=(GR1, GR2, GR3, GR4), and
the number of mixing blocks in each stage - B= (B1, B2, B3, B4), where we assign
three blocks in each stage Bn = 3Ln. We summarize the configurations below:
• RDNet-T: GR = (64, 104, 128, 224), B = (3, 3, 12, 3)
• RDNet-S: GR = (64, 128, 128, 240), B = (3, 3, 21, 6)
• RDNet-B: GR = (96, 128, 168, 336), B = (3, 3, 21, 6)
• RDNet-L: GR = (128, 192, 256, 360), B = (3, 3, 24, 6)

4 Experiment
4.1 Image Classification

We evaluate our model family on ImageNet-1K [59]. Our models are trained
following the training setups in Swin Transformer [47] and ConvNeXt [48] to
ensure a fair comparison and not aimed to finetune the setups. The models are
trained using AdamW [50] with a batch size of 512 and an initial learning rate
of 1e-4 for 300 epochs. As aforementioned in our baseline in §3.2, we employed
identical data augmentations/regularization techniques to ConvNeXt’s; EMA
is not used for our training. Comprehensive details of the training recipe are
detailed in Appendix. We follow the standard evaluation protocols [27,47,48].

Our superiority is first underscored as compared with those of the current
top-performing architectures [21,25,45,57,97]. We visualize the trade-off plots in
Fig. 2 and detail the accuracies with diverse computational costs in Table 2. Ours
show very competitive results compared with state-of-the-art models. Table 2
exhibits that while our models slightly fall behind in accuracy, they significantly
make up with speed metrics. For example, RDNet-S can match with other lighter
models such as SMT-S or MogaNet-S. Notably, ours do not require large memory
usage as we aimed but achieve further efficiency.

We further exhibit a comparison with the popular models in Table 4. Ours
surpass competitors by high precision, with decent memory usage and faster
speeds. We further visualize trade-offs in Fig. 3, where RDNet demonstrates
competitive performance even when juxtaposed with the milestone architectures.

4.2 Zero-shot Image Classification Table 3: ImageNet-1K zero-shot
classification results. Ours outper-
forms ConvNeXt further in efficiency.

Models Param Top-1 Top-5

ConvNeXt-B 152 51.2 79.3
RDNet-B 134 53.0 81.0

We evaluate RDNet on ImageNet-1k zero-
shot performance by training CLIP [55] to
verify the applicability under a different
training scheme. We follow the training pro-
tocol in ConvNeXt-OpenCLIP [11] using
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Fig. 2: ImageNet-1K performance trade-off among state-of-the-arts. We pro-
vide comparative visualizations between state-of-the-art models, which were known for
top-performing models. It turns out that RDNet is highly competitive in practice in
terms of model speed and memory consumption.

Table 2: ImageNet-1K comparison with the latest models. Fig. 2 visualized
this table. We thoroughly compare our models against the latest architectures in prac-
tical latency and memory usage to demonstrate superiority. bn denotes latency (ms),
measured with a batch size of n. Mem denotes the memory occupation (GB) measured
with a batch size of 16. Interestingly, while our models slightly lag in accuracy, they
significantly compensate with superior speed metrics.

Model Date Param FLOPs Top-1 b1 b8 b16 b32 b64 b128 Mem

RDNet-T Ours 24 5.0 82.8 7.4 13.4 24.6 45.7 88.9 175.2 4.1
HorNet-T7×7 [57] NeurIPS’2022 22 4.0 82.8 21.2 23.2 27.0 50.7 96.1 183.7 4.1
VAN-B2 [21] CVMJ’2023 27 5.0 82.8 24.2 28.0 39.0 75.4 144.4 274.8 5.2
BiFormer-S [97] CVPR’2023 26 4.5 83.8 51.6 50.5 50.9 86.8 167.5 197.2 8.5
NAT-T [25] CVPR’2023 28 4.3 83.2 26.5 28.0 33.2 53.0 102.2 335.3 3.8
SMT-S [45] ICCV’2023 21 4.7 83.7 46.9 48.2 55.8 96.0 176.5 335.3 5.3
MogaNet-S [42] ICLR’2024 25 5.0 83.4 20.0 22.4 40.9 77.2 147.4 288.1 6.4

RDNet-S Ours 50 8.7 83.7 11.9 21.5 39.8 74.0 144.2 289.0 5.4
HorNet-S7×7 [57] NeurIPS’2022 50 8.8 84.0 23.2 25.7 46.0 88.3 171.4 328.9 5.7
VAN-B3 [21] CVMJ’2023 45 9.0 83.9 45.1 49.4 64.1 123.1 237.2 446.9 7.4
BiFormer-B [97] CVPR’2023 57 9.8 84.3 60.4 67.8 85.8 161.2 311.9 584.2 12.2
NAT-S [25] CVPR’2023 51 7.8 83.7 28.1 28.2 43.4 82.7 159.9 310.4 5.2
SMT-B [45] ICCV’2023 32 7.7 84.3 69.3 70.9 87.1 149.6 272.5 518.7 7.8
MogaNet-B [42] ICLR’2024 44 9.9 84.3 37.9 43.8 80.9 152.9 294.0 576.6 11.1

RDNet-B Ours 87 15.4 84.4 11.7 32.2 61.4 116.6 233.7 471.6 6.9
HorNet-B7×7 [57] NeurIPS’2022 87 15.6 84.3 22.9 37.9 71.5 134.5 259.6 500.0 7.7
VAN-B4 [21] CVMJ’2023 60 12.2 84.2 60.4 67.8 85.8 161.2 311.9 584.2 9.0
NAT-B [25] CVPR’2023 90 13.7 84.3 28.3 33.5 43.4 82.7 159.9 310.4 5.2
MogaNet-L [42] ICLR’2024 83 15.9 84.7 60.8 64.9 118.5 224.3 429.2 838.6 14.9

RDNet-L Ours 186 34.7 84.8 15.7 63.2 121.0 233.3 460.7 933.7 10.9
MogaNet-XL [42] ICLR’2024 181 34.5 85.1 66.3 112.3 207.5 394.0 771.9 1512.5 24.1

1.28B seen images from the aggregated set of CC3M [61], CC12M [9], and Red-
Caps [15]. We use the OpenCLIP codebase2.

4.3 Semantic Segmentation

We employ ImageNet-1K pre-trained weights to perform semantic segmentation
on the ADE20K [96] dataset using UperNet [86]. We use a learning rate of 8e-
5 with a weight decay of 0.03, and utilize stochastic depth rate 0.1, 0.2, and
0.3 for the RDNet-T, -S, and -B, respectively. The remainder of the training
2 https://github.com/mlfoundations/open_clip

https://github.com/mlfoundations/open_clip
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Fig. 3: ImageNet-1K performance trade-off among previous milestones. We
provide comparative visualizations between previous architectures and our models.
Notice that we also include speed comparisons to highlight actual differences in practice.
Our models outperform the competing modern architectures revealing the potential of
feature concatenation in designing networks.

Table 4: ImageNet-1K performance comparison with milestones. We report
top-1 accuracy (%), parameter count (M), FLOPs (G), inference time (ms) for 128
images, and memory usage (GB) with a batch size of 16. All models are (pre-)trained
on ImageNet-1k from scratch.
Model Res Param FLOPs Lat Mem Top-1

RSB-ResNet50 [84] 2242 26 4.1 115 2.1 80.4
RegNetY-4GF [56] 2242 21 4.0 128 2.7 81.5
Deit-S [69] 2242 22 4.6 128 1.9 79.8
CoaT-Lite-S [43] 2242 22 4.0 211 3.3 81.9
Swin-T [47] 2242 28 4.5 173 2.6 81.3
PVTv2-B2-Li [81] 2242 23 3.9 173 4.4 82.1
FocalNet-T [88] 2242 29 4.5 181 4.0 82.3
ConvNeXt-T [48] 2242 29 4.5 150 2.7 82.1
CSWin-T [18] 2242 23 4.3 194 2.7 82.8
Deit III-S [71] 2242 22 4.6 128 2.0 81.4
RevCol-T [7] 2242 30 4.5 189 2.0 82.2
SLaK-T [46] 2242 30 5.0 238 3.3 82.5
InceptionNeXt-T [91] 2242 28 4.2 132 3.3 82.3
RDNet-T 2242 24 5.0 175 4.1 82.8

RSB-ResNet101 [84] 2242 45 7.9 190 3.9 81.5
RegNetY-8GF [56] 2242 39 8.0 238 4.0 82.2
NFNet-F0 [6] 2242 71 12.4 235 3.5 83.6
CoaT-Lite-M [43] 2242 45 9.8 396 5.5 83.6
Swin-S [47] 2242 50 8.7 293 3.9 83.0
PVTv2-B4 [81] 2242 63 10.1 370 7.2 83.6
ConvNeXt-S [48] 2242 50 8.7 266 4.0 83.1
CSWin-S [18] 2242 35 6.9 313 4.0 83.6
FocalNet-S [88] 2242 50 8.7 313 4.6 83.5
RevCol-S [7] 2242 60 9.0 377 2.4 83.5
SLaK-S [46] 2242 55 9.8 372 5.0 83.8
InceptionNeXt-S [91] 2242 49 8.4 245 3.2 83.5
RDNet-S 2242 50 8.7 289 5.4 83.7

Model Res Param FLOPs Lat Mem Top-1

RSB-ResNet152 [84] 2242 60 11.6 270 4.7 82.0
RegNetY-16GF [56] 2242 84 15.9 389 5.4 82.2
DeiT-B [69] 2242 87 17.5 418 3.8 81.8
Swin-B [47] 2242 89 15.4 445 5.4 83.5
PVTv2-B5 [81] 2242 82 11.8 414 7.0 83.8
ConvNeXt-B [48] 2242 89 15.4 417 5.4 83.8
CSWin-B [18] 2242 78 15.0 543 6.5 84.2
RepLKNet-31B [17] 2242 79 15.3 461 2.7 83.5
DeiT III-B [71] 2242 87 17.5 422 4.0 83.8
FocalNet-B [88] 2242 89 15.4 476 6.1 83.9
RevCol-B [7] 2242 138 16.6 653 3.5 84.1
SLaK-B [46] 2242 95 17.1 558 6.9 84.0
InceptionNeXt-B [91] 2242 87 14.9 405 6.1 84.0
RDNet-B 2242 87 15.4 472 6.9 84.4

RegNetY-32GF [56] 2242 145 32.3 638 7.3 82.5
NFNet-F1 [6] 3202 133 35.5 421 5.9 84.7
DeiT III-L [71] 2242 304 61.6 1375 10.5 84.9
DeiT III-L [71] 3842 304 191.2 4586 28.1 85.8
ConvNeXt-L [48] 2242 198 34.4 857 8.6 84.3
ConvNeXt-L [48] 3842 198 101.1 2550 19.0 85.5
RDNet-L 2242 186 34.7 934 10.9 84.8
RDNet-L 3842 186 101.9 2714 24.3 85.8

settings follows ConvNeXt [48]. As demonstrated in Table 5, RDNet exhibits
strong performance, which reveals the effectiveness on dense prediction tasks.

4.4 Object Detection

We evaluate object detection performance on COCO [44] using Mask-RCNN [26].
We use a learning rate of 3e-5 with a stochastic depth rate of 0.2. The remainder
of the training settings follows ConvNeXt [48] again. As demonstrated in Table 6,
RDNet exhibits competitive performance.
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Table 5: ADE20K semantic segmentation results. All trained with the unified
head UperNet (160K) on ADE20K. FLOPs (G) are measured at 512×2048 resolutions.

Architecture Crop Param FLOPs mIoUss mIoUms

Swin-T [47] 5122 60 945 44.5 46.1
ConvNeXt-T [48] 5122 60 939 46.0 46.7
RevCol-T [7] 5122 60 937 47.4 47.8
NAT-T [25] 5122 58 934 47.1 48.4
RDNet-T 5122 58 961 47.6 48.6
Swin-S [47] 5122 81 1038 47.6 49.5
ConvNeXt-S [48] 5122 82 1027 48.7 49.6
RevCol-S [7] 5122 90 1031 47.9 49.0
NAT-S [25] 5122 82 1010 48.0 49.5
RDNet-S 5122 86 1040 48.7 49.8
Swin-B [47] 5122 121 1188 48.1 49.7
ConvNeXt-B [48] 5122 122 1170 49.1 49.9
DeiT III-B [71] 5122 128 1283 49.3 50.2
RevCol-B [7] 5122 122 1169 49.0 50.1
NAT-B [25] 5122 123 1137 48.5 49.7
RDNet-B 5122 127 1187 49.6 50.5

5 Discussions

5.1 Pilot Study - Random Network Experiments

This study aims to reveal the effectiveness of dense connections over residual
connections. We train tons of random networks across various scenarios, which
include 1) multiple network scales; 2) multiple types of building blocks; 3) a
range of network architectural elements; and 4) different training setups.
Parameter spaces and cost constraints. Table 7 (left) shows our param-
eter spaces for three individual scales, where RandNetA,B,C are trained in. We
diversify the search space with respect to the budgets, such as parameter count,
FLOPs, and activation (reflecting memory consumption). We expand space from
C to D by incorporating data augmentation, and further to E with both data
augmentation and a different optimizer [50]. Only randomly generated networks
that meet the predefined budget are trained. We use the 90-epochs training
setup [27] trained on Tiny-ImageNet [85]. For C, E spaces using data augmenta-
tion [13,33,66,92,93,95], training is done for 180 epochs. Overall, the cumulative
trained networks reach over 15k.
RandNet architecture. Based on [27], we stack random building blocks within
the first stage. We generate random networks in the parameter space containing

Table 6: COCO object detection and segmentation results. We utilize Mask-
RCNN with 3x schedule. FLOPs (G) are calculated with image size (1280, 800). The
result of Swin-T is from the official repository [1].

Backbone Param FLOPs APbox APbox
50 APbox

75 APmask APmask
50 APmask

75
PVT-S [80] 44M 304G 43.0 65.3 46.9 39.9 62.5 42.8
Swin-T [47] 48M 267G 46.0 68.1 50.3 41.6 65.1 44.9
ConvNeXt-T [48] 48M 262G 46.2 67.9 50.8 41.7 65.0 44.9
RDNet-T 43M 278G 47.3 68.5 51.9 42.2 64.6 44.8
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Table 7: Random network experiments. We present our experimental setups (left)
and results (right). Five parameter spaces guide random network generations for two
distinct shortcuts. We sample random networks within each parameter space, ensuring
similar computational costs. Each parameter space varies in 1) architectural elements -
channel sizes, activations, normalizations, and convolution kernel sizes in A, B, C, D, E ;
2) data augmentations in D, E ; 3) optimizers in E . D, E is based on the architectural
space C. [a1, . . . , an] and (a, b, c) denote a closed interval: a list of n elements and a
range of elements from a to b with a step of c, respectively. All results are averaged.

Parameter space A B C

Param (xM) 2<x<2.5 4<x<5 9<x<10
FLOPs (xG) 2<x<2.5 4<x<5 9<x<10

Depth (3, 6, 1) (3, 8, 1) (3, 12, 1)
Inter. channel dim (32, 96, 8) (64, 128, 8) (64, 192, 8)
Output channel dim (32, 96, 8) (64, 128, 8) (64, 192, 8)
Activations [ReLU, SiLU, Mish, GELU, LeakyReLU]
Normalization layers [BatchNorm, LayerNorm]
Kernel sizes [3, 5, 7, 9]

Parameter space D E

Base space C C
Optimizer - AdamW
Data augmentation ✓ ✓

Model Skip FLOPs Param Acts Top-1 (%)

RandNetA add 2.31±0.11 2.27±0.11 0.77±0.13 45.6±2.2
RandNetA concat 2.15±0.11 2.16±0.11 0.61±0.11 47.8±2.1
RandNetB add 4.65±0.24 4.56±0.24 1.21±0.24 49.7±1.9
RandNetB concat 4.37±0.25 4.36±0.25 0.91±0.18 51.8±1.8
RandNetC add 9.62±0.24 9.41±0.23 2.01±0.45 52.7±2.2
RandNetC concat 9.46±0.25 9.38±0.25 1.37±0.24 55.2±1.1
RandNetD add 9.63±0.23 9.42±0.22 2.05±0.43 57.3±1.4
RandNetD concat 9.52±0.26 9.42±0.26 1.32±0.24 58.1±1.3
RandNetE add 9.61±0.23 9.41±0.23 2.06±0.44 58.1±1.3
RandNetE concat 9.52±0.25 9.42±0.25 1.31±0.25 58.8±1.5
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Fig. 4: Cumulative prabability vs. error of trained models in Table 7 is visual-
ized here following Radosavovic et al. [56]. Across all scales and settings, we observe
concatenation-based models outperform those employing additive shortcuts.

diverse depths, widths, activations, normalizations, and kernel sizes to provide
flexibility under constrained costs (see Table 7). Additionally, we diversify build-
ing blocks across all search spaces to conduct more extensive experiments. Three
distinct architectural blocks - dubbed PreNorm, PostNorm, and PostNorm (w/o
act) - are differentiated by the use of pre-activation and shortcut positions.
PreNorm block adopts the pre-normalization [28,32] precedes a skip connection.
In contrast, two PostNorms enjoy post-normalization [27, 48]. PostNorm varies
from PostNorm (w/o act) based on the activation function post-skip connection.
Result interpretation. Table 7 (right) exhibits that concatenation consis-
tently outperforms additive shortcuts across all configurations. Furthermore,
Fig. 4 demonstrates the superior capability of concatenation-based architectures.

5.2 Impact of Input Size on Performance

We provide compelling findings regarding versus input size. First, Fig 5 (left)
shows RDNet enjoys strong adaptability to input size variations. Intriguingly,
DenseNet161, even trained without strong data augmentations, still enjoys adapt-
ability, surpassing DeiT-S trained with strong data augmentations. We attribute
this to the effectiveness of dense connections.

Our finding further shows that, unlike width-oriented networks that slow
with larger input sizes (due to the large intermediate tensors), our model’s
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Fig. 5: Accuracy/latency/memory vs. resolution. RDNet enjoys resolution-
robustness against various input image sizes to maintain accuracy. Furthermore, RDNet
exhibits a similar latency/memory trend to ConvNeXt and Swin Transformer, main-
taining minimal increase with larger images compared to DeiT-S and DenseNet161.
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Fig. 6: CKA analysis. We compute CKA using features before passing through short-
cuts (either concatenation or addition). This result suggests RDNet generates diverse
features across all layers in comparison to ConvNeXt. The third column presents a
direct comparison between RDNet and ConvNeXt. Overall, RDNet learns distinct fea-
tures from what ConvNeXt does and more varied features.

optimized width avoids latency/memory loss. Fig 5 (middle, right) illustrates
that RDNet compete with ConvNeXt and Swin Transformer, diverging from
DenseNet161 [32] that gets slower and consumes more memory as image size
grows. We note that larger scales (e.g., -S, -B, and -L) all follow the same trend.

5.3 CKA analysis

We analyze the layer-specific features of RDNet compared to ConvNeXt using
Centered Kernel Alignment (CKA) [37]. Fig. 6 displays RDNet learns distinct
features at every layer, showcasing different patterns compared to ConvNeXt. In
the third column, ConvNeXt and RDNet astonishingly learn different features
when compared, highlighting the unique learning dynamics of each model.

5.4 Revisiting Stochastic Depth
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Fig. 7: Stochastic depth proves ef-
fective with dense connections. It
still acts as a regularizer.

Notably, DenseNets primitively did not
employ Stochastic Depth [33] for model
training due to sharing the similarity
in connectivity patterns of networks.
We posit that Stochastic Depth should
not be overlooked; our results demon-
strate a noticeable improvement when it is
incorporated into our model, as illustrated
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Table 8: Ablation study results are reported here with each ImageNet-1K accuracy
(%) with parameter count (M) and FLOPS (G). Best options mark in gray .

(a) Depth/width scaling

Depth Param FLOPs Top-1

3, 3, 9, 3 23.3 5.0 82.5
3, 3, 12, 3 23.9 5.0 82.8
3, 3, 15, 3 23.5 5.0 82.8

3, 3, 18, 6 50.3 8.7 83.5
3, 3, 21, 6 50.4 8.7 83.7
3, 3, 24, 6 49.9 8.7 83.6

3, 3, 18, 6 89.2 15.4 84.2
3, 3, 21, 6 86.2 15.4 84.4
3, 3, 24, 6 87.4 15.4 84.2

(b) Block configuration
Block conf Param FLOPs Top-1

(a) RDNet-T 23.9 5.0 82.8
(a) + more act 23.9 5.0 81.9
(a) ↔ 3×3 dwconv 23.5 4.9 82.4
(a) ↔ 5×5 dwconv 23.7 5.0 82.5
(a) ↔ 9×9 dwconv 23.9 5.1 82.8
(a) ↔ 11×11 dwconv 24.4 5.2 82.7
(a) ↔ 13×13 dwconv 24.8 5.3 82.7

(b) (a) ↔ dwconv at last 23.6 5.0 82.3
(b) + more act/norm 23.6 5.0 81.1
(b) LN ↔ BN 23.6 5.0 82.2

(c) Expansion ratio (ER)

ER Param FLOPs Top-1

1.0 24.4 5.0 82.1
2.0 23.8 5.0 82.6
3.0 24.2 5.0 82.7
4.0 23.9 5.0 82.8
6.0 24.3 5.0 82.6

(d) Growth rate (GR)

GR Param FLOPs Top-1

90, 90, 90, 90 13.2 5.0 81.6
120, 120, 120, 120 23.9 8.9 83.0
64, 104, 128, 224 23.9 5.0 82.8

(e) Transition layer intervals

Interval Param FLOPs Top-1

2 24.3 5.0 82.7
3 23.9 5.0 82.8
4 24.1 5.0 82.6
6 23.7 5.0 82.1

(f) Transition ratio

Ratio Param FLOPs Top-1

0.3 24.4 5.0 82.6
0.4 23.9 5.0 82.6
0.5 23.9 5.0 82.8
0.6 23.8 5.0 82.5
0.7 23.6 5.0 82.3

in Fig. 7. We also observe a small stochastic depth ratio affects profoundly (see
Table 9).

5.5 Ablation Studies Table 9: Stochastic depth
is compatible with dense
connections.

Ratio Param FLOPs Top-1

0 23.9 5.0 81.6

0.05 23.9 5.0 82.5
0.10 23.9 5.0 82.6
0.15 23.9 5.0 82.8
0.20 23.9 5.0 82.6

We gather all ablation studies in Table 8. Each
table contains several models that are meticu-
lously adjusted for almost equivalent computa-
tional costs with others to ensure a fair compar-
ison of our specific focuses. Our methodology, in
Section 3.2, methodically referenced each study.

6 Conclusion
In this paper, we have revisited the past success of DenseNet, which once outper-
formed ResNet in this era dominated by models using addition-based shortcuts,
such as ResNet, ConvNeXt, and ViT. We have first rediscovered the potential of
DenseNet, focusing on the underappreciated fact that DenseNet’s concatenation
shortcuts surpass the expressivity of the convention of ResNet-style addition-
based shortcuts through our pilot study. We then highlight the outdated train-
ing setups and classical macro-block designs that diminish DenseNet’s effective-
ness against modernized architectures.By achieving our goal to widen DenseNet
with modernized elements, we have proven that DenseNet’s foundational prin-
ciples are competitive in achieving robust modeling performance on their own.
Our models exhibit strong performance competitive to the latest modern ar-
chitectures; the employment of diverse concatenated features has significantly
enhanced performance in dense prediction tasks, showcasing an advantage over-
looked in models utilizing addition shortcuts. We hope that our work sheds light
on the advantages of using concatenations in network design, advocating for the
consideration of DenseNet-style architectures alongside ResNet-style ones.
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Limitations. Our models have been scaled to a ‘-large’ level, but resource limita-
tion prevents more extensions to upper scales such as ViT-G.
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Appendix

In this Appendix, we provide additional experiments and details to complement
the main paper. The contents are as follows:

– §A benchmarks robustness of ImageNet-1K pre-trained models on the bench-
marks, including out-of-distribution datasets including ImageNet-V2 [58],
ObjectNet [4], ImageNet-A [30], ImageNet-Sketch [77], and ImageNet-R [29];

– §B reports further COCO object detection and instance segmentation results
with Cascade Mask-RCNN [8];

– §C evaluates further ImageNet top-accuracy versus latency trade-offs on var-
ious testbeds, encompassing both PyTorch and TensorRT A100 inference, as
well as CPU inference outcomes;

– §D provides more details, including specific results and setups of our pilot
study described in §5.1;

– §E presents our experimental setups for ImageNet and downstream tasks
training and evaluation setups.

A Robustness Evaluation

We further evaluate the robustness of our models using the ImageNet out-of-
distribution (OOD) benchmarks - ImageNet-V2 [58], ImageNet-A [30], ImageNet-
Sketch [77], ImageNet-R [29], and ObjectNet [4]. Table A shows our RDNet
demonstrates superior robustness in comparison to the other models. We specif-
ically select models (HorNet, SLaK, and NAT) having comparable ImageNet-1K
accuracies to demonstrate the superior out-of-distribution (OOD) performance
of our models compared with those. Nobaly, even when RDNet demonstrates
lower accuracy on ImageNet-1K than competing models, RDNet achieves high
OOD scores across various benchmarks.

B Object Detection with Cascade Mask-RCNN

An extension to the Mask-RCNN [26] results in Table 6 in the main paper, we
employ the Cascade Mask-RCNN head [8] to evaluate our pre-trained models
further. As demonstrated in Table B, RDNet exhibits competitive performance.
Note that our models do not experience exhaustive fine-tuning of training hyper-
parameters for maximum precisions compared with ConvNeXt’s, which indicates
additional potential for achieving higher accuracy.

C Further ImageNet Accuracy vs. Latency Trade-offs

To assess the practicality of our models, we measure speeds across diverse testbeds.
We precisely measure inference speeds using the PyTorch framework on NVIDIA
A100 GPU, Intel Xeon Gold 5120 CPU, and TensorRT Inference Engine on
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Table A: Robustness evaluation. We compare the models evaluating the out-of-
distribution (OOD) metrics ImageNet-V2/A/Sketch/ObjNet/R. We further average
the OOD scores to show the averaged distribution shifts denoted by Avg Shift. Inter-
estingly, even when RDNet demonstrates lower accuracy on ImageNet-1K compared to
other networks, it consistently attains high OOD scores compared with other datasets.

Model Params FLOPs IN Avg Shift V2 Obj A Sketch R

Swin-T [47] 28 4.5 81.3 38.9 69.7 33.1 21.1 29.3 41.5
ConvNeXt-T [48] 29 4.5 82.1 42.7 72.5 35.6 24.2 33.8 47.2
HorNet-T [57] 22 4.0 82.8 43.4 72.3 37.5 26.6 34.1 46.6
SLaK-T [46] 30 5.0 82.5 43.3 72.0 36.6 30.0 32.4 45.3
NAT-T [25] 28 4.3 83.2 44.0 72.2 37.8 33.0 31.9 44.9
RDNet-T 24 5.0 82.8 44.7 72.9 36.9 27.7 37.0 49.0

Swin-S [47] 50 8.7 83.0 43.8 72.0 36.8 32.5 32.3 45.2
ConvNeXt-S [48] 50 8.7 83.1 45.7 72.5 38.0 31.3 37.1 49.6
HorNet-S [57] 50 8.8 84.0 47.3 73.6 39.9 36.2 36.9 49.7
SLaK-S [46] 55 9.8 83.8 48.2 73.6 39.6 39.3 37.5 50.9
NAT-S [25] 51 7.8 83.7 46.4 73.2 39.9 37.4 34.3 47.3
RDNet-S 50 8.7 83.7 47.8 73.8 39.3 33.5 39.8 52.8

Swin-B [47] 88 15.4 83.5 44.9 72.4 37.6 35.4 32.7 46.5
ConvNeXt-B [48] 89 15.4 83.8 47.9 73.7 39.9 36.7 38.2 51.2
HorNet-B [57] 87 15.6 84.3 48.8 73.9 41.0 39.9 38.1 51.2
SLaK-B [46] 95 17.1 84.0 48.9 74.0 39.7 41.6 38.5 50.8
NAT-B [25] 90 13.7 84.3 48.5 74.1 40.7 41.4 36.6 49.7
RDNet-B 87 15.4 84.4 49.0 74.2 39.7 38.1 40.1 52.7

ConvNeXt-L [48] 198 34.4 84.3 49.9 74.2 40.6 41.3 40.1 53.5
RDNet-L 186 34.7 84.8 52.2 75.0 42.1 42.9 44.5 56.5

Table B: COCO object detection and segmentation results. We utilize Cascade
Mask-RCNN with 3x schedule. FLOPs (G) are calculated with image size (1280, 800).
The result of Swin-T is from the official repository [1].

Backbone Param FLOPs APbox APbox
50 APbox

75 APmask APmask
50 APmask

75
Swin-T [47] 86M 745G 50.4 69.2 54.7 43.7 66.6 47.3
PVTv2-B2 [81] 83M 788G 51.1 69.8 55.3 - - -
FocalNet-T [88] 86M 746G 51.5 70.1 55.8 - - -
ConvNeXt-T [48] 86M 741G 50.4 69.1 54.8 43.7 66.5 47.3
NAT-T [25] 85M 737G 51.4 70.0 55.9 44.5 67.6 47.9
RDNet-T 81M 757G 51.6 70.5 56.0 44.6 67.9 48.3

Swin-S [47] 107M 838G 51.9 70.7 56.3 45.0 68.2 48.8
ConvNeXt-S [48] 108M 827G 51.9 70.8 56.5 45.0 68.4 49.1
NAT-S [25] 108M 809G 52.0 70.4 56.3 44.9 68.1 48.6
RDNet-S 108M 832G 52.3 70.8 56.6 45.3 68.5 49.3

Swin-B [47] 145M 982G 51.9 70.5 56.4 45.0 68.1 48.9
ConvNeXt-B [48] 146M 964G 52.7 71.3 57.2 45.6 68.9 49.5
NAT-B [25] 147M 931G 52.5 71.1 57.1 45.2 68.6 49.0
RDNet-B 144M 971G 52.8 71.4 57.0 45.6 68.9 49.5

NVIDIA A100 GPU. Our testing environment incorporates PyTorch version
1.13.1, CUDA version 11.6, and TensorRT version 8.5.3 for these experiments. A
shows that our models consistently show superior accuracy vs. latency trade-offs
across all evaluation setups. Note that (b) in A includes fewer models because
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Fig. A: Further trade-offs in ImageNet-1K performance. We provide compar-
ative visualizations with diverse environments between state-of-the-art models, which
were known for top-performing models. It turns out that RDNet is highly competitive
in practice in terms of model speed.

those that are challenging to convert to inference engines due to factors like the
use of CUDA custom kernels are not evaluated. We report all the numbers in
Table F.

D More Details of Our Pilot Study

We present individual RandNet experimental results performed under controlled
setups. We conduct 200 experiments for each configuration of budget, block
type, and skip connection type. Fig. B and Table C, concatenation outperforms
addition across parameter spaces A, B, and C. For the parameter spaces D
and E using data augmentations, we use the following hyper-parameters for
experiments. For RandAugment [13], we limit the magnitude values of {3, 5,
7}; for MixUp [93] and CutMix [92], we employ alpha values of {0.1, 0.3, 0.5}
respectively; DropOut [63] ratio and Stochastic Depth [34] ratio are set to to
{0.1, 0.2} and {0.05, 0.1}, respectively; label smoothing [66] is fixed to 0.1; and
Random Erasing [95] is also fixed to 0.25.

Due to the diverse setups in each data argumentation, we conduct 600 ex-
periments for each element. Additionally, even when switching the optimizer to
AdamW, we train 600 random networks for every augmentation as well. Fig. C
and Table D suggest that that data augmentation reduces the performance gap
between additive and concatenative shortcuts, particularly noting that the el-
ement (i.e., trained using stochastic depth with AdamW) benefit more from
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Fig. B: Cumulative prabability vs. error of trained models in Table C is visualized
here following Radosavovic et al. [56]. Each row demonstrates three block types, and
each column exhibits parameter spaces A, B, and C.

an additive shortcut. Nevertheless, we continue to observe that concatenation-
based models dominate over advantage over additive shortcuts, even in AdamW
training configurations.

E Experimental Settings

E.1 ImageNet Training

In Table E, we present the training configurations for RDNet on ImageNet-
1K. Each variant of RDNet adheres to these settings, with the exception of the
stochastic depth rate [34], which is tailored to each model variant. For fine-
tuning, we group three consecutive feature mixer blocks for layer-wise learning
rate decay [3, 12] akin to the approach taken in ConvNeXt. We use the timm
python package [83] for model training.

E.2 Downstream Tasks

We adhere to the hyper-parameter sweep protocol outlined in [48] but sweep
much lightly. For UperNet [86] training on ADE20K, we explore the following
hyperparameters: learning rate {8e-5, 1e-3}, weight decay {0.01, 0.03, 0.05}.
For Mask-RCNN [26] training on COCO, we explore hyperparameters such as
learning rate {2e-3, 3e-3}, weight decay {0.05, 0.1}, stochastic depth {0.1, 0.2}.
For Cascade Mask-RCNN [8] training on COCO, we explore hyperparameters
such as learning rate {8e-5, 1e-4}, weight decay {0.05, 0.1}, stochastic depth
{0.4, 0.5, 0.6}, and layer-wise learning rate decay {0.7, 0.8}. We note that our
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Fig. C: Cumulative prabability vs. error of trained models in Table D is visual-
ized here following Radosavovic et al. [56]. The figure corresponds to the manuscript’s
parameter spaces D and E . Each row demonstrates optimizers, and each column ex-
hibits augmentations.

search space is similar to or less extensive than the known search space in Con-
vNeXt [48] (e.g., 6 (ours) vs. 12 (ConvNeXt) for ADE20K and 8/24 (ours) vs.
48 (ConvNeXt) for COCO experiments).

E.3 Benchmark Settings

We measure latency and memory on the V100 GPU utilizing PyTorch 1.13.1
and CUDA 11.6. In all measurements, we employ the channels-last memory
format [51]. Memory is measured in the training phase with a batch size of 16.
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Table C: Concatenation vs. addition. The table corresponds to the manuscript’s
parameter spaces A, B, and C. We sample 200 random networks within each parame-
ter space, ensuring similar computational costs of FLOPs, the number of parameters
(Param), and activations (Act), and individually train them on Tiny-ImageNet. All
results are averaged along with the standard deviation (± std). Experimental results
with higher accuracy are shaded in gray .

Model Skip type Block type FLOPs (G) Param (M) Act (M) Top-1 (%)

RandNetA Add PostNorm 2.29±0.12 2.25±0.12 0.77±0.13 45.4±2.2
RandNetA Concat PostNorm 2.18±0.11 2.19±0.11 0.60±0.11 47.1±2.1
RandNetA Add PostNorm (w/o act) 2.28±0.12 2.24±0.12 0.76±0.13 44.7±2.3
RandNetA Concat PostNorm (w/o act) 2.19±0.12 2.20±0.12 0.62±0.11 47.5±2.2
RandNetA Add PreNorm 2.36±0.08 2.32±0.08 0.80±0.12 46.7±1.6
RandNetA Concat PreNorm 2.09±0.07 2.10±0.07 0.61±0.12 48.8±1.7
RandNetB Add PostNorm 4.63±0.25 4.54±0.24 1.25±0.24 49.7±2.2
RandNetB Concat PostNorm 4.41±0.27 4.40±0.27 0.88±0.17 51.1±1.7
RandNetB Add PostNorm (w/o act) 4.58±0.25 4.49±0.25 1.17±0.24 49.2±2.0
RandNetB Concat PostNorm (w/o act) 4.44±0.26 4.42±0.26 0.92±0.18 51.6±1.7
RandNetB Add PreNorm 4.46±0.24 4.37±0.23 1.26±0.24 51.3±1.7
RandNetB Concat PreNorm 4.43±0.25 4.42±0.25 0.86±0.17 52.2±1.4
RandNetC Add PostNorm 9.67±0.23 9.46±0.23 2.02±0.46 51.4±2.2
RandNetC Concat PostNorm 9.44±0.25 9.36±0.25 1.39±0.23 55.2±1.0
RandNetC Add PostNorm (w/o act) 9.58±0.24 9.38±0.24 1.95±0.45 52.6±2.0
RandNetC Concat PostNorm (w/o act) 9.44±0.25 9.36±0.24 1.43±0.23 55.2±1.1
RandNetC Add PreNorm 9.55±0.21 9.34±0.21 2.11±0.42 54.5±1.6
RandNetC Concat PreNorm 9.52±0.25 9.42±0.25 1.30±0.24 55.1±1.1

Table D: Concatenation vs. addition with data augmentations. The table
corresponds to the manuscript’s parameter spaces D and E . We utilize the PreNorm
block for augmentation experiments. We sample 600 random networks due to diverse
degrees of data augmentations and report identically in Table C. Experimental results
with higher accuracy are shaded in gray .

Skip type Augmentation AdamW FLOPs (G) Param (M) Act (M) Top-1 (%)

Add RandAug 9.65±0.23 9.44±0.22 2.05±0.43 58.2±1.3
Concat RandAug 9.50±0.26 9.40±0.25 1.33±0.24 59.2±1.2
Add MixUp 9.62±0.22 9.41±0.22 2.03±0.44 57.1±1.2
Concat MixUp 9.52±0.27 9.42±0.27 1.32±0.24 58.1±1.2
Add CutMix 9.64±0.22 9.43±0.22 2.06±0.43 56.6±1.5
Concat CutMix 9.51±0.27 9.42±0.27 1.33±0.24 57.7±1.3
Add Sto. Depth 9.61±0.23 9.40±0.23 2.05±0.44 57.2±1.3
Concat Sto. Depth 9.53±0.26 9.43±0.26 1.33±0.25 57.7±1.1
Add RandErase 9.58±0.22 9.38±0.22 2.07±0.44 57.9±1.3
Concat RandErase 9.53±0.25 9.43±0.25 1.26±0.23 58.0±1.1
Add RandAug ✓ 9.59±0.23 9.38±0.23 2.13±0.44 59.7±1.3
Concat RandAug ✓ 9.55±0.26 9.44±0.26 1.28±0.25 60.0±1.3
Add MixUp ✓ 9.61±0.23 9.40±0.22 2.05±0.43 58.1±1.3
Concat MixUp ✓ 9.49±0.24 9.39±0.24 1.31±0.23 59.1±1.2
Add CutMix ✓ 9.61±0.24 9.40±0.23 2.04±0.43 58.5±1.5
Concat CutMix ✓ 9.52±0.26 9.42±0.26 1.33±0.25 60.2±1.2
Add Sto. Depth ✓ 9.63±0.22 9.42±0.22 2.07±0.45 57.5±1.1
Concat Sto. Depth ✓ 9.53±0.26 9.43±0.25 1.30±0.24 57.4±1.0

Add RandErase ✓ 9.65±0.23 9.44±0.22 2.00±0.42 57.6±0.8
Concat RandErase ✓ 9.48±0.25 9.39±0.25 1.36±0.24 58.6±0.8
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Table E: ImageNet-1K training settings. Most training setups are consistently
used except for the multiple stochastic depth rates (e.g., 0.15/0.35/0.4/0.45) that reg-
ularize the corresponding models (e.g., RDNet-T/S/B/L), respectively.

RDNet-T/S/B/L RDNet-L
(Pre-)Training Fine-Tuning

image size 224 384
weight init kaiming normal pre-trained
optimizer AdamW AdamW
base learning rate 1e-3 2e-5
weight decay 0.05 1e-8
optimizer momentum (β1, β2) 0.9, 0.999 0.9, 0.999
batch size 512 512
training epochs 300 30
learning rate schedule cosine decay cosine decay
warmup epochs 20 5
warmup schedule linear linear
layer-wise lr decay [3, 12] None 0.7
randaugment [13] (9, 0.5) (9, 0.5)
mixup [93] 0.8 0.0
cutmix [92] 1.0 0.0
random erasing [95] 0.25 0.25
label smoothing [66] 0.1 0.1
stochastic depth [34] 0.15/0.35/0.4/0.5 0.6
layer scale [72] 1e-6 pre-trained
head init scale [72] None 1e-3
gradient clip None None
center crop percent 0.9 1.0
exp. mov. avg. (EMA) [54] None None

Table F: ImageNet-1K comparison with the latest models. Fig. A visualized
this table. We thoroughly compare our models against the latest architectures in prac-
tical latencies. bn denotes latency, measured with a batch size of n. Certain models
were excluded from evaluation because their CUDA custom kernels were not compiled.

Model Date Param FLOPs Top-1 PyTorch (A100, ms) TensorRT (A100, ms) PyTorch (Xeon 5120, s)
(M) (G) (%) b1 b8 b32 b128 b1 b8 b32 b128 b1 b8 b32 b128

RDNet-T Ours 24 5.0 82.8 9.2 9.2 17.8 60.5 3.9 7.5 19.7 69.3 0.07 0.25 1.09 4.85
HorNet-T7×7 [57] NeurIPS’2022 22 4.0 82.8 21.9 21.9 27.8 100.7 7.4 10.6 22.8 68.4 0.09 0.21 0.89 5.79
VAN-B2 [21] CVMJ’2023 27 5.0 82.8 15.8 16.4 32.9 122.5 4.1 8.6 21.2 71.8 0.08 0.38 1.61 7.33
BiFormer-S [97] CVPR’2023 26 4.5 83.8 31.0 35.3 54.2 200.9 - - - - 0.13 0.39 2.17 13.60
NAT-T [25] CVPR’2023 28 4.3 83.2 14.7 14.7 32.9 122.4 - - - - 0.22 1.43 5.73 24.42
SMT-S [45] ICCV’2023 21 4.7 83.7 26.1 26.4 53.0 191.4 - - - - 0.11 0.32 1.16 7.91
MogaNet-S [42] ICLR’2024 25 5.0 83.4 22.7 22.7 34.9 127.2 5.6 10.3 27.6 91.0 0.11 0.42 1.97 9.46

RDNet-S Ours 50 8.7 83.7 14.3 14.4 26.4 88.3 5.7 10.8 29.3 99.4 0.11 0.38 1.73 7.34
HorNet-S7×7 [57] NeurIPS’2022 50 8.8 84.0 21.8 22.2 46.9 173.9 8.0 14.1 33.6 104.5 0.11 0.38 2.43 11.51
VAN-B3 [21] CVMJ’2023 45 9.0 83.9 27.5 32.8 50.4 194.8 6.8 13.7 34.5 119.9 0.15 0.59 2.50 11.27
BiFormer-B [97] CVPR’2023 57 9.8 84.3 31.2 31.1 89.3 336.3 - - - - 0.15 0.78 4.90 23.03
NAT-S [25] CVPR’2023 51 7.8 83.7 15.8 20.6 51.9 194.9 - - - - 0.31 2.10 8.78 38.27
SMT-B [45] ICCV’2023 32 7.7 84.3 37.4 39.1 81.2 295.6 - - - - 0.19 0.60 2.24 13.41
MogaNet-B [42] ICLR’2024 44 9.9 84.3 44.0 47.4 70.6 258.0 9.4 19.0 53.4 183.4 0.20 0.77 4.08 19.10

RDNet-B Ours 87 15.4 84.4 14.9 15.1 36.0 124.2 6.2 13.6 39.5 139.8 0.15 0.58 2.52 10.84
HorNet-B7×7 [57] NeurIPS’2022 87 15.6 84.3 22.1 22.3 68.9 266.1 9.0 16.5 41.8 139.1 0.13 0.57 3.43 15.86
VAN-B4 [21] CVMJ’2023 60 12.2 84.2 53.3 53.6 80.7 263.6 8.4 17.0 45.1 151.6 0.19 0.70 3.26 14.65
NAT-B [25] CVPR’2023 90 13.7 84.3 15.9 22.5 88.6 296.9 - - - - 0.42 3.03 12.33 52.47
MogaNet-L [42] ICLR’2024 83 15.9 84.7 81.6 90.3 98.8 357.7 14.9 28.7 77.4 263.2 0.31 1.08 51.56 26.93

RDNet-L Ours 186 34.7 84.8 17.0 17.3 59.8 216.1 8.1 20.4 62.9 231.8 0.26 1.15 4.72 19.13
MogaNet-XL [42] ICLR’2024 181 34.5 85.1 82.3 93.3 146.3 549.5 17.4 38.6 115.4 421.9 0.40 2.57 10.27 49.49
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