2403.19602v1 [cs.RO] 28 Mar 2024

arxXiv

Behavior Trees in Industrial Applications:
A Case Study in Underground Explosive Charging

Mattias Hallen®, Matteo Iovino®, Shiva Sander-Tavallaey®, Christian Smith®

Abstract—In industrial applications Finite State Machines
(FSMs) are often used to implement decision making policies
for autonomous systems. In recent years, the use of Behavior
Trees (BT) as an alternative policy representation has gained
considerable attention. The benefits of using BTs over FSMs
are modularity and reusability, enabling a system that is easy
to extend and modify. However, there exists few published
studies on successful implementations of BTs for industrial
applications. This paper contributes with the lessons learned
from implementing BTs in a complex industrial use case, where
a robotic system assembles explosive charges and places them
in holes on the rock face. The main result of the paper is
that even if it is possible to model the entire system as a BT,
combining BTs with FSMs can increase the readability and
maintainability of the system. The benefit of such combination
is remarked especially in the use case studied in this paper,
where the full system cannot run autonomously but human
supervision and feedback are needed.

Index Terms— Behavior Trees, Behavior Trees in Robotics
Applications, Finite State Machines, Modularity

I. INTRODUCTION

Deploying robots to automatize industrial applications in-
creases efficiency, precision, and productivity, while reducing
risks for human operators. Central to the effectiveness of
the robotic system is the development and implementation
of robust task switching policies that define the sequence
of actions performed by the robots to solve the problem at
hand. The design of a policy for task planning is challenging
because there exist several policy representation alternatives
with different advantages and properties. This entails that
depending on the use case one policy representation could
be more suitable than another.

Some examples of task switching policy representations
to control robot applications and industrial processes are
Petri Nets, Finite State Machines (FSMs), Teleo-Reactive
programs, and Decision Trees.

Another alternative that gained popularity in the past years
as an alternative to FSMs is Behavior Trees (BTs) [1],
especially for the properties of reactivity and modularity.
Reactivity allows the system to pre-empt a running action to
execute another with higher priority as a reaction to sudden
events in the environment. Modularity enables the possibility
to design and test every component, such as the robot actions,

This work has been submitted to the IEEE for possible publication.
Copyright may be transferred without notice, after which this version
may no longer be accessible.

*ABB Mining R&D, Umea, Sweden

bABB Corporate Research, Visteras, Sweden

“Division of Robotics, Perception and Learning, KTH - Royal Institute
of Technology, Stockholm, Sweden

independently and then to combine and reuse them without
breaking the logical correctness of the policy.

BTs are being widely used to implement Al in computer
games and are recently becoming more common in robotics
applications as well [2]. However, their usage is still mainly
documented in efforts from academia while it is not yet
clear to what extent they are applicable in industrial settings.
For this reason, we share a successful implementation of
BTs in an industrial scenario by providing useful technical
suggestion on the BT design.

The use case scenario considered in this paper is au-
tomating the process of blasting charger in underground
mines. For this application, the considered robotic system is
responsible for automatically preparing the explosive charges
and identifying the drilled holes in the rock walls where
to insert the explosive. The environment this system will
encounter is highly unstructured and varied as every tunnel
and every charging mission is unique. Thus, this application
requires the system to be flexible and adaptable to changes
in the environment. The system also requires a human
operator to be in the loop for starting/stopping and modifying
the currently active charging mission. Although possible,
defining a single BT to meet these requirements of the task
would have led to several design challenges and usability
limitations. For this reason, the task level policy responsible
for controlling the robotic system is instead based on an high
level FSM that allows the system to switch between control
modes. Each of these control modes is in turn implemented
as a BT that enables the robotic system to gather information
about the environment and act on it.

Despite the individual prevalence of Finite State Machines
(FSMs) and Behavior Trees (BTs)—among the existing pol-
icy representations—in various domains of robotics and au-
tomation, a combination of these methods remains relatively
under-explored in academic research, with few pieces of
evidence of its adoption within industrial contexts. By stating
the reasoning behind the design choice together with the
major advantages and shortcomings, this paper contributes
with the following:

o Describing the possibilities and challenges of imple-

menting BTs on an industrial application.

e Describing the possibilities of combining FSMs and
BTs to overcome the challenges that these representa-
tions entail when used independently.

o Demonstrating the combination of FSMs and BTs on
a real industrial problem in an unstructured and varied
environment.

The remainder of this paper is organized as it follows.
Section [[I] provides a background on BTs and FSMs and how
they are deployed in the existing literature. In Section [III] the
domain specific problem is explored and detailed. Section
presents the proposed solution of combining FSMs and BTs
to control the robotic system to solve the task. Finally, Sec-
tion |V| reviews the outcome of this study and the challenges
associated with using this combined design for industrial use
cases.

II. BACKGROUND AND RELATED WORK
A. Behavior Trees

Behavior Trees (BTs) are a versatile and modular task-
switching paradigm initially developed in the gaming indus-
try and later extended to robotics applications [1]. Repre-
sented as directed trees, BTs employ a depth-first pre-order
traversal for recursive ticking. At a given frequency (the
ticking frequency is not fixed but can be defined at a design
stage) the tick signal propagates from the root node and
recursively from the left-most child to the right-most one.
The BT structure consists of internal nodes (control nodes
represented by polygons in Figure [4) which determine how
the tick signal is propagated to the children and execution
nodes (ovals in Figure), or behaviors, that are implemented
in the leaves of the BT and determine how the agent acts on
the environment.

Control nodes are divided into Sequence executing chil-
dren sequentially and returning once all succeed or one
fails, Fallback or Selector executing children in sequence but
returning once one succeeds or all fail, and Parallel executing
children in parallel, returning when a pre-determined subset
of children is successful.

Execution nodes are classified into Action nodes executing
behaviors capable of returning Running, Success, or Failure
statuses and Condition nodes immediately returning Success
or Failure based on status checks. BTs explicitly support task
hierarchy, action sequencing, and reactivity [2]. The modular
design allows for the seamless testing, interchangeability,
and reusability of subtrees without compromising the overall
structure [3]-[5].

Unlike other policy representations, BTs employ a Run-
ning return state. This state facilitates prolonged execution
of actions across multiple ticks and enables reactivity by
pre-empting running actions for higher-priority behaviors.
The standardized I/O structure, with a tick signal initiating
execution and return statuses as the output for all behaviors,
is the key features that enables modularity in BTs. This
architecture positions BTs as a flexible and effective solution
for task-switching controllers in both gaming and robotics
domains.

B. Finite State Machines

Finite State Machines (FSMs) are derived from state
automata and consist of a collection of states interconnected
by transitions (see Figure [3] as an example). Each state
encapsulates a controller responsible for robot behavior,
generating effects in the environment upon execution. The

occurrence of these effects triggers an event, facilitating the
transition to the subsequent state. FSMs, inclusive of Se-
quential Function Charts (SFCs)—a graphical programming
language for Programmable Logic Controllers (PLCs)—find
extensive use in industry due to their intuitive design and
implementation simplicity [6].

However, FSMs present a challenging trade-off between
reactivity and modularity. The execution of FSMs can be
likened to the early programming languages’ GoTo state-
ment, where the execution flow jumps abruptly between
different parts of the program [1]. This GoTo-style execution,
discouraged in programming and robotics, is a drawback of
FSMs.

The reactivity of FSMs necessitates numerous transitions,
complicating maintenance when states are added or re-
moved [3]. This renders FSMs less modular and scalable.
Efforts to address modularity include grouping states into
hierarchies, as seen in the design of Hierarchical State
Machines (HFSMs) [4] at the expenses of readability.

FSMs further exhibit the drawback of requiring manual
intervention upon failure if explicit transitions to recovery
states are not implemented.

C. Related Work

Because of the increasing interest and popularity of BTs,
there exist several works comparing BTs with FSMs and
other architectures. In particular, in [4], [5], [7] BTs are
proven to generalize other policy representations, such as
FSMs, Petri Nets, Decision Trees, and the Teleo-Reactive
programs. Furthermore, in [4], [8] it is shown how to build an
FSM that behaves like a BT, trading off modularity and fault
tolerance with readability. In [3] instead, BTs and FSMs are
compared on a series of robotics tasks where FSMs become
progressively harder to maintain and modify. However, the
paper points out that with the choice of a fault-tolerant design
of the FSM, the robot behaves the same as when controlled
by a BT.

From this body of work, it follows that since in FSMs
states have access to internal variables and past decisions,
they are more expressive than BTs [7]. Furthermore, BTs
are more reactive than FSMs due to the fact that at every
execution cycle, the tick signal propagates from the root
down to the whole tree, thus re-evaluating conditional state-
ments on the world and robot states. BTs are also more
readable than FSMs as they do not encode past decisions in
the representation [5] and have optimal modularity due to the
tree representation [3], [5]. Modularity is also a key enabler
for automatically generating BTs given a task description as
in [9], [10].

Unlike FSMs, the modularity property is enforced in
HFSMs since the states are grouped hierarchically [4]. Thus,
HFSMs offer a more organized solution where the transition
from one operative mode to another is facilitated. At a lower
level, these execution states can in turn be implemented
with other policy representation. HFSMs were used as the
task planner in the complex DARPA Robotics Challenge
involving both navigation and manipulation for humanoid

robots in unknown and unstructured environments [11]-[13].
The peculiarity of this solution is that the HFSM enables
semi-autonomous behaviors for the agent where the human
is kept in the loop.

However, designing the lower states behaviors similar
to BTs opens up for hybrid approaches that can be quite
efficient. For instance, in the study by Wuthier et al. [14], an
FSM operates in sync with a BT, facilitating smoother transi-
tions between skills, especially in cases of preemption where
a higher-priority skill interrupts the current one. Authors
in [15], [16] highlight that while BTs lacks cyclic behaviors
in their execution, the HFSMs are inherently equipped with
this characteristic when implementing looping transitions.
To address this, they propose a hybrid method wherein an
HFSM serves as the top-level task planner, with its states
represented as BTs. Similarly, [17] presents a comparable ap-
proach using FSMs instead, which is similar to the approach
used in this paper. The combination of BTs with (H)FSMs
enables user supervision and adjustable autonomy to best suit
the different requirements of complex applications.

III. DESCRIPTION OF THE USE CASE

In the past century, underground mining has evolved from
dangerous manual labour to a highly mechanized process.
New technology and equipment such as haulers and loaders
have removed the operator step-by-step from the unsecured
rock face into a vehicle cabin and in recent years in some
cases to the remote operating stations. However, this de-
velopment has not reached the explosive charging process
that remains at large a manual process involving humans at
exposed rock faces.

Every tunnel section developed with the common drill
and blast method is unique. Therefore, a system capable of
charging rock faces needs to be reactive and adaptable to the
uniqueness of the rocky environment. Furthermore, for safety
reasons, the system cannot be fully autonomous but it should
allow operators to provide input commands and to be able
to pause and resume the operation in every step. Moreover,
power outages and emergency stops will occur and it is thus
important to give operators the tools to easily monitor and
restart the system when required. The demand on operator
supervision and adjustable reactive autonomy that is required
by this use case prompted the combination of BTs and FSM
described in Section [[I-C|as a suitable design choice for the
task-level control of the robotic system.

A. Application Example

At the site considered for this case study, the tunnel devel-
opment charging utilizes three different explosive products in
each drilled hole. The first is a detonator cap with attached
cord utilized for initiating the blast. Thereafter a primer
(explosive booster) charge responsible for initiating the pri-
mary explosive. Finally, the primary explosives is a pump-
able emulsion. The detonator and primer are assembled by
hand and placed into the tip of an extendable emulsion hose.
Then, the hose is fed to the bottom of the charge hole and
the emulsion is deposited while retracting the hose, leaving

Combine (prime) detonator and primer

Push primer and detonator into
bottom of drilled hole

1

Pump emulsion explosive into hole

(= :

Fig. 1: Workflow of priming explosives and pumping emulsion into a single
drilled hole. This process repeats for every single drilled hole.

—

the primer and the detonator at the bottom while filling the
hole with emulsion. This process is repeated for every blast
hole that has been drilled in the rock face. The process is
schematically summarized in Figure [I} This process require
dexterous hand movements from the operator to assemble
detonator and primer. Furthermore, it is necessary to guide an
emulsion hose while simultaneously handling the detonator
cord.

This conventional method of charging requires operators
to stand for extended periods of time close to the exposed
rock face. This can be a dangerous part of the mine as it is
a temporary site which will be blasted. By moving operators
away from this area the safety of mining operations can
be increased. Furthermore, charging is the only remaining
manual labour in the drill and blast method. Automating this
part is an important enabler to reach the desired autonomy
within mining.

B. Robotic System

The robotic system implemented for this task consists of
two 6-DoF industrial manipulators (an ABB IRB4600 on the
left of Figure [2| and an ABB IRB1300 on the right) placed
on a 4-DoF hydraulic boom. The larger IRB4600 is referred
to as the primary manipulator and it handles the positioning
of the hose into the charge holes. The smaller IRB1300 is
referred to as the secondary manipulator and it handles the
reloading of primer and detonator explosives. Finally, the
hydraulic boom supports the manipulators and extends their
reach to cover the entire working area. A video showing an
operational example of the system is publicly availableﬂ

C. Challenges

The major challenge for the current robotic system is
to work in a previously unknown environment. This places
special demands on the robotic system, including that the
system should be equipped with reliable computer vision
algorithms to map the environment by identifying the charge

https://www.youtube.com/watch?v=koyRJszHKBQ

https://www.youtube.com/watch?v=koyRJszHKBQ

Y -
L

(R

e

L

-

=
«“

(a) ABB IRB4600.

(b) ABB IRB1300.

iy '\‘\‘}'\@—\'fz

(c) Full system used for the task.

Fig. 2: Robotic system for autonomous charge placement. The truck houses emulsion equipment and a hydraulic crane. This hydraulic crane extends the
reach of the primary robot mounted at the end. On the robot platform the smaller secondary manipulator handles detonator and primer assembly.

holes and avoid collisions. In addition, the system should be
reasonably fast in reacting and correcting its status depending
on various unforeseen events.

Furthermore, the two manipulators have a parallel work-
flow which could be halted at any state. In case of a halted
situation it is crucial that the execution is recovered without
requiring a full reset of the system.

The system also needs to be supervisable and respond
to operator input. As a face can have up to 100 holes to
be charged, the order of blasting is important, and if many
holes are incorrectly charged the system needs guidance from
an operator. This puts a requirement of flexibility on the
system and re-adaption if problem occur during charging. As
a first step, involving experienced operator input to plan and
re-plan during the charging mission is important. However,
as data on the task execution is being collected, it would
be possible to automate some decision making processes in
future deployments.

IV. PROPOSED SOLUTION

To address the challenges and requirements for the task-
level controller described in Section [III-C}, we propose to
design a high level FSM where each of the states is inde-
pendently implemented as a BT.

The high-level FSM (shown in Figure [3) is responsible
to transition the execution between the following operative
modes:

1) Scan the working area (obtain situational awareness

and identify obstacles).

2) Detect holes to charge.

3) Plan the charging of the holes, which detonator to use

and how much emulsion to inject.

4) Charge the holes with the explosive prepared in the

previous step.

Having a clear separation of tasks facilitates the super-
vision and the input from the operators in the following
circumstances:

o Transitioning between operation modes. In the charge

planning stage the system automatically generates a plan

to determine in which order the holes are charged. If for
instance the operator detects some anomaly in the plan
they can prompt the system to abort the mission and
re-plan the charging sequence.

o Obtaining operator inputs. If we consider anomalies at a
planning stage again, for instance in the event of a hole
that failed to charge, the system could need operator
guidance to continue the mission. The operator is then
able to supply additional information to the system by
for instance reposition the robot end-effector through
teleoperation for a better alignment.

o Restarting tasks. If the mission execution is halted, due
to an emergency stop or a power outage, the system
needs to be able to resume the task where it was left
off. Through the high-level FSM the operator has the
possibility to provide the system the correct input from
where to resume the execution.

The above challenges could be addressed in a single BT
by storing in the tree the execution state of the behaviors that
were previously run. This feature is implemented by control
nodes with memory. Introducing nodes with memory in a
BT increases the type of switching strategies that the BT
can express but at the cost of losing transparency as they
implement logic that is hidden within the nodes and thus not
possible to infer by just looking at the tree [5], [7]. A BT
design with memory nodes also impacts reactivity as it avoids
the re-execution of some nodes and it is thus discouraged [1].

Another consideration is that integrating the operator input
into the BT would increase the size of the tree, increase the
complexity of the structure and the dependencies between
subtrees, and by consequence reduce the ability of the
operators to follow the flow of the execution. Therefore,
designing the whole policy as a BT would only be desirable
if the system had to operate in full autonomy, thus without
operator inputs or supervising production control systems.
However, at the current state of the system every step of
the mission is clearly separated from the others and inputs
from operators are required to advance from a step to the
next. One example is the process of scanning the holes and

planning the charge mission, which needs to be defined and
initiated by the operator.

Thus, these missions steps are defined as states in an over-
arching FSM where they are then independently designed
and executed as a BT. The benefits of this design structure
are twofold. First, by wrapping the higher level functionality
in an FSM it is possible to avoid introducing memory into
the BT and simplify the overall architecture. This design
decision was also driven by the fact that the reactiveness
provided by a BT is not required at this high-level decision
making. Second, the BTs are used where their key features
are exploited at their full potential, such as where the system
needs to be reactive and robust to failures that can happen
at the execution stage.

To conclude, as an overview of the combined structure,
the Charging state is the most critical one where the most
part of the execution is carried out. The other states can be
considered as setup and information gathering steps that are
necessary to generate the charging missions which is then
executed by the BT.

A. Finite State Machine

The state machine follows the high level task list described
in Section This simple FSM follows the task list with
the important possible restarts highlighted. Each state has
a corresponding BT which executes upon transitioning into
that state. A description can be seen in Figure

Detect Holes

Scan again
New holes detected

Charge plan

Start charging

Re—ﬁ
Charging

Fig. 3: Scheme of the state machine. Each state has a corresponding
Behavior Tree that triggers upon entering the state.

The most complex BT is found in the Charging state.
Given a charging mission which is supplied by the operator
in the Charge Plan state, this tree executes the full charging
cycle. If failures happen during the execution, they are
notified in the FSM which then requests an appropriate input
from the operator. The other BTs are relatively simpler and
they are thus omitted in the interest of space.

B. Behavior Tree

The BT is implemented using the BehaviorTree.CPP
library and developed with the BT wuser interface
Groot [18]. This was integrated into ROS2 [19] where each
BT is hosted by an action server expecting an input goal and
a feedback reply on the execution result. The execution result
and feedback is directly tied to the result of the BT.

The charging BT is reported in Figure [] and it is consid-
ered the most complex as it contains the parallel workflow of
both manipulators as well as movements of the boom. This
BT is designed with a parallel root node with two children,
one controlling the robot handling explosives and the other
one controlling both the charging robot and hydraulic boom.
The parallel root node has a “success on all” policy which
makes the BT return Success when all the children are
successful. The children are designed with the backward-
chaining design principle [20], [21] where conditions are
connected under a Fallback node with actions that achieve
them. The cyclic task of charging several holes is modeled
with a queue popping mechanism with an explicit goal to
empty the queue of charge holes contained in the charging
mission.

The primary manipulator controls the popping operation
of the queue. This removes the first charge hole from the
mission and put the information of this charge hole on the
blackboard. The two manipulators are synchronized in the
handover skill which involves the handover of explosives
from one manipulator to the other. After the handover is
performed, the manipulator handling explosives peeks the
next charge hole on the queue to initiate preparation while
the charging manipulator performs the hose insertion.

V. OUTCOME

The system was successfully demonstrated in a real un-
derground mine in 202ﬂ During the demonstration, the
full workflow was executed including the explosive charging
in the rock face. Some key steps of the demonstration are
reported in Figure [5]

A. Lessons Learned

The higher level task switching remained constant
throughout development. However, the BTs were constantly
modified and improved with the progress of the complexity.
Thanks to the modularity feature of BT, adapting the behav-
iors to the new challenges required little effort.

One strength of BTs is the possibility to add local recovery
behaviors by reusing skills that are implemented for the
general task execution. Some examples are:

« Before approaching a hole to charge, the BT checks if
the robot is currently holding a detonator. If that is the
case it proceeds to charge the hole otherwise it retrieves
a new detonator. This behavior is implemented by the
subtree rooted with a Fallback node and goal condition

Zhttps://new.abb.com/news/detail/108967/abb—
boliden—and-lkab-complete-successful-testing-
of-industry-first—-automated-robot-charger—-for—
increased-safety-in-underground-mines

https://new.abb.com/news/detail/108967/abb-boliden-and-lkab-complete-successful-testing-of-industry-first-automated-robot-charger-for-increased-safety-in-underground-mines
https://new.abb.com/news/detail/108967/abb-boliden-and-lkab-complete-successful-testing-of-industry-first-automated-robot-charger-for-increased-safety-in-underground-mines
https://new.abb.com/news/detail/108967/abb-boliden-and-lkab-complete-successful-testing-of-industry-first-automated-robot-charger-for-increased-safety-in-underground-mines
https://new.abb.com/news/detail/108967/abb-boliden-and-lkab-complete-successful-testing-of-industry-first-automated-robot-charger-for-increased-safety-in-underground-mines

Parallel
Fallback
Charge Queue Empty?

Charge Queue Empty?
@ @ Peek Charge Queue! Pop Charge Queue! @
Is Holding Correct casette? Assemble Casette! Is Charge Robot Ready? ‘Wait for Charge Robot!

Sequence

Position at hole! Charge hole!

Is Robot Holding Detonator?
Fallback Fallback

Is Robot At Handover Location? Move to Handover Location! Is Magazine Robot Ready? ‘Wait For Magazine Robot!

Fig. 4: Scheme of the Charging BT. For simplicity, leaves or fallback behaviors that are not useful to understand the functioning principle of the BT were
omitted. The white boxes with a label represent subtrees achieving a subtask described by the label.

Is Robot Holding Detonator? in the right-hand
side of Figure

o At the event of failing to find a charge hole within
Position at Hole!, the robot can sweep a small area
to try to find the hole with a different viewing angle.

e In the Charge hole! if the hose feed does not suc-
ceed, various strategies such as wiggling the hose and
insertion/retraction are implemented to try to get past
any eventual blockage.

These are some examples of behaviors that were added
after the initial design of the system to face the complex
facets of the task. With only re-using existing skills, complex
behaviors can be implemented by modifying the existing BT
with little effort, as shown in [3].

Conditions that require operator assistance are also easily
implemented into the same architecture. A failure status
would propagate upwards the tree and thus signaling the
FSM for operator assistance.

However, even though it is tempting to define all behaviors
at an atomic level to increase their chances of re-usability,
this goes at the expenses of the BT size and the readability.
For instance, although it is possible to define action behaviors
to control the motors of each robot joint, the benefits do
not justify the increased complexity and it would be simpler
to integrate the joints motion into one single robot motion
behavior instead.

B. Faced Challenges

One of the main challenges faced when deciding which
policy representation to use, was to find a design that
would allow the system to solve most of the task in full
autonomy but still allowing the operators to intervene and
change the mission details. By modelling the full system
with a BT, it would have been hard to distinguish the action
nodes controlling the manipulators from those prompting the
operators for inputs. Designing a higher-level FSM to handle

the interaction with the operator, makes the underlying BT
cleaner and simpler to read.

Due to the uniqueness of the mission and the lack of
published work on industrial applications of BTs, another
challenge was to create all the Execution nodes from scratch.
We decided to implement the actions and condition nodes
in the BT as ROS Actions and Services respectively. In
this way, the structure of the BT node is disentangled from
the actual ROS low-level implementation, thus making the
design more modular.

The lack of published best practices on industrial problems
utilizing BTs is also an important factor. One common pitfall
when designing BTs is to keep the mindset of designing
FSMs. For instance, the Sequence node in a BT is reactive,
meaning that upon receiving a new tick, the node executes
the left-most child firstly. Designing behaviors that only
utilize non reactive sequences that remember the return
statuses of the children (also known in literature as Sequence
with memory [1]) can diminish the benefits of using BTs.

Another challenge is to model a cyclic execution in BTs.
In this instance we use a queue popping mechanism which is
effective but hard to read in the BT itself. This problem stems
from the fact that the BT controls manipulators operating si-
multaneously and requiring synchronization. One alternative
to explore is to design an individual BT for each of the two
manipulators. In this case, the queue popping mechanism
could be implemented with dedicated ROS Services that
provide the location or the ID of the next hole to charge.

C. Concluding Remarks

In this study the we have utilized BTs to control a robotic
system for automated charging in a mining application. We
have faced several challenges, many of them related to
the lack of publications on the implementation of BTs for
industrial applications and on best design practices for BTs.

Using BTs forces the designer to organize the set of

(a) Handover between the robots.

(b) Charging of one hole.

Fig. 5: Images from field tests during 2023.

skills that are available to the system in a set of action
nodes with a pre-defined structure: the tick signal as input to
trigger the execution and the return statuses as output. With
this interface, the designer can quickly define a toolbox of
composable behaviors to build complex logic for the system.
For instance, this allowed us to rapidly implement behaviors
to handle failure cases that were not possible to predict before
the field trials.

Another remark to make is on the choice of the BT
development environment and tools. In our case, using
the BehaviorTree.CPP library and with the aid of the
graphical user interface Groot greatly facilitated the imple-
mentation.

Even though BT generalize other structures [4], imple-
menting too many functionalities of the system into a single
BT can cause problems in terms of readability and maintain-
ability. Instead, by utilizing the FSM for switching between
operating modes and keeping the BTs for lower level reactive
behaviors it is possible to design a system that exploits the
benefits of BTs and minimizes the drawbacks.

Finally, BTs have received considerable attention in
robotics applications within academia [2]. This study pro-
vides one example of a successful implementation in an
industrial scenario by exploring the applicability of BTs
within industry and by providing technical suggestions on
BT design practices that can be utilized for other systems.

REFERENCES

[1] M. Colledanchise and P. Ogren, Behavior Trees in Robotics and Al :
An Introduction. CRC Press, Jul. 2018.

[2] M. Iovino, E. Scukins, J. Styrud, P. Ogren, and C. Smith, “A survey of
Behavior Trees in robotics and Al,” Robotics and Autonomous Systems,
vol. 154, p. 104096, Aug. 2022.

[3] M. Iovino, J. Forster, P. Falco, J. J. Chung, R. Siegwart, and C. Smith,
“On the programming effort required to generate Behavior Trees
and Finite State Machines for robotic applications,” in 2023 IEEE
International Conference on Robotics and Automation (ICRA), May
2023.

[4] M. Colledanchise and P. ()gren, “How Behavior Trees Modularize
Hybrid Control Systems and Generalize Sequential Behavior Com-
positions, the Subsumption Architecture, and Decision Trees,” IEEE
Transactions on Robotics, vol. 33, no. 2, pp. 372-389, Apr. 2017.

[5] O. Biggar, M. Zamani, and I. Shames, “On Modularity in Reactive
Control Architectures, with an Application to Formal Verification,”
ACM Transactions on Cyber-Physical Systems, vol. 6, no. 2, pp. 19:1—

19:36, Apr. 2022.
[6] R. Balogh and D. Obdrzilek, “Using Finite State Machines in

Introductory Robotics,” in Robotics in Education, W. Lepuschitz,
M. Merdan, G. Koppensteiner, R. Balogh, and D. Obdrzilek, Eds.

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

Cham: Springer International Publishing, 2019, vol. 829, pp. 85-91,
series Title: Advances in Intelligent Systems and Computing.

O. Biggar, M. Zamani, and I. Shames, “An Expressiveness Hierarchy
of Behavior Trees and Related Architectures,” IEEE Robotics and
Automation Letters, vol. 6, no. 3, pp. 5397-5404, Jul. 2021.

A. Marzinotto, M. Colledanchise, C. Smith, and P. Ogren, “Towards
a unified behavior trees framework for robot control,” in 2014 IEEE
International Conference on Robotics and Automation (ICRA), May
2014, pp. 5420-5427.

M. Iovino, J. Styrud, P. Falco, and C. Smith, “A framework for learning
behavior trees in collaborative robotic applications,” in 2023 IEEE
19th International Conference on Automation Science and Engineering
(CASE), 2023, pp. 1-8.

J. Styrud, M. Mayr, E. Hellsten, V. Krueger, and C. Smith, “Bebop-
combining reactive planning and bayesian optimization to solve
robotic manipulation tasks,” in 2023 International Conference on
Robotics and Automation (ICRA), 2023.

S. Kohlbrecher, A. Stumpf, A. Romay, P. Schillinger, O. von Stryk,
and D. C. Conner, “A comprehensive software framework for complex
locomotion and manipulation tasks applicable to different types of
humanoid robots,” Frontiers in Robotics and Al, vol. 3, 2016.

P. Schillinger, S. Kohlbrecher, and O. von Stryk, “Human-robot
collaborative high-level control with application to rescue robotics,”
in 2016 IEEE International Conference on Robotics and Automation
(ICRA), 2016, pp. 2796-2802.

A. Romay, S. Kohlbrecher, A. Stumpf, O. von Stryk, S. Maniatopoulos,
H. Kress-Gazit, P. Schillinger, and D. C. Conner, “Collaborative
autonomy between high-level behaviors and human operators for
remote manipulation tasks using different humanoid robots,” Journal
of Field Robotics, vol. 34, no. 2, pp. 333-358, 2017.

D. Wauthier, F. Rovida, M. Fumagalli, and V. Kriiger, “Productive mul-
titasking for industrial robots,” in 2021 IEEE International Conference
on Robotics and Automation (ICRA), 2021, pp. 12654-12661.

J. M. Zutell, D. C. Conner, and P. Schillinger, “Flexible Behavior
Trees: In search of the mythical HFSMBTH for Collaborative Auton-
omy in Robotics,” arXiv:2203.05389 [cs], Mar. 2022.

——, “Ros 2-based flexible behavior engine for flexible navigation,”
in SoutheastCon 2022, 2022, pp. 674-681.

E. Coronado, D. Deuff, P. Carreno-Medrano, L. Tian, D. Kulié,
S. Sumartojo, F. Mastrogiovanni, and G. Venture, “Towards a Modular
and Distributed End-User Development Framework for Human-Robot
Interaction,” IEEE Access, vol. 9, pp. 12675-12 692, 2021.

D. Faconti, “Mood2be: Models and tools to design robotic behav-
iors,” 2019. [Online]. Available: https://raw.githubusercontent.com/
BehaviorTree/BehaviorTree.CPP/master/MOOD2Be_final _report.pdf]
S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall,
“Robot operating system 2: Design, architecture, and uses in the wild,”
Science Robotics, vol. 7, no. 66, p. eabm6074, 2022.

M. Colledanchise, D. Almeida, and P. Ogren, “Towards Blended Reac-
tive Planning and Acting using Behavior Trees,” in 2019 International
Conference on Robotics and Automation (ICRA), May 2019, pp. 8839—
8845.

O. Gustavsson, M. Iovino, J. Styrud, and C. Smith, “Combining
Context Awareness and Planning to Learn Behavior Trees from
Demonstration,” in 2022 31st IEEE International Conference on Robot
and Human Interactive Communication (RO-MAN), Aug. 2022, pp.
1153-1160.

https://raw.githubusercontent.com/BehaviorTree/BehaviorTree.CPP/master/MOOD2Be_final_report.pdf
https://raw.githubusercontent.com/BehaviorTree/BehaviorTree.CPP/master/MOOD2Be_final_report.pdf

	Introduction
	Background and Related Work
	Behavior Trees
	Finite State Machines
	Related Work

	Description of the Use Case
	Application Example
	Robotic System
	Challenges

	Proposed solution
	Finite State Machine
	Behavior Tree

	Outcome
	Lessons Learned
	Faced Challenges
	Concluding Remarks

	References

