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Abstract
We are interested in the generation of navigation instructions, either in their own right or as training material for
robotic navigation task. In this paper, we propose a new approach to navigation instruction generation by framing
the problem as an image captioning task using semantic maps as visual input. Conventional approaches employ
a sequence of panorama images to generate navigation instructions. Semantic maps abstract away from visual
details and fuse the information in multiple panorama images into a single top-down representation, thereby reducing
computational complexity to process the input. We present a benchmark dataset for instruction generation using
semantic maps, propose an initial model and ask human subjects to manually assess the quality of generated
instructions. Our initial investigations show promise in using semantic maps for instruction generation instead of a
sequence of panorama images, but there is vast scope for improvement. We release the code for data preparation
and model training at https://github.com/chengzu-li/VLGen.
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1. Introduction

Vision and Language Navigation (VLN) is a task
that involves an agent navigating in a physical en-
vironment in response to natural language instruc-
tions (Wu et al., 2021). The data annotation for the
VLN task is time-consuming and costly to scale up,
and the development of models that address the
task is severely limited by the availability of training
data (Gu et al., 2022). Navigation instruction gen-
eration (VL-GEN) is the reverse of the VLN task
in that it generates natural language instructions
for a path in the virtual (or physical) environment,
which is helpful for interactions with users and ex-
plainability. Previous work has also demonstrated
the effectiveness of VL-GEN in improving the per-
formance of VLN systems such as the Speaker-
Follower model (Fried et al., 2018) and Env Drop
(Tan et al., 2019). This paper explores the VL-GEN
task of generating navigation instruction framing it
as an image captioning task.

VL-GEN requires the model to generate language
instruction in the context of the physical environ-
ment, grounding objects references and action in-
structions to the given space. Previous studies
use photo-realistic RGB panoramic images as the
visual input; they frame VL-GEN as the end-to-end
task of generating text from a sequence of photo-
realistic RGB images (Fried et al., 2018; Tan et al.,
2019; Wang et al., 2022d). While Zhao et al. (2021)
report that the overall quality of instructions gener-
ated with end-to-end models is only slightly better
than that of template-based generation, the appli-
cation of object grounding to the panoramic images

∗Work done on internship at Toshiba Europe Limited.

achieves a better result (Wang et al., 2022d).

The existing approach to this task has two short-
comings. From the perspective of representation,
using panoramic images is resource-intensive as it
requires processing of multiple image inputs corre-
sponding to different points on the path. Second,
panoramic images contain many details that are
irrelevant for the task. The model has to learn to
interpret the environments from RGB panoramas,
such as object recognition, and generate instruc-
tions at the same time. As it is natural for humans
to understand navigation instructions from a top-
down map (as in Google Maps) (Paz-Argaman
et al., 2024), we propose to separate the VL-GEN
task into two steps: 1) environment interpretation,
which is addressed by semantic SLAM in physi-
cal robotic systems (Chaplot et al., 2020), and 2)
spatial reasoning. In this paper, we focus on the
second step and explore the feasibility of using
top-down semantic map for VL-GEN.

Our research question is whether it is feasible to
use the top-down semantic map (a single RGB
image) as our main source of information. We
also explore which other data sources, in addition
to the semantic map, can further improve perfor-
mance. To address this question, we formalize
the VL-GEN task as image captioning with the in-
put of a semantic map with the path (see Figure
1). We extract the images of top-down maps from
the Habitat simulator (Savva et al., 2019) based
on Room-to-Room dataset (Anderson et al., 2018)
and VLN-CE (Krantz et al., 2020). Our key contri-
butions and findings include the following:

• We extend the R2R dataset with semantic
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One of the Three Human Annotated Navigation Instructions:
● Turn left and follow the rope. At the end turn left and follow the red carpet to the end. 

At the end, turn right and stop in front of the white and gold table.

Figure 1: An example navigation scenario from
our new dataset for instruction generation, with the
navigation path overlayed on the semantic map.

split size Avg. # points Avg. # regions Avg. # objects

train 10623 5.95 3.26 22.64

val seen 768 6.07 3.3 22.36

val unseen 1839 5.87 3.11 22.13

Table 1: Statistics of extracted semantic maps. Avg.
# region: average number of distinct regions along
the path. Avg. # object: average number of object
types in the semantic map.

maps, providing a new benchmark dataset
and a baseline that demonstrates the feasibil-
ity of using semantic maps for VL-GEN task.

• We demonstrate experimentally with both au-
tomatic and human evaluations that including
additional information (namely, region, action,
and prompt) leads to more accurate and ro-
bust navigation instructions than using only
semantic maps.

• We also conduct an intrinsic human evaluation
of the quality of the generated instructions with
fine-grained error analysis.

2. Task Definition and Data

A semantic map Ms is a top-down view of the
scene s, which contains a path P = {p1, ..., pK},
represented as a sequence of points connected by
a line, and a set of N objects O = {o1, ...oN}.

In light of the success of image captioning mod-
els (Li et al., 2022; Wang et al., 2022b), we frame
the VL-GEN task as image captioning task. Given
a semantic map Ms, the task is to generate a nat-
ural language description DP that describes the
path P shown. Our task description replaces the
photo-realistic RGB images used previously, with
a semantic map. The processing of RGB images
is resource-intensive, while our task definition has
the advantage of abstracting away from the object
recognition task, concentrating on the instruction
generation task instead.

We also experiment with providing the model with
additional features of the navigation path beyond
the semantic maps alone, including actions, names
of regions, and panoramic images. There is a fixed
set of action types (LEFT, RIGHT, STRAIGHT, STOP),
which are determined heuristically from the path
shape at each navigation point. For each navi-
gation point, we use the name of its associated
region (e.g., hallway, meeting room). We do not
think that panoramic images constitute ideal input
to the system, but it is possible that they may pro-
vide additional visual information not shown in the
map. Therefore, we also conduct experiments with
panoramic images as part of the input information
to the model.

We extract semantic maps, region and action in-
formation from the Habitat (Savva et al., 2019;
Krantz et al., 2020) simulation environment. In
a deployed robot, it may be obtained with a se-
mantic SLAM component (Chaplot et al., 2020).
Each object type on the map is represented in a
unique color. We adopt the navigation paths and
human annotations from the R2R dataset (Ander-
son et al., 2018). Panoramic images in RGB are
obtained from the Matterport3D simulator (Chang
et al., 2017) at each discrete navigation point. An
example of the new dataset derived from R2R,
including a semantic map with a path, language
instruction, panorama images, actions, and region
names, is shown in Figure 1.

Statistics about the semantic maps are presented
in Table 1. The data splits we use are inherited
from the original R2R dataset. The difference be-
tween seen validation set and the unseen valida-
tion set in R2R is whether the room environment is
included in the train set.1

3. Method

Motivated by the success of the multimodal pre-
trained models, we construct a multimodal text
generation model using BLIP2 (Li et al., 2022). Fig-
ure 2 illustrates the architecture of the proposed
model with modules that process different inputs;
these will be described in Section 3.1. In Sec-
tion 3.2, we describe the augmentations applied to
the BLIP model in our experiments.

3.1. Model Input

Top-down semantic map (TD) The semantic
map forms the main input used in all experiments.

1Further details on the dataset are presented in Ap-
pendix A.1.

2The implementation is based on the Huggingface
transformers library (Wolf et al., 2019): Salesforce/blip-
image-captioning-base

https://huggingface.co/Salesforce/blip-image-captioning-base
https://huggingface.co/Salesforce/blip-image-captioning-base
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Figure 2: Illustration of the overall model architec-
ture. Text input is encoded with pretrained BLIP
text encoder and LSTM, and image input is en-
coded with the pretrained BLIP encoder. Modules
shown in the same color share the weights. The
weights of the panorama encoder are fixed.

It is encoded by the image encoder in the BLIP
model. We first resize the image by nearest sam-
pling to 384 × 384 and then feed it to the vision
transformer with patch size 16.

Regions (Reg) and actions (Act) Region
names and actions are frequently mentioned in
human navigation instructions. To give the model
information about the relevant region names, we
represent them as a sequence of strings for each
navigation point. We use a text encoder from the
pre-trained BLIP model to represent the region
names. The region embedding for each point is
obtained by applying a mean pooling operation to
the word embeddings. For actions, we apply an
embedding layer to the discrete action values and
get action embeddings in the same dimension as
the region embedding. We add the region and the
action embeddings together at each point and use
a 3-layer LSTM model to embed the sequential
information along the navigation path.

Panoramic images (Pano) Based on our anal-
ysis, visual object properties such as color and
shape are mentioned in more than 25% of human
instructions. As semantic maps only include object
types but not the properties of visual objects, we
augment the model input with panoramic images.
This might enable the model to learn the visual
properties mentioned in the instructions. We ini-
tialize the image encoder based on the pre-trained
image encoder in BLIP model. We freeze its pa-
rameters during training because the model is pre-
trained on photo-realistic images, which we believe
endows the model with capabilities of recognizing
panoramic images in our case. In order to increase
the flexibility of the visual embedding, we apply
an additional MLP with two linear layers on top
of the panoramic vision encoder. Following the

methods in the video captioning task (Tang et al.,
2021; Luo et al., 2022), we treat the panoramas as
discrete frames and use the mean average of all
panoramic embeddings to represent the panorama
information of the navigation path.

Finally, the embedded input representations are
added together to form the input to the decoder
that outputs natural language instructions.

3.2. Model Augmentation

Multimodal alignment with contrastive loss
Contrastive learning is an effective method used in
self-supervised learning for visual representation
learning (Radford et al., 2021; Li et al., 2022) and
multimodal pre-training in BLIP (Li et al., 2022).
We investigate the effectiveness of introducing con-
trastive training for navigation instruction genera-
tion task as an auxiliary loss. We define the pos-
itive examples P+(Cgt, Igt) as pairs of the com-
bined input embedding and the instruction embed-
ding. The negative examples P−(Cgt, Irnd) con-
sist of the pairs of the input embedding and the
embedding of a randomly sampled instruction. Fol-
lowing CLIP (Radford et al., 2021), we multiply the
multimodal input matrix Einput and textual instruc-
tion matrix Etext to obtain the predicted compatible
matrix Cpred between inputs and labels and then
compute the CrossEntropy loss on Cpred with the
ground-truth correspondence Cgt.

Augmentation and grounding with prompt
The prompting of LLMs has demonstrated its effec-
tiveness across various domains in previous works
(Li and Liang, 2021; Liu et al., 2021; Tang et al.,
2022; Keicher et al., 2022; Song et al., 2022). We
generate the prompt from a template, which de-
scribes the nearby objects and regions, such as
Starting from the dark yellow point near sofa cush-
ion in the living room region. We tune the model
with prompting and feed the prompt template to the
decoder during inference. We argue that prompting
can benefit the generation task in two ways. First,
it can help visual-language grounding because the
prompting template describes nearby landmarks
and regions. Second, at inference time, the in-
structions that are generated are conditioned on
the prompt template in an auto-regressive way, re-
sulting in more controllable generation in VL-GEN
task.

4. Experiments

We perform two evaluations over experiments: an
automatic evaluation according to performance on
the task (extrinsic) and a human evaluation of the
quality of the instructions (intrinsic). These eval-
uations can tell us about the influence of region,



Input P C
SPICE Human Score

seen unseen unseen

TD (baseline) - - 20.50 16.19 3.42 (5)

✓ - 20.79 15.77 -

✓ ✓ 21.78* 17.10 -

TD+Reg+Act - - 21.00 17.00 4.20 (3)

✓ - 21.86* 17.84** 4.29 (2)

✓ ✓ 19.96 17.09 3.98 (4)

TD+Reg+Act+Pano - - 19.87 17.44* 4.36* (1)

✓ - 22.14** 17.79** -

✓ ✓ 20.36 17.08 -

Table 2: Automatic (SPICE) and human evaluation
results with inputs of different modalities in seen
and unseen environments, where P is short for
prompt and C is short for contrastive loss. ** and *
indicate statistically significant difference with the
baseline (p≤0.01) and (p≤0.05).

actions, prompting, and contrastive loss on the
quality of the instructions both quantitatively and
qualitatively.

4.1. Experimental setup

We train the model using the train split of the R2R
dataset and evaluate it both on validation seen and
unseen sets. We use the BLIP-base model for ex-
periments. We setup the baselines with different
combinations of the input: 1) top-down semantic
map (TD) 2) + regions (Reg) and actions (Act);
3) + panoramic images (Pano). We also experi-
ment with contrastive loss and prompting, making
9 system variants for experiments in total.

In the intrinsic human evaluation, we use a Latin
Square design of size 5. We therefore compare
only a subset of the above system variants with
different combinations of input (TD, TD+Reg+Act
and TD+Reg+Act+Pano), and prompting and con-
trastive loss on TD+Reg+Act.

4.2. Human Participants and Procedure

For the human experiment, we recruit 5 evaluators
who have never contributed to or been involved
in the project before under the consent from the
Ethics Committee. The evaluation workload for
each participant is designed to be within 30 min-
utes for them to concentrate on the task. We also
provide two specific illustration examples about the
evaluation task for the human participants. The
evaluation materials consist of 15 navigation paths
in the unseen environments, randomly sampled.
The experiment is performed online using an eval-
uation interface. The participants are shown the
semantic map with the path as well as panorama
images. They are asked to assign a score from
0 (worst) to 10 (best) based on the quality of the

instruction candidates generated by different sys-
tems.

4.3. Automatic Evaluation Metrics

In the automatic evaluation, we compare the per-
formance of 9 system variants based on an auto-
matic metric SPICE (Semantic Propositional Image
Caption Evaluation) (Anderson et al., 2016), follow-
ing Zhao et al. (2021). SPICE is a metric used
to evaluate the quality of image captions, focus-
ing on the semantic content of captions. It identi-
fies semantic propositions within the parse trees
and compares the semantic propositions from the
generated caption with those from the reference
captions.

When comparing different systems, we use the
two-sided permutation test to see if the arithmetic
means of the two systems’ performances are equal.
If the p-value is larger than 0.05, we consider the
performance of the two systems to be not signifi-
cantly different.

4.4. Evaluation Results

Table 2 shows the SPICE and human evaluation
scores in seen and unseen environments. As ex-
pected, the models perform better in seen than in
unseen setting by 3.88 in SPICE score on aver-
age across all 9 systems. For both settings, we
observe that using region and action information
with the prompt improves the model’s performance
with p ≤ 0.05, while contrastive learning does not
seem to help. Adding panoramic images tends
to improve the performance, but not significantly
(p ≥ 0.1). When comparing with previous methods
in SPICE score, our systems (17.84/22.14) per-
form on par or even achieve higher SPICE scores
than Speaker Fol. (Fried et al., 2018) (17.0/18.7)
and EnvDrop (Tan et al., 2019) (18.1/20.2) on un-
seen/seen settings.

In the results for the human evaluation, shown
in Table 2, we observe that using the semantic
map as the only input results in the lowest average
score across all systems (3.42). This repeats the
observations from the automatic evaluation. Using
regions, actions, and panoramas achieves the high-
est rating (4.36) which is significantly better than
the baseline (p=0.05), followed by using regions,
actions, and prompts (4.29). However, incorpo-
rating Pano (4.36) alongside TD+Reg+Act (4.20)
does not show a noteworthy difference.

In addition to the results above, we were also cu-
rious about the degree to which our automatic
results in SPICE correlate with the human judg-
ments. We measure a Kendall τ correlation be-
tween SPICE and human evaluation results of 0.6



Input Information P C Incorrect Hallucination Redundancy Linguistic

TD - - 15 10 0 0

TD + Reg + Act - - 15 10 0 1

TD + Reg + Act ✓ - 12 6 1 2

TD + Reg + Act ✓ ✓ 12 6 1 2

TD + Reg + Act + Pano - - 11 6 0 0

Table 3: Error analysis on randomly selected pre-
dictions from the systems in unseen environments,
where P is short for prompt and C is short for con-
trastive loss.

and conclude that this is satisfactory, justifying the
use of SPICE for automatic evaluation.3

Our findings indicate that incorporating more infor-
mation in different modalities tends to improve the
performance for the generation task. Our semantic
map abstracts information in a way that is useful
for current systems, although it consists of only a
single image. Most of our system variants that do
not use panorama images performs on-par with the
existing LSTM-based end-to-end approaches that
use only panoramic images. However, the abso-
lute performance of all models is still low, indicating
that there is much room for improvement.

4.5. Error Analysis

Further to human evaluation score, we manually
analyze the quality of the instructions generated
by the same 5 system variants according to the
following four aspects:

• Incorrectness: Does the prediction contain
incorrect information?

• Hallucination: Does the prediction contain a
description not corresponding to the input?

• Redundancy: Does the prediction contain re-
dundant expressions and information?

• Linguistic problems: Is the generated instruc-
tion grammatically wrong or not fluent?

For each experimental setting, we randomly select
15 examples. The counts for each error type are
given in Table 3. We can see that the systems
that do not use prompting or panorama images
contain errors in all cases. Most of these errors are
caused by hallucinations. Analyzing hallucinations
further, we find that the action descriptions are
most prone to hallucinations, such as when left
and right are confused with each other. When
regions and actions are used as input, the number
of hallucinations in action descriptions goes down,
but remains high in regions.

3We also computed BLEU and ROUGE scores,
however they show lower correlation with the human-
assigned scores, which are omitted here.

Apart from changing the input information, when
we train the model with prompting, the resulting
instructions are less likely to include hallucinations
in terms of actions and objects. Yet after intro-
ducing the contrastive loss, it causes redundancy
and linguistic problems in the predictions. The lan-
guage quality problems mainly consist of spelling
mistakes in objects and regions, and punctuation
errors when introducing the prompt and contrastive
loss for training. This may be because the con-
trastive loss influences the CrossEntropy loss and
thus interferes with the language generation task.

5. Conclusion

Our longer-term goal is to build mobile robots with
spatial awareness and reasoning capabilities which
can follow natural language instructions and ex-
press their intentions in natural language. We
propose to use semantic maps as the interme-
diate representation for spatial reasoning as it is
a human-interpretable and light-weight approach
that encodes information necessary for the naviga-
tion in a single abstract image.

In this work, we create the dataset with top-down
semantic maps for R2R corpus and reframe in-
struction generation task as image captioning, us-
ing abstract top-down semantic map as main input.
We set a baseline for the instruction generation
from semantic map input. Our experimental results
show that using the top-down semantic map per-
forms on-par with the end-to-end methods that use
sequence of panorama images as input.

Limitations

The current approach to the semantic map repre-
sentation is missing some of the information re-
quired to generate or interpret instructions. For ex-
ample, room names, such as bathroom, bedroom,
or sitting room, are naturally used in indoor naviga-
tion instructions. However, the current single-layer
semantic map representation does not encode the
information about such region names. To address
this in our current approach, we provide region
names for each navigation point as a separate tex-
tual input. The limitation of this approach is that it
only includes the region names for the navigation
points. For example, an instruction ‘Stop in front of
the bathroom’, the bathroom will not be included in
the input because the navigation point is outside
of the bathroom region. In future work, we plan
to introduce a multi-layered semantic map where,
in addition to encoding objects, a separate layer
encodes information about regions.

Another limitation is that current semantic map en-
coding does not encode object properties, such as
color, material, or shape. According to our analy-



sis, object properties are mentioned in one-third of
the instructions, but these would not be captured
by the map. To address this limitation, in future
work, we will encode the object properties in the
semantic map.

Data and Code availability

We release the code for data preparation, model
training and inference, and evaluation at https:
//github.com/chengzu-li/VLGen, along with the
prompt templates and hyper-parameter settings
for experiments. We also release the the top-down
semantic maps extracted from Habitat environment
extending the existing R2R dataset, which can be
obtained upon request following the guideline at
https://github.com/chengzu-li/VLGen.
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A. Data Extraction

A.1. Conditions of Data Extraction

This section describes how the semantic map is
extracted from the Habitat environment.

Objects Objects on a semantic map are repre-
sented by the bounding box with a unique color
assigned to each object type. We use the (X,Y )
coordinates of the object’s bounding box in Mat-
terplot3D to represent them in the 2D semantic
map.

There are 40 different object types labeled in the
simulation environment. We filter out the following
object types from the simulator because they are
seldom mentioned in the instructions but take up a
large area in the semantic map:

['misc', 'ceiling', 'curtain',
'objects', 'floor', 'wall',
'void']

For the buildings with multiple floors, we extract
a semantic map for each floor. Given the 3D co-
ordinates of the object’s center (xi, yi, hi) and the
size of the object’s bounding box is (wx, wy, wh),
we use the agent’s vertical position hagent to filter
the objects for a given floor by including all objects
that satisfy one of the following:

hi −
1

2
wh ≤ hagent ≤ hi +

1

2
wh

|hi − hagent| ≤ 1.6

Regions For each navigation point, we deter-
mine the corresponding region by calculating
whether the agent’s current position is within the
area of the region. The region’s area is defined by
the coordinates of the center (xc, yc) and the sizes
in width and length (wx, wy) as a rectangle. We de-
fine that if the agent’s location (lx, ly) satisfies the
following requirement, the region would be added
into the information of this navigation point.

xc −
1

2
wx ≤ lx ≤ xc +

1

2
wx

yc −
1

2
wy ≤ ly ≤ yc +

1

2
wy

Actions The actions are a closed set of LEFT,
RIGHT, STRAIGHT, STOP. They are determined
based on the coordination of the navigation points.
We calculate the differences in angles between the
previous navigation point and the current position
and define that if the differences stay within 20
degrees, the agent is heading straight. Otherwise,
the agent makes a turn, with the corresponding
direction depending on whether the difference is
positive or negative.

A.2. More Information about the
Extracted Data

To evaluate the quality of the dataset, we randomly
sample 30 examples from the training set and look
into the instructions regarding the way they de-
scribe the path. we find that the instructions men-
tion 2.2 landmark objects and 1.3 regions on av-
erage. 20 out of 30 sampled instructions can be
inferred simply from the top-down view. This find-
ing justifies the use of top-down semantic maps for
navigation instruction generation to some degree.
For the other 10 instructions, 7 out of 10 can not be
inferred only from the top-down view due to the de-
scriptive expressions about the environment. The
descriptions can be obtained from the panoramic
images as supportive information (such as going
upstairs or downstairs) and requires the interac-
tions between different types of input. The other 3
instructions miss the region annotations from the
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simulator in R2R. These observations indicate that
the new task we propose has the problems of weak
supervision and requires the model to connect dif-
ferent types of inputs with each other.

A.3. Alignment between Colors and
Objects

Below shows the mapping between RGB pixel val-
ues and the object types (textual names) in the
semantic map.

[31, 119, 180], "void",
[174, 199, 232], "wall",
[255, 127, 14], "floor",
[255, 187, 120], "chair",
[44, 160, 44], "door",
[152, 223, 138], "table",
[214, 39, 40], "picture",
[255, 152, 150], "cabinet",
[148, 103, 189], "cushion",
[197, 176, 213], "window",
[140, 86, 75], "sofa",
[196, 156, 148], "bed",
[227, 119, 194], "curtain",
[247, 182, 210], "chest_of_drawers",
[127, 127, 127], "plant",
[199, 199, 199], "sink",
[188, 189, 34], "stairs",
[219, 219, 141], "ceiling",
[23, 190, 207], "toilet",
[158, 218, 229], "stool",
[57, 59, 121], "towel",
[82, 84, 163], "mirror",
[107, 110, 207], "tv_monitor",
[156, 158, 222], "shower",
[99, 121, 57], "column",
[140, 162, 82], "bathtub",
[181, 207, 107], "counter",
[206, 219, 156], "fireplace",
[140, 109, 49], "lighting",
[189, 158, 57], "beam",
[231, 186, 82], "railing",
[231, 203, 148], "shelving",
[132, 60, 57], "blinds",
[173, 73, 74], "gym_equipment",
[214, 97, 107], "seating",
[231, 150, 156], "board_panel",
[123, 65, 115], "furniture",
[165, 81, 148], "appliances",
[206, 109, 189], "clothes",
[222, 158, 214], "objects",
[255, 255, 102], "[POINT]",
[255, 255, 0], "[START]",
[255, 255, 204], "[END]",
[255, 255, 255], "[LINE]",
[0, 0, 0], "[NONNAVIGABLE]",
[150, 0, 0], "[NAVIGABLE]"

B. Experimental Setup

B.1. Hyperparameters

We train our model for a maximum of 25 epochs
using an initial learning rate of 5e-5 with linear lr
scheduler. The batch size is set to 32 for training
and 64 for validation. When balancing the con-
trastive loss and CrossEntropy loss, we assign a
weight of 0.1 to the contrastive loss to make the
model more focused on the generation task.

B.2. Data Preprocessing

We mainly adopt the original BLIP processor for
image and text inputs, but make a few modifications
to the top-down semantic map. Because the maps
are in different sizes for different rooms, we first
pad them to the size of 1024×1024 with black pixels
and apply a masking strategy to the top-down map
by only selecting the nearby regions of the path.
We keep the receptive field of the top-down view to
a certain value (default to 40 pixels) within the path
area. Then, in order to avoid introducing new pixel
values when resizing, we resize the masked image
with the nearest resampling interpolation strategy
to 386× 386, following the default setting of BLIP.

C. Prompt Design

prompt : Starting from the dark
yellow point [objects]
[regions], [instruction]

For example:
[objects] : near sofa cushion
[regions] : in the living room region
[instruction]: exit the living room, turn

left, wait at the bottom
of the stairs.

D. Experiment Results

D.1. Significance Test Results on SPICE
Scores

We first define the indices for all of our system
variants from 1 to 9 following the order of systems
in Table 2. Table 4 shows the full significance test
on SPICE scores in unseen environments.

D.2. Human Evaluations

For the evaluation page, it shows the top-down se-
mantic map, the panoramic images and the region
information as well. The page provides 5 gener-
ated instructions to describe the navigation path
from 5 different generator models. The evaluator
is supposed to give the quality scores for these 5
instructions based on the guidance in the instruc-
tion documentation. Figure 3 shows a screenshot



2(15.77) 3(17.10) 4(17.00) 5(17.84) 6(17.09) 7(17.44) 8(17.79) 9(17.08)

1(16.19) 0.4421 0.7891 0.1554 0.0030 0.1050 0.0269 0.0055 0.1115

2(15.77) 0.2992 0.0310 0.0002 0.0175 0.0033 0.0004 0.0194

3(17.10) 0.2432 0.0072 0.1726 0.0505 0.0113 0.1825

4(17.00) 0.1459 0.8774 0.4536 0.1825 0.8890

5(17.84) 0.1822 0.4809 0.9318 0.1830

6(17.09) 0.5423 0.2256 0.9913

7(17.44) 0.5463 0.5401

8(17.79) 0.2271

Table 4: Two-sided permutation test p-values on
SPICE in validation unseen environments. The row
names and column names are the system indices
for different systems, with the SPICE values in the
parenthesis brackets. The numbers in bold are the
p-values below 0.05.

of the interface for human evaluation.

Significance test based on human evaluation
Table 5 presents the two-sided permutation test
results based on the human evaluation.

4(4.20) 5(4.29) 6(3.98) 7(4.36)

1(3.42) 0.10 0.06 0.27 0.05

4(4.20) 0.88 0.68 0.77

5(4.29) 0.55 0.92

6(3.98) 0.47

Table 5: Two-sided permutation test results be-
tween systems based on the human evaluation.
The row indices and column indices are the system
indices following Table 4 and their quality scores in
the parenthesis.



Figure 3: Screenshot of the evaluation interface for human evaluation.
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