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Abstract

Decision-making pipelines are generally characterized by tradeoffs among various risk functions. It
is often desirable to manage such tradeoffs in a data-adaptive manner. As we demonstrate, if this is
done naively, state-of-the art uncertainty quantification methods can lead to significant violations of
putative risk guarantees. To address this issue, we develop methods that permit valid control of risk
when threshold and tradeoff parameters are chosen adaptively. Our methodology supports monotone
and nearly-monotone risks, but otherwise makes no distributional assumptions. To illustrate the benefits
of our approach, we carry out numerical experiments on synthetic data and the large-scale vision dataset
MS-COCO.

1 Introduction

In modern machine learning, a focus on complex prediction models and autonomous decision-making is
typical, reflecting the engineering focus of its practitioners. However, guaranteeing that the quality of these
predictions (or decisions) are within desired tolerances requires good uncertainty quantification (UQ), a
classically statistical issue. A burgeoning literature on conformal prediction proposes a solution for this
problem, based on treating these complex predictors as unknown black boxes [1].

Many such “black box” conformal methods, as applied in supervised learning, are able to use an auxiliary
calibration dataset {(Xi, Yi)}ni=1 ⊂ X ×Y to produce a prediction set which is a subset of the label space Y,
for a guarantee of the form

P
[
R(C(Xn+1), Yn+1) ≤ α

]
≥ 1− δ,

where the risk function R : 2Y ×Y → R measures the quality of a prediction set in containing the true label.
For example, in a K-class, multi-label classification setting, the prediction set C(X) could correspond to
possible classes for input X, and the risk may be a false negative rate: the proportion of positive classes
in the labels Y that are missed by the elements of the prediction set C(X). In practice, these predictions
often constitute the final decision made by an autonomous system, and an appropriate risk measures the
consequences of incorrect decisions.

In this work, we attempt to address a major shortcoming of existing UQ methods as described above:
they typically assume that the data analyst has selected the tolerance level α in advance of observing any
data, and has already determined a risk R to control. Practitioners, on the other hand, often select tolerance
levels in a data-dependent way, invalidating the guarantees of UQ methods and hindering their applicability.
This holds especially for complex machine learning systems, which are expensive to train and tune.

*Equal contribution. Contact: drew.t.nguyen@berkeley.edu, pathakr@berkeley.edu
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Figure 1: Histograms for 20K realizations of the risk gap α− FNR under a data-dependent choice of α, given
observations of n calibration points. Each histogram represents different ways to set α. The solid outline
has total area δ = 0.1.

Despite this, one may näıvely hope that the guarantees hold approximately well, so as to be useful in an
engineering setting. That is, a system builder may wish to proceed without considering the data-dependence
in the choice of a tolerance level α, hoping that this will not lead to undesirable violations in practice. But
is this actually true? In general, no. In Figure 1, we present the results of an experimental case study,
discussed further in Section 1.1, in which we measure the risk gap—the difference between α and the false
negative rate (FNR) of a deployed multi-label classifier—when applying methods from the papers [2, 3] with
a data-dependent choice of α and with the exceedance probability parameter δ set to 0.1. The histogram
corresponding to this method shows the FNR exceeding α with probability greater than δ = 0.1, which runs
counter to the conservative finite-sample guarantees of [2] that hold for fixed α. In fact, the exceedance
occurs with empirical probability 0.14 when n = 300 and n = 500. The high-level problem here is clear:
selecting α after the observation of data can lead to a notable lack of control.

The present work addresses this problem by providing risk guarantees that account for data-dependent,
post hoc choices of α. Figure 1 also depicts the risk gap for a method we propose called restricted risk
resampling (RRR), which controls the FNR even after α is chosen to optimize a tradeoff. Though the risk
gap may seem large,1 this reflects the flexibility of RRR—it allows the analyst to revise their choice of α in
any way based on the calibration data while still retaining a guarantee of low risk. This is particularly useful
when data is scarce, as in medical diagnostics, and a classifier is employed at multiple different sensitivity
levels. The underlying mathematical tool here is a simultaneity guarantee, and one of our main contributions
is to develop methods that possess a general simultaneity property, by establishing new theoretical results
regarding the uniform convergence of monotone functions.

Section 2 is the core of this work. It states the key results in the form of uniform confidence bounds,
including a functional analog of an inequality of [4]. We adapt these results, as corollaries, into several risk-
control procedures, valid for monotone losses and risks: (1) control via a nonasymptotic upper bound, (2)
risk resampling, a bootstrap-based procedure which is asymptotically exact, (3) restricted risk resampling,
a refinement of risk resampling which optionally ignores large choices of α, and (4) extensions to certain
classes of non-monotone functions.

The remainder of the paper supports these core results. Section 3 contains experiments using the results of
Section 2. The theoretical underpinnings of Section 2, regarding empirical process theory for monotonically-
indexed function classes, are presented in Section 4, with careful proofs deferred to Appendix B. We discuss
and conclude in Section 5.
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Figure 2: Prediction sets on an example from MS-COCO using the classifier Ct of Section 1.1, as the threshold
t is varied. Also plotted is the FNR and FPR averaged over 60K held-out images, which are unobserved in
practice; additionally, a rug plot of the scheme t = t̂ optimized as in equation (1.1), based on simulation
draws of size n = 500.

1.1 Case study: risk tradeoffs and risk control on MS-COCO

We provide a basic description of the experimental setup presented in Figure 1, with complete details deferred
to Appendix A.2. The 2014 MS COCO dataset [5] consists of images X ∈ X depicting everyday scenes in
which any number of K = 80 common objects may be present (e.g., dog, train, chair). The label of each
image X ∈ X is a vector Y ∈ {0, 1}K , corresponding to the 80 classes which may be present in the image.
The task of predicting such a Y is called multi-label classification. We now outline how we used this dataset
in the experiment presented in Figure 1.

To create a predictor, we trained a neural network that outputs scores, f(X) ∈ [0, 1]K , such that a
higher score [f(X)]k on the kth component roughly corresponds to a higher chance that Yk = 1. The final
classification is then performed with a threshold classifier, implemented as Ct : X → {0, 1}K with k-th
component

[Ct(X)]k = 1{[f(X)]k > (1− t)}.

For a classifier Ct, and a labeled image (X,Y ), define the false negative proportion as ℓ(t; (X,Y )) = #{k :
[Ct(X)]k = 0}/#{k : [Y ]k = 1}, which is the number of false negatives over true positives, using the threshold
t. The false positive proportion q(t, (X,Y )) = #{k : [Ct(X)]k = 1}/#{k : [Y ]k = 0} is likewise the number
of false positives over true negatives, using the threshold t.

After training, we observe n additional calibration data points {(Xi, Yi)}ni=1. In this example, we wish
to use them to choose the threshold t to trade off the false negative rate (FNR) and the false positive rate
(FPR), denoted as L(t) and Q(t), respectively:

L(t) = E[ℓ(t, (X,Y ))], Q(t) = E[q(t, (X,Y ))].

In real problems, any scheme used to choose the threshold tends to be based on data visualization and
intuitive consideration of the problem domain. For concreteness we make a stylized choice here, one that
could be plausibly implemented by a practitioner. Specifically, given the n observations, we take t̂ to trade
off the empirical risks evenly:

t̂ = argmin
t∈[0,1]

n∑
i=1

ℓ(t; (Xi, Yi)) + q(t; (Xi, Yi)).

As context for this choice of t̂, see Figure 2 for an illustration of the tradeoffs inherent in this problem.

1When n = 500, the risk gap of RRR is larger than that of the previous method by about 0.01 on average.
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We would also like to use the same n calibration data points to control these risks. For example, we say
the FNR is controlled below α with probability at least 1− δ if

P
(
L(t̂) ≤ α

)
≥ 1− δ.

In previous work [2] such control is achieved via the following approach: choose the threshold with a special
scheme t̂ such that the upper bound of [6] is below α for all t ≥ t̂. In general, however, such an approach
is inadequate, because the control level α can be data-dependent or random. In particular, in the current
example our choice of t̂ is determined by an estimated risk-reward tradeoff, as is typical in applications.

We now need to plug in some quantity for α satisfying equation (1.1), which simply amounts to using the
tightest upper bound available for the random variable L(t̂). Here we will consider two alternatives. First,
we can ignore the data dependence in α and use the tight bound of [6], which is valid for fixed α. Call this
value α1. Second, we can apply the bound that comes from the RRR procedure of Section 2.4, specifically
by plugging the chosen threshold t̂ into the right-hand side of Equation (3)—call this α2.

Figure 1 plots the histograms for the random variables α1 − L(t̂) in front and α2 − L(t̂) behind. The
lack of control shown by the histogram in front, and the difficulty of formalizing the choice of tradeoffs in
practice, motivates our proposal of the RRR method, which is valid even without an explicit scheme such as
Equation (1.1).

1.2 Prior work

Our work belongs to the general body of work in distribution-free, frequentist uncertainty quantification, as
exemplified by conformal prediction [1, 7]. While our work is in the general vein of conformal prediction,
it is also distinct in its focus on general risk functions, as in earlier work on risk-controlling prediction sets
[2]. As in that work, we augment the classical framework of conformal prediction via multiple-testing-based
arguments and concentration results. The multiple-testing aspect of our work draws on a long tradition of
methodology for simultaneous inference in various problem domains, from Scheffé’s method for inference on
all contrasts in linear regression [8] to more modern problems [9–12]. We also draw from empirical process
theory, where uniform versions of concentration results provide tools for simultaneous inference in general
settings [13, 14].

Our focus is hypothesis testing. Recall that in the standard Neyman-Pearson paradigm the methodolog-
ical goal is to maximize power subject to type-I error control at pre-specified level α. It has been noted that
this paradigm is unjustified from a decision-theoretic standpoint [15–17]. Instead, in the words of Lehmann
and Romano, α should be chosen “in relation to the attainable power” [15]. Attempts to find principled
ways to set α in hypothesis testing go back to the 1950s [18]. There are also more direct connections between
distribution-free inference and decision-making with more explicit utility maximization [19–21].

There has been recent interest in the control of tradeoffs between multiple risks [22–24], notably the
trading off of set size and coverage in conformal prediction [25, 26]. This work generally falls within the
Neyman-Pearson framework of constrained optimization and is distinct conceptually from our work.

Uniform bounds have been studied recently in distribution-free novelty detection problems [27, 28]. The
bounds obtained in that work focus on empirical cumulative distribution functions, which correspond to
binary-valued losses in our context. We also note the work of [29] who share our focus on tradeoffs in
distribution-free uncertainty quantification via uniform bounds, but again, their scope is limited to binary
losses. Further results on the binary setting can be found in the work of [30–34].

2 Risk Control with Uniform Bounds

In this section, we focus on uniform convergence results for monotone losses, and show how these results can
be adapted for risk control.
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In Section 2.1, we set notation and set up our risk-control problem. We then present two uniform
convergence results, the first of which (Section 2.2) is a nonasymptotic concentration inequality, and the
second (Section 2.3) a functional central limit theorem. We then present corollaries of these results that
demonstrate how they can be used to establish risk control in practice. The proofs of the main results are
deferred to Section 4, with technical arguments deferred to Appendix B.

These results are then extended to be more practically useful by relaxing the requirements of uniformity
(Section 2.4) and monotonicity (Section 2.5). Proofs for Section 2.4 are provided in Appendix B.1.

2.1 Setting

Consider an input space X , an output space Y ′, and a label space Y. Consider also a family of predictors,
Ct : X → Y ′, indexed by a real-valued parameter t ∈ [0, 1]. Furthermore, let ℓ : Y ′ × Y → [0, 1] denote a
bounded loss function. We impose the condition that the loss is monotone in the parameter t, meaning the
following implication holds:

if t ≤ s, then ℓ(Ct(x), y) ≥ ℓ(Cs(x), y), for all x ∈ X , y ∈ Y.

Finally, suppose we are given a dataset Dn := (X1, Y1), . . . , (Xn, Yn), which is drawn i.i.d. from a prob-
ability distribution P . Before deployment of the predictor Ct, the user chooses t = t̂ based on this dataset,
for example by considering risk tradeoffs. Define the population and empirical risks as

L(t) := E(X,Y )∼P

[
ℓ(Ct(X), Y )

]
and L̂n(t) =

1

n

n∑
i=1

ℓ(Ct(Xi), Yi),

respectively. Our goal is to compute a bound α such that P(L(t̂) ≤ α) ≥ 1 − δ, which means that the risk
of Ct̂ is controlled below α with probability at least 1− δ.

A wide range of schemes may be used to choose t̂ in practice, including schemes that are difficult to
formalize, and thus we prefer not to target any specific scheme. Instead, our approach to risk control is
based on upper confidence bounds that are uniform.

Risk control with uniform bounds. For some range T ⊂ [0, 1], compute a upper confidence bound L̂+
n (t)

such that
L(t) ≤ L̂+

n (t) simultaneously for all t ∈ T ,

with probability at least 1− δ. Then for any t̂ ∈ T , the risk of Ct̂ is controlled below α = L̂+
n (t̂).

2.2 Finite-sample result for monotone losses

We first present a finite-sample uniform concentration bound based on a novel extension of the Dvoretsky-
Kiefer-Wolfowitz (DKW) inequality [35] to monotone losses. To state it, we recall some notation. Associated
with the population and empirical risks are the following rescaled and centered processes and associated
suprema:

Gn(t) :=
√
n(L̂n(t)− L(t)), D+

n := sup
t

Gn(t), and D−
n := sup

t
−Gn(t).

We then have the following nonasymptotic concentration inequality.

Theorem 1. For every λ > 0, we have

P{D−
n > λ} ∨ P{D+

n > λ} ≤ e exp(−2λ2).

See Section 4.2.1 for a proof of this theorem. It can be viewed as a functional analog of the inequalities of
[4], in particular his equation (1.1).
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Note that the dependence on λ is optimal, but the prefactor e appearing in Theorem 1 is known to be
improvable (to 1) in the special case that ℓ is a indicator function, as shown by [35]. Before proceeding,
we record an immediate consequence of Theorem 1: an upper confidence bound (which can be used for risk
control), and a lower confidence bound.

Corollary 2.1 (Nonasymptotic confidence bounds). For every sample size n ≥ 1 and any δ ∈ (0, 1) it holds
that

L(t) ≤ L̂n(t) +

√
log(e/δ)

2n
simultaneously for all t,

with probability at least 1− δ. Similarly, we have

L(t) ≥ L̂n(t)−
√

log(e/δ)

2n
simultaneously for all t,

with probability at least 1− δ.

We note that this bound can be quite conservative for practical problems as it does not account for the
variance in the process Gn, which can be substantially smaller than the worst case. In the extreme case
of zero variance, meaning that the loss ℓ(Ct(X), Y ) is a non-random function of t, then D+

n = D−
n = 0

deterministically, which Theorem 1 does not account for.

This issue also occurs for bounds based on standard concentration results such as Hoeffding’s inequality.
In practice, it is often more appealing to use confidence bounds based on an asymptotic normal approximation
which do adapt to the variance, as we describe next.

2.3 Asymptotic result for monotone losses

Motivated by the lack of instance-adaptivity of the nonasymptotic concentration inequality, we now present
a tighter uniform confidence band. It hinges on the following functional central limit theorem, proven in
Section 4, using the monotonicity assumption on the losses.

Theorem 2. The rescaled, centered process Gn converges in distribution to a centered Gaussian process G.

The next lemma is technical and is proven in Appendix B.1. It essentially shows that to estimate the
process G, we can sample with replacement from the data—in other words, a bootstrap approach suffices,
asymptotically. To state it, we need to introduce some notation relating to the bootstrap.

We use the notation D⋆
n := {(X⋆

i , Y
⋆
i )}ni=1 to denote n samples, drawn with replacement, from the original

dataset Dn. We define the bootstrap empirical risk as follows:

L̂⋆
n(t) :=

1

n

n∑
i=1

ℓ(Ct(X⋆
i ), Y

⋆
i ).

and the associated rescaled and centered process as G⋆
n(t) =

√
n
(
L̂⋆
n(t)− L̂n(t)). Denote D±

n,⋆ = supt ±G⋆
n(t)

to be the supremum of this process, where the sign ± denotes either + or −, and Dn,⋆ = D+
n,⋆ ∨D−

n,⋆.

Lemma 1. If Gn converges in distribution to a Gaussian process G, then the conditional distribution of the
process G⋆

n | Dn converges to the distribution of G in probability; also, the conditional distribution of the
random variable D±

n,⋆ | Dn converges to the distribution of supt ±G(t) in probability.

The following corollary is an immediate consequence of Theorem 2 and Lemma 1, and the first result
in the corollary, which is an upper confidence bound, can be used directly for risk control. We refer to the
overall functional bootstrap procedure as risk resampling (RR).

Corollary 2.2 (Confidence bounds via risk resampling). Fix δ ∈ (0, 1). If q̂ satisfies P(D−
n,⋆ > q̂ | Dn) ≤ δ,

as n → ∞, we have with probability at least 1− δ,

L(t) ≤ L̂n(t) +
q̂√
n

simultaneously for all t.

6



Alternately, if q̂ satisfies P(D+
n,⋆ > q̂ | Dn) ≤ δ, then with probability at least 1 − (δ + o(1)), as n → ∞, we

have with probability at least 1− δ,

L(t) ≥ L̂n(t)−
q̂√
n

simultaneously for all t,

and if q̂ satisfies P(Dn,⋆ > q̂ | Dn) ≤ δ, then with probability at least 1− (δ+ o(1)), as n → ∞, we have with
probability at least 1− δ,

|L(t)− L̂n(t)| ≤
q̂√
n

simultaneously for all t.

When the quantity q̂ denotes the conditional 1 − δ quantile, infq{q : P(D±
n,⋆ > q | Dn) ≤ δ)}, it can be

computed exactly, but only in principle; this is generally infeasible as it requires enumeration over all possible(
2n−1

n

)
realizations of the bootstrap dataset D⋆

n. In practice (and also in our experiments, as presented in
Section 3) we suggest using Monte Carlo to approximate q̂ via a sample quantile q̂boot; note that this is just
the usual, basic bootstrap procedure [36, 37].

As the Monte Carlo error cannot be ignored, it is of interest to ask how many replicates B are needed. At
a minimum, B should be chosen large enough that q̂boot is stable, conditional on Dn. A more principled rule
of thumb could be to take B large enough so that |q̂ − q̂boot| < 0.01q̂boot with high probability conditional
on Dn, based on a DKW confidence band.2

As shown in Section 3, we find that the resulting bootstrap quantile q̂ is much smaller than the factor√
log(e/δ) guaranteed by the nonasymptotic inequality; indeed, Lemma 1 says it is asymptotically the best

possible. Another advantage to the bootstrap procedure from Lemma 1 is that it can automatically extend
to a different choice of the index set of the parameter t, namely a subset T ⊂ [0, 1]. We leverage this in the
next section.

2.4 Extension to localized, simultaneous risk control

The bootstrap procedure of Section 2.3, which mimics the data distribution using resamples from the empir-
ical distribution, is flexible in that it allows for certain refinements. In this section, we illustrate one possible
refinement which is inspired by [38].

Recalling our setting as outlined in Section 2.1, suppose that before deployment of a predictive algorithm
Ct, the user only wishes to choose the parameter t within a subset of [0, 1]. For example, in Section 1.1,
where L(t) represents the FNR risk in image classification, the user may wish to restrict to the sublevel set

Tr :=
{
t ∈ [0, 1] : L(t) ≤ r

}
.

Setting r = 0.1, say, would encode a belief that a good algorithm cannot have FNR greater than this.

Unsurprisingly, it is wasteful to use the uniform bounds of Section 2.2 and 2.3, which account for coverage
violations in all of [0, 1], and not just Tr which may be significantly smaller. Note that the set Tr is unknown,
so in practice the user can only restrict themselves to a data-dependent set such as

T̂r :=
{
t ∈ [0, 1] : L̂n(t) ≤ r

}
The approach in this section assumes the user has done this. We give bounds that are valid simultaneously
for all t ∈ T̂r, rather than all t ∈ [0, 1]. We find empirically that they much tighter than the previous bounds.

To develop this approach, we need to extend the notation of the previous section. Define the bootstrap
suprema based on the rescaled and normalized bootstrap process G⋆

n(t) =
√
n(L̂⋆

n(t)−L̂n(t)) on sets T ⊂ [0, 1]:

D+
n,⋆(T ) = sup

t∈T
G⋆
n(t), D−

n,⋆(T ) = sup
t∈T

−G⋆
n(t), and Dn,⋆(T ) = D+

n,⋆(T ) ∨D−
n,⋆(T ).

2Specifically, let F (x) = P(D±
n,⋆ ≤ x | Dn). Based on B bootstrap replicates, the DKW inequality gives a confidence band

[C−(x), C+(x)], and if q̂± = infq{q : 1− C±(q) ≤ δ)}, then [q̂+, q̂−] contains both q̂boot and q̂ with high probability; B could
be chosen until q̂− − q̂+ seems small.
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Our approach begins by fixing a level r and two tolerance parameters δglob, δloc ∈ [0, 1]. We then proceed in
three steps:

1. Global estimation: Select a δglob-bootstrap quantile q̂glob the two-sided supremum risk over [0, 1]
satisfying

P
{
Dn,⋆([0, 1]) > q̂glob | Dn

}
≤ δglob.

2. Localization: Form an adjusted empirical sublevel set:

T̂r
+
:=
{
t ∈ [0, 1] : L̂n(t) ≤ r + 2

q̂glob√
n

}
,

containing the original empirical sublevel set T̂r.

3. Local estimation: Select a δloc-bootstrap quantile q̂loc of the one-sided supremum risk over T̂r
+

satis-
fying

P
{
D−

n,⋆(T̂r
+
) > q̂loc | Dn

}
≤ δloc,

and use it to compute an upper confidence band.

The method can be understood intuitively as follows. The first step computes by how much the size of
the set T̂r should be increased, to obtain the corrected set T̂ +

r of the second step.3 The third step essentially

carries out the bootstrap quantile estimate from the previous section, but specializing to T̂ +
r for tighter

bounds. Due to the correction, the confidence set is valid over the original, smaller set T̂r.
The initial two-sided global estimation is key. To see why, suppose we have a confidence set that is

valid for a fixed set T when specializing over T . Then it is valid for any subset of T when specializing over
any superset of T , even if these sets are data dependent. Since the two-sided estimation quantifies how far
L̂n is—both above and below—from the unknown mean L, we might plausibly find the fixed set Tr to be
“sandwiched” as T̂r ⊂ Tr ⊂ T̂ +

r , so that our confidence set can apply.

The following theorem gives the precise form of a uniform upper confidence bound for risk control. We
refer to its computation as restricted risk resampling (RRR), but like risk resampling, note that it is a
functional form of the bootstrap, though now combined with the localization idea of [38].

Theorem 3 (Confidence bound via restricted risk resampling). Let r ∈ [0, 1]. Fix confidence parameters
δglob, δloc ∈ [0, 1] and set δ = δglob + δloc. Then we have, with probability at least 1− (δ + o(1)),

L(t) ≤ L̂n(t) +
q̂loc√
n

simultaneously for all t ∈ T̂r.

See Appendix B.1 for a proof of this result.

Let us make a few remarks. First, regarding implementation: we use Monte Carlo approximation to
compute the quantiles q̂loc, q̂glob, similarly to Section 2.3, and we choose a ratio of δloc/δglob = 9 for the
confidence parameters in our experiments.

Second, note that the theorem claims validity over the observed data-dependent set T̂r, rather than the
population set Tr. The former is arguably more useful in applications, as Tr is not observed, but a guarantee
involving the population set is possible with minor modifications. Specifically, if the procedure is run with
the level r′ = r − q̂glob/

√
n, then in addition to the conclusion of Theorem 3, we additionally have the

inclusion T̂r′ ⊂ Tr with high probability, asymptotically.

Finally, regarding motivation: our goal was to spend the error budget less wastefully, when the user
prefers parameters t such that L̂n(t) is small. (By monotonicity, this means that t is large). We note that in

3To appreciate why such a correction is necessary, consider a fixed set T ⊂ [0, 1], such as T = [0, 1] from Section 2.3. A
confidence band B(t; T ) : [0, 1] → 2[0,1] which is uniformly valid over T —in the sense that L(t) ∈ B(t, T ) for all t ∈ T , with

high probability—is typically no longer uniformly valid when a random set T̂ is substituted for T .
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past work, this concern has been addressed differently, using bounds which are valid simultaneously for all t,
but which have variable width: tighter for large t, looser for small t. The bound in this section, in contrast,
is fixed width, but can still be tighter for large t, as it need not be valid when t is small.

One seemingly plausible approach to variable-width upper bounds in our setting is inspired by the Monte
Carlo method of [27]: for some function f(t; γ), corresponding to the width of the bound, which is decreasing

in t and increasing in γ, define L̂+
n (t) := L̂n(t)+n−1/2f(t; γ̂), where γ̂ satisfies P(∀t, G⋆

n(t) ≤ f̂(t; γ̂) | Dn) ≥
1− δ. Observe that a fixed-width bound corresponds to f(t, γ) = γ.

We do not pursue this further in the present work, but note that the present approach selects a set
T̂r, rather than a function f(t; γ). This is advantageous when the risk L(t), and hence the set T̂r, is more
interpretable than the parameter t.

2.5 Extension to non-monotone losses

Our previous concentration inequalities and upper confidence bounds only apply to population risks arising as
expectations of monotone losses. In this section, we briefly discuss two extensions that we can accommodate
that involve losses which are not monotone.

2.5.1 Combinations of monotone risks

In many situations, the risk that we would like to control can be decomposed into multiple monotone
components. Formally, suppose we are interested in controlling the composition of k different risks,

L(t) := Ψ
(
L1(t), . . . , Lk(t)

)
, where Li(t) := E[ℓi(Ct(X), Y )],

for i = 1, . . . , k. We assume for simplicity that ℓi have range in [0, 1] and are monotone in the sense of
display (2.1), but the overall function Ψ: [0, 1]k → [0, 1] may possibly be non-monotone.

General approach: To obtain a upper confidence bound on L(t), we simply combine the uniform lower
and upper confidence bounds for each of the components Li, in the following two steps.

1. Develop a 1− δn,i confidence band Ĉi for each i, such that

Li(t) ∈ Ĉi(t) simultaneously for all t ∈ T ,

holds with probability at least 1− δn,i.

2. Aggregate the confidence parameters and confidence sets by defining

δ =

k∑
i=1

δn,i, Ĉlow(t) := inf
ℓi∈Ĉi(t)

Ψ(ℓ1, . . . , ℓk), and Ĉup(t) := sup
ℓi∈Ĉi(t)

Ψ(ℓ1, . . . , ℓk).

Clearly, we have with probability at least 1− δ that

Ĉlow(t) ≤ L(t) ≤ Ĉup(t), simultaneously for all t ∈ T .

For the first step in the above approach, we can apply any of our previously described confidence bounds
since the component risks {Li} are bounded and monotone.

Illustration for selective classification: Consider the case where L(t) = L1(t)/L2(t), which is a special
case of the above approach, having taken L = Ψ(L1, L2) and Ψ(ℓ1, ℓ2) = ℓ1/ℓ2. The two risks can be define
to capture a tradeoff, or may arise directly from the specification of L.
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This setup arises specifically in selective classification, also known as classification with abstention, or
classification with a reject option [39–41]. In this setting, we wish to classify covariates x as falling into one
of K classes or, alternatively, we can abstain, for instance, if we believe we are too uncertain to commit to
a point prediction. In this case, let Y ′ = {1, . . . ,K} ∪ abstain. A classifier Ct : X → Y ′ can work on top
of learned scores p̂(X) ∈ ∆K in the K-simplex as follows. Denoting k∗(x) = argmaxk p̂k(x), it returns the
highest scoring class unless a score threshold t is not reached:

Ct(X) =

{
k∗(X) p̂k∗(X)(X) > t

abstain otherwise.

Then the following risk L, which is the probability of misclassification given that Ct did not abstain, can be
upper bounded with high probability by upper bounding the numerator and lower bounding the denominator:

L(t) = P[Ct(X) ̸= Y | Ct(X) ̸= abstain] =
P[Ct(X) ̸= Y, Ct(X) ̸= abstain]

P[Ct(X) ̸= abstain]
.

2.5.2 Nearly monotone risks

Now we consider the case where we have a risk L(t) = E[ℓ(Ct(X), Y )] which is the expectation of a non-
monotone loss ℓ. The following approach will allow us to provide meaningful risk control when L is “nearly”
monotone.

Monotonizing the loss: Our approach is to monotonize the loss. Formally, we define the functions

ℓ↓(Ct(X), Y ) := inf
s≤t

ℓ(Cs(X), Y ) and ℓ↑(Ct(X), Y ) := sup
s≤t

ℓ(Cs(X), Y ).

The functions ℓ↓, ℓ↑ are essentially the running minimum and maximum, respectively, over the set {s ≤ t}.
We define

L↓(t) := E[ℓ↓(Ct(X), Y )] and L↑(t) := E[ℓ↑(Ct(X), Y )].

Since ℓ↓ ≤ ℓ ≤ ℓ↑, we also have L↓ ≤ L ≤ L↑.

If the loss ℓ is bounded, then the functions L↓, L↑ satisfy the monotonicity assumptions needed to develop
our lower and upper confidence bounds. In particular, we define the monotonized empirical risks,

L̂↓
n(t) :=

1

n

n∑
i=1

ℓ↓(Ct(X), Y ) and L̂↑
n(t) :=

1

n

n∑
i=1

ℓ↑(Ct(X), Y ).

Then, using L̂↓
n, L̂

↑
n, we can develop, respectively, simultaneous lower and upper confidence bounds on the

risk L using the inequalities developed in the previous sections.

Batch-and-monotonize: One concern that we may have with the approach developed above is that even
when L is close to monotone, the loss ℓ may be far from monotone, resulting in a larger than desired gap
between the population risks L and the monotonized variants L↓, L↑. A way to address this is to batch the
samples, and then monotonize on these individual batches.

Specifically, using k data points at a time can get tighter bounds. Assuming for simplicity that n is
divisible by k, we define for j ∈ {0, 1, . . . , n/k − 1} the dataset and loss

Zj = {(Xkj+i, Ykj+i)}ki=1 and ℓk(t, Zj) =
1

k

k∑
i=1

ℓ(Ct(Xkj+i), Ykj+i).

We can then monotonize ℓk as described in the previous paragraph, and use this to develop simultaneous
lower and upper confidence bounds on the population risk. At first glance this may appear to be lossy
because there are only n/k data points Zj ; however, values of ℓk can be expected to have lower variance
than ℓ, so variance-aware methods such as Corollary 2.2 and Theorem 3 will adapt.
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3 Experiments and Examples

In this section, we will demonstrate the performance of the upper bounds of Section 2: the nonasymptotic
bound (NASM),4 risk resampling (RR),5 and restricted risk resampling (RRR).6. Each method was run with
confidence parameter δ = 0.1; the RR and RRR methods are run with 1000 bootstrap resamples, and the
RRR method was run with risk tolerance r = 0.1 and global and local parameters δglob = 0.01, δloc = 0.09.

These methods each amount to different ways to compute a uniform upper bound, which we denote
generically as L̂+(t). We investigate two settings: a fully simulated setting, as well as the MS COCO setting
from the Introduction.

Since these bounds are fixed-width bounds of the form L̂+(t) = L̂n(t) + q̂/
√
n, they must satisfy

P

(
sup
t

L(t)− L̂n(t) ≤
q̂√
n

)
≥ 1− δ.

Hence in each setting we provide a quantile plot of q̂/
√
n against the true 1− δ quantile of Dn = supt L(t)−

L̂n(t), which constitutes the best possible fixed-width bound.

We also display miscoverage metrics. Call the quantity P(∃t s.t. L(t) > L̂+(t)) the anywhere miscoverage
probability. Additionally, for the selected set Ŝ = {t : L̂n(t) ≤ 0.1}, call the quantity P(∃t ∈ Ŝ s.t. L(t) > L̂+(t))
the selected set miscoverage probability ; we plot these two quantities in bar charts.

Though the resampling-based bounds are asymptotically exact, their use may seem unreasonable if they
are very wide. Hence, on the MS COCO example, we model the behavior of an analyst who trades off two
risks. Choosing the parameter t̂ as a function of the data, call E[L̂+(t̂)−L(t̂)] the average conservatism; we
also plot this in a bar chart. For details on the specific function t̂, see Appendix A.3.

In each setting, we consider multiple different loss functions, and plot the results for each method applied
on each loss. In addition, we include a fourth method,7, referred to as “pointwise,” which is not uniformly
valid, but only pointwise valid in the sense that P(L(t) ≤ L̂+(t)) ≥ 1 − δ for every t and finite n. This
method, due to [6], gives remarkably tight estimates of means of bounded random variables, so we display
it as a benchmark against our methods which are uniformly valid.

Lastly, we note that these probabilities and expectations cannot be computed exactly on finite data, so in
the MS COCO example we must compute surrogates based on splitting our datasets in halves into a holdout
set H and a sampling set S; refer to Section A.2 for details. Additionally, the suprema and miscoverage
quantities are computed for t in a grid; for the Gaussian example, it is a grid on [−3, 3] with size 1000, and
for MS COCO it is a grid on [0, 1] of size 500.

Replication code can be found at github.com/drewtnguyen/risk-tradeoffs-experiments.

3.1 Simulated data

To define a completely synthetic monotone loss function, consider empirical CDFs on batches of data. Let
Z1, . . . , Zn be i.i.d., where each Zi is a batch of five equi-correlated Gaussians, having covariance with
diagonal values 1 and off-diagonals ρ ∈ [−1, 1]:

Zi = (Xi1, . . . , Xi5) ∼ N5(0, ρ1+ (1− ρ)I).

Define the loss ℓ(t, Zi) as

ℓ(t, Zi) =

5∑
j=1

1{Xij ≤ t}

4Corollary 2.1, right-hand side of Equation (2.1).
5Corollary 2.2, right-hand side of Equation (2.2).
6Theorem 3, right-hand side of Equation (3).
7Theorem A.1 Equation (A.1).
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Figure 3: Simulated data: Log-log plot of true quantile of Dn and its median bootstrap estimate (and
90/10% quantiles) computed from 3K Monte Carlo runs.
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Figure 4: Simulated data: Anywhere miscoverage based on 20K Monte Carlo runs.

Evidently the risk is just the standard normal CDF L(t) = Φ(t), even though varying ρ constitutes different
loss distributions (we choose ρ ∈ {−0.2, 0.2, 0.6} in the experiments). Note that if ρ = 0, uniform upper
bounds on L could be obtained by standard arguments for CDFs.

The quantile plot of Figure 3 shows the nonasymptotic upper bound, as well as convergence of the esti-
mated bootstrap quantile (which can be predicted from Lemma 1). The plots show that the nonasymptotic
bound is, as predicted, valid for all sample sizes, but is very conservative; RR and RRR work for moderate
sample sizes; and the pointwise bound is not uniformly valid.

Note that the convergence of the bootstrap appears to be slower for small ρ, which is when the underlying
process is closest to its mean. More generally, constant pre-factors in the convergence rate may depend on
the problem setting.

3.2 MS COCO

We revisit multi-label classification on the MS COCO data set that was discussed in the Introduction. The
results are presented in Figures 6-9, for four different multi-label classification risks of interest: FNR, FPR,
FDR, and SetSize.

The FNR and FPR were defined in the Introduction; the false discovery rate (FDR) is the expectation of
the number of false positives over selected classes, while SetSize is the expectation of the normalized number
of selected classes. For precise definitions and illustrations of these risks, see Appendix A.3.
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Figure 5: Simulated data: Selected set miscoverage based on 20K Monte Carlo runs.
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Figure 6: MS COCO data: Log-log plot of true quantile of Dn and its median bootstrap estimate (and
90/10% quantiles) computed from 3K Monte Carlo runs.

We can interpret control of the FDR as a guarantee that the selected classes are mostly true positives on
average. Note that it is not a monotone risk, so we monotonize it as described in Section 2.5.

The figures are qualitatively similar to those of the previous section. Again, the nonasymptotic bound is
extremely conservative and the pointwise baseline does not have the right coverage, while resampling-based
methods are valid at moderate sample sizes and are quite effective. In particular, Figure 9, measuring the
average tradeoff conservatism, shows that the RRR method does better than RR in terms of tightness of the
bound, and compares favorably to the method that is pointwise valid.

4 Theoretical Underpinnings

This section is a short foray into the empirical process theory that underlies the main results of the paper.
First, in Section 4.1 we compute the Vapnik-Chervonenkis (VC) dimension of a class of monotonically-
indexed functions. In Section 4.2, we prove the main results, Theorems 1 and 2, and sketch the proof of the
technical Lemma 1 regarding the bootstrap. Careful proofs for all results can be found in Appendix B.

4.1 Monotonically-indexed function classes

Because our results hold even without reference to the risk control problem studied earlier in the paper, we
adopt new notation that reflects the underlying empirical process that we are tasked with controlling.
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NASM RR RRR pointwise
FNR

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Tr
ad

eo
ff 

Co
ns

er
va

tis
m

NASM RR RRR pointwise
FPR

NASM RR RRR pointwise
FDR

NASM RR RRR pointwise
SetSize

n = 50
n = 150
n = 450
n = 1350

Figure 9: MS COCO: Tradeoff conservatism based on 20K Monte Carlo runs.
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Let Z be a probability space on which we define i.i.d. random variables Z1, . . . , Zn. We begin by intro-
ducing the following notion of monotonically-indexed function classes.

Monotonically-indexed function class: We say the collection of functions F = {ft : Z → R}t∈[0,1]K is
monotonically-indexed if

t ⪯ s implies ft(z) ≤ fs(z), for any z ∈ Z.

Here, the inequality t ⪯ s corresponds to the sequence of componentwise inequalities ti ≤ si for i = 1, . . . ,K.
It does not matter what the space Z is over which the functions ft are defined, as the monotonicity provides
enough structure to restrict the complexity of the class.

A monotonically-indexed class F should not be confused with a class F of monotone functions, which is
the class such that whenever f ∈ F , then z1 ⪯ z2 implies f(z1) ≤ f(z2). This latter setting has been studied
classically; see, for instance, [42].

Our first result shows that monotonically-indexed function classes have small VC subgraph dimension,
as defined in [43].

Proposition 1. If F is monotonically-indexed, then its VC (subgraph) dimension is at most K + 1.

See Appendix B.1 for a proof of this claim. Our proof is inspired by Lemma 9.10 in [14], which provides a
proof in the case K = 1.

Finiteness of the VC dimension allows us to easily derive the following consequence, which is a functional
central limit theorem (CLT) for monotonically-indexed classes. To state the result, we consider the following
rescaled and centered process:

Gn(t) :=
1√
n

( n∑
i=1

(ft(Zi)− Eft(Zi))
)
.

Proposition 2. Let F denote a monotonically-indexed function class. If the elements of F are right-
continuous and uniformly bounded, in the sense that

sup
f∈F

sup
z∈Z

|f(z)| < ∞,

then the process Gn converges in distribution to a centered Gaussian process G with covariance kernel

C(t, s) = E[ft(Z)fs(Z)]− E[ft(Z)]E[fs(Z)].

This result is almost an immediate consequence of our Proposition 1, Theorem 19.14, and Lemma 19.15 of
[43]; for details, see Appendix B.1.

Comparing general monotone functions to indicators: One interesting interpretation of Proposi-
tion 2 arises in the case K = 1. Let F be a monotonically-indexed function class; let G and C denote
the limit process and kernel associated with Gn as guaranteed by Proposition 2. Additionally, suppose for
simplicity that F (t) = Eft(Z) also satisfies F (0) = 0 and F (1) = 1 (the general case can be reduced this
case by translation and rescaling). Then, we consider a hypothetical process where we sample Z ′

i in an i.i.d.
fashion according to the CDF F . We consider the following process:

G′
n(t) :=

1√
n

( n∑
i=1

(1{Z ′
i ≤ t} − F (t))

)
.

By Proposition 2 we have that G′
n converges to a centered Gaussian process with covariance kernel C ′(t, s) =

F (t ∧ s) − F (t)F (s). Interestingly, we also see that the limit processes G,G′ and their covariance kernels
C,C ′ are related via

C ′(t, s) = C(t, s) + ∆(t, s), where ∆(t, s) = E[f(t ∧ s, Z)− ft(Z)fs(Z)].
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It is straightforward to check that ∆ is a positive semidefinite kernel on [0, 1]× [0, 1], and we obtain

G′ = G + W,

where W is a centered Gaussian process on [0, 1] with the covariance ∆. Asymptotically, this relation shows
that the empirical process associated with a monotone function is stochastically no larger than that of a
corresponding CDF.

4.2 Proofs of main results

We now present the proofs of our main results, Theorems 1 and 2, and sketch the proof of Lemma 1 on
validity of the bootstrap.

4.2.1 Proof of Theorem 1

In Appendix B.3, we prove the following result for function classes which are monotonically-indexed by a
single parameter, which can be seen as a generalization of the DKW inequality.

Theorem 4. Let F = (ft)t∈[0,1] denote a monotonically-indexed function class, with K = 1. Then, the
rescaled and centered process

Gn(t) :=
1√
n

( n∑
i=1

(ft(Zi)− Eft(Zi))
)

satisfies

P
{
sup
t

Gn(t) > x
}
∨ P
{
sup
t

−Gn(t) > x
}
≤ e exp(−2x2),

for all x > 0.

Theorem 1 now follows by taking λ = x, and identifying

Zi = (Xi, Yi) and ft(Zi) = ℓ(Ct(Xi), Yi), for i = 1, . . . , n.

Note that the monotonicity assumption in Section 2.1 (decreasing) is the reverse of the one for monotonically-
indexed classes (increasing).

4.2.2 Proof of Theorem 2

We first identify Zi = (Xi, Yi) and ft(Zi) = ℓ(Ct(Xi), Yi), as in the proof of Theorem 1. Then Theorem 2
follows from Proposition 2, because for any z, right continuity in t can be assumed without loss of generality
by redefining ft(z) at the discontinuity points, which are countably many due to monotonicity, and uniform
boundedness holds because 0 ≤ ft(z) ≤ 1.

4.2.3 Proof sketch of Lemma 1

let Dn = Z1, . . . , Zn be i.i.d, and let the centered, rescaled bootstrap distribution be

G⋆
n(t) =

1√
n

(
n∑

i=1

(Mn,i − 1)ft(Zi)

)
where Mn ∼ Multinomial(n, 1/n, . . . , 1/n).

The functional CLT in Theorem 2 holds if and only if the bootstrap distribution is accurate, in the sense
that the conditional law of G⋆

n | Dn converges to the distribution of G, in probability. The conclusion follows
by a version of the continuous mapping theorem that holds for bootstrap distributions. See Appendix B.1
for details.
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5 Discussion

We have presented an approach to distribution-free predictive inference that allows post hoc optimization of
bounded, monotone risk functions. Unlike most existing work, our bounds are uniform, enabling exploratory
revision of levels after seeing the data.

An alternative would be to set α ahead of time via data splitting. Neither approach is better than the
other in general [44]. But in the machine-learning problems that motivate our work, where uncertainty
quantification may be one component of an overall complex engineering system, the property of uniform
bounds seems particularly useful. It allows the choice of t to be a complex function of other components of
the system.

Our best performing methods, based on the bootstrap, have asymptotic validity but do not have provable
finite-sample validity. This is a familiar issue—the inequality of Theorem 1 is akin to a Hoeffding inequality,
whereas the bootstrap is akin to a central limit theorem. This begs the question: it possible to derive an
analog of a Bernstein inequality—a tight, variance-aware, finite-sample bound? Such a result was recently
demonstrated for binary losses [45], and we defer further investigation to figure work.

Another natural question concerns the extension of the present tools to confidence bounds for truly
non-monotone risks, rather than near monotone risks or combinations of them. The method of Learn Then
Test [3] achieves finite-sample risk control in the binary setting by gridding the space of parameters into p
points and performing tests at each point to assess whether the risk is below a level α, with multiplicity
correction. That work, however, does not estimate the underlying dependencies between the tests, a task at
which bootstrap methods succeed asymptotically.
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A Experimental details

A.1 A concentration inequality

The following bound is drawn from the work of [6]:

L̂+(t) = inf

{
p ≥ 0 : max

i=1,...,n
Ki(p; t) >

1

δ

}
.

where K is referred to as a capital process in i, defined in terms of further quantities:

Ki(p; t) =

i∏
j=1

{1− λj(t)(ℓj(t)− p)} , where

µ̂i(t) =
1/2 +

∑i
j=1 ℓj(t)

1 + i
, σ̂2

i (t) =
1/4 +

∑i
j=1(ℓj(t)− µ̂j(t))

2

1 + i
, λi(t) = min

{
1,

√
2 log(1/δ)

nσ̂2
i−1(t)

}
.
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Theorem A.1 (Based on Theorem 3 of [6]). For any parameter t and any finite sample size n,

P(L(t) ≤ L̂+(t)) ≥ 1− δ.

As L(t) is simply the mean of a bounded random variable, the same conclusion can hold for simpler
upper bounds L̂+(t), such as the Hoeffding bound, but typically Waudby-Smith and Ramdas’ bound seems
tighter than any other bound with proven finite-sample validity.

In the present setting, however, this bound is only pointwise valid, not uniform; that is, it is not simul-
taneously valid for all t ∈ [0, 1], or any other subset T ⊂ [0, 1] which is not a singleton.

A.2 More details for MS COCO

In this section, we provide additional detail regarding how we computed the quantities discussed in Section
1.1 and Section 3 for the MS COCO dataset.

Splitting the MS-COCO dataset. The 2014 MS COCO dataset [5] consists of about 200K labeled
images, of which ∼120K are designated as either training or validation images. The label of each image
X ∈ X is a vector Y ∈ {0, 1}80, corresponding to which of 80 classes are present in the image. We separated
the 120K train/val images into three splits.

Split 1: Training a classifer. Half of the images went to a split for training a TResnet model [46] for
29 epochs, which computes logits given X; we obtained a model of scores f : X → [0, 1]K by converting the
raw logits using a sigmoid activation, and a classifier Ct via equation (1.1). The model was cached for every
epoch.

Split 2: Choosing the best epoch. A second split of 1K images was used to choose from the epochs
the best performing classifier in terms of mean average precision (mAP), namely epoch 5. We obtain a final
classifier Ct.

Split 3: Calculating performance metrics. Denote the remaining third split of ∼60K images from
the train/val set as DCOCO. The MS COCO image/label pairs (X,Y ) can be thought of as samples from
some joint distribution of MS COCO-type images. But we do not know this distribution and cannot sample
from it; in particular, we do not know ground truth risks, such as the FNR, from which to exactly calculate
performance metrics such as miscoverage.

(Some notation: Let L̂(t;D) denote an empirical risk calculated using data D, and similarly let L̂+(t;D)
denote some upper bound. Let D∗

n denote a sample of size n with replacement from D, and let truen be an
iid sample of size n from the true distribution of MS COCO images.)

To compute a surrogate quantity, on each simulation we randomly split DCOCO into two halves, a holdout
set H and a sampling set S; we picked n points with replacement S∗

n; using these n points, we computed
t̂ from optimizing a trade-off (see Section A.3), where t takes values on an even grid of 500 points in [0, 1];
and then we evaluate performance metrics by treating L̂(t;H) as ground truth.

For example, we approximate anywhere miscoverage, which is

P
(
L(t) > L̂+(t; truen) for all t ∈ [0, 1]

)
,

by the surrogate

P
(
L̂n(t,H) > L̂+(t;S∗

n) for all t ∈ [0, 1] | DCOCO

)
,

so the probability is taken over the split of DCOCO as well as the sample of size n from S. The function
L̂n(· ;H) serves as a surrogate for the true mean L(·), computed using a holdout set, and the sample of
n points S∗

n serves as a surrogate for sampling n points iid from the true distribution of MS COCO-type
images.
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Figure 10: Four different risks on the MS COCO distribution, and an empirical estimate of them based on
n = 300 data points.

A.3 MS COCO losses and risks

Consider the classifier from Split 2 of Appendix A.2. The following are multi-label classification losses used
for the MS COCO dataset:

ℓFNP(Ct(X), Y ) =

∑K
k=1 1{[Ct(X)]k = 0, [Y ]k = 1}

1 ∨
∑K

k=1 1{[Y ]k = 1}

ℓFPP(Ct(X), Y ) =

∑K
k=1 1{[Ct(X)]k = 1, [Y ]k = 0}

1 ∨
∑K

k=1 1{[Y ]k = 0}

ℓFDP(Ct(X), Y ) =

∑K
k=1 1{[Ct(X)]k = 1, [Y ]k = 0}
1 ∨

∑K
k=1 1{[Ct(X)]k = 1}

ℓSetSize(Ct(X), Y ) =

∑K
k=1 1{[Ct(X)]k = 1}

K
,

and the resulting risks are as follows:

FNR(t) = E[ℓFNP(Ct(X), Y )]

FPR(t) = E[ℓFPP(Ct(X), Y )]

FDR(t) = E[ℓFDP(Ct(X), Y )]

SetSize(t) = E[ℓSetSize(Ct(X), Y )].

An illustration of these risks is displayed in Figure 10. Technically, the ground truth plotted in blue is
actually computed based on a holdout dataset H, and the empirical estimate from sampling n = 300 points
from a disjoint dataset S; see Appendix A.2 for details.

Risk tradeoffs. All the risks are provably monotone, except for FDR, which appears to be nearly mono-
tone. Since FNR is the only one which is decreasing, it makes sense to trade all the others off of FNR.

In particular, let t̂ = argmint∈T̂r
φ(L̂n(t), Q̂n(t)), where L̂n, Q̂n represent given empirical risks, and φ

aggregates them in some way. The constraint T̂r = {t : L̂n(t) ≤ r} models the idea that Ln too large would
be intolerable; we set r = 0.1 in the experiments. Usually, this constraint was non-binding.

We changed φ, L̂, and Q̂ depending on the experiment. Specifically, Figure 9 computes the tradeoff
conservatism E[L̂+(t̂)− L(t̂)] for different choices of φ, L̂, and Q̂, depending on the risk being controlled:
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• FNR control: L̂ is empirical FNR, Q̂ is empirical FPR, and φ(ℓ, q) = ℓ+ q.

• FPR control: L̂ is empirical FPR, Q̂ is empirical FNR, and φ(ℓ, q) = ℓ+ q.

• FDR control: L̂ is empirical FDR, Q̂ is empirical FNR, and φ(ℓ, q) = −dist
(
(ℓ, q), line((1, 0), (0, 1))

)
.

• SetSize control: L̂ is empirical SetSize, Q̂ is empirical FNR, and φ(ℓ, q) = −dist
(
(ℓ, q), line((1, 0), (0, 1))

)
.

Here, dist((ℓ, q), line(A,B)) refers to the distance between the point (ℓ, q) ∈ R2 and the closest point
that lies on the line between A,B. Maximizing this distance finds the “elbow” on an ROC type curve
(L(t), Q(t)).

B Proofs

B.1 Proofs of Lemmas and Propositions

To prove Lemma 1 we will draw upon two textbook theorems, written in the notation of Section 4. In
particular, let Dn = Z1, . . . , Zn be i.i.d. with common distribution P , and define

G⋆
n(t) =

1√
n

(
n∑

i=1

(Mn,i − 1)ft(Zi)

)
,

where Mn ∼ Multinomial(n, 1/n, . . . , 1/n).

The first is a central limit theorem for bootstrap processes.

Theorem B.1 (Theorem 2.6 (i, ii) from [14]). A function class F is P -Donsker if and only if

G⋆
n → G

in distribution (conditionally on Dn, in probability), and also G⋆
n is asymptotically measurable.

Next, following the notation of the textbook [14], let the Banach spaces D = ℓ∞(F) and E = R have the
uniform norm. We have the following continuous mapping theorem for bootstrap processes.

Theorem B.2 (Theorem 10.8 from [14]). Let g : D → E be continuous, and assume that the map taking
Mn 7→ h(G⋆

n) is measurable for every bounded, continuous h : D → R. Then if G⋆
n converges in distribution

to a tight process G (conditionally on Dn, in probability), then g(G⋆
n) converges in distribution to g(G)

(conditionally on Dn, in probability).

Proof of Lemma 1. First, a minor note. This lemma was stated in the notation of Section 2; it remains true
as stated using the notation of Section 4, and it is easy to translate between the two.

Now the fact that Gn converges in distribution to a Gaussian process G is the definition of F being
a P -Donsker class. Hence we may use Theorem B.1 to claim that G⋆

n converges in distribution to the
Gaussian process G (conditionally on Dn, in probability). Now we may plug this into Theorem B.2 using
g(F ) = supt∈[0,1] ±F (t), after the continuity and measurability conditions are checked. But the continuity
follows from the continuity of the uniform norm, and the measurability certainly holds, so the conclusion of
Theorem B.2 holds, which gives the result.

Proof of Proposition 1. Consider a set of distinct points P = {p1, . . . , pK+1} ∈ Z × R, and let St = {(z, s) :
ft(z) < s} denote a subgraph. Essentially, we perform the classical calculation of the VC dimension of
half-intervals in RK .

Suppose w.l.o.g that for every k, pk ∈ St for some t, and define t∗j,k = inf{r : ∃t s.t. tj = r, pk ∈ St}, the
smallest tj such that St picks out pk. Define t∗∗j = maxk∈[K] t

∗
j,k. We now consider two cases.
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If there is k′ such that t∗j,k′ < t∗∗j for all j, then whenever P \ {pk′} ⊂ St, then tj ≥ t∗∗j for each j. This
implies that tj > t∗j,k′ for all j, so by monotonicity, P ⊂ St, so St cannot pick out the configuration P \{pk′}.

If instead for every k, we have t∗j,k = t∗∗j for some j, then since j ∈ {1, . . . ,K} and k ∈ {1, . . . ,K + 1},
there must exist k′, k′′ such that t∗j,k′ = t∗∗j,k′′ = t∗∗j . In this case, the two-point set {pk′ , pk′′} cannot be
shattered, because if there is t satisfying pk′ ∈ St, pk′′ /∈ St, then

t∗∗j = t∗j,k′ ≤ tj < t∗j,k′′ = t∗∗j ,

which is a contradiction.

Proof of Proposition 2. From Theorem 19.14 and Lemma 19.15 of [43], if a “suitably measurable” function
class has finite VC dimension and uniformly bounded, then it is P -Donsker. The definition of P -Donsker is
precisely the convergence given in the result.

Suitable measurability is a technical condition that [43] does not define, but he does note that it is
sufficient that there is a countable collection of functions G in which for each ft(·) we can find a sequence
g1, g2, . . . : Z → R satisfying limm→∞ gm(z) → ft(z) at each z. By the right continuity of ft, it suffices to
take G equal to the subset of F where t is rational.

B.2 Proof of Theorem 3

The following proof uses the same core idea as that of Theorem 1 of [38], except that we extend their original,
nonasymptotic examples to the present asymptotic setting of the bootstrap. Also, we use the notation of
Section 2 rather than their general notation, which enables a less abstract proof.

In addition to the notation of Section 2, we set additional notation for the proofs and two lemmas. Let
the realized set of selected t be denoted as

T̂r = {t : L̂n(t) ≤ r},

let the population sublevel set be denoted as

Tr = {t : L̂n(t) ≤ r},

let the predictive set of selected t, with known mean, be denoted as

T +
r =

{
t : L(t) ≤ r +

q̂glob√
n

}
,

and let the predictive set of selected t, with estimated mean, be denoted as

T̂ +
r =

{
t : L̂n(t) ≤ r + 2

q̂glob√
n

}
.

Though we do not directly use this fact, the predictive sets have the property that when an independent
copy of L̂n is observed, and hence an independent copy of the realized set T̂r, the predictive sets contain the
new realized set with high probability.

For each t, let the one-sided and two-sided confidence sets for L(t) be

B1(t, T +
r ) =

{
y : y ≤ L̂n(t) +

q̂loc(T +
r )√
n

}
and

B2(t, [0, 1]) =

{
y : |y − L̂n(t)| ≤

q̂glob√
n

}
.
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They are confidence bands when interpreted as functions of t.

Finally, let G refer to the Gaussian process of Theorem 2; it is the process to which the empirical process√
n(L̂n(t)− L(t)) is convergent.

Now we establish a lemma on the convergence of bootstrap quantiles.

Lemma 2. If q̂glob = infq{q : P(Dn,⋆ > q | Dn) ≤ δglob)} is the conditional 1 − δglob quantile of Dn,⋆, and
for any T , q̂loc(T ) = infq{q : P(D−

n,⋆(T ) > q | Dn) ≤ δloc)} is the conditional 1 − δloc quantile of D−
n,⋆(T ),

then
q̂glob

p→ qglob

and
q̂loc(T +

r )
p→ qloc(Tr),

where qglob = infq{q : P(supt∈[0,1] |G(t)| > q) ≤ δloc)} is the limiting global quantile, and qloc(Tr) = infq{q :
P(supt∈Tr

G(t) > q) ≤ δloc)} is the limiting one-sided quantile.

Proof. First, equation (2) holds as an immediate consequence of Lemma 1. Next, note that D−
n,⋆(T +

r ) can
be expressed as

D−
n,⋆(T +

r ) = sup
t∈[0,1]

G⋆
n(t) · 1{L(t) ≤ r +

q̂glob√
n
}

By Lemma 1, the conditional law of G⋆
n converges to that of G in probability, and the process 1{L(t) ≤

r+
q̂glob√

n
} converges to the constant function 1{L(t) ≤ r} = 1{t ∈ Tr} in probability, so by Slutsky’s lemma,

the conditional law of

G⋆
n(t) · 1{L(t) ≤ r +

q̂glob√
n
}

converges to the law of
G(t) · 1{t ∈ Tr}

in probability. Finally, by a similar application of Theorem B.2 as in the proof of Lemma 1, the conditional
law of D−

n,⋆(T +
r ) converges to that of supt∈Tr

G(t) in probability. This directly implies equation (2).

Second, we establish the key lemma of the proof, which mirrors Lemma 1 of [38].

Lemma 3. For any n, the inequality

P(L(t) ∈ B1(t, T̂ +
r ) for all t ∈ T̂r) ≥ P

(
{L(t) ∈ B1(t, T +

r ) for all t ∈ T +
r }

and {L(t) ∈ B2(t, [0, 1]) for all t ∈ [0, 1]}
)

holds.

The two events in the right-hand side have been bracketed for clarity. Note that these events depend on
the sample size n, but this dependence has been suppressed.

Proof. Because B1(t, T1) ⊂ B1(t, T2) when T1 ⊂ T2, it is sufficient to show the inclusion

T̂r ⊂ T +
r ⊂ T̂ +

r

on the event L(t) ∈ B2(t, [0, 1]) for all t ∈ [0, 1].

On this event, the first inclusion holds because L(t) ≤ L̂n(t)+ q̂glob/
√
n for all t ∈ [0, 1], giving the chain

of implications

L̂n(t) ≤ r ⇒ L̂n(t) + q̂glob/
√
n ≤ r + q̂glob/

√
n ⇒ L(t) ≤ r + q̂glob/

√
n.

The second inclusion holds because L̂n(t) ≤ L̂n(t)+ q̂glob/
√
n for all t ∈ [0, 1], giving the chain of implications

L(t) ≤ r + q̂glob/
√
n ⇒ L(t) + q̂glob/

√
n ≤ r + 2q̂glob/

√
n ⇒ L̂n(t) ≤ r + 2q̂glob/

√
n.
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Proof of Theorem 3. We wish to show that the event{
L(t) ≤ L̂n(t) +

q̂loc(T̂ +
r )√
n

, simultaneously for all t ∈ T̂r

}

occurs with probability at least 1− (δ + o(1)). Observe that we may re-express this event as the event{
L(t) ∈ B1(t, T̂ +

r ), for all t ∈ T̂r
}
.

Applying Lemma 3, we can lower bound the probability of this event in terms of two events with easier-
to-handle sets T :

P(L(t) ∈ B1(t, T̂ +
r ) for all t ∈ T̂r) ≥ P

(
{L(t) ∈ B1(t, T +

r ) for all t ∈ T +
r }

and {L(t) ∈ B2(t, [0, 1]) for all t ∈ [0, 1]}
)

Rewrite the right-hand side as

P
(
{
√
n(L(t)− L̂n(t)) ≤ q̂loc(T +

r ) for all t ∈ T +
r } and {

√
n|L(t)− L̂n(t)| ≤ q̂glob for all t ∈ [0, 1]}

)
,

which can be further re-expressed as

P
(
{ sup
t∈[0,1]

(√
n(L(t)− L̂n(t)

)
· 1{L(t) ≤ r +

q̂glob√
n
} ≤ q̂loc(T +

r )} and { sup
t∈[0,1]

√
n|L(t)− L̂n(t)| ≤ q̂glob}

)
,

and by the union bound, this is greater than

1− P
(

sup
t∈[0,1]

(√
n(L(t)− L̂n(t)

)
· 1{L(t) ≤ r +

q̂glob√
n
} > q̂loc(T +

r )
)
− P

(
sup

t∈[0,1]

√
n|L(t)− L̂n(t)| > q̂glob

)
.

Now applying the functional central limit theorem (Theorem 2), Lemma 2, and Slutsky’s lemma, this equals

1− P
(

sup
t∈[0,1]

G(t) · 1{t ∈ Tr} ≤ qloc(Tr)
)
− P

(
sup

t∈[0,1]

|G(t)| ≤ qglob

)
− o(1),

where we have assumed each q̂ and q represent exact quantiles as in Lemma 2; this is fine to assume because
this quantity lower bounds the case where they are not exact quantiles.

Importantly, Tr is not a random set, but is deterministic, so because qloc(Tr) and qglob are quantiles,
definitionally we have that the previous display is lower bounded by

1− δloc − δglob − o(1) = 1− (δ + o(1)),

as claimed.

B.3 Proof of Theorem 4

To prove this theorem we need two lemmas.

Lemma 4. Let (Y (t))t∈R be a real-valued stochastic process with bounded sample paths. Let φ : R → R be a
convex, non-decreasing function. Let V = supt E[Y (t) | Z] and V ∗ = supt Y (t). Then

E[φ(V )] ≤ E[φ(V ∗)].
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Proof of Lemma 4. First, note that for any function f : R → R with supt f(t) < ∞, then if φ : R → R is
monotone increasing and continuous,

φ(sup
t

f(t)) = sup
t

φ(f(t)).

The direction φ(supt f(t)) ≥ supt φ(f(t)) follows by using monotonicity. The direction φ(supt f(t)) ≤
supt φ(f(t)) follows from continuity: φ(f̃) ≤ supt φ(f(t)) for any f̃ in the range of f , so take an increasing
sequence f̃1, f̃2, . . . converging to supt f(t).

We get the chain of inequalities, noting that φ must be continuous due to convexity:

E[φ(sup
t

E[Y (t) | Z])] = E[sup
t

φ(E[Y (t) | Z])] ≤ E[sup
t

E[φ(Y (t)) | Z]]

≤ E[E[sup
t

φ(Y (t)) | Z]] = E[sup
t

φ(Y (t))] = E[φ(sup
t

Y (t))],

where the first inequality is Jensen’s.

The next lemma concerns what we call the “Bentkus transform,” defined in [47]. For any function
S : R → R, define the log-concave hull S◦ as the smallest function such that S ≤ S◦ and x → − logS◦(x) is
a convex function. If S is a survival function, define its Bentkus transform as

B[S](x) = inf
r<x

E[(X − r)+]

(x− r)+
= inf

r<x

1

(x− r)+

∫ ∞

r

S(y) dy,

where X ∼ 1− S.

Lemma 5. For a survival function S, for all x ∈ R,

S(x)
(i)

≤ B[S](x)
(ii)

≤ eS◦(x).

Proof. Inequality (i) can be shown by Markov’s inequality, applied to the random variable (X − r)+. In-
equality (ii) is proved in more generality as Lemma 4.2 by [4], or alternately Lemma 1.1 [47].

[4] attributes this lemma to [48], and a special case to Kemperman, citing Ch. 25 of [13]. It seems to be
well-suited for proving extremal results for random variables that are the “least averaged.”

For instance, it was used to prove Theorem 1.2 of [4], which showed that binary random variables are,
in some sense, more stochastic than variables bounded in [0, 1]. Meanwhile, Ch. 25 of [13] demonstrates a
DKW inequality for independent but not identically distributed random variables by showing that the iid
case is the most stochastic. Evidently, these results are related to ours.

Proof of Theorem 4. Let h(t, Z) := ft(Z), and we extend its domain to t ∈ R by taking h(t, Z) = 1 whenever
t > 1, and h(t, Z) = 0 whenever t < 0; then

sup
t∈[0,1]

Hn(t, Z)−H(t) = sup
t∈R

Hn(t, Z)−H(t),

so from now on we take suprema over R, and show

P
(
sup
t∈R

+
(
Hn(t, Z)− EHn(t, Z)

)
≥ x

)
≤ e exp(−2x2),

which implies the result with the + sign (the − sign is exactly similar).

The right-continuity assumption implies that, for each Z, h(t, Z) is a CDF of a random variable supported
on [0, 1]; that is, it is non-decreasing, right-continuous, and h(1, Z) = 1. Then, conditionally on each Zi, let
Ti be a random variable drawn according to the CDF h(·, Zi), and define

Y (t) =
√
n

(
1

n

n∑
i=1

1{Ti ≤ t} −H(t)

)
.
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Letting Z = (Z1, . . . , Zn), it follows that

E[Y (t) | Z] =
√
n

(
1

n

n∑
i=1

h(t, Zi)−H(t)

)
=

√
n(Hn(t)−H(t)).

Let V = supt E[Y (t) | Z] and V ∗ = supt Y (t). Set φr : x 7→ (x − r)+, an increasing convex function, and
applying Lemma 4, we have for any x > r

E[φr(V )]

φr(x)
≤ E[φr(V

∗)]

φr(x)
.

Let S denote the survival function of V and S∗ of V ∗. Then taking infimums in r on both sides, we can
write an inequality between two Bentkus transforms:

B[S](x) ≤ B[S∗](x).

Applying Lemma 5 gives
S(x) ≤ e[S∗]◦(x),

and finally, observe that the (one-sided) DKW inequality [35] implies S∗(x) ≤ exp(−2x2) . Since the right-
hand side is log-concave, in fact [S∗]◦(x) ≤ exp(−2x2). So ultimately

S(x) = P
(
sup
t∈R

+
(
Hn(t, Z)− EHn(t, Z)

)
≤ e exp(−2x2),

as claimed.

Inspecting the argument leading up to equation (B.3), we can extract a fact that may be of independent
interest; a weaker version was also stated by [49]. It concerns the increasing convex ordering of random
variables (see, e.g., [50], Section 4.A).

We write A ≤icx B, read as “A is less than B in the increasing convex order,” if Eφ(A) ≤ Eφ(B) for all
non-decreasing, convex φ. Let SA, SB denote their survival functions.

Corollary B.1. Whenever A ≤icx B, then SA(x) ≤ eS◦
B(x).
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