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The discovery of superconductivity in infinite-layer nickelates has ignited stark interest within the
scientific community, particularly regarding its likely unconventional origin. Conflicting magneto-
transport measurements report either isotropic or anisotropic suppression of superconductivity in
an external magnetic field, with distinct implications for the nature of superconducting order. In
order to ensure a most suited model subject to subsequent many-body analysis, we develop a first-
principles-guided minimal theory including Ni dx2−y2 , La d3z2−r2 , and La dxy orbitals. Amended by
the consideration of orbital-selective pairing formation, which emphasises the correlation state of the
Ni 3dx2−y2 orbital, we calculate the superconducting ordering susceptibility mediated by spin fluc-
tuations. We find a parametric competition between even-parity d-wave and, in contrast to previous
studies, odd-parity p-wave pairing, which becomes favorable through a large quasiparticle weight
renormalization for Ni 3dx2−y2 electrons. Our findings not only shed light on the distinctiveness of
LaNiO2 as compared to cuprate superconductors or nickelates of different rare-earth composition
but also provoke similarities to other pending candidate odd-parity superconductors.

Introduction.—Since the initial discovery of supercon-
ductivity in Sr-doped NdNiO2 thin films [1], the family
of nickelate superconductors has kept on growing and
by now also includes La1−xSrxNiO2, Pr1−xSrxNiO2, and
La1−xCaxNiO2 [2, 3]. Most intriguingly, some groups
report the onset of superconductivity even in undoped
LaNiO2, suggesting that the eventual ground state of suf-
ficiently clean undoped infinite-layer (IL) nickelates may
be a superconducting (SC) state [2, 4, 5]. Despite being
isostructural to high Tc cuprates, the extend of similar-
ity between these materials remains partially unclear, in
spite of numerous studies addressing this issue [6–10].

For instance, parent cuprates exhibit long-range an-
tiferromagnetic order, whereas clear signatures of long-
range magnetism are lacking in bulk LaNiO2 and NdNiO2

[11–13]. Nevertheless, cuprate-like magnetic excitations
have been observed in NdNiO2 films using resonant in-
elastic x-ray scattering [14]. Recent measurements ap-
plying a superconducting quantum interference device
(SQUID) reported a relatively uniform paramagnetic re-
sponse in La0.85Sr15NiO2, together with an inhomoge-
neous ferromagnetic background independent of the spe-
cific rare-earth (RE) ion [15]. Moreover, a short-range
ordered ground state was observed by muon spin rotation
measurements [4]. Magnetism is often triggered by strong
electronic correlations, which indeed are present in IL
nickelates [7, 16–18]. However, the coupling to itinerant
RE electrons might lead to the suppression of magnetism
[7, 14]. Similar to the question of magnetic instabilities in
IL nickelates, the symmetry of the SC order-parameter
(OP) remains unsettled. On the one hand, magneto-
transport measurements indicate isotropic Pauli-limited

behavior with singlet pairing and even parity in the IL
nickelate Nd0.775Sr0.225NiO2 [19]. This scenario was sup-
ported by many theoretical investigations, mostly point-
ing at d -wave order like in the cuprates [16, 20–24]. On
the other hand, evidence for anisotropic superconductiv-
ity that violates Pauli limiting and potential spin-triplet
pairing was reported in La-based nickelate thin films
[5, 25, 26]. Likewise, this anisotropic limiting behavior
for different magnetic-field orientations has recently been
observed for free-standing IL nickelate membranes [27].
Variations in the upper critical field within the nickelate
family were ascribed to the different RE elements, i.e.,
the magnetic character of the 4f electrons for the Nd3+

Kramers doublet as opposed to their absence in La3+, or
the nonmagnetic singlet ground state of Pr3+ [28].

In this Letter, we address the open question of gap
structure and potential odd-parity pairing in IL LaNiO2.
So far, LaNiO2 appears to be the only member of the
nickelate family showing signatures of superconductivity
in the absence of doping. This places it in a regime where
the largest deviation from the cuprates as well as the
strongest effective-mass enhancement can be expected.
A direct comparison between for instance NdNiO2 and
LaNiO2 reveals that this effect is particularly strong in
the lanthanum compound [16]. Moreover, LaNiO2 does
not host any 4f electrons, who may influence the SC pair-
ing [29]. Hybridization with 4f electrons is expected to be
non-negligible in Nd and Pr nickelates [29–32]. To resolve
this puzzle, we adopt the perspective of spin-fluctuation-
mediated unconventional superconductivity [33] and in-
corporate the effect of increased correlations via the
orbital-selective approach known from iron-based super-
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conductors [34, 35]. Our calculations reveal that spin-
triplet pairing can indeed be realized in LaNiO2, once
an enhanced effective mass of the Ni 3dx2−y2 electrons is
taken into account.

Low-energy electronic structure.—In non-magnetic
LaNiO2, the principal contribution at the Fermi level
arises from a band primarily governed by Ni 3dx2−y2

electrons. This results in a large hole-like and mostly
two-dimensional (2D) Fermi surface (FS) similar to the
cuprates. In addition, another hybridized band of mixed
Ni 3d and La 5d character creates small ellipsoidal,
electron-like pockets around the Γ and A high-symmetry
points of the Brillouin zone, indicating the multior-
bital and three-dimensional (3D) character of LaNiO2

[10, 36, 37]. These two electron pockets enable self-hole-
doping of the large dx2−y2 Fermi sheet, a process with
major involvement of La 5d states [7, 17]. Especially La
5dz2 and La 5dxy orbitals are known to have significant
weight on the FS [7, 10, 20], where dz2 is a shorthand
notation for d3z2−r2 . Furthermore, these partially oc-
cupied electron pockets might give rise to the negative
Hall coefficient, to the slightly metallic behavior of the
resistivity at high temperatures, and possibly even to the
superconductivity in undoped IL nickelates [2, 3, 20].

Hole-doping the system for instance with Sr induces
changes in the electronic structure. It reduces the self-
doping effect by first shifting the Γ pocket above EF ,
followed by the pocket around A in the overdoped region
[7, 16, 38–40]. Furthermore, doping reduces the charge-
transfer energy [38], i.e., overall increases the cuprate-
like character of the nickelates. However, the impact
on LaNiO2 is expected to be less pronounced compared
to Nd-/Pr-based compounds regarding charge carriers,
which is evidenced by the persistent negative Hall coeffi-
cient of La1−xSrxNiO2 even upon doping [2, 3].

In our effective low-energy Hamiltonian we thus in-
clude Ni dx2−y2 , La dz2 , and La dxy orbitals and intro-

duce the operator ψ†
σ(k) = [c†1σ(k), c†2σ(k), c†3σ(k)] to de-

scribe the given multiband system. Here, c†lσ(k) is the
fermionic creation operator, where σ and l denote the
spin and orbital index, with l = 1, 2, 3 referring to the La
5dz2 , La 5dxy, and Ni 3dx2−y2 orbital, respectively. We
thus write the non-interacting Hamiltonian as

H0 =
∑

kσ

ψ†
σ(k)h(k)ψσ(k), (1)

where h(k) is constructed utilizing hopping amplitudes
obtained from the Wannier downfolding of the band
structure derived from density functional theory (DFT).
Thereby, we capture the important characteristics, as
well as the distribution of orbital characters, of the non-
magnetic FS in agreement with previous DFT [20, 30, 41]
and alternative approaches such as DFT+U [7, 42], DFT
+ dynamical mean-field theory (DMFT) [18, 36] or the
GW approximation [43]. Details on the ab-inito calcu-
lations as well as the Hamiltonian h(k) are given in the
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FIG. 1. (a) Band structure, (b) density of states, and (c)
3D Fermi surface including the orbital contributions relevant
for the low-energy description of prisitine LaNiO2. Magenta,
cyan, and yellow refer to the La dz2 , La dxy, and Ni dx2−y2

orbitals, respectively.

Supplemental Material (SM) [44]. In Fig. 1, we plot the
orbitally resolved single-particle band structure, as well
as the corresponding 3D FS and density of states (DOS)
of our minimal model. Here, La 5dz2 weight is located
mostly around Γ, while the La 5dxy electrons have a ma-
jor contribution around the A point.

Strong correlations and magnetic response.— Orbitally
differentiated correlations play an important role in IL
nickelates. In particular the Ni 3dx2−y2 electrons are
highly correlated, suggesting that they are in the vicinity
of a Mott critical regime [36]. This is evidenced by an
enhanced effective mass and thus reduced quasiparticle
weight Z, which is significantly smaller for the Ni dx2−y2

orbital compared to the other 3d orbitals [16, 18, 23].
In our work, we therefore focus on the effect of a highly
correlated Ni dx2−y2 orbital. Previous studies have re-
ported specific values of either the effective mass or the
renormalization factor (m∗/m = 1/Z) in LaNiO2, rang-
ing from m∗/m ≈ 2.81 (Zdx2−y2 ≈ 0.35) [18, 36], over

m∗/m ≈ 4.1 (Zdx2−y2 ≈ 0.24) [45] to m∗/m ≈ 5.5

(Zdx2−y2 ≈ 0.18) [16] or even lower (Zdx2−y2 ≈ 0) [23].
These values specify a reasonable range of Zdx2−y2 . More-
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over, doping would shift the Ni dx2−y2 orbital away from
half-filling, where electronic correlations are strongest.
Therefore, a decrease of the mass enhancement with dop-
ing was reported [16, 23, 36, 45].

We take this correlation-induced renormalization into
account by means of the orbital selective ansatz [34, 35].
In this ansatz, quasiparticles in orbital l are weighted by
a factor

√
Zl, i.e., c†l (k) → √

Zlc
†
l (k) and the Green’s

function in the orbital basis becomes

G̃ll′(k, ωn) =
√
ZlZl′

∑

µ

alµ(k)al
′∗
µ (k)

iωn − Eµ(k)
, (2)

where Eµ(k) is the eigenenergy of band µ. Subse-
quently, the bare susceptibility in orbital space χ0

l1l2l3l4
requires a straightforward multiplication by the quasi-
particle weights to derive the corresponding quantity

χ̃0
l1l2l3l4(q, ω) =

√
Zl1Zl2Zl3Zl4 χ

0
l1l2l3l4(q, ω) (3)

in the correlated system [34, 35, 46].
In the next step, we introduce local electron-electron

interactions via a multiorbital Hubbard-Hund Hamilto-
nian

Hint = UNi

∑

i

ni↑ni↓

+ ULa

∑

i

nil↑nil↓ + U ′
La

∑

i,l′<l

nilnil′

+ JLa
∑

i,l′<l

∑

σσ′

c†ilσc
†
il′σ′cilσ′cil′σ

+ J ′
La

∑

i,l′ ̸=l

c†il↑c
†
il↓cil′↓cil′↑, (4)

where the coupling constants U , U ′, J , and J ′ denote
the intraorbital Coulomb, interorbital Coulomb, Hund’s,
and pair-hopping interactions, respectively. The orbital
indices l, l′ ∈ (1, 2) run over the La 5d orbitals dz2 and
dxy since for Ni only on-site Coulomb repulsion is con-
sidered. Throughout our calculations, we apply the rela-
tions U ′ = U − (J+J ′) and J ′ = J between the coupling
constants, which are satisfied in various orbital degener-
ate models and if orbital wave functions can be chosen
real [47, 48]. Furthermore, we choose reference values
from literature to get a reasonable estimate of interac-
tion strengths in this material, namely ULa/UNi ≈ 0.5
and JLa/ULa ≈ 0.2 [18, 20, 23, 36, 49]. Especially the in-
clusion of on-site Hund’s coupling J , i.e., of intra-atomic
exchange interactions is expected to be a vital ingredi-
ent for capturing the correlation physics. LaNiO2 shows
characteristic Hund’s metal signatures such as the un-
expected absence of magnetism, the importance of high-
spin configurations, metalliticity, orbital differentiation,
and a decrease of Zdx2−y2 with stronger Hund’s coupling

J [18, 23, 36, 49]. These interactions are included in the
calculation of susceptibilities within the random phase
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FIG. 2. Static bare susceptibilities χ̃0
l1l2l3l4

(q, ω = 0) of par-
ent LaNiO2 for (a) Zd

x2−y2 = 1 and (b) Zd
x2−y2 = 0.15.

Magenta, cyan, and yellow refer to the pure La dz2 , La dxy
and Ni dx2−y2 orbital contributions, respectively. The off-

diagonal χ̃0
1212 bare susceptibility is shown in purple. We use

80 × 80 × 80 k-points for momentum space integration.

approximation (RPA). Note that in RPA the spin sus-
ceptibility systematically diverges once the interaction
exceeds a critical value Uc and indicates a spin-density-
wave instability, below which superconductivity emerges
induced by spin fluctuations. In the renormalized case,
we set UNi = 5 eV, while for Zdx2−y2 = 1 we use UNi = 0.5
eV, since here Uc ≈ 1 eV. Note that Uc is a phenomeno-
logical parameter, which does not facilitate an immediate
quantitative linkage with the bare interaction strength.

In Figs. 2(a) and 2(b), the non-interacting suscepti-
bilities χ̃0

l1l2l3l4
(q, 0) are shown seperately for the orbital

contributions l = 1, 2, 3 referring to La 5dz2 , La 5dxy, and
Ni 3dx2−y2 , respectively. Figure 2(a) addresses the un-
renormalized case, with the main peaks located around
the M and A points, similar to the cuprates [50]. These
magnetic fluctuations are dominated by Ni dx2−y2 elec-
trons and strongly enhanced upon introducing interac-
tions at the RPA level. In contrast, the diagonal contri-
butions of the La dz2 and dxy orbital reach their max-
imum around Γ. Moreover, we observe a sizeable off-
diagonal χ̃0

1212 feature around the A point, keeping in
mind that χ̃0

abcd = χ̃0
dcba for inversion-symmetric systems.

Sufficient reduction of the Ni dx2−y2 quasiparticle
weight eventually leads to a clear dominance of fluctu-
ations stemming from the RE orbitals, as can be seen in
Fig. 2(b), where Zdx2−y2 = 0.15. Therefore, fluctuations
are becoming more three dimensional, reflecting the 3D
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FIG. 3. Leading pairing structure of LaNiO2 (b), (c) with and (a) without inclusion of quasiparticle renormalization. The gap
symmetry changes from (a) an even-parity d-wave to (b), (c) a degenerate odd-parity p-wave solution. A colorscale highlighting
smaller amplitudes with maximum value of ±1× 10−4 was chosen for the insets to reveal, e.g., in panels (b), (c), the horizontal
line nodes on the large FS for kz = ±π/2. (d) Inverse Fermi-velocity 1/vF (k) = 1/|∇kEν(k)| giving a measure of the DOS.

character of LaNiO2. Interactions predominantly lead to
an enhancement of the diagonal La 5d peaks around Γ
but also of mixed orbital χ̃RPA, s

1122 and χ̃RPA, s
1221 contribu-

tions around Γ and A, respectively. The latter are not
notable on the bare level but in particular the χ̃RPA, s

1122

component diverges together with the intra-orbital spin
susceptibilities χ̃RPA, s

1111 and χ̃RPA, s
2222 upon approaching Uc.

Previous calculations of the LaNiO2 static weak-coupling
spin susceptibility for q = (qx, qy, 0) with converged DFT
+ DMFT Green’s functions including self-interaction cor-
rections similarly resulted in a maximum near Γ [17].
Such a transition stresses the necessity of reevaluating the
SC pairing symmetries in the regime of strongly renor-
malized Ni 3d quasiparticle weigths.

Spin-fluctuation pairing.— Magnetic fluctuations are
seen as a strong candidate for mediating superconduc-
tivity in IL nickelates [12–14, 16, 20, 21, 30, 46, 51]. In
order to compute the SC pairing interactions, we thus
employ a formalism based on spin-fluctuations [52–54]
with the adjustment of additional quasiparticle renor-
malization when projecting the pairing interaction from
orbital to band space [35, 46]. For this purpose, we solve
the linearized gap equation

λαfα(k) =
∑

j

∮

Cj

d2k′∥
(2π)2vF (k′)

Γ̃ij(k,k
′)fα(k′), (5)

the eigenvalues of which determine the pairing strength
λα for the various pairing channels α [55]. The largest
eigenvalue results in the highest transition temperature
[53], while its eigenfunction fα(k) identifies the gap sym-
metry. Γ̃ij(k,k

′) represents the renormalized form of the
effective multiorbital pair scattering vertex and momenta
k ∈ Ci, k′ ∈ Cj are constrained to the FS sheets Ci,j .
A momentum-dependent measure of the DOS is given
by the inverse Fermi velocity 1/vF (k) = 1/|∇kEν(k)|,
which is shown in Fig. 3(d) for the rigid bands of our
model. Here, van Hove features can be observed on the

hole-like FS near the R points. In order to convert the in-
tegral equation (5) to an algebraic matrix equation that
can be solved numerically, the area of the discretized
Fermi surface segments is determined using a Delaunay
triangulation procedure [35, 56]. Within our calculations,
we apply a mesh for momentum space integration with
60×60×60 k-points. A total of 8504 and 6800 points on
all FS sheets is taken the for 3D gap-structure calulations
in pristine and doped LaNiO2, respectively.

In Fig. 3, we present the leading gap-symmetry func-
tions fα(k) for (a) the unrenormalized and (b), (c) the
renormalized scenario. Unsurprisingly, a simple d -wave
singlet solution is clearly favored for Zl = 1, i.e., when
orbital-selective renormalization is disregarded. Such a
state belongs to the B1g irreducible representation of the
point group D4h, which describes the underlying tetrag-
onal lattice. Here, Cooper pairing from the Ni 3dx2−y2

orbital is predominant, with an almost vanishing gap on
the RE electron pockets around Γ and A. This cuprate-
like SC order has been suggested previously based on spin
fluctuations [16, 20–22, 24, 46].

Once we shift our model into the strongly correlated
regime of Zdx2−y2 ≲ 0.2, solving the linearized gap equa-

tion (5) yields drastically altered results. The SC gap is
now largest on the La dominated pockets, since the Ni
dx2−y2 quasiparticle DOS is strongly reduced. Moreover,
the gap changes sign on the large FS as a function of kz,
leading to opposite signs on the pockets near Γ and A.
Even more importantly, two degenerate p-wave solutions
become favored. These belong to the two-dimensional
representation Eu and are likely realized in the time-
reversal-symmetry-breaking (TRSB) state, for which the
weak-coupling condensation energy becomes largest com-
pared to the remaining possible combinations of the px
and py solution [57]. In the presence of weak spin-orbit
coupling (see SM [44]), one naturally expects an align-
ment between the z -direction of the spin wave function



5

and the crystalline c-axis [58]. Therefore, we can analyt-
ically approximate the numerically calculated SC OP of
this spin-triplet state by

d(k) = ∆0ẑ cos kz(sin kx ± i sin ky), (6)

with the magnitude of the quasiparticle gap

∆k = |d(k)| = ∆0

√
cos2 kz(sin2 kx + sin2 ky). (7)

Such a state is often referred to as chiral p-wave. More-
over, it is analogous to the so-called Anderson-Brinkman-
Morel (ABM or axial) phase of 3He [59, 60] and has been
debated extensively, e.g., for Sr2RuO4 [57, 58, 61]. The
gap resulting from the d vector in (6) has point nodes on
the electron pockets for kx, ky = 0,±π and kz = ±kF . In
addition, line nodes are located on the large hole-like FS
for kx, ky = kF and kz = ±π/2. Besides, TRSB is accom-
panied by interesting magnetic properties, since the OP
in Eq. (6) possesses orbital angular momentum mz = ±1
along the z -axis. Cooper pairs carry charge, hence the
finite angular-momentum average over the FS induces a
magnetic moment leading to a SC state with “ferromag-
netic” properties. Intriguingly, our conclusions even hold
when the effect of doping is included as a rigid shift of
the chemical potential such that the pocket around Γ van-
ishes (see SM [44]). In fact, the transition to a favored
p-wave happens for even bigger quasiparticle weights of
Zdx2−y2 ≲ 0.3. However, a reduced mass enhancement
due to doping might have a compensating effect. One
potential yet unexplored scenario involves the doping-
induced transition to a distinct OP within the SC dome.

Our proposal of chiral p-wave superconductivity with
d || ẑ could explain the experimentally observed weaker
suppression of superconductivity for an external mag-
netic field oriented within the basal plane [5, 25, 27, 28].
For triplet superconductors, one would generally not ex-
pect Pauli suppression if d · H = 0, i.e., the alignment
d || H maximizes paramagnetic limiting effects. More-
over, the gap in Eq. (7) has point nodes and thus could
cause the quadratic temperature dependence of the Lon-
don penetration depth [62, 63], which was attributed to a
superconductor with line nodes in the presence of disor-
der [64, 65]. Small deviations from quadratic scaling may
result from additional weight at the Fermi level, due to
the horizontal line nodes on the Ni dx2−y2 dominated FS
with low quasiparticle DOS. Besides, recent muon spin
rotation measurements provided direct evidence for the
coexistence of short-range magnetic order and supercon-
ductivity in IL nickelates [4], which indicates TRSB.

Summary and conclusions.— Our calculations of mag-
netic fluctuations and the resulting pairing symmetries
reveal potential topological px + ipy superconductivity in
IL LaNiO2, once an orbital-selective quasiparticle renor-
malization is introduced for the Ni dx2−y2 electrons.
From our results, we can conclude that RE physics in
LaNiO2 is not merely important for the explanation of

a negative Hall conductivity [2] but that superconduc-
tivity could actually emerge from the associated bands.
However, one should keep in mind that the RE metal
representative strongly affects the observed phenomenol-
ogy of IL nickelates. Additionally, the proposed p-
wave order would resolve the controversy surrounding
the anisotropic high-field limiting behavior obtained from
magnetotransport measurements [5, 25, 27], as well as
the quadratic temperature dependence of the superfluid
density [62, 63]. In this regard, our effective Hamilto-
nian captures the relevant physics for superconductivity
in 112 lanthanum nickelates, highlighting the importance
of multiorbital processes and the 3D fermiology. To con-
clude, our comprehensive investigation provides strong
evidence that IL LaNiO2 could exhibit spin-triplet su-
perconductivity, a phenomenon rarely observed. This re-
sult holds promise for a new research direction within the
field of SC infinite-layer nickelates in particular and for
the understanding of p-wave pairing in general.
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I. DFT ELECTRONIC STRUCTURE AND WANNIER HAMILTONIAN

DFT calculations have been performed using the Vienna ab-initio Simulation Package (VASP) [1, 2], employing the projector
augmented wave (PAW) method [3]. Exchange and correlation effects have been handled using the generalized gradient approx-
imation (GGA) [4–6] within the Perdew-Burke-Ernzerhof (PBE) approach [7]. A plane-wave cutoff of 500 eV was used for the
truncation of the basis set, while the relaxation of the electronic and ionic degrees of freedom was considered converged when
the output difference between two steps was equal or smaller than 1 × 10−6 eV and 1 × 10−8 eV/Å, respectively. The chosen
number of k-points is 16×16×16. Partial occupancies have been determined via Gaussian smearing with a width of 0.1 eV.
Spin-orbit coupling (SOC) has generally not been considered, unless stated otherwise, in which case SOC has been included
self-consistently. The comparison between the cases with and without SOC is shown in Fig. S1(d). Subsequently, Wannier
functions [8, 9] have been used to provide an equivalent description of Bloch states via a maximally localized orbital basis. The
Wannier-basis position matrix elements ⟨0n|̂r|Rm⟩, Rm being the maximally-localized Wannier function m in unit cell R, have
been used for the tight-binding description, as shown in Figs. S1(a) and S1(b) [10–13]. For the three-band model, the projection
functions used to build the initial guess A(k)mn = ⟨ψmk|gn⟩ for the unitary transformation are provided by Ni dx2−y2 , La dxy ,
and La dz2 orbitals. |gn⟩ represents the trial localized orbitals, and |ψmk⟩ are the Bloch states. DFT band structures have been
visualized using the VASPKIT postprocessing tool, as shown in Fig. S1(c) [14], while VESTA [15] has been used to visualize
the Wannier-orbital isosurfaces and crystal structures in Fig. S1(a).

We introduce the operator ψ†
σ(k) = [c†1σ(k), c†2σ(k), c†3σ(k)] to describe the given multiband system. Here, c†lσ(k) is the

fermionic creation operator, where σ and l denote the spin and orbital index, with l = 1, 2, 3 referring to the La 5dz2 , La 5dxy ,
and Ni 3dx2−y2 orbital, respectively. We thus write the non-interacting Hamiltonian as

H0 =
∑

kσ

ψ†
σ(k)h(k)ψσ(k). (S1)

































































       (a)                                         (b)                        (c)                       (d) 

 

FIG. S1. (a) Isosurfaces of the Wannier orbitals used for the three-band model. The upper left and right panels show top views of the Ni
dx2−y2 and La dxy Wannier orbitals, respectively. The lower panel shows a side view of the La dz2 orbital. (b) Comparison between DFT
band structure (gray lines) and bands derived from the three-band Wannier model (red lines). (c) DFT band structure projected onto the three
orbitals of the model: La dz2 , La dxy , and Ni dx2−y2 . (d) Comparison between DFT band structures, with and without SOC.
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For the derivation of the matrix elements in the Hamiltonian h(k) we employ an energy cutoff of 0.01 eV for the tight-binding
(TB) hopping amplitudes. The Hamiltonian is given by

h11 = ϵ1 − µ+ 2tx11(cos kx + cos ky + 2txx11 (cos 2kx + cos 2ky) + 2tz11 cos kz + 2tzz11 cos 2kz

+ 4txzz11 cos 2kz(cos kx + cos ky), (S2)
h22 = ϵ2 − µ+ 2tx22(cos kx + cos ky) + 4txy22 cos kx cos ky + 2txx22 (cos 2kx + cos 2ky)

+ 4txxy22 (cos 2kx cos ky + cos kx cos 2ky) + 2tz22 cos kz + 2tzz22 cos 2kz

+ 4txz22 cos kz(cos kx + cos ky) + 8txyz22 cos kx cos ky cos kz + 4txxz22 cos kz(cos 2kx + cos 2ky)

+ 8txxyz22 cos kz(cos 2kx cos ky + cos kx cos 2ky) + 2tzzz22 cos(3kz)

+ 4txzz22 cos 2kz(cos kx + cos ky) + 4txxzz22 cos 2kz(cos 2kx + cos 2ky)

+ 8txxyzz22 cos 2kz(cos 2kx cos ky + cos kx cos 2ky), (S3)
h33 = ϵ3 − µ+ 2tx33(cos kx + cos ky) + 4txy33 cos kx cos ky + 2txx33 (cos 2kx + cos 2ky) + 2tz33 cos kz

+ 8txyz33 cos kx cos ky cos kz, (S4)
h12 = −4txy12 sin kx sin ky − 8txyz12 sin kx sin ky cos kz − 8txyzz12 sin kx sin ky cos 2kz, (S5)
h13 = 8tx13(cos 3/2kx cos 1/2ky − cos 1/2kx cos 3/2ky) cos 1/2kz

+ 8txz13 (cos 3/2kx cos 1/2ky − cos 1/2kx cos 3/2ky) cos 3/2kz, (S6)
h23 = −8tx23(sin 3/2kx sin 1/2ky − sin 1/2kx sin 3/2ky) cos 1/2kz

− 8txz23 (sin 3/2kx sin 1/2ky − sin 1/2kx sin 3/2ky) cos 3/2kz. (S7)

We use a chemical potential of µ = 9.28 eV and µ = 9.12 eV in the undoped and doped scenario, respectively. The correspond-
ing TB parameters specified in unit of eV are

ϵ1 = 12.3837, ϵ2 = 12.3325, ϵ3 = 9.6706, (S8)
tx11 = −0.4266, txx11 = 0.0401, tz11 = −1.0314, tzz11 = 0.1150, txzz11 = 0.0155, (S9)
tx22 = 0.3964, txy22 = −0.0602, txx22 = 0.0417, tz22 = 0.3545, txz22 = −0.1680, txyz22 = 0.0571,

tzz22 = −0.0549, txxz22 = −0.0242, txxy22 = −0.0230, txxyz22 = 0.0210, tzzz22 = 0.0113,

txzz22 = 0.0144, txxzz22 = 0.0103, txxyzz22 = −0.0107, (S10)
tx33 = −0.3656, txy33 = 0.0941, txx33 = −0.0441, tz33 = −0.0413, txyz33 = 0.0121, (S11)
txy12 = 0.0777, txyz12 = −0.0541, txyzz12 = 0.0100, (S12)
tx13 = 0.0277, txz13 = −0.0142, (S13)
tx23 = −0.0183, txz23 = 0.0198. (S14)

The density of states (DOS) of the unrenormalized system can be obtained from

ρ(ωn) = − 1

Nπ

∑

k

Im Tr[(iωn1 − h(k)]−1. (S15)

II. RENORMALIZED SUSCEPTIBILITIES AND SUPERCONDUCTING PAIRING

Within the orbital selective ansatz [16, 17], quasiparticles in orbital l are weighted by a factor
√
Zl, i.e., c†l (k) → √

Zlc
†
l (k),

such that the Green’s function in the orbital basis Gll′(k, ωn) becomes

G̃ll′(k, ωn) =
√
ZlZl′

∑

µ

alµ(k)al
′∗
µ (k)

iωn − Eµ(k)
, (S16)

where Eµ(k) is the eigenenergy of band µ. The renormalized Green’s function enters the bare (non-interacting) susceptibilities,
which after performing Matsubara-frequency summation read as

χ̃0
l1l2l3l4(q, ω) = − 1

N

∑

k,µν

η̃µν(k,q)
nF (Eν(k + q)) − nF (Eµ(k))

Eν(k + q) − Eµ(k) + ω + i0+
, (S17)
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FIG. S2. Static (ω = 0) bare susceptibilities of pristine LaNiO2 for Zd
x2−y2 = 1 in the kx ky-plane for (a) - (d) kz = 0 and (e) - (h)

kz = π. In panels (a), (e) χ̃0
1111, (b), (f) χ̃0

2222, and (c), (g) χ̃0
3333 represent the diagonal La dz2 , La dxy , and Ni dx2−y2 orbital contributions,

respectively. Moreover, we show the off-diagonal χ̃0
1212 susceptibility in panels (d) & (h). Momentum space integration is done on a mesh of

60 × 60 × 60 k-points.

with the Fermi-Dirac distribution nF . Here, we have absorbed the quasiparticle weights into the dressing factor

η̃µν(k,q) =
√
Zl1Zl2Zl3Zl4 a

l4
µ (k)al2∗µ (k)al1ν (k + q)al3∗ν (k + q), (S18)

and alµ(k) is the matrix element of the unitary transformation that connects band µ to orbital l. The homogeneous or physical
bare spin susceptibility can be calculated by performing the sum

χ̃0
phys(q) =

1

2

∑

ll′

χ̃0
lll′l′(q, 0) (S19)

of the static (ω = 0) susceptibility [18]. In Fig. S2, we show plots of the bare susceptibilites χ̃0
1111, χ̃0

2222, χ̃0
3333, and χ̃0

1212

obtained for undoped LaNiO2 without renormalization along 2D cuts (kz = 0, π) through the Brillouin zone (BZ). Especially
the χ̃0

3333 component shows nesting features familiar from the cuprates [19]. However, quasiparticle renormalization strongly
dampens these features, such that they become less significant in the renormalized case. Note that for instance the off-diagonal
χ̃0
1212 susceptibility contribution would not be observable within the physical susceptibility given in Eq. (S19).
Interactions are included in the calculation of susceptibilities within the random phase approximation (RPA). The spin-

fluctuation and charge-fluctuation parts of the susceptibility are then given by [20]

χ̃RPA, s
l1l2l3l4

(q, ω) = {χ̃0(q, ω)[1 − Usχ̃0(q, ω)]}−1
l1l2l3l4

, (S20)

χ̃RPA, c
l1l2l3l4

(q, ω) = {χ̃0(q, ω)[1 + U cχ̃0(q, ω)]}−1
l1l2l3l4

. (S21)

In orbital space, the spin and charge interaction matrices Us and U c containing the interaction parameters are given by

Us
l1l2l3l4 =





Uτ , l1 = l2 = l3 = l4,
U ′
τ , l1 = l3 ̸= l2 = l4,

Jτ , l1 = l2 ̸= l3 = l4,
J ′
τ , l1 = l4 ̸= l2 = l3,

(S22)

U c
l1l2l3l4 =





Uτ , l1 = l2 = l3 = l4,
−U ′

τ + 2Jτ , l1 = l3 ̸= l2 = l4,
2U ′

τ − Jτ , l1 = l2 ̸= l3 = l4,
J ′
τ , l1 = l4 ̸= l2 = l3,

(S23)

respectively, where τ ∈ (La, Ni) is the sublattice index.
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(b)

(c)

(a)

FIG. S3. (a) 3D Fermi surface including the orbital contributions relevant for the low-energy description of doped LaNiO2. Magenta, cyan,
and yellow refer to the La dz2 , La dxy , and Ni dx2−y2 orbitals, respectively. (b), (c) Static bare susceptibilities χ̃0

l1l2l3l4
(q, ω = 0) for (b)

Zd
x2−y2 = 1 and (c) Zd

x2−y2 = 0.15 for doped LaNiO2. The off-diagonal bare susecptibility χ̃0
1212 is shown in purple. The mesh for

momentum space integration includes 80 × 80 × 80 k-points.

In order to determine the superconducting (SC) pairing symmetries, we solve the linearized gap equation

λαfα(k) =
∑

j

∮

Cj

d2k′∥
(2π)2vF (k′)

Γ̃ij(k,k
′)fα(k′). (S24)

The largest eigenvalue λα of equation (S24) results in the highest transition temperature [18], while λα in general determines the
pairing strength for the different pairing channels α [21]. The corresponding gap symmetries are identified by the eigenfunction
fα(k). The inverse Fermi velocity vF (k) = |∇kEν(k)| gives a measure of the DOS and momenta k ∈ Ci, k′ ∈ Cj are
constrained to the FS sheets Ci,j . In Eq. (S24), Γ̃ij(k,k

′) represents the renormalized form of the effective multiorbital pair
scattering vertex and is given by

Γ̃ij(k,k
′) = Re

∑

l1l2l3l4

√
Zl1

√
Zl4a

l1,∗
νi

(k)al4,∗νi
(−k) Γ̃

S/T
l1l2l3l4

(k,k′, ω = 0)
√
Zl2

√
Zl3a

l2
νj

(k′)al3νj
(−k′), (S25)

Γ̃S
l1l2l3l4(k,k′, ω) =

[
3

2
Usχ̃RPA, s

l1l2l3l4
(k− k′)Us +

1

2
Us − 1

2
U cχ̃RPA, c

l1l2l3l4
(k− k′)U c +

1

2
U c

]

l1l2l3l4

, (S26)

Γ̃T
l1l2l3l4(k,k′, ω) =

[
−1

2
Usχ̃RPA, s

l1l2l3l4
(k− k′)Us +

1

2
Us − 1

2
U cχ̃RPA, c

l1l2l3l4
(k− k′)U c +

1

2
U c

]

l1l2l3l4

. (S27)

Here, Γ̃l1l2l3l4 determines the orbital vertex functions in the singlet (S) and triplet (T) channel. Physically, Γ̃l1l2l3l4 reflects
particle-particle scattering of electrons from orbitals l1, l4 into orbitals l2, l3. The quantities Us, U c, χRPA are matrices in orbital
space and χRPA,s/c describes spin or charge fluctuations, respectively.

III. DOPED LaNiO2

A natural question is whether the observed odd-parity p-wave state is also realized in doped LaNiO2. To investigate this, we
capture the essential impact of doping by a rigid shift of the chemical potential, such that the Γ-centered electron pocket is lifted
above the Fermi level. We show the corresponding 3D FS in Fig. S3(a).

In the next step, we analyze the bare susceptibilities shown in Figs. S3(b) and S3(c). On the one hand, the diagonal suscepti-
bility χ̃0

3333 looses its main peaks around the A and M points and becomes almost featureless, fluctuating around an amplitude
of χ̃0

3333 ≈ 0.7 in the unrenormalized case. On the other hand, once we introduce correlations by setting Zdx2−y2 = 0.15 like
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FIG. S4. Leading pairing structure of doped LaNiO2 with and without inclusion of quasiparticle renormalization for (a) Zd
x2−y2 = 1 and

(b), (c) Zd
x2−y2 = 0.15. The gap symmetry transitions from (a) an even-parity d-wave to (b), (c) a degenerate odd-parity p-wave solution. A

colorscale highlighting smaller amplitudes with maximum value of ±1× 10−4 was chosen for the insets to reveal the sign change on the large
FS as a function of kz . In (d) the momentum-dependent inverse Fermi-velocity 1/vF (k) = 1/|∇kEν(k)| gives a measure of the DOS.

in the main text, the central features are again given by the diagonal rare-earth contributions χ̃0
1111 and χ̃0

2222 around Γ, as well
as the off-diagonal component χ̃0

1212 around A. In contrast to undoped LaNiO2, the diagonal La dxy susceptibility χ̃0
2222 now

far surpasses χ̃0
1111 from the La dz2 orbital. This is not surprising since La dz2 electrons used to contribute mainly to the pocket

around Γ, which has vanished due to doping.
Finally, we also perform calculations of the pairing symmetry in doped LaNiO2, which can be seen in Fig. S4. Most inter-

estingly, we observe that the essential conclusions made for the SC state of the undoped compound are still valid. The gap now
clearly dominates on the remaining rare-earth pockets around A. In fact, the transition to a favored p-wave happens for even
bigger quasiparticle weights of Zdx2−y2 ≲ 0.3, which might be facilitated due to a reduced DOS at the van Hove features around
R. Note that a decreased mass enhancement due to doping might have a compensating effect. Like in the case of undoped
LaNiO2, we set UNi = 5 eV for the renormalized calculations and UNi = 0.5 eV for Zdx2−y2 = 1. Furthermore, we again
applied ULa/UNi = 0.5 and JLa/ULa = 0.2 [22–26].
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