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Abstract
We present a detailed study of top-k classification, the task of predicting the k most probable

classes for an input, extending beyond single-class prediction. We demonstrate that several prevalent
surrogate loss functions in multi-class classification, such as comp-sum and constrained losses, are
supported by H-consistency bounds with respect to the top-k loss. These bounds guarantee consis-
tency in relation to the hypothesis set H, providing stronger guarantees than Bayes-consistency due
to their non-asymptotic and hypothesis-set specific nature. To address the trade-off between accuracy
and cardinality k, we further introduce cardinality-aware loss functions through instance-dependent
cost-sensitive learning. For these functions, we derive cost-sensitive comp-sum and constrained
surrogate losses, establishing their H-consistency bounds and Bayes-consistency. Minimizing these
losses leads to new cardinality-aware algorithms for top-k classification. We report the results of
extensive experiments on CIFAR-100, ImageNet, CIFAR-10, and SVHN datasets demonstrating the
effectiveness and benefit of these algorithms.

1. Introduction

Top-k classification consists of predicting the k most likely classes for a given input, as opposed
to solely predicting the single most likely class. Several compelling reasons support the adoption
of top-k classification. First, it enhances accuracy by allowing the model to consider the top k
predictions, accommodating uncertainty and providing a more comprehensive prediction. This
proves particularly valuable in scenarios where multiple correct answers exist, such as image tagging,
where a top-k classifier can identify all relevant objects in an image. Furthermore, top-k classification
finds application in ranking and recommendation tasks, like suggesting the top k most relevant
products in e-commerce based on user queries. The confidence scores associated with the top k
predictions also serve as a means to estimate the model’s uncertainty, a crucial aspect in applications
requiring insight into the model’s confidence level.

Ensembling can also benefit from top-k predictions as they can be combined from multiple
models, contributing to improved overall performance by introducing a more robust and diverse set
of predictions. In addition, top-k predictions can serve as input for downstream tasks like natural
language generation or dialogue systems, enhancing the performance of these tasks by providing a
broader range of potential candidates. Finally, the interpretability of the model’s decision-making
process is enhanced by examining the top k predicted classes, allowing users to gain insights into the
rationale behind the model’s predictions.

However, the top-k loss function is non-continuous and non-differentiable, and its direct optimiza-
tion is intractable. Therefore, top-k classification algorithms typically resort to a surrogate loss (Lapin
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et al., 2015, 2016; Berrada et al., 2018; Reddi et al., 2019; Yang and Koyejo, 2020; Thilagar et al.,
2022). This raises critical questions: Which surrogate loss functions admit theoretical guarantees
and efficient minimization properties? Can we design accurate top-k classification algorithms?

Unlike standard classification, this problem has been relatively unexplored. A crucial property
in this context is Bayes-consistency, which has been extensively studied in binary and multi-class
classification (Zhang, 2004a; Bartlett et al., 2006; Zhang, 2004b; Bartlett and Wegkamp, 2008).
While Bayes-consistency has been explored for various top-k surrogate losses (Lapin et al., 2015,
2016, 2018; Yang and Koyejo, 2020; Thilagar et al., 2022), some face limitations. Non-convex
"hinge-like" surrogates (Yang and Koyejo, 2020), inspired by ranking (Usunier et al., 2009), and
polyhedral surrogates (Thilagar et al., 2022) cannot lead to effective algorithms as they cannot
be efficiently computed and optimized. Negative results indicate that several convex "hinge-like"
surrogates (Lapin et al., 2015, 2016, 2018) fail to achieve Bayes-consistency (Yang and Koyejo,
2020). Can we shed more light on these results?

On the positive side, it has been shown that the logistic loss (or cross-entropy loss used with
the softmax activation) is a Bayes-consistent loss for top-k classification (Lapin et al., 2015; Yang
and Koyejo, 2020). This prompts further inquiries: Which other smooth loss functions admit this
property? More importantly, can we establish non-asymptotic and hypothesis set-specific guarantees
for these surrogates, quantifying their effectiveness? Beyond top-k classification, it is important
to consider the trade-off between accuracy and the cardinality k. This leads us to introduce and
study cardinality-aware top-k classification algorithms, which aim to achieve a high accuracy while
maintaining a small average cardinality.

This paper presents a detailed study of top-k classification. We first show that, remarkably,
several widely used families of surrogate losses used in standard multi-class classification admit
H-consistency bounds (Awasthi et al., 2022a,b; Mao et al., 2023f,b) with respect to the top-k loss.
These are strong consistency guarantees that are non-asymptotic and specific to the hypothesis set
H adopted, which further imply Bayes-consistency. In Section 3, we demonstrate this property
for the broad family of comp-sum losses (Mao et al., 2023f), which includes the logistic loss, the
sum-exponential loss, the mean absolute error loss, and the generalized cross-entropy loss. Further,
in Section 4, we prove it for constrained losses, originally introduced for multi-class SVM (Lee et al.,
2004), including the constrained exponential loss, constrained hinge loss and squared hinge loss,
and the ρ-margin loss. These guarantees provide a strong foundation for principled algorithms in
top-k classification, leveraging the minimization of these surrogate loss functions. Many of these
loss functions are known for their smooth properties and favorable optimization solutions.

In Section 5, we further investigate cardinality-aware top-k classification, aiming to return an
accurate top-k list with the lowest average cardinality k for each input instance. We introduce
a target loss function tailored to this problem through instance-dependent cost-sensitive learning
(Section 5.1). Subsequently, we present two novel surrogate loss families for optimizing this target
loss: cost-sensitive comp-sum losses (Section 5.2) and cost-sensitive constrained losses (Section 5.3).
These loss functions are obtained by augmenting their standard counterparts with instance-dependent
cost terms. We establish H-consistency bounds and thus Bayes-consistency for these cost-sensitive
surrogate losses with respect to the cardinality-aware target loss. Minimizing these losses leads to
new cardinality-aware algorithms for top-k classification. Section 6 presents experimental results on
CIFAR-100, ImageNet, CIFAR-10, and SVHN datasets, demonstrating the effectiveness of these
algorithms.
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2. Preliminaries

We consider the learning task of top-k classification with n ≥ 2 classes, that is seeking to ensure that
the correct class label for a given input sample is among the top k predicted classes. We denote by X

the input space and Y = [n]∶ = {1, . . . , n} the label space. We denote by D a distribution over X × Y
and write p(x, y) = D(Y = y ∣X = x) to denote the conditional probability of Y = y given X = x.
We also write p(x) = (p(x,1), . . . , p(x,n)) to denote the corresponding conditional probability
vector.

We denote by ℓ∶Hall × X × Y → R a loss function defined for the family of all measurable
functions Hall. Given a hypothesis set H ⊆ Hall, the conditional error of a hypothesis h and the
best-in-class conditional error are defined as follows:

Cℓ(h,x) = E
y∣x
[ℓ(h,x, y)] = ∑

y∈Y
p(x, y)ℓ(h,x, y)

C∗ℓ (H, x) = inf
h∈H

Cℓ(h,x) = inf
h∈H
∑
y∈Y

p(x, y)ℓ(h,x, y).

Accordingly, the generalization error of a hypothesis h and the best-in-class generalization error are
defined by:

Eℓ(h) = E
(x,y)∼D

[ℓ(h,x, y)] = Ex[Cℓ(h,x)]

E∗ℓ (H) = inf
h∈H

Eℓ(h) = inf
h∈H

Ex[Cℓ(h,x)].

Given a score vector (h(x,1), . . . , h(x,n)) generated by hypothesis h, we sort its components
in decreasing order and write hk(x) to denote the kth label, that is h(x,h1(x)) ≥ h(x,h2(x)) ≥
. . . ≥ h(x,hn−1(x)) ≥ h(x,hn(x)). Similarly, for a given conditional probability vector p(x) =
(p(x,1), . . . , p(x,n)), we write pk(x) to denote the kth element in decreasing order, that is
p(x,p1(x)) ≥ p(x,p2(x)) ≥ . . . ≥ p(x,pn(x)). In the event of a tie for the k-th highest score
or conditional probability, the label hk(x) or pk(x) is selected based on the highest index when
considering the natural order of labels.

The target generalization error for top-k classification is given by the top-k loss, which is denoted
by ℓk and defined, for any hypothesis h and (x, y) ∈ X × Y by

ℓk(h,x, y) = 1y∉{h1(x),...,hk(x)}.

Thus, the loss takes value one when the correct label y is not included in the top-k predictions made
by the hypothesis h, zero otherwise. In the special case where k = 1, this is precisely the familiar
zero-one classification loss. As with the zero-one loss, optimizing the top-k loss is NP-hard for
common hypothesis sets. Therefore, an alternative surrogate loss is typically used to design learning
algorithms.

A crucial property of these surrogate losses is Bayes-consistency. This requires that, asymptoti-
cally, nearly minimizing a surrogate loss over the family of all measurable functions leads to the near
minimization of the top-k loss over the same family (Steinwart, 2007).

Definition 1 A surrogate loss ℓ is said to be Bayes-consistent with respect to the top-k loss ℓk
if, for all given sequences of hypotheses {hn}n∈N ⊂ Hall and any distribution, limn→+∞ Eℓ(hn) −
E∗ℓ (Hall) = 0 implies limn→+∞ Eℓk(hn) − E∗ℓk(Hall) = 0.
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Bayes-consistency is an asymptotic guarantee and applies only to the family of all measurable
functions. Recently, Awasthi, Mao, Mohri, and Zhong (2022a,b) proposed a stronger consistency
guarantee, referred to as H-consistency bounds. These are upper bounds on the target estimation
error in terms of the surrogate estimation error that are non-asymptotic and hypothesis set-specific
guarantees.

Definition 2 Given a hypothesis set H, a surrogate loss ℓ is said to admit an H-consistency bound
with respect to the top-k loss ℓk if, for some non-decreasing function f , the following inequality
holds for all h ∈H and for any distribution:

f(Eℓk(h) − E
∗
ℓk
(H)) ≤ Eℓ(h) − E∗ℓ (H).

We refer to Eℓk(h) − E∗ℓk(H) as the target estimation error and Eℓ(h) − E∗ℓ (H) as the surrogate
estimation error. These bounds imply Bayes-consistency when H =Hall, by taking the limit on both
sides.

We will study H-consistency bounds for common surrogate losses in the multi-class classifi-
cation, with respect to the top-k loss ℓk. A key quantity appearing in H-consistency bounds is the
minimizability gap, which measures the difference between the best-in-class generalization error and
the expectation of the best-in-class conditional error, defined for a given hypothesis set H and a loss
function ℓ by:

Mℓ(H) = E∗ℓ (H) −Ex[C∗ℓ (H, x)].

As shown by Mao et al. (2023f), the minimizability gap is non-negative and is upper bounded by
the approximation error Aℓ(H) = E∗ℓ (H) − E∗ℓ (Hall): 0 ≤ Mℓ(H) ≤ Aℓ(H). When H = Hall or
more generally Aℓlog(H) = 0, the minimizability gap vanishes. However, in general, it is non-zero
and provides a finer measure than the approximation error. Thus, H-consistency bounds provide a
stronger guarantee than the excess error bounds.

We will specifically study the surrogate loss families of comp-sum losses and constrained losses
in multi-class classification, which have been shown in the past to benefit from H-consistency bounds
with respect to the zero-one classification loss, that is ℓk with k = 1 (Awasthi et al., 2022b; Mao
et al., 2023f) (see also (Mao et al., 2023c,d,e,a; Zheng et al., 2023; Mao et al., 2024a,c,b; Mohri et al.,
2024)). We will significantly extend these results to top-k classification and prove H-consistency
bounds for these loss functions with respect to ℓk for any 1 ≤ k ≤ n.

Note that another commonly used family of surrogate losses in multi-class classification is the
max losses, which are defined through a convex function, such as the hinge loss function applied to
the margin (Crammer and Singer, 2001; Awasthi et al., 2022b). However, as shown in (Awasthi et al.,
2022b), no non-trivial H-consistency guarantee holds for max losses with respect to ℓk, even when
k = 1.

We first characterize the best-in class conditional error and the conditional regret of top-k loss,
which will be used in the analysis of H-consistency bounds. We denote by S[k] = {X ⊂ S ∣ ∣X ∣ = k}
the set of all k-subsets of a set S. We will study any hypothesis set that is regular.

Definition 3 Let A(n, k) be the set of ordered k-tuples with distinct elements in [n]. We say that
a hypothesis set H is regular for top-k classification, if the top-k predictions generated by the
hypothesis set cover all possible outcomes:

∀x ∈ X, {(h1(x), . . . ,hk(x))∶h ∈H} = A(n, k).
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Common hypothesis sets such as that of linear models or neural networks, or the family of all
measurable functions, are all regular for top-k classification.

Lemma 4 Assume that H is regular. Then, for any h ∈H and x ∈ X, the best-in class conditional
error and the conditional regret of the top-k loss can be expressed as follows:

C∗ℓk(H, x) = 1 −
k

∑
i=1
p(x,pi(x))

∆Cℓk,H(h,x) =
k

∑
i=1
(p(x,pi(x)) − p(x,hi(x))).

The proof is included in Appendix A. Note that, for k = 1, the result coincides with the known
identities for standard multi-class classification with regular hypothesis sets (Awasthi et al., 2022b,
Lemma 3).

As with (Awasthi et al., 2022b; Mao et al., 2023f), in the following sections, we will consider
hypothesis sets that are symmetric and complete. This includes the class of linear models and neural
networks typically used in practice, as well as the family of all measurable functions. We say that
a hypothesis set H is symmetric if it is independent of the ordering of labels. That is, for all y ∈ Y,
the scoring function x↦ h(x, y) belongs to some real-valued family of functions F. We say that a
hypothesis set is complete if, for all (x, y) ∈ X × Y, the set of scores h(x, y) can span over the real
numbers, that is, {h(x, y)∶h ∈H} = R. Note that any symmetric and complete hypothesis set is
regular for top-k classification.

Next, we analyze the broad family of comp-sum losses, which includes the commonly used
logistic loss (or cross-entropy loss used with the softmax activation) as a special case.

3. H-Consistency Bounds for Comp-Sum Losses

Comp-sum losses are defined as the composition of a function Φ with the sum exponential losses, as
shown in (Mao et al., 2023f). For any h ∈H and (x, y) ∈ X × Y, they are expressed as

ℓcomp(h,x, y) = Φ
⎛
⎝∑y′≠y

eh(x,y
′)−h(x,y)⎞

⎠
,

where Φ∶R+ → R+ is non-decreasing. When Φ is chosen as the function t ↦ log(1 + t), t ↦ t,
t ↦ 1 − 1

1+t and t ↦ 1
α
(1 − ( 1

1+t)
α), α ∈ (0,1), ℓcomp(h,x, y) coincides with the (multinomial)

logistic loss ℓlog (Verhulst, 1838, 1845; Berkson, 1944, 1951), the sum-exponential loss ℓcomp
exp

(Weston and Watkins, 1998; Awasthi et al., 2022b), the mean absolute error loss ℓmae (Ghosh et al.,
2017), and the generalized cross entropy loss ℓgce (Zhang and Sabuncu, 2018), respectively. We we
will specifically study these loss functions and show that they benefit from H-consistency bounds
with respect to the top-k loss.

3.1. Logistic loss

We first show that the most commonly used logistic loss, defined as ℓlog(h,x, y) = log(∑y′∈Y e
h(x,y′)−h(x,y)),

admits H-consistency bounds with respect to ℓk.

5
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Theorem 5 Assume that H is symmetric and complete. Then, for any 1 ≤ k ≤ n, the following
H-consistency bound holds for the logistic loss:

Eℓk(h) − E
∗
ℓk
(H) +Mℓk(H) ≤ kψ

−1(Eℓlog(h) − E
∗
ℓlog
(H) +Mℓlog(H)),

where ψ(t) = 1−t
2 log(1 − t) + 1+t

2 log(1 + t), t ∈ [0,1]. In the special case where Aℓlog(H) = 0, for
any 1 ≤ k ≤ n, the following upper bound holds:

Eℓk(h) − E
∗
ℓk
(H) ≤ kψ−1(Eℓlog(h) − E

∗
ℓlog
(H)).

The proof is included in Appendix B.1. The second part follows from the fact that when
Aℓlog(H) = 0, the minimizability gap Mℓlog(H) vanishes. By taking the limit on both sides,
Theorem 5 implies the H-consistency and Bayes-consistency of logistic loss with respect to the top-k
loss. It further shows that, when the estimation error of ℓlog is reduced to ϵ > 0, then the estimation
error of ℓk is upper bounded by kψ−1(ϵ), which is approximately k

√
2ϵ for ϵ small.

3.2. Sum exponential loss

In this section, we prove H-consistency bound guarantees for the sum-exponential loss, which is
defined as ℓcomp

exp (h,x, y) = ∑y′≠y e
h(x,y′)−h(x,y) and is widely used in multi-class boosting (Saberian

and Vasconcelos, 2011; Mukherjee and Schapire, 2013; Kuznetsov et al., 2014).

Theorem 6 Assume that H is symmetric and complete. Then, for any 1 ≤ k ≤ n, the following
H-consistency bound holds for the sum exponential loss:

Eℓk(h) − E
∗
ℓk
(H) +Mℓk(H) ≤ kψ

−1(Eℓcomp
exp
(h) − E∗ℓcomp

exp
(H) +Mℓcomp

exp
(H)),

where ψ(t) = 1 −
√
1 − t2, t ∈ [0,1]. In the special case where Aℓcomp

exp
(H) = 0, for any 1 ≤ k ≤ n,

the following bound holds:

Eℓk(h) − E
∗
ℓk
(H) ≤ kψ−1(Eℓcomp

exp
(h) − E∗ℓcomp

exp
(H)),

The proof is included in Appendix B.2. The second part follows from the fact that when
Aℓcomp

exp
(H) = 0, the minimizability gap Mℓcomp

exp
(H) vanishes. As with the logistic loss, the sum

exponential loss is Bayes-consistent and H-consistent with respect to the top-k loss. Here too,
when the estimation error of ℓcomp

exp is reduced to ϵ, the estimation error of ℓk is upper bounded by
kψ−1(ϵ) ≈ k

√
2ϵ for sufficiently small ϵ > 0.

3.3. Mean absolute error loss

The mean absolute error loss, defined as ℓmae(h,x, y) = 1− [∑y′∈Y e
h(x,y′)−h(x,y)]−1, is known to be

robust to label noise for training neural networks (Ghosh et al., 2017). The following shows that it
benefits from H-consistency bounds with respect to the top-k loss as well.

Theorem 7 Assume that H is symmetric and complete. Then, for any 1 ≤ k ≤ n, the following
H-consistency bound holds for the mean absolute error loss:

Eℓk(h) − E
∗
ℓk
(H) +Mℓk(H) ≤ kn(Eℓmae(h) − E∗ℓmae

(H) +Mℓmae(H)).

In the special case where Amae(H) = 0, for any 1 ≤ k ≤ n, the following bound holds:

Eℓk(h) − E
∗
ℓk
(H) ≤ kn(Eℓmae(h) − E∗ℓmae

(H)).

6
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The proof is included in Appendix B.3. The second part follows from the fact that when
Aℓmae(H) = 0, the minimizability gap Mℓmae(H) vanishes. As for the logistic loss and the sum
exponential loss, the result implies Bayes-consistency. However, different from these losses, the
bound for the mean absolute error loss is only linear: when the estimation error of ℓϵ is reduced to ϵ,
the estimation error of ℓk is upper bounded by knϵ. The downside of this more favorable linear rate
is the dependency in the number of classes and the fact that the mean absolute value loss is harder to
optimize Zhang and Sabuncu (2018).

3.4. Generalized cross-entropy loss

Here, we provide H-consistency bounds for the generalized cross-entropy loss, which is defined
as ℓgce(h,x, y) = 1

α[1 − [∑y′∈Y e
h(x,y′)−h(x,y)]−α], α ∈ (0,1), and is a generalization of the logistic

loss and mean absolute error loss for learning deep neural networks with noisy labels (Zhang and
Sabuncu, 2018).

Theorem 8 Assume that H is symmetric and complete. Then, for any 1 ≤ k ≤ n, the following
H-consistency bound holds for the generalized cross-entropy:

Eℓk(h) − E
∗
ℓk
(H) +Mℓk(H) ≤ kψ

−1(Eℓgce(h) − E∗ℓgce(H) +Mℓgce(H)),

where ψ(t) = 1
αnα [[ (1+t)

1
1−α +(1−t)

1
1−α

2 ]
1−α
− 1], for all α ∈ (0,1), t ∈ [0,1]. In the special case

where Aℓgce(H) = 0, for any 1 ≤ k ≤ n, the following upper bound holds:

Eℓk(h) − E
∗
ℓk
(H) ≤ kψ−1(Eℓgce(h) − E∗ℓgce(H)),

The proof is presented in Appendix B.4. The second part follows from the fact that when
Aℓgce(H) = 0, the minimizability gap Mℓgce(H) vanishes. The bound for the generalized cross-
entropy loss depends on both the number of classes n and the parameter α. When the estimation
error of ℓlog is reduced to ϵ, the estimation error of ℓk is upper bounded by kψ−1(ϵ) ≈ k

√
2nαϵ

for sufficiently small ϵ > 0. A by-product of this result is the Bayes-consistency of generalized
cross-entropy.

In the proof of previous sections, we used the fact that the conditional regret of the top-k loss is
the sum of k differences between two probabilities. We then upper bounded each difference with the
conditional regret of the comp-sum loss, using a hypothesis based on the two probabilities. The final
bound is derived by summing these differences.

3.5. Minimizability gaps and realizability

The key quantities in our H-consistency bounds are the minimizability gaps, which can be upper
bounded by the approximation error, or more refined terms, depending on the magnitude of the
parameter space, as discussed by Mao et al. (2023f). As pointed out by these authors, these quantities,
along with the functional form, can help compare different comp-sum loss functions.

Here, we further discuss the important role of minimizability gaps under the realizability assump-
tion, and the connection with some negative results of Yang and Koyejo (2020).

Definition 9 (top-k-H-realizability) A distribution D over X × Y is top-k-H-realizable, if there
exists a hypothesis h ∈H such that P(x,y)∼D(h(x, y) > h(x,hk+1(x))) = 1.

7
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This extends the H-realizability definition from standard (top-1) classification (Long and Servedio,
2013) to top-k classification for any k ≥ 1.

Definition 10 We say that a hypothesis set H is closed under scaling, if it is a cone, that is for all
h ∈H and α ∈ R+, αh ∈H.

Definition 11 We say that a surrogate loss ℓ is realizable H-consistent with respect to ℓk, if for all
k ∈ [1, n], and for any sequence of hypotheses {hn}n∈N ⊂ H and top-k-H-realizable distribution,
limn→+∞ Eℓ(hn) − E∗ℓ (H) = 0 implies limn→+∞ Eℓk(hn) − E∗ℓk(H) = 0.

When H is closed under scaling, for k = 1 and all comp-sum loss functions ℓ = ℓlog, ℓcomp
exp , ℓgce and

ℓmae, it can be shown that E∗ℓ (H) =Mℓ(H) = 0 for any H-realizable distribution. For example, for
ℓ = ℓlog, by using the Lebesgue dominated convergence theorem,

Mℓlog(H) ≤ E
∗
ℓlog
(H) ≤ lim

β→+∞
Eℓlog(βh

∗)

= lim
β→+∞

log[1 + ∑
y′≠y

eβ(h
∗(x,y′)−h∗(x,y))] = 0

where h∗ satisfies P(x,y)∼D(h∗(x, y) > h∗(x,h2(x))) = 1 Therefore, Theorems 5, 6, 7 and 8 imply
that all these loss functions are realizable H-consistent with respect to ℓ0−1 (ℓk for k = 1) when H is
closed under scaling.

Theorem 12 Assume that H is closed under scaling. Then, ℓlog, ℓcomp
exp , ℓgce and ℓmae are realizable

H-consistent with respect to ℓ0−1.

The formal proof is presented in Appendix C. However, for k > 1, since in the realizability
assumption, h(x, y) is only larger than h(x,hk+1(x)) and can be smaller than h(x,h1(x)), there
may exist an H-realizable distribution D such that Mℓlog(H) > 0. This explains the inconsistency
of the logistic loss on top-k separable data with linear predictors, when k = 2 and n > 2, as shown
in (Yang and Koyejo, 2020). More generally, the exact same example in (Yang and Koyejo, 2020,
Proposition 5.1) can be used to show that all the comp-sum losses, ℓlog, ℓcomp

exp , ℓgce and ℓmae are not
realizable H-consistent with respect to ℓk. Nevertheless, as previously shown, when the hypothesis
set H adopted is sufficiently rich such that Mℓ(H) = 0 or even Aℓ(H) = 0, they are guaranteed to
be H-consistent. This is typically the case in practice when using deep neural networks.

4. H-Consistency Bounds for Constrained Losses

Constrained losses are defined as a summation of a function Φ applied to the scores, subject to a
constraint, as shown in (Lee et al., 2004; Awasthi et al., 2022b). For any h ∈H and (x, y) ∈ X × Y,
they are expressed as

ℓcstnd(h,x, y) = ∑
y′≠y

Φ(−h(x, y′)),

with the constraint ∑y∈Y h(x, y) = 0, where Φ∶R → R+ is non-increasing. When Φ is chosen as
the function t ↦ e−t, t ↦ max{0,1 − t}2, t ↦ max{0,1 − t} and t ↦ min{max{0,1 − t/ρ},1},
ρ > 0, ℓcstnd(h,x, y) are referred to as the constrained exponential loss ℓcstndexp , the constrained
squared hinge loss ℓsq−hinge, the constrained hinge loss ℓhinge, and the constrained ρ-margin loss ℓρ,
respectively (Awasthi et al., 2022b). We now study these loss functions and show that they benefit
from H-consistency bounds with respect to the top-k loss.

8
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4.1. Constrained exponential loss

We first consider the constrained exponential loss, defined as ℓcstndexp (h,x, y) = ∑y′≠y e
h(x,y′). The

following result provide H-consistency bounds for ℓcstndexp .

Theorem 13 Assume that H is symmetric and complete. Then, for any 1 ≤ k ≤ n, the following
H-consistency bound holds for the constrained exponential loss:

Eℓk(h) − E
∗
ℓk
(H) +Mℓk(H) ≤ 2k (Eℓcstndexp

(h) − E∗ℓcstndexp
(H) +Mℓcstndexp

(H))
1
2
.

In the special case where Aℓcstndexp
(H) = 0, for any 1 ≤ k ≤ n, the following bound holds:

Eℓk(h) − E
∗
ℓk
(H) ≤ 2k (Eℓcstndexp

(h) − E∗ℓcstndexp
(H))

1
2
.

The proof is included in Appendix D.1. The second part follows from the fact that when
Aℓcstndexp

(H) = 0, we have Mℓcstndexp
(H) = 0. Therefore, the constrained exponential loss is H-consistent

and Bayes-consistent with respect to ℓk. If the surrogate estimation error Eℓcstndexp
(h) − E∗

ℓcstndexp
(H) is

ϵ, then, the target estimation error satisfies Eℓk(h) − E∗ℓk(H) ≤ 2k
√
ϵ.

4.2. Constrained squared hinge loss

Here, we consider the constrained squared hinge loss, defined as ℓhinge(h,x, y) = ∑y′≠y max{0,1 + h(x, y′)}2.
The following result shows that ℓsq−hinge admits an H-consistency bound with respect to ℓk.

Theorem 14 Assume that H is symmetric and complete. Then, for any 1 ≤ k ≤ n, the following
H-consistency bound holds for the constrained squared hinge loss:

Eℓk(h) − E
∗
ℓk
(H) +Mℓk(H) ≤ 2k (Eℓsq−hinge(h) − E

∗
ℓsq−hinge

(H) +Mℓsq−hinge(H))
1
2
.

In the special case where Aℓsq−hinge(H) = 0, for any 1 ≤ k ≤ n, the following bound holds:

Eℓk(h) − E
∗
ℓk
(H) ≤ 2k (Eℓsq−hinge(h) − E

∗
ℓsq−hinge

(H))
1
2
.

The proof is included in Appendix D.2. The second part follows from the fact that when the
hypothesis set H is sufficiently rich such that Aℓsq−hinge(H) = 0, we have Mℓsq−hinge(H) = 0. As
with the constrained exponential loss, the bound is square root: Eℓsq−hinge(h) − E∗ℓsq−hinge(H) ≤ ϵ⇒
Eℓk(h) − E∗ℓk(H) ≤ 2k

√
ϵ. This also implies that ℓsq−hinge is Bayes-consistent with respect to ℓk.

4.3. Constrained hinge loss and ρ-margin loss

Similarly, in Appendix D.3 and D.4, we study the constrained hinge loss and the constrained ρ-margin
loss, respectively. Both are shown to admit a linear H-consistency bound and are Bayes-consistent
with respect to ℓk (See Theorems 18 and 19)
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5. Cardinality-Aware Loss Functions

The strong theoretical results of the previous sections demonstrate that for common hypothesis sets
used in practice, comp-sum losses and constrained losses can be effectively used as surrogate losses
for the target top-k loss. Nonetheless, the algorithms seeking to minimize these surrogate losses
offer no guidance on the crucial task of determining the optimal cardinality k for top-k classification
applications. This selection is essential for practical performance, as it directly influences the number
of predicted positives.

In this section, our goal is to select a suitable top-k classifier for each input instance x. For easier
input instances, the top-k set with a smaller k contains the accurate label, while it may be necessary
to resort to larger k values for harder input instances. Choosing k optimally for each instance allows
us to maintain accuracy while reducing the average cardinality used.

To tackle this problem, we introduce target cardinality-aware loss functions for top-k classification
through instance-dependent cost-sensitive learning. Then, we propose two novel families of instance-
dependant cost-sensitive surrogate losses. These loss functions are derived by augmenting the
standard comp-sum losses and constrained loss with the corresponding cost. We show the benefits
of these surrogate losses by proving that they admit H-consistency bounds with respect to the
target cardinality-aware loss functions. Minimizing these loss functions leads to a family of new
cardinality-aware algorithms for top-k classification.

5.1. Instance-Dependent Cost-Sensitive Learning

Given a pre-fixed subset K = {k1, . . . , km} ⊂ [n] of all possible choices for cardinality k, our goal is
to select the best k in the sample such that the top-k loss is minimized while using a small cardinality.
More precisely, let c∶X ×K × Y be a instance-dependent cost function, defined as

c(x, k, y) = ℓk(h,x, y) + λC(k)
= 1y∉{h1(x),...,hk(x)} + λC(k)

(1)

for some function C∶ [n] → R+ and parameter λ > 0. Let R be a hypothesis set of functions
mapping from X ×K to R. The prediction of a cardinality selector r ∈ R is defined as the cardinality
corresponding to the highest score, that is r(x) = argmaxk∈K r(x, k). In the event of a tie for the
highest score, the cardinality r(x) is selected based on the highest index when considering the natural
order of labels.

Then, our target cardinality aware loss function ℓ̃ can be defined as follows: for all r ∈ R, x ∈ X
and y ∈ Y,

ℓ̃(r, x, y) = c(x, r(x), y). (2)

For example, when the function C is chosen as t∶↦ log(t), the learner will select a cardinality
selector r ∈ R that selects the best k among K for each instance x, in terms of balancing the top-k
loss with the magnitude of log(k).

Note that our work focuses on determining the optimal cardinality k for top-k classification,
and thus the cost function defined in (1) is based on the top-k sets. However, it can potentially be
generalized to other settings, such as those described in (Denis and Hebiri, 2017), by using confidence
sets and learning a model r to select the optimal confidence set based on the instance.

(2) is an instance-dependent cost-sensitive learning problem. However, directly minimizing this
target loss is intractable. In the next sections, we will propose novel surrogate losses to address this

10
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problem. As a useful tool, we characterized the conditional regret of the target cardinality-aware loss
function in Lemma 20, which can be found in Appendix E.

Without loss of generality, assume that 0 ≤ c(x, k, y) ≤ 1, which can be achieved by normalizing
the cost function.

5.2. Cost-Sensitive Comp-Sum Losses

We first introduce a new family of surrogate losses, that we called cost-sensitive comp-sum losses.
They are defined as follows: for all (r, x, y) ∈ R ×X × Y:

ℓ̃comp(r, x, y) = ∑
k∈K
(1 − c(x, k, y))ℓcomp(r, x, k).

For example, when ℓcomp = ℓlog, we obtain the cost-sensitive logistic loss as follows:

ℓ̃log(r, x, y)
= ∑

k∈K
(1 − c(x, k, y))ℓlog(r, x, k)

= ∑
k∈K
(1 − c(x, k, y)) log( ∑

k′∈K
er(x,k

′)−r(x,k)). (3)

Similarly, we will use ℓ̃comp
exp , ℓ̃gce and ℓ̃mae to denote the corresponding cost-sensitive counterparts for

the sum-exponential loss, generalized cross-entropy loss and mean absolute error loss, respectively.
Next, we show that these cost-sensitive surrogate loss functions benefit from R-consistency bounds
with respect to the target loss ℓ̃.

Theorem 15 Assume that R is symmetric and complete. Then, the following R-consistency bound
holds for the cost-sensitive comp-sum loss:

Eℓ̃(r) − E
∗
ℓ̃
(R) +Mℓ̃(R) ≤ γ(Eℓ̃comp(r) − E∗ℓ̃comp(R) +Mℓ̃comp(R));

In the special case where R = Rall, the following holds:

Eℓ̃(r) − E
∗
ℓ̃
(Rall) ≤ γ(Eℓ̃comp(r) − E∗ℓ̃comp(Rall)),

where γ(t) = 2
√
t when ℓ̃comp is either ℓ̃log or ℓ̃comp

exp ; γ(t) = 2
√
nαt when ℓ̃comp is ℓ̃gce; and

γ(t) = nt when ℓ̃comp is ℓ̃mae.

The proof is included in Appendix E.1. The second part follows from the fact that when R = Rall,
all the minimizability gaps vanish. In particular, Theorem 15 implies the Bayes-consistency of
cost-sensitive comp-sum losses. The bounds for cost-sensitive generalized cross-entropy and mean
absolute error loss depend on the number of classes, making them less favorable when n is large. As
pointed out earlier, while the cost-sensitive mean absolute error loss admits a linear rate, it is difficult
to optimize even in the standard classification, as reported by Zhang and Sabuncu (2018) and Mao
et al. (2023f).

In the proof, we represented the comp-sum loss as a function of the softmax and introduced a
softmax-dependent function Sµ to upper bound the conditional regret of the target cardinality-aware
loss function by that of the cost-sensitive comp-sum loss. This technique is novel and differs from
the approach used in the standard scenario (Section 3).
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5.3. Cost-Sensitive Constrained Losses

Motivated by the formulation of constrained loss functions in the standard multi-class classification,
we introduce a new family of surrogate losses, termed cost-sensitive constrained losses, which are
defined, for all (r, x, y) ∈ R ×X × Y, by

ℓ̃cstnd(r, x, y) = ∑
k∈K

c(x, k, y)Φ(−r(x, k)),

with the constraint that ∑y∈Y r(x, y) = 0, where Φ∶R → R+ is non-increasing. For example, when
Φ(t) = e−t, we obtain the cost-sensitive constrained exponential loss as follows:

ℓ̃cstndexp (r, x, y) = ∑
k∈K

c(x, k, y)er(x,k),

with the constraint that ∑y∈Y r(x, y) = 0. Similarly, we will use ℓ̃sq−hinge, ℓ̃hinge and ℓ̃ρ to denote the
corresponding cost-sensitive counterparts for the constrained squared hinge loss, constrained hinge
loss and constrained ρ-margin loss, respectively. Next, we show that these cost-sensitive surrogate
loss functions benefit from R-consistency bounds with respect to the target loss ℓ̃.

Theorem 16 Assume that R is symmetric and complete. Then, the following R-consistency bound
holds for the cost-sensitive constrained loss:

Eℓ̃(r) − E
∗
ℓ̃
(R) +Mℓ̃(R) ≤ γ(Eℓ̃cstnd(r) − E

∗
ℓ̃cstnd
(R) +Mℓ̃cstnd(R));

In the special case where R = Rall, the following holds:

Eℓ̃(r) − E
∗
ℓ̃
(Rall) ≤ γ(Eℓ̃cstnd(r) − E

∗
ℓ̃cstnd
(Rall)),

where γ(t) = 2
√
t when ℓ̃cstnd is either ℓ̃cstndexp or ℓ̃sq−hinge; γ(t) = t when ℓ̃cstnd is either ℓ̃hinge or ℓ̃ρ.

The proof is included in Appendix E.2. The second part follows from the fact that when R = Rall,
all the minimizability gaps vanish. In particular, Theorem 16 implies the Bayes-consistency of
cost-sensitive constrained losses. Note that while the constrained hinge loss and ρ-margin loss have a
more favorable linear rate in the bound, their optimization may be more challenging compared to
other smooth loss functions.

6. Experiments

Here, we report empirical results for our cardinality-aware algorithm and show that it consistently
outperforms top-k classifiers on benchmark datasets CIFAR-10, CIFAR-100 (Krizhevsky, 2009),
SVHN (Netzer et al., 2011) and ImageNet (Deng et al., 2009).

We adopted a linear model for the base model h to classify the extracted features from the
datasets. We used the outputs of the second-to-last layer of ResNet (He et al., 2016) as features
for the CIFAR-10, CIFAR-100 and SVHN datasets. For the ImageNet dataset, we used the CLIP
(Radford et al., 2021) model to extract features. We used a two-hidden-layer feedforward neural
network with ReLU activation functions (Nair and Hinton, 2010) for the cardinality selector r. Both
the base model h and the cardinality selector r were trained using the Adam optimizer (Kingma and
Ba, 2014), with a learning rate of 1 × 10−3, a batch size of 128, and a weight decay of 1 × 10−5.
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Figure 1: Accuracy versus cardinality on various datasets.

Figure 1 compares the accuracy versus cardinality curve of the cardinality-aware algorithm with
that of top-k classifiers. The accuracy of a top-k classifier is measured by E(x,y)∼S[1 − ℓk(h,x, y)],
that is the fraction of the sample in which the top-k predictions include the true label. It naturally
grows as the cardinality k increases, as shown in Figure 1. The accuracy of the carnality-aware
algorithms is measured by E(x,y)∼S[1 − ℓr(x)(h,x, y)], that is the fraction of the sample in which
the predictions selected by the model r include the true label, and the corresponding cardinality is
measured by E(x,y)∼S[r(x)], that is the average size of the selected predictions. The cardinality
selector r was trained by minimizing the cost-sensitive logistic loss ℓ̃log (Eq. (3)) with the cost
c(x, k, y) defined as ℓk(h,x, y) + λC(k), where λ = 0.05 and C(k) = log(k). We began with a
set K = {1} for the loss function and then progressively expanded it by adding choices of larger
cardinality, each of which doubles the largest value currently in K. In Figure 1, the largest set K
for the CIFAR-100 and ImageNet datasets is {1,2,4,8,16,32,64}, whereas for the CIFAR-10 and
SVHN datasets, it is {1,2,4,8}. As the set K expands, there is an increase in both the average
cardinality and the accuracy.

Figure 1 shows that the cardinality-aware algorithm is superior across the CIFAR-100, ImageNet,
CIFAR-10 and SVHN datasets. For a given cardinality k, the cardinality-aware algorithm always
achieves higher accuracy than a top-k classifier. In other words, to achieve the same level of accuracy,
the predictions made by the cardinality-aware algorithm can be significantly smaller in size compared
to those made by the corresponding top-k classifier. In particular, on the CIFAR-100, CIFAR-10
and SVHN datasets, the cardinality-aware algorithm achieves the same accuracy (98%) as the top-k
classifier while using roughly only half of the cardinality. As with the ImageNet dataset, it achieves
the same accuracy (95%) as the top-k classifier with only two-thirds of the cardinality. This illustrates
the effectiveness of our cardinality-aware algorithm.
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7. Conclusion

We gave a series of results demonstrating that several common surrogate loss functions, including
comp-sum losses and constrained losses in standard classification, benefit from H-consistency bounds
with respect to the top-k loss. These findings establish a theoretical and algorithmic foundation for
top-k classification with a fixed cardinality k. We further introduced a cardinality-aware framework
for top-k classification through cost-sensitive learning, for which we proposed cost-sensitive comp-
sum losses and constrained losses that benefit from H-consistency guarantees within this framework.
This leads to principled and practical cardinality-aware algorithms for top-k classification, which we
showed empirically to be very effective. Our analysis and algorithms are likely to be applicable to
other similar scenarios.
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Appendix A. Proof of Lemma 4

Lemma 17 Assume that H is regular. Then, for any h ∈H and x ∈ X, the best-in class conditional
error and the conditional regret of the top-k loss can be expressed as follows:

C∗ℓk(H, x) = 1 −
k

∑
i=1
p(x,pi(x))

∆Cℓk,H(h,x) =
k

∑
i=1
(p(x,pi(x)) − p(x,hi(x))).

Proof By definition, for any h ∈H and x ∈ X, the conditional error of top-k loss can be written as

Cℓk(h,x) = ∑
y∈Y

p(x, y)1y∉{h1(x),...,hk(x)} = 1 −
k

∑
i=1
p(x,hi(x)).

By definition of the labels pi(x), which are the most likely top-k labels, Cℓk(h,x) is minimized for
hi(x) = kmin(x), i ∈ [k]. Since H is regular, this choice is realizable for some h ∈H. Thus, we have

C∗ℓk(H, x) = inf
h∈H

Cℓk(h,x) = 1 −
k

∑
i=1
p(x,pi(x)).

Furthermore, the calibration gap can be expressed as

∆Cℓk,H(h,x) = Cℓk(h,x) − C
∗
ℓk
(H, x) =

k

∑
i=1
(p(x,pi(x)) − p(x,hi(x))),

which completes the proof.

Appendix B. Proofs of H-consistency bounds for comp-sum losses

B.1. Proof of Theorem 5

Theorem 5 Assume that H is symmetric and complete. Then, for any 1 ≤ k ≤ n, the following
H-consistency bound holds for the logistic loss:

Eℓk(h) − E
∗
ℓk
(H) +Mℓk(H) ≤ kψ

−1(Eℓlog(h) − E
∗
ℓlog
(H) +Mℓlog(H)),

where ψ(t) = 1−t
2 log(1 − t) + 1+t

2 log(1 + t), t ∈ [0,1]. In the special case where Aℓlog(H) = 0, for
any 1 ≤ k ≤ n, the following upper bound holds:

Eℓk(h) − E
∗
ℓk
(H) ≤ kψ−1(Eℓlog(h) − E

∗
ℓlog
(H)).

Proof For logistic loss ℓlog, the conditional regret can be written as

∆Cℓlog,H(h,x) =
n

∑
y=1

p(x, y)ℓlog(h,x, y) − inf
h∈H

n

∑
y=1

p(x, y)ℓlog(h,x, y)

≥
n

∑
y=1

p(x, y)ℓlog(h,x, y) − inf
µ∈R

n

∑
y=1

p(x, y)ℓlog(hµ,i, x, y),
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where for any i ∈ [k], hµ,i(x, y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

h(x, y), y ∉ {pi(x),hi(x)}
log(eh(x,pi(x)) + µ) y = hi(x)
log(eh(x,hi(x)) − µ) y = pi(x).

Note that such a

choice of hµ,i leads to the following equality holds:

∑
y∉{hi(x),pi(x)}

p(x, y)ℓlog(h,x, y) = ∑
y∉{hi(x),pi(x)}

p(x, y)ℓlog(hµ,i, x, y).

Therefore, for any i ∈ [k], the conditional regret of logistic loss can be lower bounded as

∆Cℓlog,H(h,x) ≥ −p(x,hi(x)) log(
eh(x,hi(x))

∑y∈Y eh(x,y)
) − p(x,pi(x)) log(

eh(x,pi(x))

∑y∈Y eh(x,y)
)

+ sup
µ∈R
(p(x,hi(x)) log(

eh(x,pi(x)) + µ
∑y∈Y eh(x,y)

) + p(x,pi(x)) log(
eh(x,hi(x)) − µ
∑y∈Y eh(x,y)

))

= sup
µ∈R
(p(x,hi(x)) log(

eh(x,pi(x)) + µ
eh(x,hi(x))

) + p(x,pi(x)) log(
eh(x,hi(x)) − µ
eh(x,pi(x))

)).

By the concavity of the function, differentiate with respect to µ, we obtain that the supremum is
achieved by µ∗ = p(x,hi(x))eh(x,hi(x))−p(x,pi(x))eh(x,pi(x))

p(x,hi(x))+p(x,pi(x)) . Plug in µ∗, we obtain

∆Cℓlog,H(h,x)

≥ p(x,hi(x)) log(
p(x,hi(x))

p(x,hi(x)) + p(x,pi(x))
eh(x,hi(x)) + eh(x,pi(x))

eh(x,hi(x))
)

+ p(x,pi(x)) log(
p(x,pi(x))

p(x,hi(x)) + p(x,pi(x))
eh(x,hi(x)) + eh(x,pi(x))

eh(x,pi(x))
)

≥ p(x,hi(x)) log(
2p(x,hi(x))

p(x,hi(x)) + p(x,pi(x))
) + p(x,pi(x)) log(

2p(x,pi(x))
p(x,hi(x)) + p(x,pi(x))

).

(minimum is achieved when h(x,hi(x)) = h(x,pi(x)))

let Si = p(x,pi(x)) + p(x,hi(x)) and ∆i = p(x,pi(x)) − p(x,hi(x)), we have

∆Cℓlog,H(h,x) ≥
Si −∆i

2
log(Si −∆i

Si
) + Si +∆i

2
log(Si +∆i

Si
)

≥ 1 −∆i

2
log(1 −∆i) +

1 +∆i

2
log(1 +∆i) (minimum is achieved when Si = 1)

= ψ(p(x,pi(x)) − p(x,hi(x))),

where ψ(t) = 1−t
2 log(1− t) + 1+t

2 log(1+ t), t ∈ [0,1]. Therefore, the conditional regret of the top-k
loss can be upper bounded as follows:

∆Cℓk,H(h,x) =
k

∑
i=1
(p(x,pi(x)) − p(x,hi(x))) ≤ kψ−1(∆Cℓlog,H(h,x)).

By the concavity of ψ−1, take expectations on both sides of the preceding equation, we obtain

Eℓk(h) − E
∗
ℓk
(H) +Mℓk(H) ≤ kψ

−1(Eℓlog(h) − E
∗
ℓlog
(H) +Mℓlog(H)).
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The second part follows from the fact that when Aℓlog(H) = 0, the minimizability gap Mℓlog(H)
vanishes.

B.2. Proof of Theorem 6

Theorem 6 Assume that H is symmetric and complete. Then, for any 1 ≤ k ≤ n, the following
H-consistency bound holds for the sum exponential loss:

Eℓk(h) − E
∗
ℓk
(H) +Mℓk(H) ≤ kψ

−1(Eℓcomp
exp
(h) − E∗ℓcomp

exp
(H) +Mℓcomp

exp
(H)),

where ψ(t) = 1 −
√
1 − t2, t ∈ [0,1]. In the special case where Aℓcomp

exp
(H) = 0, for any 1 ≤ k ≤ n,

the following bound holds:

Eℓk(h) − E
∗
ℓk
(H) ≤ kψ−1(Eℓcomp

exp
(h) − E∗ℓcomp

exp
(H)),

Proof For sum exponential loss ℓcomp
exp , the conditional regret can be written as

∆Cℓcomp
exp ,H(h,x) =

n

∑
y=1

p(x, y)ℓcomp
exp (h,x, y) − inf

h∈H

n

∑
y=1

p(x, y)ℓcomp
exp (h,x, y)

≥
n

∑
y=1

p(x, y)ℓcomp
exp (h,x, y) − inf

µ∈R

n

∑
y=1

p(x, y)ℓcomp
exp (hµ,i, x, y),

where for any i ∈ [k], hµ,i(x, y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

h(x, y), y ∉ {pi(x),hi(x)}
log(eh(x,pi(x)) + µ) y = hi(x)
log(eh(x,hi(x)) − µ) y = pi(x).

Note that such a

choice of hµ,i leads to the following equality holds:

∑
y∉{hi(x),pi(x)}

p(x, y)ℓcomp
exp (h,x, y) = ∑

y∉{hi(x),pi(x)}
p(x, y)ℓcomp

exp (hµ,i, x, y).

Therefore, for any i ∈ [k], the conditional regret of sum exponential loss can be lower bounded as

∆Cℓcomp
exp ,H(h,x) ≥ ∑

y′∈Y
exp(h(x, y′))[ p(x,hi(x))

exp(h(x,hi(x)))
+ p(x,pi(x))
exp(h(x,pi(x)))

]

+ sup
µ∈R

⎛
⎝
− ∑

y′∈Y
exp(h(x, y′))[ p(x,hi(x))

exp(h(x,pi(x))) + µ
+ p(x,pi(x))
exp(h(x,hi(x))) − µ

]
⎞
⎠
.
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By the concavity of the function, differentiate with respect to µ, we obtain that the supremum is

achieved by µ∗ = exp[h(x,hi(x))]
√
p(x,hi(x))−exp[h(x,pi(x))]

√
p(x,pi(x))√

p(x,hi(x))+
√
p(x,pi(x))

. Plug in µ∗, we obtain

∆Cℓcomp
exp ,H(h,x)

≥ ∑
y′∈Y

exp(h(x, y′))
⎡⎢⎢⎢⎢⎢⎣

p(x,hi(x))
exp(h(x,hi(x)))

+ p(x,pi(x))
exp(h(x,pi(x)))

−
(
√
p(x,hi(x)) +

√
p(x,pi(x)))

2

exp(h(x,pi(x))) + exp(h(x,hi(x)))

⎤⎥⎥⎥⎥⎥⎦

≥ [1 + exp(h(x,pi(x)))
exp(h(x,hi(x)))

]p(x,hi(x)) + [1 +
exp(h(x,hi(x)))
exp(h(x,pi(x)))

]p(x,pi(x)) − (
√
p(x,hi(x)) +

√
p(x,pi(x)))

2

(∑y′∈Y exp(h(x, y′)) ≥ exp(h(x,pi(x))) + exp(h(x,hi(x))))

≥ 2p(x,hi(x)) + 2p(x,pi(x)) − (
√
p(x,hi(x)) +

√
p(x,pi(x)))

2
.

(minimum is attained when exp(h(x,pi(x)))
exp(h(x,hi(x))) = 1)

let Si = p(x,pi(x)) + p(x,hi(x)) and ∆i = p(x,pi(x)) − p(x,hi(x)), we have

∆Cℓcomp
exp ,H(h,x) ≥ 2Si −

⎛
⎝

√
Si +∆i

2
+
√

Si −∆i

2

⎞
⎠

2

≥ 2
⎡⎢⎢⎢⎢⎢⎣
1 −
⎡⎢⎢⎢⎢⎣

(1 +∆i)
1
2 + (1 −∆i)

1
2

2

⎤⎥⎥⎥⎥⎦

2⎤⎥⎥⎥⎥⎥⎦
(minimum is achieved when Si = 1)

= 1 −
√
1 − (∆i)2

= ψ(p(x,pi(x)) − p(x,hi(x))),

where ψ(t) = 1 −
√
1 − t2, t ∈ [0,1]. Therefore, the conditional regret of the top-k loss can be upper

bounded as follows:

∆Cℓk,H(h,x) =
k

∑
i=1
(p(x,pi(x)) − p(x,hi(x))) ≤ kψ−1(∆Cℓcomp

exp ,H(h,x)).

By the concavity of ψ−1, take expectations on both sides of the preceding equation, we obtain

Eℓk(h) − E
∗
ℓk
(H) +Mℓk(H) ≤ kψ

−1(Eℓcomp
exp
(h) − E∗ℓcomp

exp
(H) +Mℓcomp

exp
(H)).

The second part follows from the fact that when Aℓcomp
exp
(H) = 0, the minimizability gap Mℓcomp

exp
(H)

vanishes.

B.3. Proof of Theorem 7

Theorem 7 Assume that H is symmetric and complete. Then, for any 1 ≤ k ≤ n, the following
H-consistency bound holds for the mean absolute error loss:

Eℓk(h) − E
∗
ℓk
(H) +Mℓk(H) ≤ kn(Eℓmae(h) − E∗ℓmae

(H) +Mℓmae(H)).

In the special case where Amae(H) = 0, for any 1 ≤ k ≤ n, the following bound holds:

Eℓk(h) − E
∗
ℓk
(H) ≤ kn(Eℓmae(h) − E∗ℓmae

(H)).
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Proof For mean absolute error loss ℓmae, the conditional regret can be written as

∆Cℓmae,H(h,x) =
n

∑
y=1

p(x, y)ℓmae(h,x, y) − inf
h∈H

n

∑
y=1

p(x, y)ℓmae(h,x, y)

≥
n

∑
y=1

p(x, y)ℓmae(h,x, y) − inf
µ∈R

n

∑
y=1

p(x, y)ℓmae(hµ,i, x, y),

where for any i ∈ [k], hµ,i(x, y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

h(x, y), y ∉ {pi(x),hi(x)}
log(eh(x,pi(x)) + µ) y = hi(x)
log(eh(x,hi(x)) − µ) y = pi(x).

Note that such a

choice of hµ,i leads to the following equality holds:

∑
y∉{hi(x),pi(x)}

p(x, y)ℓmae(h,x, y) = ∑
y∉{hi(x),pi(x)}

p(x, y)ℓmae(hµ,i, x, y).

Therefore, for any i ∈ [k], the conditional regret of mean absolute error loss can be lower bounded as

∆Cℓmae,H(h,x)

≥ p(x,hi(x))(1 −
exp(h(x,hi(x)))
∑y′∈Y exp(h(x, y′))

) + p(x,pi(x))(1 −
exp(h(x,pi(x)))
∑y′∈Y exp(h(x, y′))

)

+ sup
µ∈R
(−p(x,pi(x))(1 −

exp(h(x,hi(x))) − µ
∑y′∈Y exp(h(x, y′))

) − p(x,hi(x))(1 −
exp(h(x,pi(x))) + µ
∑y′∈Y exp(h(x, y′))

)).

By the concavity of the function, differentiate with respect to µ, we obtain that the supremum is
achieved by µ∗ = − exp[h(x,pi(x)]. Plug in µ∗, we obtain

∆Cℓmae,H(h,x)

≥ p(x,pi(x))
exp(h(x,hi(x)))
∑y′∈Y exp(h(x, y′))

− p(x,hi(x))
exp(h(x,hi(x)))
∑y′∈Y exp(h(x, y′))

≥ 1

n
(p(x,pi(x)) − p(x,hi(x))) ( exp(h(x,hi(x)))

∑y′∈Y exp(h(x,y′)) ≥
1
n )

Therefore, the conditional regret of the top-k loss can be upper bounded as follows:

∆Cℓk,H(h,x) =
k

∑
i=1
(p(x,pi(x)) − p(x,hi(x))) ≤ kn(∆Cℓmae,H(h,x)).

Take expectations on both sides of the preceding equation, we obtain

Eℓk(h) − E
∗
ℓk
(H) +Mℓk(H) ≤ kn(Eℓmae(h) − E∗ℓmae

(H) +Mℓmae(H)).

The second part follows from the fact that when Aℓmae(H) = 0, the minimizability gap Mℓmae(H)
vanishes.
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B.4. Proof of Theorem 8

Theorem 8 Assume that H is symmetric and complete. Then, for any 1 ≤ k ≤ n, the following
H-consistency bound holds for the generalized cross-entropy:

Eℓk(h) − E
∗
ℓk
(H) +Mℓk(H) ≤ kψ

−1(Eℓgce(h) − E∗ℓgce(H) +Mℓgce(H)),

where ψ(t) = 1
αnα [[ (1+t)

1
1−α +(1−t)

1
1−α

2 ]
1−α
− 1], for all α ∈ (0,1), t ∈ [0,1]. In the special case

where Aℓgce(H) = 0, for any 1 ≤ k ≤ n, the following upper bound holds:

Eℓk(h) − E
∗
ℓk
(H) ≤ kψ−1(Eℓgce(h) − E∗ℓgce(H)),

Proof For generalized cross-entropy loss ℓgce, the conditional regret can be written as

∆Cℓgce,H(h,x)

=
n

∑
y=1

p(x, y)ℓgce(h,x, y) − inf
h∈H

n

∑
y=1

p(x, y)ℓgce(h,x, y)

≥
n

∑
y=1

p(x, y)ℓgce(h,x, y) − inf
µ∈R

n

∑
y=1

p(x, y)ℓgce(hµ,i, x, y),

where for any i ∈ [k], hµ,i(x, y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

h(x, y), y ∉ {pi(x),hi(x)}
log(eh(x,pi(x)) + µ) y = hi(x)
log(eh(x,hi(x)) − µ) y = pi(x).

Note that such a

choice of hµ,i leads to the following equality holds:

∑
y∉{hi(x),pi(x)}

p(x, y)ℓgce(h,x, y) = ∑
y∉{hi(x),pi(x)}

p(x, y)ℓgce(hµ,i, x, y).

Therefore, for any i ∈ [k], the conditional regret of generalized cross-entropy loss can be lower
bounded as

α∆Cℓgce,H(h,x)

≥ p(x,hi(x))(1 − [
exp(h(x,hi(x)))
∑y′∈Y exp(h(x, y′))

]
α

) + p(x,pi(x))(1 − [
exp(h(x,pi(x)))
∑y′∈Y exp(h(x, y′))

]
α

)

+ sup
µ∈R
(−p(x,hi(x))(1 − [

exp(h(x,pi(x))) + µ
∑y′∈Y exp(h(x, y′))

]
α

) − p(x,pi(x))(1 − [
exp(h(x,hi(x))) − µ
∑y′∈Y exp(h(x, y′))

]
α

)).
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By the concavity of the function, differentiate with respect to µ, we obtain that the supremum is

achieved by µ∗ = exp[h(x,hi(x))]p(x,pi(x))
1

α−1 −exp[h(x,pi(x))]p(x,hi(x))
1

α−1

p(x,hi(x))
1

α−1 +p(x,pi(x))
1

α−1
. Plug in µ∗, we obtain

α∆Cℓgce,H(h,x)

≥ p(x,hi(x))
⎡⎢⎢⎢⎢⎢⎣

[exp(h(x,hi(x))) + exp(h(x,pi(x)))]p(x,pi(x))
1

α−1

∑y′∈Y exp(h(x, y′))[p(x,hi(x))
1

α−1 + p(x,pi(x))
1

α−1 ]

⎤⎥⎥⎥⎥⎥⎦

α

− p(x,hi(x))[
exp(h(x,hi(x)))
∑y′∈Y exp(h(x, y′))

]
α

+ p(x,pi(x))
⎡⎢⎢⎢⎢⎢⎣

[exp(h(x,hi(x))) + exp(h(x,pi(x)))]p(x,hi(x))
1

α−1

∑y′∈Y exp(h(x, y′))[p(x,hi(x))
1

α−1 + p(x,pi(x))
1

α−1 ]

⎤⎥⎥⎥⎥⎥⎦

α

− p(x,pi(x))[
exp(h(x,pi(x)))
∑y′∈Y exp(h(x, y′))

]
α

≥ 1

nα
⎛
⎝
p(x,hi(x))

⎡⎢⎢⎢⎢⎣

2p(x,pi(x))
1

α−1

p(x,hi(x))
1

α−1 + p(x,pi(x))
1

α−1

⎤⎥⎥⎥⎥⎦

α

− p(x,hi(x))
⎞
⎠

+ 1

nα
⎛
⎝
p(x,pi(x))

⎡⎢⎢⎢⎢⎣

2p(x,hi(x))
1

α−1

p(x,hi(x))
1

α−1 + p(x,pi(x))
1

α−1

⎤⎥⎥⎥⎥⎦

α

− p(x,pi(x))
⎞
⎠

(( exp(h(x,pi(x)))
∑y′∈Y exp(h(x,y′)))

α

≥ 1
nα and minimum is attained when exp(h(x,pi(x)))

exp(h(x,hi(x))) = 1)

let Si = p(x,pi(x)) + p(x,hi(x)) and ∆i = p(x,pi(x)) − p(x,hi(x)), we have

∆Cℓgce,H(h,x) ≥
1

αnα

⎛
⎜
⎝

⎡⎢⎢⎢⎢⎣

(Si +∆i)
1

1−α + (Si −∆i)
1

1−α

2

⎤⎥⎥⎥⎥⎦

1−α

− Si
⎞
⎟
⎠

≥ 1

αnα

⎛
⎜
⎝

⎡⎢⎢⎢⎢⎣

(1 +∆i)
1

1−α + (1 −∆i)
1

1−α

2

⎤⎥⎥⎥⎥⎦

1−α

− 1
⎞
⎟
⎠

(minimum is achieved when Si = 1)

= ψ(p(x,pi(x)) − p(x,hi(x))),

where ψ(t) = 1
αnα [[ (1+t)

1
1−α +(1−t)

1
1−α

2 ]
1−α
− 1], t ∈ [0,1]. Therefore, the conditional regret of the

top-k loss can be upper bounded as follows:

∆Cℓk,H(h,x) =
k

∑
i=1
(p(x,pi(x)) − p(x,hi(x))) ≤ kψ−1(∆Cℓgce,H(h,x)).

By the concavity of ψ−1, take expectations on both sides of the preceding equation, we obtain

Eℓk(h) − E
∗
ℓk
(H) +Mℓk(H) ≤ kψ

−1(Eℓgce(h) − E∗ℓgce(H) +Mℓgce(H)).

The second part follows from the fact that when Aℓgce(H) = 0, the minimizability gap Mℓgce(H)
vanishes.
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Appendix C. Proofs of realizable H-consistency for comp-sum losses

Theorem 12 Assume that H is closed under scaling. Then, ℓlog, ℓcomp
exp , ℓgce and ℓmae are realizable

H-consistent with respect to ℓ0−1.

Proof Since the distribution is realizable, there exists a hypothesis h ∈H such that

P(x,y)∼D(h∗(x, y) > h∗(x,h2(x))) = 1.

Therefore, for the logistic loss, by using the Lebesgue dominated convergence theorem,

Mℓlog(H) ≤ E
∗
ℓlog
(H) ≤ lim

β→+∞
Eℓlog(βh) = lim

β→+∞
log[1 + ∑

y′≠y
eβ(h

∗(x,y′)−h∗(x,y))] = 0.

For the sum exponential loss, by using the Lebesgue dominated convergence theorem,

Mℓcomp
exp
(H) ≤ E∗ℓcomp

exp
(H) ≤ lim

β→+∞
Eℓcomp

exp
(βh) = lim

β→+∞
∑
y′≠y

eβ(h
∗(x,y′)−h∗(x,y)) = 0.

For the generalized cross entropy loss, by using the Lebesgue dominated convergence theorem,

Mℓgce(H) ≤ E∗ℓgce(H) ≤ lim
β→+∞

Eℓgce(βh) = lim
β→+∞

1

α

⎡⎢⎢⎢⎢⎣
1 −
⎡⎢⎢⎢⎢⎣
∑
y′∈Y

eβ(h
∗(x,y′)−h∗(x,y))

⎤⎥⎥⎥⎥⎦

−α⎤⎥⎥⎥⎥⎦
= 0.

For the mean absolute error loss, by using the Lebesgue dominated convergence theorem,

Mℓmae(H) ≤ E∗ℓmae
(H) ≤ lim

β→+∞
Eℓmae(βh) = lim

β→+∞
1 −
⎡⎢⎢⎢⎢⎣
∑
y′∈Y

eβ(h
∗(x,y′)−h∗(x,y))

⎤⎥⎥⎥⎥⎦

−1

= 0.

Therefore, by Theorems 5, 6, 7 and 8, the proof is completed.

Appendix D. Proofs of H-consistency bounds for constrained losses

D.1. Proof of Theorem 13

The conditional error for the constrained loss can be expressed as follows:

Cℓcstnd(h,x) =
n

∑
y=1

p(x, y)ℓcstnd(h,x, y) =
n

∑
y=1

p(x, y) ∑
y′≠y

Φ(−h(x, y′)) = ∑
y∈Y
(1 − p(x, y))Φ(−h(x, y)).

Theorem 13 Assume that H is symmetric and complete. Then, for any 1 ≤ k ≤ n, the following
H-consistency bound holds for the constrained exponential loss:

Eℓk(h) − E
∗
ℓk
(H) +Mℓk(H) ≤ 2k (Eℓcstndexp

(h) − E∗ℓcstndexp
(H) +Mℓcstndexp

(H))
1
2
.

In the special case where Aℓcstndexp
(H) = 0, for any 1 ≤ k ≤ n, the following bound holds:

Eℓk(h) − E
∗
ℓk
(H) ≤ 2k (Eℓcstndexp

(h) − E∗ℓcstndexp
(H))

1
2
.
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Proof For the constrained exponential loss ℓcstndexp , the conditional regret can be written as

∆Cℓcstndexp ,H(h,x) =
n

∑
y=1

p(x, y)ℓcstndexp (h,x, y) − inf
h∈H

n

∑
y=1

p(x, y)ℓcstndexp (h,x, y)

≥
n

∑
y=1

p(x, y)ℓcstndexp (h,x, y) − inf
µ∈R

n

∑
y=1

p(x, y)ℓcstndexp (hµ,i, x, y),

where for any i ∈ [k], hµ,i(x, y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

h(x, y), y ∉ {pi(x),hi(x)}
h(x,pi(x)) + µ y = hi(x)
h(x,hi(x)) − µ y = pi(x).

Note that such a choice

of hµ,i leads to the following equality holds:

∑
y∉{hi(x),pi(x)}

p(x, y)ℓcstndexp (h,x, y) = ∑
y∉{hi(x),pi(x)}

p(x, y)ℓcstndexp (hµ,i, x, y).

Let q(x,pi(x)) = 1 − p(x,pi(x)) and q(x,hi(x)) = 1 − p(x,hi(x)). Therefore, for any i ∈ [k], the
conditional regret of constrained exponential loss can be lower bounded as

∆Cℓcstndexp ,H(h,x)

≥ inf
h∈H

sup
µ∈R
{q(x,pi(x))(eh(x,pi(x)) − eh(x,hi(x))−µ) + q(x,hi(x))(eh(x,hi(x)) − eh(x,pi(x))+µ)}

= (
√
q(x,pi(x)) −

√
q(x,hi(x)))

2
(differentiating with respect to µ, h to optimize)

=
⎛
⎝

q(x,hi(x)) − q(x,pi(x))√
q(x,pi(x)) +

√
q(x,hi(x))

⎞
⎠

2

≥ 1

4
(q(x,hi(x)) − q(x,pi(x)))2 (0 ≤ q(x, y) ≤ 1)

= 1

4
(p(x,pi(x)) − p(x,hi(x)))2.

Therefore, by Lemma 4, the conditional regret of the top-k loss can be upper bounded as follows:

∆Cℓk,H(h,x) =
k

∑
i=1
(p(x,pi(x)) − p(x,hi(x))) ≤ 2k(∆Cℓcstndexp ,H(h,x))

1
2
.

By the concavity, take expectations on both sides of the preceding equation, we obtain

Eℓk(h) − E
∗
ℓk
(H) +Mℓk(H) ≤ 2k(Eℓcstndexp

(h) − E∗ℓcstndexp
(H) +Mℓcstndexp

(H))
1
2
.

The second part follows from the fact that when Aℓcstndexp
(H) = 0, we have Mℓcstndexp

(H) = 0.

27



MAO MOHRI ZHONG

D.2. Proof of Theorem 14

Theorem 14 Assume that H is symmetric and complete. Then, for any 1 ≤ k ≤ n, the following
H-consistency bound holds for the constrained squared hinge loss:

Eℓk(h) − E
∗
ℓk
(H) +Mℓk(H) ≤ 2k (Eℓsq−hinge(h) − E

∗
ℓsq−hinge

(H) +Mℓsq−hinge(H))
1
2
.

In the special case where Aℓsq−hinge(H) = 0, for any 1 ≤ k ≤ n, the following bound holds:

Eℓk(h) − E
∗
ℓk
(H) ≤ 2k (Eℓsq−hinge(h) − E

∗
ℓsq−hinge

(H))
1
2
.

Proof For the constrained squared hinge loss ℓsq−hinge, the conditional regret can be written as

∆Cℓsq−hinge,H(h,x) =
n

∑
y=1

p(x, y)ℓsq−hinge(h,x, y) − inf
h∈H

n

∑
y=1

p(x, y)ℓsq−hinge(h,x, y)

≥
n

∑
y=1

p(x, y)ℓsq−hinge(h,x, y) − inf
µ∈R

n

∑
y=1

p(x, y)ℓsq−hinge(hµ,i, x, y),

where for any i ∈ [k], hµ,i(x, y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

h(x, y), y ∉ {pi(x),hi(x)}
h(x,pi(x)) + µ y = hi(x)
h(x,hi(x)) − µ y = pi(x).

Note that such a choice

of hµ,i leads to the following equality holds:

∑
y∉{hi(x),pi(x)}

p(x, y)ℓsq−hinge(h,x, y) = ∑
y∉{hi(x),pi(x)}

p(x, y)ℓsq−hinge(hµ,i, x, y).

Let q(x,pi(x)) = 1 − p(x,pi(x)) and q(x,hi(x)) = 1 − p(x,hi(x)). Therefore, for any i ∈ [k], the
conditional regret of the constrained squared hinge loss can be lower bounded as

∆Cℓsq−hinge,H(h,x) ≥ inf
h∈H

sup
µ∈R
{q(x,pi(x))(max{0,1 + h(x,pi(x))}2 −max{0,1 + h(x,hi(x)) − µ}2)

+ q(x,hi(x))(max{0,1 + h(x,hi(x))}2 −max{0,1 + h(x,pi(x)) + µ}2)}

≥ 1

4
(q(x,pi(x)) − q(x,hi(x)))2

(differentiating with respect to µ, h to optimize)

= 1

4
(p(x,pi(x)) − p(x,hi(x)))2

Therefore, by Lemma 4, the conditional regret of the top-k loss can be upper bounded as follows:

∆Cℓk,H(h,x) =
k

∑
i=1
(p(x,pi(x)) − p(x,hi(x))) ≤ 2k(∆Cℓsq−hinge,H(h,x))

1
2 .

By the concavity, take expectations on both sides of the preceding equation, we obtain

Eℓk(h) − E
∗
ℓk
(H) +Mℓk(H) ≤ 2k(Eℓsq−hinge(h) − E

∗
ℓsq−hinge

(H) +Mℓsq−hinge(H))
1
2
.

The second part follows from the fact that when the hypothesis set H is sufficiently rich such that
Aℓsq−hinge(H) = 0, we have Mℓsq−hinge(H) = 0.
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D.3. Proof of Theorem 18

Similarly, we study the constrained hinge loss, defined as ℓhinge(h,x, y) = ∑y′≠y max{0,1 + h(x, y′)}.
The following result shows that ℓhinge admits an H-consistency bound with respect to ℓk. The second
part follows from the fact that when the hypothesis set H is sufficiently rich such that Aℓhinge(H) = 0,
we have Mℓhinge(H) = 0. Different from the constrained squared hinge loss, the bound for ℓhinge
is linear: Eℓhinge(h) − E∗ℓhinge(H) ≤ ϵ ⇒ Eℓk(h) − E∗ℓk(H) ≤ k ϵ. This also implies that ℓhinge is
Bayes-consistent with respect to ℓk.

Theorem 18 Assume that H is symmetric and complete. Then, for any 1 ≤ k ≤ n, the following
H-consistency bound holds for the constrained hinge loss:

Eℓk(h) − E
∗
ℓk
(H) +Mℓk(H) ≤ k(Eℓhinge(h) − E

∗
ℓhinge
(H) +Mℓhinge(H)).

In the special case where Aℓhinge(H) = 0, for any 1 ≤ k ≤ n, the following bound holds:

Eℓk(h) − E
∗
ℓk
(H) ≤ k(Eℓhinge(h) − E

∗
ℓhinge
(H)).

Proof For the constrained hinge loss ℓhinge, the conditional regret can be written as

∆Cℓhinge,H(h,x) =
n

∑
y=1

p(x, y)ℓhinge(h,x, y) − inf
h∈H

n

∑
y=1

p(x, y)ℓhinge(h,x, y)

≥
n

∑
y=1

p(x, y)ℓhinge(h,x, y) − inf
µ∈R

n

∑
y=1

p(x, y)ℓhinge(hµ,i, x, y),

where for any i ∈ [k], hµ,i(x, y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

h(x, y), y ∉ {pi(x),hi(x)}
h(x,pi(x)) + µ y = hi(x)
h(x,hi(x)) − µ y = pi(x).

Note that such a choice

of hµ,i leads to the following equality holds:

∑
y∉{hi(x),pi(x)}

p(x, y)ℓhinge(h,x, y) = ∑
y∉{hi(x),pi(x)}

p(x, y)ℓhinge(hµ,i, x, y).

Let q(x,pi(x)) = 1 − p(x,pi(x)) and q(x,hi(x)) = 1 − p(x,hi(x)). Therefore, for any i ∈ [k], the
conditional regret of the constrained hinge loss can be lower bounded as

∆Cℓhinge,H(h,x) ≥ inf
h∈H

sup
µ∈R
{q(x,pi(x))(max{0,1 + h(x,pi(x))} −max{0,1 + h(x,hi(x)) − µ})

+ q(x,hi(x))(max{0,1 + h(x,hi(x))} −max{0,1 + h(x,pi(x)) + µ})}

≥ q(x,hi(x)) − q(x,pi(x)) (differentiating with respect to µ, h to optimize)

= p(x,pi(x)) − p(x,hi(x))

Therefore, by Lemma 4, the conditional regret of the top-k loss can be upper bounded as follows:

∆Cℓk,H(h,x) =
k

∑
i=1
(p(x,pi(x)) − p(x,hi(x))) ≤ k∆Cℓhinge,H(h,x).
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By the concavity, take expectations on both sides of the preceding equation, we obtain

Eℓk(h) − E
∗
ℓk
(H) +Mℓk(H) ≤ k(Eℓhinge(h) − E

∗
ℓhinge
(H) +Mℓhinge(H)).

The second part follows from the fact that when the hypothesis set H is sufficiently rich such that
Aℓhinge(H) = 0, we have Mℓhinge(H) = 0.

D.4. Proof of Theorem 19

The constrained ρ-margin loss is defined as ℓρ(h,x, y) = ∑y′≠y min{max{0,1 + h(x, y′)/ρ},1}.
Next, we show that that ℓρ benefits form H-consistency bounds as well. The second part follows
from the fact that when the hypothesis set H is sufficiently rich such that Aℓρ(H) = 0, we have
Mℓρ(H) = 0. As with the constrained hinge loss, the bound for ℓρ is linear: Eℓρ(h) − E∗ℓρ(H) ≤ ϵ⇒
Eℓk(h) − E∗ℓk(H) ≤ k ϵ. As a by-product, ℓρ is Bayes-consistent with respect to ℓk.

Theorem 19 Assume that H is symmetric and complete. Then, for any 1 ≤ k ≤ n, the following
H-consistency bound holds for the constrained ρ-margin loss:

Eℓk(h) − E
∗
ℓk
(H) +Mℓk(H) ≤ k (Eℓρ(h) − E∗ℓρ(H) +Mℓρ(H)).

In the special case where Aℓρ(H) = 0, for any 1 ≤ k ≤ n, the following bound holds:

Eℓk(h) − E
∗
ℓk
(H) ≤ k (Eℓρ(h) − E∗ℓρ(H)).

Proof For the constrained ρ-margin loss ℓρ, the conditional regret can be written as

∆Cℓρ,H(h,x) =
n

∑
y=1

p(x, y)ℓρ(h,x, y) − inf
h∈H

n

∑
y=1

p(x, y)ℓρ(h,x, y)

≥
n

∑
y=1

p(x, y)ℓρ(h,x, y) − inf
µ∈R

n

∑
y=1

p(x, y)ℓρ(hµ,i, x, y),

where for any i ∈ [k], hµ,i(x, y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

h(x, y), y ∉ {pi(x),hi(x)}
h(x,pi(x)) + µ y = hi(x)
h(x,hi(x)) − µ y = pi(x).

Note that such a choice

of hµ,i leads to the following equality holds:

∑
y∉{hi(x),pi(x)}

p(x, y)ℓρ(h,x, y) = ∑
y∉{hi(x),pi(x)}

p(x, y)ℓρ(hµ,i, x, y).

Let q(x,pi(x)) = 1 − p(x,pi(x)) and q(x,hi(x)) = 1 − p(x,hi(x)). Therefore, for any i ∈ [k], the
conditional regret of the constrained ρ-margin loss can be lower bounded as

∆Cℓρ,H(h,x)

≥ inf
h∈H

sup
µ∈R
{q(x,pi(x))(min{max{0,1 + h(x,pi(x))

ρ
},1} −min{max{0,1 + h(x,hi(x)) − µ

ρ
},1})

+ q(x,hi(x))(min{max{0,1 + h(x,hi(x))
ρ

},1} −min{max{0,1 + h(x,pi(x)) + µ
ρ

},1})}

≥ q(x,hi(x)) − q(x,pi(x)) (differentiating with respect to µ, h to optimize)

= p(x,pi(x)) − p(x,hi(x))
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Therefore, by Lemma 4, the conditional regret of the top-k loss can be upper bounded as follows:

∆Cℓk,H(h,x) =
k

∑
i=1
(p(x,pi(x)) − p(x,hi(x))) ≤ k∆Cℓρ,H(h,x).

By the concavity, take expectations on both sides of the preceding equation, we obtain

Eℓk(h) − E
∗
ℓk
(H) +Mℓk(H) ≤ k(Eℓρ(h) − E∗ℓρ(H) +Mℓρ(H)).

The second part follows from the fact that when the hypothesis set H is sufficiently rich such that
Aℓρ(H) = 0, we have Mℓρ(H) = 0.

Appendix E. Proofs of R-consistency bounds for cost-sensitive losses

We first characterize the best-in class conditional error and the conditional regret of the target
cardinality aware loss function (2), which will be used in the analysis of R-consistency bounds.

Lemma 20 Assume that R is symmetric and complete. Then, for any r ∈ K and x ∈ X, the best-in
class conditional error and the conditional regret of the target cardinality aware loss function can be
expressed as follows:

C∗
ℓ̃
(R, x) =min

k∈K
∑
y∈Y

p(x, y)c(x, k, y)

∆Cℓk,H(r, x) = ∑
y∈Y

p(x, y)c(x, r(x), y) −min
k∈K
∑
y∈Y

p(x, y)c(x, k, y).

Proof By definition, for any r ∈ R and x ∈ X, the conditional error of the target cardinality aware
loss function can be written as

Cℓ̃(r, x) = ∑
y∈Y

p(x, y)c(x, r(x), y).

Since R is symmetric and complete, we have

C∗
ℓ̃
(r, x) = inf

r∈R
∑
y∈Y

p(x, y)c(x, r(x), y) =min
k∈K

k

∑
i=1
p(x, y)c(x, k, y).

Furthermore, the calibration gap can be expressed as

∆Cℓ̃,H(r, x) = Cℓ̃(r, x) − C
∗
ℓ̃
(R, x) = ∑

y∈Y
p(x, y)c(x, r(x), y) −min

k∈K
∑
y∈Y

p(x, y)c(x, k, y),

which completes the proof.
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E.1. Proof of Theorem 15

For convenience, we let c(x, k, y) = 1 − c(x, k, y), q(x, k) = ∑y∈Y p(x, y)c(x, k, y) ∈ [0,1] and

S(x, k) = er(x,k)

∑k′∈K er(x,k
′)

. We also let kmin(x) = argmink∈K(1 − q(x, k)) = argmink∈K∑y∈Y p(x, y)c(x, k, y).

Theorem 15 Assume that R is symmetric and complete. Then, the following R-consistency bound
holds for the cost-sensitive comp-sum loss:

Eℓ̃(r) − E
∗
ℓ̃
(R) +Mℓ̃(R) ≤ γ(Eℓ̃comp(r) − E∗ℓ̃comp(R) +Mℓ̃comp(R));

In the special case where R = Rall, the following holds:

Eℓ̃(r) − E
∗
ℓ̃
(Rall) ≤ γ(Eℓ̃comp(r) − E∗ℓ̃comp(Rall)),

where γ(t) = 2
√
t when ℓ̃comp is either ℓ̃log or ℓ̃comp

exp ; γ(t) = 2
√
nαt when ℓ̃comp is ℓ̃gce; and

γ(t) = nt when ℓ̃comp is ℓ̃mae.

Proof Case I: ℓ = ℓ̃log. For the cost-sensitive logistic loss ℓ̃log, the conditional error can be written as

Cℓ̃log
(r, x) = −∑

y∈Y
p(x, y) ∑

k∈K
c(x, k, y) log( er(x,k)

∑k′∈K er(x,k
′)) = − ∑

k∈K
log(S(x, k))q(x, k).

The conditional regret can be written as

∆Cℓ̃log,R
(r, x) = − ∑

k∈K
log(S(x, k))q(x, k) − inf

r∈R
(− ∑

k∈K
log(S(x, k))q(x, k))

≥ − ∑
k∈K

log(S(x, k))q(x, k) − inf
µ∈[−S(x,kmin(x)),S(x,r(x))]

(− ∑
k∈K

log(Sµ(x, k))q(x, k)),

where for any x ∈ X and k ∈ K, Sµ(x, k) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

S(x, y), y ∉ {kmin(x), r(x)}
S(x, kmin(x)) + µ y = r(x)
S(x, r(x)) − µ y = kmin(x).

Note that

such a choice of Sµ leads to the following equality holds:

∑
k∉{r(x),kmin(x)}

log(S(x, k))q(x, k) = ∑
k∉{r(x),kmin(x)}

log(Sµ(x, k))q(x, k).

Therefore, the conditional regret of cost-sensitive logistic loss can be lower bounded as

∆Cℓ̃log,H
(h,x) ≥ sup

µ∈[−S(x,kmin(x)),S(x,r(x))]
{q(x, kmin(x))[− log(S(x, kmin(x))) + log(S(x, r(x)) − µ)]

+ q(x, r(x))[− log(S(x, r(x))) + log(S(x, kmin(x)) + µ)]}.
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By the concavity of the function, differentiate with respect to µ, we obtain that the supremum is
achieved by µ∗ = q(x,r(x))S(x,r(x))−q(x,kmin(x))S(x,kmin(x))

q(x,kmin(x))+q(x,r(x)) . Plug in µ∗, we obtain

∆Cℓ̃log,H
(h,x)

≥ q(x, kmin(x)) log
(S(x, r(x)) + S(x, kmin(x)))q(x, kmin(x))
S(x, kmin(x))(q(x, kmin(x)) + q(x, r(x)))

+ q(x, r(x)) log (S(x, r(x)) + S(x, kmin(x)))q(x, r(x))
S(x, r(x))(q(x, kmin(x)) + q(x, r(x)))

≥ q(x, kmin(x)) log
2q(x, kmin(x))

q(x, kmin(x)) + q(x, r(x))
+ q(x, r(x)) log 2q(x, r(x))

q(x, kmin(x)) + q(x, r(x))
(minimum is achieved when S(x, r(x)) = S(x, kmin(x)))

≥ (q(x, r(x)) − q(x, kmin(x)))2

2(q(x, r(x)) + q(x, kmin(x)))
(a log 2a

a+b + b log
2b
a+b ≥

(a−b)2
2(a+b) ,∀a, b ∈ [0,1] (Mohri et al., 2018, Proposition E.7))

≥ (q(x, r(x)) − q(x, kmin(x)))2

4
. (0 ≤ q(x, r(x)) + q(x, kmin(x)) ≤ 2)

Therefore, by Lemma 20, the conditional regret of the target cardinality aware loss function can be
upper bounded as follows:

∆Cℓ̃,H(r, x) = q(x, kmin(x)) − q(x, r(x)) ≤ 2(∆Cℓ̃log,R
(r, x))

1
2
.

By the concavity, take expectations on both sides of the preceding equation, we obtain

Eℓ̃(r) − E
∗
ℓ̃
(R) +Mℓ̃(R) ≤ 2(Eℓ̃log

(r) − E∗
ℓ̃log
(R) +Mℓ̃log

(R))
1
2

.

The second part follows from the fact that Mℓ̃log
(Rall) = 0.

Case II: ℓ = ℓ̃comp
exp . For the cost-sensitive sum exponential loss ℓ̃comp

exp , the conditional error can
be written as

Cℓ̃comp
exp
(r, x) = ∑

y∈Y
p(x, y) ∑

k∈K
c(x, k, y) ∑

k′≠k′
er(x,k

′)−r(x,k) = ∑
k∈K
( 1

S(x, k) − 1)q(x, k).

The conditional regret can be written as

∆Cℓ̃comp
exp ,R(r, x) = ∑

k∈K
( 1

S(x, k) − 1)q(x, k) − infr∈R
(∑
k∈K
( 1

S(x, k) − 1)q(x, k))

≥ ∑
k∈K
( 1

S(x, k) − 1)q(x, k) − inf
µ∈[−S(x,kmin(x)),S(x,r(x))]

(∑
k∈K
( 1

Sµ(x, k)
− 1)q(x, k)),

where for any x ∈ X and k ∈ K, Sµ(x, k) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

S(x, y), y ∉ {kmin(x), r(x)}
S(x, kmin(x)) + µ y = r(x)
S(x, r(x)) − µ y = kmin(x).

Note that

such a choice of Sµ leads to the following equality holds:

∑
k∉{r(x),kmin(x)}

( 1

S(x, k) − 1)q(x, k) = ∑
k∉{r(x),kmin(x)}

( 1

Sµ(x, k)
− 1)q(x, k).
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Therefore, the conditional regret of cost-sensitive sum exponential loss can be lower bounded as

∆Cℓ̃comp
exp ,H(h,x) ≥ sup

µ∈[−S(x,kmin(x)),S(x,r(x))]
{q(x, kmin(x))[

1

S(x, kmin(x))
− 1

S(x, r(x)) − µ]

+ q(x, r(x))[ 1

S(x, r(x)) −
1

S(x, kmin(x)) + µ
]}.

By the concavity of the function, differentiate with respect to µ, we obtain that the supremum is

achieved by µ∗ =
√
q(x,r(x))S(x,r(x))−

√
q(x,kmin(x))S(x,kmin(x))√

q(x,kmin(x))+
√
q(x,r(x))

. Plug in µ∗, we obtain

∆Cℓ̃comp
exp ,H(h,x)

≥ q(x, kmin(x))
S(x, kmin(x))

+ q(x, r(x)))
S(x, r(x))) −

(
√
q(x, kmin(x)) +

√
q(x, r(x))))

2

S(x, kmin(x)) + S(x, r(x)))

≥ (
√
q(x, kmin(x)) −

√
q(x, r(x))))

2

(minimum is achieved when S(x, r(x)) = S(x, kmin(x)) = 1
2 )

≥ (q(x, r(x))) − q(x, kmin(x)))2

(
√
q(x, r(x))) +

√
q(x, kmin(x)))

2

≥ (q(x, r(x))) − q(x, kmin(x)))2

4
. (

√
a +
√
b ≤ 2,∀a, b ∈ [0,1], a + b ≤ 2)

Therefore, by Lemma 20, the conditional regret of the target cardinality aware loss function can be
upper bounded as follows:

∆Cℓ̃,H(r, x) = q(x, kmin(x)) − q(x, r(x)) ≤ 2(∆Cℓ̃comp
exp ,R(r, x))

1
2
.

By the concavity, take expectations on both sides of the preceding equation, we obtain

Eℓ̃(r) − E
∗
ℓ̃
(R) +Mℓ̃(R) ≤ 2(Eℓ̃comp

exp
(r) − E∗

ℓ̃comp
exp
(R) +Mℓ̃comp

exp
(R))

1
2

.

The second part follows from the fact that Mℓ̃comp
exp
(Rall) = 0.

Case III: ℓ = ℓ̃gce. For the cost-sensitive generalized cross-entropy loss ℓ̃gce, the conditional
error can be written as

Cℓ̃gce
(r, x) = ∑

y∈Y
p(x, y) ∑

k∈K
c(x, k, y) 1

α
(1 − ( er(x,k)

∑k′∈K er(x,k
′))

α

) = 1

α
∑
k∈K
(1 − S(x, k)α)q(x, k).

The conditional regret can be written as

∆Cℓ̃gce,R
(r, x) = 1

α
∑
k∈K
(1 − S(x, k)α)q(x, k) − inf

r∈R
( 1
α
∑
k∈K
(1 − S(x, k)α)q(x, k))

≥ 1

α
∑
k∈K
(1 − S(x, k)α)q(x, k) − inf

µ∈[−S(x,kmin(x)),S(x,r(x))]
( 1
α
∑
k∈K
(1 − Sµ(x, k)α)q(x, k)),

34



TOP-k CLASSIFICATION AND CARDINALITY-AWARE PREDICTION

where for any x ∈ X and k ∈ K, Sµ(x, k) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

S(x, y), y ∉ {kmin(x), r(x)}
S(x, kmin(x)) + µ y = r(x)
S(x, r(x)) − µ y = kmin(x).

Note that

such a choice of Sµ leads to the following equality holds:

∑
k∉{r(x),kmin(x)}

1

α
∑
k∈K
(1 − S(x, k)α)q(x, k) = ∑

k∉{r(x),kmin(x)}

1

α
∑
k∈K
(1 − Sµ(x, k)α)q(x, k).

Therefore, the conditional regret of cost-sensitive generalized cross-entropy loss can be lower
bounded as

∆Cℓ̃gce,H
(h,x) = 1

α
sup

µ∈[−S(x,kmin(x)),S(x,r(x))]
{q(x, kmin(x))[−S(x, kmin(x))α + (S(x, r(x)) − µ)α]

+ q(x, r(x))[−S(x, r(x))α + (S(x, kmin(x)) + µ)α]}.

By the concavity of the function, differentiate with respect to µ, we obtain that the supremum is

achieved by µ∗ = q(x,r(x))
1

1−α S(x,r(x))−q(x,kmin(x))
1

1−α S(x,kmin(x))
q(x,kmin(x))

1
1−α +q(x,r(x))

1
1−α

. Plug in µ∗, we obtain

∆Cℓ̃gce,H
(h,x)

≥ 1

α
(S(x, r(x)) + S(x, kmin(x)))α(q(x, kmin(x))

1
1−α + q(x, r(x))

1
1−α )

1−α

− 1

α
q(x, kmin(x))S(x, kmin(x))α −

1

α
q(x, r(x))S(x, r(x))α

≥ 1

αnα
[2α(q(x, kmin(x))

1
1−α + q(x, r(x))

1
1−α )

1−α
− q(x, kmin(x)) − q(x, r(x))]

(minimum is achieved when S(x, r(x)) = S(x, kmin(x)) = 1
n )

≥ (q(x, r(x)) − q(x, kmin(x)))2

4nα
.

((a
1

1−α +b
1

1−α

2 )
1−α
− a+b

2 ≥
α
4 (a − b)

2,∀a, b ∈ [0,1], 0 ≤ a + b ≤ 1)

Therefore, by Lemma 20, the conditional regret of the target cardinality aware loss function can be
upper bounded as follows:

∆Cℓ̃,H(r, x) = q(x, kmin(x)) − q(x, r(x)) ≤ 2n
α
2 (∆Cℓ̃gce,R

(r, x))
1
2
.

By the concavity, take expectations on both sides of the preceding equation, we obtain

Eℓ̃(r) − E
∗
ℓ̃
(R) +Mℓ̃(R) ≤ 2n

α
2 (Eℓ̃gce

(r) − E∗
ℓ̃gce
(R) +Mℓ̃gce

(R))
1
2
.

The second part follows from the fact that Mℓ̃gce
(Rall) = 0.

Case IV: ℓ = ℓ̃mae. For the cost-sensitive mean absolute error loss ℓ̃mae, the conditional error can
be written as

Cℓ̃mae
(r, x) = ∑

y∈Y
p(x, y) ∑

k∈K
c(x, k, y)(1 − ( er(x,k)

∑k′∈K er(x,k
′))) = ∑

k∈K
(1 − S(x, k))q(x, k).
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The conditional regret can be written as

∆Cℓ̃mae,R
(r, x) = ∑

k∈K
(1 − S(x, k))q(x, k) − inf

r∈R
(∑
k∈K
(1 − S(x, k))q(x, k))

≥ ∑
k∈K
(1 − S(x, k))q(x, k) − inf

µ∈[−S(x,kmin(x)),S(x,r(x))]
(∑
k∈K
(1 − Sµ(x, k))q(x, k)),

where for any x ∈ X and k ∈ K, Sµ(x, k) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

S(x, y), y ∉ {kmin(x), r(x)}
S(x, kmin(x)) + µ y = r(x)
S(x, r(x)) − µ y = kmin(x).

Note that

such a choice of Sµ leads to the following equality holds:

∑
k∈K
(1 − S(x, k))q(x, k) = ∑

k∈K
(1 − Sµ(x, k))q(x, k).

Therefore, the conditional regret of cost-sensitive mean absolute error can be lower bounded as

∆Cℓ̃mae,H
(h,x) ≥ sup

µ∈[−S(x,kmin(x)),S(x,r(x))]
{q(x, kmin(x))[−S(x, kmin(x)) + S(x, r(x)) − µ]

+ q(x, r(x))[−S(x, r(x)) + S(x, kmin(x)) + µ]}.

By the concavity of the function, differentiate with respect to µ, we obtain that the supremum is
achieved by µ∗ = −S(x, kmin(x)). Plug in µ∗, we obtain

∆Cℓ̃mae,H
(h,x)

≥ q(x, kmin(x))S(x, r(x)) − q(x, r(x))S(x, r(x))

≥ 1

n
(q(x, kmin(x)) − q(x, r(x))). (minimum is achieved when S(x, r(x)) = 1

n )

Therefore, by Lemma 20, the conditional regret of the target cardinality aware loss function can be
upper bounded as follows:

∆Cℓ̃,H(r, x) = q(x, kmin(x)) − q(x, r(x)) ≤ n(∆Cℓ̃mae,R
(r, x)).

By the concavity, take expectations on both sides of the preceding equation, we obtain

Eℓ̃(r) − E
∗
ℓ̃
(R) +Mℓ̃(R) ≤ n(Eℓ̃mae

(r) − E∗
ℓ̃mae
(R) +Mℓ̃mae

(R)).

The second part follows from the fact that Mℓ̃mae
(Rall) = 0.

E.2. Proof of Theorem 16

The conditional error for the cost-sensitive constrained loss can be expressed as follows:

Cℓ̃cstnd(r, x) = ∑
y∈Y

p(x, y)ℓ̃cstnd(r, x, y)

= ∑
y∈Y

p(x, y) ∑
k∈K

c(x, k, y)Φ(−r(x, k))

= ∑
k∈K

q̃(x, k)Φ(−r(x, k)),
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where q̃(x, k) = ∑y∈Y p(x, y)c(x, k, y) ∈ [0,1]. Let kmin(x) = argmink∈K q̃(x, k). We denote by
Φexp∶ t ↦ e−t the exponential loss function, Φsq−hinge∶ t ↦ max{0,1 − t}2 the squared hinge loss
function, Φhinge∶ t ↦ max{0,1 − t} the hinge loss function, and Φρ∶ t ↦ min{max{0,1 − t/ρ},1},
ρ > 0 the ρ-margin loss function.

Theorem 16 Assume that R is symmetric and complete. Then, the following R-consistency bound
holds for the cost-sensitive constrained loss:

Eℓ̃(r) − E
∗
ℓ̃
(R) +Mℓ̃(R) ≤ γ(Eℓ̃cstnd(r) − E

∗
ℓ̃cstnd
(R) +Mℓ̃cstnd(R));

In the special case where R = Rall, the following holds:

Eℓ̃(r) − E
∗
ℓ̃
(Rall) ≤ γ(Eℓ̃cstnd(r) − E

∗
ℓ̃cstnd
(Rall)),

where γ(t) = 2
√
t when ℓ̃cstnd is either ℓ̃cstndexp or ℓ̃sq−hinge; γ(t) = t when ℓ̃cstnd is either ℓ̃hinge or ℓ̃ρ.

Proof Case I: ℓ = ℓ̃cstndexp . For the cost-sensitive constrained exponential loss ℓ̃cstndexp , the conditional
regret can be written as

∆Cℓ̃cstndexp ,R(r, x) = ∑
k∈K

q̃(x, kΦexp(−r(x, k)) − inf
r∈R
∑
k∈K

q̃(x, k)Φexp(−r(x, k))

≥ ∑
k∈K

q̃(x, k)Φexp(−r(x, k)) − inf
µ∈R
∑
k∈K

q̃(x, k)Φexp(−rµ(x, k)),

where for any k ∈ K, rµ(x, k) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

r(x, y), y ∉ {kmin(x), r(x)}
r(x, kmin(x)) + µ y = r(x)
r(x, r(x)) − µ y = kmin(x).

Note that such a choice

of rµ leads to the following equality holds:

∑
k∉{r(x),kmin(x)}

q̃(x, k)Φexp(−r(x, k)) = ∑
k∉{r(x),kmin(x)}

∑
k∈K

q̃(x, k)Φexp(−rµ(x, k)).

Therefore, the conditional regret of cost-sensitive constrained exponential loss can be lower bounded
as

∆Cℓ̃cstndexp ,R(r, x)

≥ inf
r∈R

sup
µ∈R
{q̃(x, kmin(x))(er(x,kmin(x)) − er(x,r(x))−µ) + q̃(x, r(x))(er(x,r(x)) − er(x,kmin(x))+µ)}

= (
√
q̃(x, kmin(x)) −

√
q̃(x, r(x)))

2
(differentiating with respect to µ, r to optimize)

=
⎛
⎝

q̃(x, r(x)) − q̃(x, kmin(x))√
q̃(x, kmin(x)) +

√
q̃(x, r(x))

⎞
⎠

2

≥ 1

4
(q̃(x, r(x)) − q̃(x, kmin(x)))2. (0 ≤ q̃(x, k) ≤ 1)

Therefore, by Lemma 20, the conditional regret of the target cardinality aware loss function can be
upper bounded as follows:

∆Cℓ̃,H(r, x) = q̃(x, r(x)) − q̃(x, kmin(x)) ≤ 2(∆Cℓ̃cstndexp ,R(r, x))
1
2
.
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By the concavity, take expectations on both sides of the preceding equation, we obtain

Eℓ̃(r) − E
∗
ℓ̃
(R) +Mℓ̃(R) ≤ 2(Eℓ̃cstndexp

(r) − E∗
ℓ̃cstndexp
(R) +Mℓ̃cstndexp

(R))
1
2

.

The second part follows from the fact that Mℓ̃cstndexp
(Rall) = 0.

Case II: ℓ = ℓ̃sq−hinge. For the cost-sensitive constrained squared hinge loss ℓ̃sq−hinge, the
conditional regret can be written as

∆Cℓ̃sq−hinge,R
(r, x) = ∑

k∈K
q̃(x, k)Φsq−hinge(−r(x, k)) − inf

r∈R
∑
k∈K

q̃(x, k)Φsq−hinge(−r(x, k))

≥ ∑
k∈K

q̃(x, k)Φsq−hinge(−r(x, k)) − inf
µ∈R
∑
k∈K

q̃(x, k)Φsq−hinge(−rµ(x, k)),

where for any k ∈ K, rµ(x, k) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

r(x, y), y ∉ {kmin(x), r(x)}
r(x, kmin(x)) + µ y = r(x)
r(x, r(x)) − µ y = kmin(x).

Note that such a choice

of rµ leads to the following equality holds:

∑
k∉{r(x),kmin(x)}

q̃(x, k)Φsq−hinge(−r(x, k)) = ∑
k∉{r(x),kmin(x)}

∑
k∈K

q̃(x, k)Φsq−hinge(−rµ(x, k)).

Therefore, the conditional regret of cost-sensitive constrained squared hinge loss can be lower
bounded as

∆Cℓ̃sq−hinge,R
(r, x)

≥ inf
r∈R

sup
µ∈R
{q̃(x, kmin(x))(max{0,1 + r(x, kmin(x))}2 −max{0,1 + r(x, r(x)) − µ}2)

+ q̃(x, r(x))(max{0,1 + r(x, r(x))}2 −max{0,1 + r(x, kmin(x)) + µ}2)}

≥ 1

4
(q̃(x, kmin(x)) − q̃(x, r(x)))2. (differentiating with respect to µ, r to optimize)

Therefore, by Lemma 20, the conditional regret of the target cardinality aware loss function can be
upper bounded as follows:

∆Cℓ̃,H(r, x) = q̃(x, r(x)) − q̃(x, kmin(x)) ≤ 2(∆Cℓ̃sq−hinge,R
(r, x))

1
2
.

By the concavity, take expectations on both sides of the preceding equation, we obtain

Eℓ̃(r) − E
∗
ℓ̃
(R) +Mℓ̃(R) ≤ 2(Eℓ̃sq−hinge

(r) − E∗
ℓ̃sq−hinge

(R) +Mℓ̃sq−hinge
(R))

1
2

.

The second part follows from the fact that Mℓ̃sq−hinge
(Rall) = 0.

Case III: ℓ = ℓ̃hinge. For the cost-sensitive constrained hinge loss ℓ̃hinge, the conditional regret
can be written as

∆Cℓ̃hinge,R
(r, x) = ∑

k∈K
q̃(x, k)Φhinge(−r(x, k)) − inf

r∈R
∑
k∈K

q̃(x, k)Φhinge(−r(x, k))

≥ ∑
k∈K

q̃(x, k)Φhinge(−r(x, k)) − inf
µ∈R
∑
k∈K

q̃(x, k)Φhinge(−rµ(x, k)),
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where for any k ∈ K, rµ(x, k) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

r(x, y), y ∉ {kmin(x), r(x)}
r(x, kmin(x)) + µ y = r(x)
r(x, r(x)) − µ y = kmin(x).

Note that such a choice

of rµ leads to the following equality holds:

∑
k∉{r(x),kmin(x)}

q̃(x, k)Φhinge(−r(x, k)) = ∑
k∉{r(x),kmin(x)}

∑
k∈K

q̃(x, k)Φhinge(−rµ(x, k)).

Therefore, the conditional regret of cost-sensitive constrained hinge loss can be lower bounded as

∆Cℓ̃hinge,R
(r, x) ≥ inf

r∈R
sup
µ∈R
{q(x, kmin(x))(max{0,1 + r(x, kmin(x))} −max{0,1 + r(x, r(x)) − µ})

+ q(x, r(x))(max{0,1 + r(x, r(x))} −max{0,1 + r(x, kmin(x)) + µ})}

≥ q(x, r(x)) − q(x, kmin(x)). (differentiating with respect to µ, r to optimize)

Therefore, by Lemma 20, the conditional regret of the target cardinality aware loss function can be
upper bounded as follows:

∆Cℓ̃,H(r, x) = q̃(x, r(x)) − q̃(x, kmin(x)) ≤∆Cℓ̃hinge,R
(r, x).

By the concavity, take expectations on both sides of the preceding equation, we obtain

Eℓ̃(r) − E
∗
ℓ̃
(R) +Mℓ̃(R) ≤ Eℓ̃hinge

(r) − E∗
ℓ̃hinge
(R) +Mℓ̃hinge

(R).

The second part follows from the fact that Mℓ̃hinge
(Rall) = 0.

Case IV: ℓ = ℓ̃ρ. For the cost-sensitive constrained ρ-margin loss ℓ̃ρ, the conditional regret can
be written as

∆Cℓ̃ρ,R
(r, x) = ∑

k∈K
q̃(x, k)Φρ(−r(x, k)) − inf

r∈R
∑
k∈K

q̃(x, k)Φρ(−r(x, k))

≥ ∑
k∈K

q̃(x, k)Φρ(−r(x, k)) − inf
µ∈R
∑
k∈K

q̃(x, k)Φρ(−rµ(x, k)),

where for any k ∈ K, rµ(x, k) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

r(x, y), y ∉ {kmin(x), r(x)}
r(x, kmin(x)) + µ y = r(x)
r(x, r(x)) − µ y = kmin(x).

Note that such a choice

of rµ leads to the following equality holds:

∑
k∉{r(x),kmin(x)}

q̃(x, k)Φρ(−r(x, k)) = ∑
k∉{r(x),kmin(x)}

∑
k∈K

q̃(x, k)Φρ(−rµ(x, k)).

Therefore, the conditional regret of cost-sensitive constrained ρ-margin loss can be lower bounded as

∆Cℓ̃ρ,R
(r, x)

≥ inf
r∈R

sup
µ∈R
{q̃(x, kmin(x))(min{max{0,1 + r(x, kmin(x))

ρ
},1} −min{max{0,1 + r(x, r(x)) − µ

ρ
},1})

+ q̃(x, r(x))(min{max{0,1 + r(x, r(x))
ρ

},1} −min{max{0,1 + r(x, kmin(x)) + µ
ρ

},1})}

≥ q̃(x, r(x)) − q̃(x, kmin(x)). (differentiating with respect to µ, r to optimize)
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Therefore, by Lemma 20, the conditional regret of the target cardinality aware loss function can be
upper bounded as follows:

∆Cℓ̃,H(r, x) = q̃(x, r(x)) − q̃(x, kmin(x)) ≤∆Cℓ̃ρ,R
(r, x).

By the concavity, take expectations on both sides of the preceding equation, we obtain

Eℓ̃(r) − E
∗
ℓ̃
(R) +Mℓ̃(R) ≤ Eℓ̃ρ

(r) − E∗
ℓ̃ρ
(R) +Mℓ̃ρ

(R).

The second part follows from the fact that Mℓ̃ρ
(Rall) = 0.
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