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Abstract

The SdSv challenge Task 2 provided an opportunity to assess

efficiency and robustness of modern text-independent speaker

verification systems. But it also made it possible to test new

approaches, capable of taking into account the main issues of

this challenge (duration, language, ...). This paper describes the

contributions of our laboratory to the speaker recognition field.

These contributions highlight two other challenges in addition

to short-duration and language: the mismatch between enroll-

ment and test data and the one between subsets of the eval-

uation trial dataset. The proposed approaches experimentally

show their relevance and efficiency on the SdSv evaluation, and

could be of interest in many real-life applications.

1. Introduction

The Short-duration Speaker Verification Task 2 evaluation is a

text-independent speaker recognition evaluation, based on the

recently released DeepMine dataset [1, 2]. This dataset is com-

prised of various duration utterances (with a significant propor-

tion of less than 10 seconds) recorded by Persian native per-

sons, some of them in English. The evaluation proposes to test

and improve speaker recognition methods on speech data with

varying degree of phonetic overlap between the enrollment and

test utterances [3]. Robustness of speaker embeddings extracted

from deep neural networks (DNN) to short-duration utterances

and efficiency of the domain adaptation techniques (as Persian

language is unknown to the usual speech databases) can be seen

as the main objectives of this challenge. The fairly wide Deep-

Mine development dataset provided for this challenge, which is

speaker-labeled, allows to better fit model to data, even if the

availability of some English speeches spoken by Persian native

persons is lacking.

The task of language domain adaptation is usually ad-

dressed during the back-end procedure. Several methods have

been proposed, unsupervised [4, 5, 6], or supervised [7, 8, 9]

when in-domain labeled data are available. For SdSv, the avail-

ability of a relatively large size and labeled in-domain dataset

makes it possible to also consider language pre-adaptation in-

side the supervised learning of a DNN-based feature extrac-

tor. Section 2.2 details our proposed approach of DNN Persian-

refinement.

Table 1: Data provided by SdSv for speaker verification.

enrollment test

1 to 29 utterances (average of 7) 1 utterance

giving a net speech duration (95% less than

from 3 to 120 seconds 5 seconds)

The challenge focuses on short-duration and cross-lingual

speaker recognition but it also has a particularity, which is often

overlooked in the speaker recognition field: Table 1 shows that

the characteristics of the speech material provided for enroll-

ment and for test are different enough to assume a mismatch be-

tween the distribution of their vector representations. It would

also be of benefit to take into account such a mismatch. More-

over, mixing, in a unique evaluation, trials with a small or large

enrollment sample and, also, test utterances in Persian or En-

glish can limit efficiency of a unique modeling. Designing spe-

cific back-end models for dealing with trial mismatch could be

of interest. Section 3 explains how we hit on all these points.

2. Front-end feature extraction

2.1. Initial DNN learning

The system used in SdSV Challenge is based on x-

vector/PLDA. Our x-vector system is built based on the Kaldi

recipe [10], but with some modifications. Voxceleb2 [11] and

Librispeech [12] sets are combined to generate the training set

for the x-vector extractor.

The following data augmentation methods are used in this

paper. Apart from the four augmentation methods used in [10],

we also include audio compression randomly picked between

ogg, mp3 and flac codec, high-pass filtering randomly picked

in [1000Hz;3000Hz] and low-pass filtering randomly picked in

[500Hz;1500Hz]. Finally, the training data consist of 8-fold

augmentation that combines clean data with 7 copies of aug-

mented data.

During the training part the utterances are further cut into

segments of 2s for the neural network training. 60-dimensional

filter banks (Fbanks) are used for the x-vector system, with

an energy-based Voice Activity Detector (VAD) to remove si-

lence. A short-time cepstral mean subtraction is applied over a

3-second sliding window.

Table 2 presents the Extended-TDNN architecture used. In

addition to this architecture, we proposed to increase the di-

mension of each layer to 1024 only for the frame-level. Except

the layer 9 which is used as an expansion layer and is fixed to

3000 dimension. The embeddings are extracted after the first

dense layer with a dimensionality of 512. The neural network

is trained for 9 epochs using natural-gradient stochastic gradient

descent and minibatch size of 128.

2.2. Front-end language adaptation

In order to adapt the x-vector system to a new language, we

use the neural network trained on Voxceleb2 and Librispeech

corpus as pre-trained model. Then, we propose to freeze on

pre-trained model all pre-pooling TDNN layers and re-train the

other layers on DeepMine corpus (using 8-fold augmentation).

The neural network is trained only with 1 epoch and minibatch

size of 128 (we observe in the leaderboard that more epochs do
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Table 2: Topology of the Extended-TDNN x-vector architecture.

Layer Layer type Context Size

1 TDNN-ReLU t-2:t+2 1024

2 Dense-ReLU t 1024

3 TDNN-ReLU t-2, t, t+2 1024

4 Dense-ReLU t 1024

5 TDNN-ReLU t-3, t, t+3 1024

6 Dense-ReLU t 1024

7 TDNN-ReLU t-4, t, t+4 1024

8 Dense-ReLU t 1024

9 Dense-ReLU t 3000

10 Pooling (mean+stddev) t 6000

11 Dense(Embedding)-ReLU t 512

12 Dense-ReLU t 512

13 Dense-Softmax t Nb spks

not improve results). The resulting ”Persian-refined” DNN bet-

ter combines the rich information of the wide but out-of-domain

initial training set and adequacy to the target language.

3. Back-end asymmetric modeling

3.1. Four-covariance model

As explained in the introduction and observed in Table 1, it can

be assumed that the distributions of the target speaker model

and of the test x-vector are sufficiently distinct to require two

PLDA modelings. Introduced in [13] for mismatch of duration

between enrollment and test data, the four-covariance model (4-

cov) is an asymmetric modeling, which allows to compute two

distinct PLDA models, here one for enrollment data and the

other for test data, then to fit a probabilistic relation between

them in order to compute a LLR-score, despite the mismatch.

For SdSv challenge, we choose as target speaker model the

length-normalized average of the enrollment sample, since this

approach has proved to be efficient and robust [14]. Let denote

by w1 a vector of type 1 (here of the latter type, computed on

an enrollment sample as described in column 1 of Table 1) and

similarly w2 of type 2 (here a test vector as described in column

2 of Table 1). The Gaussian PLDA model [15] for type i, i = 1
or 2, assumes that:

wi = µi +Φiyi + εi

yi ∼ N (0, I)

εi ∼ N (0,Γi) (1)

where N denotes the normal pdf, I is the identity matrix, µi

a global offset and the latent variable yi is only dependent on

the speaker and statistically independent of the residual term εi.

The 4-cov modeling assumes a linear relation between the two

PLDA models by their speaker factors:

y2 = Ay1 + η (2)

η ∼ N (0,M) (3)

To estimate the matricial parameters A and M, the point

estimate of training speaker factors yi is computed using the

expectation given by the PLDA E.M. algorithm:

yi =
(
nsΦ

t

iΓ
−1

i Φi+I
)
−1

Φ
t

iΓ
−1

i

ns∑

k=1

(wk − µi) (4)

where wk denotes the kth of ns examples for the speaker s.

Then, a multivariate regression is carried out, which minimizes

the least square error. Denoting by Yi the row-matrix of the yi
the closed-form expressions of A and M are:

A = Y
t

2Y1

(
Y

t

1Y1

)
−1

M = cov (y2 −Ay1) (5)

where cov() is the covariance matrix. A straightforward com-

putation shows that the LLR score between two vectors w1,w2

of type 1 and 2 can be expressed in a simple form (simpler than

in the original paper) as:

s (w1,w2) = −
1

2

(
w1 − µ1

w2 − µ2

)t

M

(
w1 − µ1

w2 − µ2

)
(6)

up to a constant, where

M =

(
Φ1Φ

t

1 + Γ1 Φ1Φ
t

1A
t

AΦ1Φ
t

1 AΦ1Φ
t

1A
t + Γ2 +M

)
−1

−

(
Φ1Φ

t

1 + Γ1 0

0 Φ2Φ
t

2 + Γ2

)
−1

(7)

3.2. Specific score normalization

Taking benefit of the score normalization to enhance perfor-

mance requires adapting the usual S-normalization to the spe-

cific case of an asymmetric model: the impostor cohorts are

dependent on the type of data and the order of pairwise vectors

to score must be respected. Given a trial between enrollment-

based and test vectors we and wt, score-normalization is per-

formed on score s (we,wt) such that:

ŝ (we,wt) =
1

2

s (we,wt)− µ (s (we,Ωt))

σ (s (we,Ωt))

+
1

2

s (we,wt)− µ (s (Ωe,wt))

σ (s (Ωe,wt))
(8)

where Ωe,Ωt are cohort impostors, specific to enrollment and

test, and µ, σ are the mean and standard deviation functions,

possibly computed on the top scores only.

3.3. Trial-dependent models

Table 3: Percentages of trials in the evaluation trial set, depend-

ing on the target speaker model (how many enrollment segments

are available ?) and on the test language.

test language

enrollment #segs Persian English Total

< 5 36% 38% 74%

> 5 4% 22% 26%

40% 60%

Table 3 details the proportion of trials in the evaluation set,

depending on the size of the speaker enrollment sample and on

the language of test. The 4-cov model allows to fit PLDA mod-

els to each of these enrollment-test cases. Table 4 shows the

different training sets used for PLDA, depending on the trial.

We apply the 4-cov model to each type of mismatch: (aver-

age of sample of various size and duration)/(one short duration



utterance in Persian or English). The language of the test seg-

ments is estimated by a speech detector. For test utterances in

English, PLDA is interpolated as proposed in [7], using our En-

glish training database. Let us note that the x-vectors of this

database are extracted from our Persian-refined neural network,

hence partially adapted to Persian language.

For a better understanding, we detail one case of Table 4.

The last row corresponds to trials with more than 5 examples

for enrollment and a test utterance in English:

• the PLDA training dataset for model 1 of 4-cov model

(the one for enrollment) is made up of length-normalized

averages of 12 vectors lasting more than 7.5 seconds, ex-

tracted from utterances of the DeepMine development

set [1]).

• the PLDA training datasets for model 2 of 4-cov model

(the one for test) are comprised of utterances lasting less

than 5 seconds, from (i) the same DeepMine develop-

ment set, (ii) our adapted English development set. The

resulting model for test interpolates the last two sub-

models (i) and (ii) [7].

As the final score file to submit mixes four scoring formu-

las, the scores are calibrated by using development trial datasets,

specific to the four cases of Table 4 and all based on DeepMine

development data.

Table 4: Datasets for trial-dependent model training. L-average

means the length-normalized average of the enrollment sample.

trial: 4-covariance model

enrollment test model 1 model 2

#segs language for enrollment for test

3 vectors

< 5 Persian L-average < 5 sec.

< 5 sec.

3 vectors < 5 sec.

< 5 English L-average &

< 5 sec. English-dev

12 vectors

> 5 Persian L-average < 5 sec.

> 7.5sec.

12 vectors < 5 sec.

> 5 English L-average &

> 7.5sec. English-dev

4. Experiments and results

For acoustic features MFCC are extracted by using Kaldi

toolkit [16] with 23 cepstral coefficients and log-energy, a cep-

stral mean normalization being applied with a window size of

3 seconds. Voice Activity Detection removes silence and low

energy speech segments. The simple energy-based VAD uses

the C0 component of the acoustic feature.

Table 5 provides results of our contributions, in terms of

EER and minDCF, as reported in the SdSv Task 2 leaderboard.

The first system (initial) trains the DNN and all the back-end

transformations by using only the out-of-domain database, de-

scribed in section 2.1. The second system benefits from the

DeepMine in-domain development set provided by the SdSv or-

ganizers. It is used to refine the DNN learning by using the ad-

ditional training stage described in section 2.2, then for learning

Table 5: Results of the different contributions to the SdSv eval-

uation.

EER% minDCF

Initial 7.38 0.3682

With DeepMine dev. set 4.41 0.2103

+ out-of-domain adapted set 4.42 0.1823

4cov-model 3.28 0.1554

+ specific S-norm 3.15 0.1427

+ trial-dependent models 2.88 0.1261

all the back-end transformations (centering, whitening, length-

normalization and PLDA) instead of the initial database. Let us

note that, hence, no adaptation of out-of-domain data to Persian

language is carried out during the back-end process to enhance

modeling. The third system additionally leverages an out-of-

domain development set for back-end trainings. This dataset

is extracted from the one used for the first learning step of the

DNN extractor and adapted by using fDA [5], an unsupervised

domain adaptation method, similar to CORAL [4], which takes

into account the residual components. The resulting adapted set

then allows interpolation between out-of-domain and in-domain

PLDA models [7]. As expected, systems employing the in-

domain development set during front-end and back-end learn-

ing outperform the initial submission. It is worth noting that

including the adapted out-of-domain development set into the

PLDA modelings (row 3) significantly increases performance,

but only in terms of minimal DCF.

The fourth system applies the four-covariance model. Let

us note that this system does not use the adapted out-of-domain

dataset during the back-end trainings. For the enrollment

model, the training speaker models are the length-normalized

averages of 15 examples (3 original segments + 12 data aug-

mented) and, for the test model, only training segments of less

than 5 seconds are selected. The gain of performance involved

by this method is significant, both in terms of EER and minDCF,

even without the help of the wide out-of-domain development

set.

The following system adds to the latter the specific score-

normalization proposed in section 3.2, with 400 top-scores. The

resulting gain of performance shows that the normalization of

score is compatible with an asymmetric model.

The last system applies the trial-dependent 4-cov modeling

described in section 3.3 and Table 4. The gain of performance

confirms the heterogeneity between the trial partitions listed in

Table 4 and the ability of the 4-cov model to handle such type

of mismatch.

Relevance and efficiency of our various contributions are

clearly demonstrated. The final system takes full account of

the challenges of SdsV Task 2: short-duration utterances and

adaptation to new language, reported in terms of performance

in the first rows of Table 5, then mismatch between enrollment

and test distributions or trial partitions, reported in the last rows.

5. Conclusions

The SdSv challenge made it possible to test and compare the

efficiency of DNN based systems to deal with short-duration

utterances. Data augmentation could also contribute to better

fit these data, which are known to be very varied. The task of

language adaptation was usually tackled during the back-end

process. For the SdSv challenge, the availability of a sizable in-



domain labeled dataset allowed to extend this task to the DNN

supervised learning stage.

Our contribution highlights the concern of mismatch be-

tween enrollment and test speech material, in terms of quantity

of information. The proposed four-covariance model applies a

specific asymmetric modeling, which focuses on a type of mis-

match. It reveals the benefit of refining the back-end modeling

to take into account this issue. Moreover, this model allows for

better fit of specificities, here the relative heterogeneity of the

evaluation trials.

The last system of Table 5 was our final submission for this

challenge. The good ranking obtained with a system using a sin-

gle front-end feature extractor shows that a system including all

these contributions is able to compete with fusions of systems

based on distinct DNN architectures and configurations.
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