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Abstract
Linear programming describes the problem of optimising a linear objective function over a set of
constraints on its variables. In this paper we present a solver for linear programs implemented in the
proof assistant Isabelle/HOL. This allows formally proving its soundness, termination, and other
properties. We base these results on a previous formalisation of the simplex algorithm which does
not take optimisation problems into account. Using the weak duality theorem of linear programming
we obtain an algorithm for solving linear programs. Using Isabelle’s code generation mechanism we
can generate an external solver for linear programs.
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1 Introduction

Linear programming is a methodology for solving certain types of optimisation problems.
Linear programming as a part of operations research also has applications in many areas
outside of pure mathematics and computer science. Examples of applications include but
are not limited to: finance, transportation, management, etc. In computer science linear
programming can be used in, for example, network optimisation and integer transition
systems. Finally, our motivation for this work is its use in game theory. One can express a
two player zero-sum game using a linear program. Solving this linear program is equivalent
to solving the original game. Hence, linear programming can be used to solve two-player
zero sum games [9, 17].

Due to its large amount of use cases many software suites ship with a solver for linear
programs [5, 4], including popular software like Microsoft Excel. However, software is known
to have bugs and undesirable behaviour and the aforementioned tools most certainly are no
exception. Therefore, we believe that formal verification can be a useful tool to increase trust
in the results of linear program solvers, especially when they are applied to fault critical areas.
In this paper we discuss the use of a proof assistant to formalise the notion of linear programs
and an algorithm for solving them. We use the proof assistant Isabelle/HOL. In particular,
we formalise an algorithm for solving linear programs based on a previous formalisation of
the general simplex method [14]. This algorithm is a reduction that reduces the optimisation
problem to a constraint satisfaction problem. Our description of this reduction is stated in
such a way that Isabelle’s code generation mechanism can be utilised to generate a formally
verified Haskell program which solves linear programs. To summarise, our contributions are
as follows:

We formalise linear programs using the proof assistant Isabelle/HOL and derive results
related to the duality of linear optimisation.
We describe an algorithm for solving linear programs and prove its soundness. This
algorithm is stated in a way such that Isabelle’s code generation mechanism can be used
to obtain a verified executable program.
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2 Linear Programming in Isabelle/HOL

In order to obtain the aforementioned results, we provide translations and equivalences
between an Isabelle library for linear polynomials and one for linear algebra. We also
provide correctness results for these translations.
Using the generated program we solve an example game as a case study to show how
games can be solved using linear programming.

Related Work:

Our work is based on a formalisation of the general simplex algorithm described in [8, 14].
However, the general simplex algorithm lacks the ability to optimise a function. Boulmé and
Maréchal [3] describe a formalisation and implementation of Coq tactics for linear integer
programming and linear arithmetic over rationals. More closely related is the formalisation
by Allamigeon et al. [1] which formalises the simplex method and related results in Coq. As
part of Flyspeck project Obua and Nipkow [10] created a verification mechanism for linear
programs using the HOL computing library and external solvers.

Outline:

In Subsection 1.1 we introduce the proof assistant Isabelle/HOL as well as notation which
will be used throughout this paper. Subsequently, in Section 2 we give a short overview of
linear programming. In Section 3 we describe the formalisation and provide more details on
the definitions, algorithms and theorems. In Section 4 we discuss the generated algorithm
and some examples. Finally, in Section 5 we make concluding remarks and discuss future
work.

1.1 Isabelle/HOL and Notation
We use the proof assistant Isabelle/HOL, which is based on simply typed higher-order logic.
On top of the simple type system Isabelle/HOL provides type classes. We will also use
Isabelle’s standard option type with the constructors Some and None as well as the sum type
denoted “+”. While the constructors of the sum type are Inl and Inr, we will use Unsat
and Sat instead. We also use N and Q to denote Isabelle’s natural and rational numbers as
well as α list and (α, β) mapping for polymorphic lists and mappings from α to β. For
a mapping M we use the notation M[i] to denote the value of i in M . We use • to denote
the dot product between a row vector and a column vector. The symbols ·v and ·v describe
the vector-matrix and matrix-vector multiplication respectively. The symbols =, ≤, and
≥ retain their standard semantics for scalars, while we use =pw, ≤pw, and ≥pw to denote
the respective pointwise orders on vectors. Importantly, we also use a constraint type
describing a constraint. The constructors of these are [=], [≤], and [≥]. To see the difference,
note that while x ≤ y and x ≤pw A are of type bool, the expression x [≤] y is of type
constraint which is the pair (x, y) in addition with one of the aforementioned constructors.
We use [m..<n] and {m..<n} to denote lists and sets of elements from m to n − 1, while
dropping the “<” symbol also includes n. Furthermore, [f x . i ← L] is a short notation
for map f L. The function dim c, row A, and col A return the dimension of a vector c and
the number of rows and columns of a matrix A. The zero vector of dimension n is denoted
0n

v . Vector and list concatenation are denoted with the operators @v and @ while [a] is the
singleton list containing a. L!i and V $ i are list and vector access operators respectively.
Both are zero indexed and are only well defined if i < length L or i < dim V . The code
snippets presented in the remainder of the paper have been formatted for readability omitting
brackets, type annotations, etc.
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2 Linear Programming

We will give a brief overview of linear programming. Parts of our formalisation are based on
the textbook “Theory of Linear and Integer Programming” by Schrijver [13] which we also
recommend for a more detailed presentation of the topic.

A linear program describes the problem where we have an objective function f(x1, . . . , xn)
that we want to optimise while the variables x1, . . . xn are subject to a set of constraints.
These constraints can be an equality

α1x1 + · · ·+ αnxn = b (1)

or a non-strict inequality

α1x1 + · · ·+ αnxn ≥ b (2)
α1x1 + · · ·+ αnxn ≤ b. (3)

Note how Constraint 1 is equivalent to the combination of the Constraints 2 and 3. Further-
more, Constraint 2 is equivalent to −(α1x1 + · · ·+ αnxn) ≤ −b. For simplicity, we will only
consider constraints of type 3 and 1 the latter of which we only keep for sake of readability.

Given a set of linear constraints one can pose the question of whether or not a variable
assignment exists that satisfies these constraints. This decision problem does not take the
optimisation of an objective function into account. An algorithm for deciding this is the
general simplex algorithm. In case of success, we can obtain an arbitrary variable assignment
that satisfies all constraints.

2.1 Linear Optimisation
After having introduced the general decision problem for the satisfaction of a list of constraints,
we will now introduce linear programming. In linear programming we are not only interested
in finding an arbitrary satisfying assignment but an assignment which is optimal with respect
to a given (linear) objective function.

More precisely, a linear program is an objective function f which is subject to a list of
constraints C:

f(x1, . . . , xn) := c1 ∗ x1 + · · ·+ cn ∗ xn

C =


A11 ∗ x1 + · · ·+ A1n ∗ xn ≤ b1
A21 ∗ x1 + · · ·+ A2n ∗ xn ≤ b2

...
...

...
Am1 ∗ x1 + · · ·+ Amn ∗ xn ≤ bm


This gives rise to a more concise notation for linear programs where c1, . . . , cn, x1, . . . , xn,
b1, . . . , bn are vectors and A11, . . . , Amn is a matrix:

maximise c • x

subject to: A ·v x ≤pw b (4)

Solving this linear program is searching for a satisfying assignment of variables that is optimal
with respect to the function f . Optimal in this instance means either minimal or maximal.
Hence, we are looking for an assignment for x1, . . . , xn such that it satisfies the constraints
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Figure 1 A plot describing the optimisation problem presented in Example 1.

and f(x1, . . . , xn) is maximal (minimal) in the set of all f(y1, . . . , yn) where y1, . . . , yn also
satisfy the constraints. A concrete example of a linear program accompanied by a plot
showing the objective function and constraints is presented in Example 1.

▶ Example 1 (Linear Program). Take the linear program consisting of the following objective
function

f(x, y) := 7x + y

and the following set of constraints:

2x + y ≤ 5 − x + 2y ≤ 2 1
2x− 1

2y ≤ 1
2 x + y ≥ 1

Using basic transformations to transform the last inequality to one of the form of Inequality 3,
we obtain the following matrix A, and vectors b and c:

A =


2 1
−1 2

1
2 − 1

2
−1 −1

 , b =


5
2
1
2
−1

 , c =
[
7 1

]
(5)

A plot of these inequalities is shown in Figure 1. The marked region (blue) is the region
satisfying all constraints (i.e. feasible). The red line (i.e. equation 7x + y = 15) describes
the objective function going through the point (2, 1) which is the optimal value within the
feasible region and therefore the solution to the linear program described with A, b, and c.

2.2 Duality
The duality principle plays an important role in optimisation problems. It states that any
optimisation problem, that is the primal problem, automatically defines a dual problem.
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Furthermore, a solution to the dual problem is bounded by the solution of the primal problem.
Our algorithm relies on this duality principle.

Since every linear program has a dual, we can write the dual of the Linear Program 4:

minimise bT • yT

subject to: y ·v A =pw c, 0 ≤pw y (6)

Note the switching of b and c in addition to the change from a maximisation to a minimisation
problem. If the original problem is a maximisation problem, then the value (i.e. value of the
optimised function at the optimal point) of the dual problem is an upper bound on the value
of the primal problem. If the primal problem is a minimisation, then the dual provides a
lower bound. In linear programming we know that these values are in fact equal. This is
known as the Strong Duality Theorem (Theorem 2).

▶ Theorem 2 (Strong Duality Theorem). Given linear constraints A, b, and the objective
function c, we obtain x and y as the solutions to the primal and dual linear program,
respectively. We can derive the following equality:

c • x = y • b

To prove the correctness of our algorithm we only require the weak duality theorem, which is
part of the formalisation and will be discussed in Theorem 7.

2.3 Solving Linear Programs
The most common algorithm to solve linear programs is the simplex algorithm. Unlike the
general simplex algorithm this alternative simplex algorithm takes an objective function into
account. However, we use a different approach. Using the duality theorem we can solve linear
programs with the general simplex algorithm. This can be done by solving the constraints
for the primal program (cf. Linear Program 4) and the dual program (cf. Linear Program 6)
simultaneously:

A ·v x ≤pw b, y ·v A =pw c, y ≥pw 0 (7)

Due to the dual program constituting an upper bound, we know any satisfying assignment
to x and y must satisfy x • c ≤ y • b. Now we can add the constraint x • c ≥ y • b to
the Constraints 7. Hence, by solving the following constraint satisfaction problem without
explicitly maximising the objective function, we also solve the linear program:

x • c ≥ y • b, A ·v x ≤pw b, y ·v A =pw c, y ≥pw 0. (8)

Any resulting assignment satisfying the Constraints 8 also satisfies c • x = y • b. Hence, x

solves the Linear Program 4. Furthermore, we also derive that if a solution to the linear
program exists this algorithm will find it, since no sub-optimal solutions get lost by adding
the constraint x • c ≥ y • b.

3 Formalisation

We base our work on two previous formalisation’s which are part of the archive of formal
proofs (AFP). The first is due to Spasić et al. [14, 8] who formalise the simplex algorithm
used for checking the satisfiability of linear constraints. The second one is due to Thiemann
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et al. [15, 16] and is a linear algebra library which allows us to create a relation between
linear polynomials and matrices. All definitions and results in this section can be found in
the formalisation unless specified otherwise.

The formalisation described in [8] provides a sound and complete implementation of the
general simplex algorithm called simplex in Isabelle/HOL. The function simplex has type

constraint list⇒ N list + (N, Q) mapping.

It produces either a variable assignment (N, Q) mapping (variables are modelled as naturals)
satisfying the constraints or an unsatisfiable core (N list). At the current point in time
the simplex algorithm only works on rational numbers. However, due to a change of the
underlying libraries we will also be able to provide results for real numbers. From now on,
we will simply use simplex as a subroutine without further consideration. For further details
on this formalisation we refer to Marić et al.’s work [8].

3.1 Combining Representations
When formalising mathematics it is not uncommon to develop theories that combine existing
definitions and representations. In particular, it is essential to develop methodologies that
allow for switching between representations as some lend themselves better for certain
tasks [6]. In our case we use two different representations for (lists of) linear polynomials.

The first representation is that used by simplex in [8]. Here, linear polynomials are
defined as functions mapping variables to their coefficients. As variables are modelled with
natural numbers, polynomials are functions of type N⇒ Q such that for each polynomial
p the set {x ∈ N. p x ̸= 0} is finite. The second representation is one using vectors and
matrices. In particular, we use the linear algebra library described in [15]. Our motivation for
combining these representations is that the vectors and matrices make stating and proving
some properties easier.

First, we create a mechanism to transform vectors to function type polynomials. To this
end we define a function list_to_lpoly that translates a list to a polynomial.

fun list_to_lpoly where
list_to_lpoly cs =

sum_list (map2 (λi c. monom c i) [0.. < length cs] cs)

This function first creates a list of monomials where the index i is the vector and cs!i is the
coefficient of variable i. Subsequently, we simply sum this list to obtain the function type
polynomial. Now we get a function that creates linear polynomials from vectors:

vec_to_lpoly v = list_to_lpoly (list_of_vec v)

Going the other direction is a little bit more difficult. First, we define the dimension of a
function-type polynomial p to be 0 if it is the zero polynomial and n if p (n− 1) ̸= 0 and
∀i ≥ n. p i = 0. Using the vector constructor vec we define a function which transforms a
linear polynomial into a vector;

lpoly_to_vec p = vec (dim_poly p) (coeff p)

The curried function coeff p is a function that given i ∈ N returns the coefficient of i in the
polynomial p.

The most important result of combining these representations of polynomials is Theorem 3.
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▶ Theorem 3 (vec_to_lpoly and lpoly_to_vec are (almost) inverses). For any arbitrary
linear polynomial p the equation

(vec_to_lpoly (lpoly_to_vec p)) = p

holds. Since we lose information about the dimension of the original vector v if v ends in a
sequence of zeroes we can only show the following two results:

lpoly_to_vec (vec_to_lpoly v) $ i = v $ i

dim (lpoly_to_vec (vec_to_lpoly v))) ≤ dim v.

Building on these definitions we also define the functions matrix_to_lpolies and lpolies_-
to_matrix which translate a matrix to a list of linear polynomials and vice versa. Having
these two ways of representing linear polynomials we now use the vector/matrix representation
for the remainder of the paper.

3.2 Creating Systems of Constraints

For the algorithm, we need to be able to create and solve a system of constraints as described
in the Constraints as displayed in (8). Since we use the simplex subroutine as a solver,
we only need to worry about creating the system of constraints. The Constraints in (8)
describe two different vectors x and y with different constraints and a single intersection at
the Constraint x • c ≥ y • b. Since simplex only allows for the creation of a single solution
of type (N, Q) mapping, we need to synthesise the vectors x and y in certain positions in
this mapping. Hence, we introduce several definitions that allow for the creation of such
constraints.

We know that the vector x has to be of length dim c and the vector y of length dim b.
Assuming that the simplex subroutine terminates successfully with a resulting mapping SOL
as a SOLution, we create constraints such that the first dim c elements in SOL constitute the
vector x and the elements SOL[dim c] to SOL[dim c+dim b−1] the vector y.

First, we encode the constraint y ≥pw 0. To keep this as modular as possible we introduce
the function from_ind_geq.

fun from_ind_geq :: N⇒ vector ⇒ constraint list where
from_ind_geq ix v = [pi+ix ≥ vi. i ∈ [0.. < dim v]]

This allows us to specify a starting index i and a vector v, such that for all j < dim v,
SOL[i+j] ≥ vi. Therefore, given that we synthesise y in the second part of SOL the constraint
y ≥pw 0 can be expressed as the following:

from_ind_geq (dim c) 0dim b
v

Next, we tackle the two sets of constraints A ·v x ≤pw b and y ·v A =pw c. We will leverage
the fact that y ·v A = AT ·v yT in order to better represent the latter constraint. Since the
two constraints are independent of each other, that is x and y do not interfere, we first
introduce a way of stating them simultaneously. For that we introduce Definition 4. Note
that this is a special case of a block diagonal matrix.
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▶ Definition 4 (Two block non interference). Given two matrices Am×n and Ba×b we define
a matrix two_block_non_interfere,

two_block_non_interfere A B =



A11 . . . A1n

...
. . .

... 0
Am1 . . . Amn

B11 . . . B1b

0
...

. . .
...

Ba1 . . . Bab


Using this definition we can show that matrix/vector multiplication of the first col A elements
with A is independent from the multiplication of the last col B elements with B. This
notion is captured with Theorem 5.

▶ Theorem 5. Given matrices Am×n and Ba×b and let x and y be n and b dimensional
vectors respectively. Then we can show:

two_block_non_interfere A B ·v (x @v y) = (A ·v x) @v (B ·v y)

In order to state the constraints A ·v x ≤pw b and AT ·v yT =pw c simultaneously we create
the following matrix:

two_block_non_interfere A AT =



A11 . . . A1n

...
. . .

... 0
Am1 . . . Amn

A11 . . . Am1

0
...

. . .
...

A1n . . . Amn


Using matrix_to_lpolies we can translate this matrix to a list of polynomials L. Then,
the list of constraints A ·v x ≤pw b can be generated with:

[ L!i [≤] b $ i . i← [0..<dim b] ]

The second list of constraints AT ·v yT =pw c is:

[ L!i [=] (b @v c) $ i . i← [dim b..<dim b + dim c] ]

Combining these definitions we obtain the following Isabelle function which given a matrix
A, and vectors b, c generates a list of constraints modelling A ·v x ≤pw b and AT ·v yT =pw c.

fun mat_leq_eqc where
mat_leq_eqc A b c =

let lst =
matrix_to_lpolies (two_block_non_interfere A AT )

in
[ lst!i [≤] b $ i . i← [0..<dim b] ] @
[ lst!i [=] (b @v c) $ i . i← [dim b..<dim b + dim c] ]

Due to the use of two_block_non_interfere and by Theorem 5 the vectors x and y are
generated in the correct positions.

Finally, we are left with the only constraint where x and y interfere, x • c ≥ y • b.
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fun xc_geq_yb where
xc_geq_yb c b =

vec_to_lpoly (c @v 0dim b
v ) [≥] vec_to_lpoly (0dim c

v @v b)

This constraint ensures that after extracting x and y from the solution mapping the following
condition holds (n = dim c and m = dim b):

[c0, . . . cn−1, 00, . . . , 0m−1] • (x @v y) ≥ [00, . . . , 0n−1, b0, . . . , bm−1] • (x @v y)

This precisely corresponds to the constraint x • c ≥ y • b. Now we have defined all the
functions necessary to generate the System of Constraints 8 by concatenating the lists:

[xc_geq_yb c b] @ (mat_leq_eqc A b c) @ (from_ind_geq (dim c) 0dim b
v ) (9)

Solving this list of constraints with the simplex procedure yields a mapping SOL of N to Q.
Using a simple split function split_nm (dim c) (dim b) SOL we obtain the pair of vectors
(x, y) which satisfy the Constraints 9 and in turn 8.

3.3 Abstract Linear Programming
Having described a way of expressing the constraints in our setting, we now take a look
at linear programming from an abstract point of view. That is, we will define necessary
definitions and derive results that we use to formally prove the correctness of our algorithm.

First, we define the abstract notions of satisfying assignments for the primal and dual
problems.

definition sat_primal A b = {x. A ·v x ≤pw b}
definition sat_dual A c = {y. y ·v A =pw c ∧ y ≥pw 0}

In addition we define the notion of optimality.

definition optimal_LP f S c = {x ∈ S. (∀y ∈ S. f (y • c) (x • c))}

Here f is a function of type α ⇒ α ⇒ B which usually defines an order, S is a set
of polynomials to optimise over, and c is the objective function represented as a vector.
Combining these we get the maximisation problem max_LP

optimal_LP (≤) (sat_primal A b) c

and its dual minimisation problem min_LP

optimal_LP (≥) (sat_dual A c) b.

Next we want to prove the weak duality theorem for max_LP and min_LP. To this end we
first create an abstract environment using Isabelle’s locale mechanism [2] which also allows
us to state assumptions:

locale abstract_LP =
fixes A b c

assumes A ∈ Fm×n and b ∈ Fm and c ∈ Fn

Note that since we are only conducting abstract reasoning without a concrete algorithm
yet, we do not restrict ourselves to Q or R. Furthermore, the underlying type-class of F is
a linearly ordered commutative semiring. Within this environment we can prove Lemma 6
and Theorem 7. The proof of the former can be found in the formalisation under the name
weak_duality_aux.
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▶ Lemma 6. If x and y are solutions to the primal and dual problem respectively, then

c • x ≤ b • y.

▶ Theorem 7 (Weak Duality Theorem). If x ∈ max_LP and y ∈ min_LP then we can show

x • c ≤ y • b.

Proof. From the definition of max_LP we know that A ·v x ≤pw b. And since we also know
that y ≥pw 0 (from min_LP), we can show y ·v A ·v x ≤ y • b. Furthermore, from the definition
of min_LP we have y ·v A =pw c and hence c • x = y ·v A ·v x. Putting these together we
get, c • x = y ·v A ·v x ≤ y • b. Note that the assumptions in the locale guarantee that
the dimensions of the vectors/matrices are correct and allow for the dot product to be
commutative, thus proving x • c ≤ y • b. ◀

3.4 Final Algorithm
With the necessary definitions and results we are now able to describe the algorithm and
prove its soundness. As explained above we will be using the general simplex algorithm
simplex which has previously been formalised and proven correct within Isabelle. With
simplex as a subroutine we write the following function.

fun create_optimal_solution where
create_optimal_solution A b c =

let cs =
[xc_geq_yb c b] @
mat_leq_eqc A b c @
from_ind_geq (dim c) 0dim b

v

in
case simplex cs of
| Unsat S ⇒ Unsat S

| Sat S ⇒ Sat (split_nm (dim c) (dim b) S)

We first create a list of constraints cs which describes the System of Constraints 8 (cf.
Listing 9). Subsequently, we use the general simplex algorithm simplex to obtain an
arbitrary variable assignment that satisfies the constraints cs. If a satisfying assignment
exists, we split the resulting assignment and create a pair of vectors (x, y) where x and y

satisfy the System of Constraints 8. It is important to note that this algorithm assumes the
inputs A, b, and c to be of the right dimensions (i.e. the dimensions assumed in the locale
abstract_LP). Furthermore, since this is now a concrete algorithm the elements of A, b, and
c are assumed to be rational numbers again.

Finally, in order we get a general algorithm without having to rely on the locale assump-
tions, we simply add a check for the dimensions of the input and if this fails we return None
and otherwise the result of create_optimal_solution.

fun maximize where
maximize A b c =

if dim b = row A ∧ dim c = row A then
Some (create_optimal_solution A b c)

else
None
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With this algorithm we prove the following theorem without any locale assumptions, that is
without any assumptions outside the one specifically stated.

theorem soundness
assumes maximize A b c = Some (Sat (x, y))
shows x ∈ max_lp A b c

Proof. Since the result is Some (Sat (x, y)) we know the dimensions of the input were correct.
From the constraints created in create_optimal_solution we know that for x, the following
constraints hold:

A ·v x ≤pw b

Therefore, by the definition of sat_primal we have x ∈ sat_primal A b. Conversely, for y

we have:

y ·v A =pw c and y ≥pw 0

Now, by definition of sat_dual we have y ∈ sat_dual A c. From Theorem 7 we derive that
no matter if x or y optimise their respective objective function, as long as x ∈ sat_primal A b

and y ∈ sat_dual A c the inequality x • c ≤ y • b must hold. Finally, due to xc_geq_yb c b

we also have that x and y must satisfy x • c ≥ y • b. Combining these we get x • c = y • b.
By Lemma 6 all v ∈ sat_primal A b must obey v • c ≤ y • b, leading to v • c ≤ x • c. Hence,
x is optimal, that is x ∈ max_lp A b c. ◀

4 Code Generation and Examples

Using Isabelle’s code generation mechanism [7] we can generate code for the maximize
function. Isabelle by default allows for the generation of code in Haskell, SML, OCaml, and
Scala. Using this generated code we get the function maximize in the objective language.
Using Haskell, as an example1, we can implement a simple parser to create a program that
takes a matrix and two vectors as input and calculates the solution to this linear program
using maximize:

solveLP :: (String, String, String) -> Maybe ([Nat]+(Vec Rat))
solveLP (a, b, c) = maximize matA vecB vecC where

matrix = parseMatrix a
mRows = (nat_of_int (maximum (map length matrix)))
matA = mat_of_cols_list mRows matrix
vecB = parseListToVec b
vecC = parseListToVec c

The compiled Haskell program can be used to solve Example 1 with the Constraints 5 as
input. The result is the vector [2 1]. Hence 7 ∗ 2 + 1 ∗ 1 = 15 is the maximum value. An
example closer to our intended application is Example 8.

▶ Example 8 (Solving Rock Paper Scissors). The commonly known game of Rock-Paper-
Scissors can be modelled with the following payoff matrix:

1 Any of the aforementioned languages could be used.
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Rock Paper Scissors
Rock 0 -1 1
Paper 1 0 -1
Scissors -1 1 0

This payoff matrix is to be interpreted as follows: If player one (rows) plays paper and player
two (columns) plays rock then the payoff for player one has a payoff of 1 meanwhile player
two has the payoff of −1 (i.e. player one wins and player two loses). Since the sum of the
payoffs always equals 0, this is a zero sum game. Encoding the strategies rock, paper, and
scissors, in x1, x2, and x3 we can encode this game into the following linear program:

maximise u

subject to: u ≤ −x2 + x3

u ≤ x1 − x3

u ≤ −x1 + x2

x1 + x2 + x3 = 1
0 ≤ x1, 0 ≤ x2, 0 ≤ x3 (10)

The first three constraints encode the payoff matrix where u is the payoff (i.e. utility). Hence,
u ≤ −x2 + x3 implies that the payoff u cannot be higher than the sum of the utilities for
playing rock combined (0, −1, 1). Similarly, we encode the other strategies. The last two
lines of constraints ensure that the resulting assignment is a probability distribution over
{x1, x2, x3}. After transforming these to matrix form we can use the extracted program to
calculate the following vector:

[0,
1
3 ,

1
3 ,

1
3 ]

Meaning the expected payoff of playing the optimal strategy is 0, and the optimal strategy is
the mixed strategy of playing x1, x2, and x3 with equal probability ( 1

3 ). Hence, playing rock,
paper, or scissors each with a probability of 1

3 is the optimal strategy of this game.

For small game theory examples such as Example 8 the generated algorithm performs well
and produces a result instantly. However, we did not tamper with the underlying formalisation
of the simplex algorithm [14] which famously has exponential worst case complexity but
behaves well most of the time. Hence our algorithm exerts the same asymptotic complexity
as the underlying general simplex algorithm. However, since we introduce different kinds
of constraints the number of constraints roughly doubles. Neither our reduction nor the
underlying algorithm was formalised with efficiency or competitiveness in constraint solving
in mind. Hence, we did not conduct any experiments comparing the generated code with
existing off the shelf constraint solvers.

5 Conclusion and Future Work

We presented the formalisation of an algorithm for solving linear programs. This work is
based on previous formalisation’s of the general simplex algorithm as well as a matrix library.
The previous formalisation only considers the satisfaction of linear constraints and does
not allow for optimising an objective function. We improved upon this by incorporating
optimisation. Linear programming (i.e. linear optimisation) has many applications in many
different fields. In our case the motivation is its use in game theory where linear programming
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can be used to solve two player zero-sum games. In this paper we present a formalisation of
an algorithm that solves linear programs as well as some results derived from it. Furthermore
the algorithm is described in such a way that Isabelle’s code generation mechanism can
be used to generate executable code providing a verified solver for linear programs. The
formalisation is part of the Archive of Formal Proofs [12].

Although the algorithm is formally proven to be sound within the proof assistant, a
completeness proof is sketched in this paper but does not exist in a formalised manner, yet.
We leave this for future work. Furthermore, we plan on using this formalisation to produce
a verified solver for zero-sum two player games as part of a game theory [11] formalisation
effort.
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