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SQUARE PATTERNS IN DYNAMICAL ORBITS

VEFA GOKSEL AND GIACOMO MICHELI

ABSTRACT. Let q be an odd prime power. Let f ∈ Fq[x] be a polynomial having degree at

least 2, a ∈ Fq, and denote by fn the n-th iteration of f . Let χ be the quadratic character

of Fq , and Of (a) the forward orbit of a under iteration by f . Suppose that the sequence

(χ(fn(a)))n≥1 is periodic, and m is its period. Assuming a mild and generic condition on f ,

we show that, up to a constant, m can be bounded from below by |Of (a)|/q
2 log2(d)+1

2 log2(d)+2 . More

informally, we prove that the period of the appearance of squares in an orbit of an element

provides an upper bound for the size of the orbit itself. Using a similar method, we can also

prove that, up to a constant, we cannot have more than q
2 log2(d)+1

2 log2(d)+2 consecutive squares or non-

squares in the forward orbit of a. In addition, we provide a classification of all polynomials for

which our generic condition does not hold.

1. INTRODUCTION

Let K be a field, and f ∈ K[x] a polynomial with d := deg(f) ≥ 2. We denote by fn

the iterates of f by self-composition, where f 0 = x, and fn := f ◦ fn−1 for n ≥ 1. One

fundamental object in dynamics is forward orbit of an element a ∈ K, which is given by the

set

Of (a) = {a, f(a), f 2(a), . . . }.
When this set is infinite, a is called wandering point of f . When this set is finite, a is called a

preperiodic point of f . The latter case comes in two flavors: a is called periodic if fn(a) = a
for some n ≥ 1, and the smallest such positive integer n is called the exact period of a. If

fm+n(a) = fm(a) for some smallest non-negative integersm,n, then a is called a preperiodic

point of period n and tail size m.

There has been a lot of work on the orbit of an element a ∈ Fq under a polynomial map.

See, for instance, [1, 4, 7, 11, 13, 16, 18, 19, 22] for a limited list. See also [5] for a general

overview of the dynamics over finite fields. This subject attracts researchers not only because

of its theoretical interest, but also because of its applications to Pollard rho algorithm for

factoring [2].

In this paper, we have two main results on dynamical orbits. They concern dynamical orbits

over finite fields and the occurrence of squares in dynamical orbits. In particular, we are able

to bound the size of a dynamical orbit in terms of the period of its square elements, and also

to prove that the number of consecutive squares in a dynamical orbit cannot be large.

Note that in the special scenario that the entire orbit consists of non-square elements and

the polynomial is stable (i.e. all of its iterates are irreducible), a version of this problem was

studied in [18].

Our main results concerning dynamical orbits over finite fields are the following.
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Theorem 1.1. Let q = pk for some odd prime p and k ≥ 1, and let d := deg(f) ≥ 2. Suppose

that f ∈ Fq[x] is not in one of the following forms.

(a) f = A(x−B)p
e

for some A,B ∈ Fq, e ≥ 1.

(b) f = Ag2 for some A ∈ Fq, g ∈ Fq[x].
(c) f = Axg2 for some A ∈ Fq, g ∈ Fq[x].
(d) f = Ah2 +B, where A,B ∈ Fq, and h =

∑n

i=0 aix
i satisfies

a0 = ±
√

−B
A
, i(2i− 1)Bai = −2(n+ i− 1)(n− i+ 1)ai−1

for i ∈ {1, 2, . . . , n}.

(e) f = A(x−B)g2, where A,B ∈ Fq, and g =
∑n

i=0 aix
i satisfies

±a0 =
√

− 1

A
, i(2i− 1)Bai = −2(n− i+ 1)(n+ i)ai−1

for i = 1, 2, . . . , n.

Let a ∈ Fq. Suppose that the sequence (χ(fn(a)))n≥0 is periodic, and let m := ma be its

period. Then

|Of(a)| = O
(

mq
2 log(d)+1
2 log(d)+2

)

,

and the implied constant is only dependent on d.

Remark 1.2. Two families of polynomials in parts (d) and (e) of Theorem 1.1 arise from

solutions of certain second order, linear differential equations (see (8) and (18)). Perhaps

interestingly, if p ≥ d, they can be proven to be Fq-conjugate to (−1)dTd(x), where Td is the

Chebyshev polynomial of degree d. See Proposition 3.3 and Proposition 3.6.

Roughly speaking, Theorem 1.1 implies that if the orbit is large, then the sequence of

squares cannot obey a recurrence of low order. For example, if all elements in Of (a) are

squares (so m = 1), and f has degree 2, then we have |Of (a)| = O(q
3
4 ). See Section 4 for

more details.

Moreover, we can also prove a bound on the number of consecutive squares of the forward

orbit of any element of Fq, and for any polynomial f that is not in one of the exceptional

classes listed in Theorem 1.1.

Note that when we say n “consecutive elements in Of (a)”, we mean n elements in Of (a)
which are of the form f i(a), f i+1(a) . . . , f i+n−1(a) for some i ≥ 0.

Theorem 1.3. Let q = pk for some odd prime p and k ≥ 1, and let d := deg(f) ≥ 2. Suppose

that f ∈ Fq[x] is not in one of the forms listed in (a)-(e) of Theorem 1.1. Let a ∈ Fq. Then the

longest sequence of consecutive squares (or non-squares) in Of (a) has length O
(

q
2 log(d)+1
2 log(d)+2

)

,

where the implied constant is only dependent on d.

The explicit forms of polynomials which are excluded from the statements of Theorem 1.1

and Theorem 1.3 come from the classification of polynomials over finite fields whose iterates

satisfy a generic factorization property, which we now define.

Definition 1.4. Let K be a field. A polynomial f ∈ K[x] of degree at least 2 is called

dynamically ordinary if for all n ≥ 1, there exists an irreducible factor gn ∈ K[x] of fn such

that gn does not divide f i for any 0 ≤ i < n. More generally, for any i ≥ 1, f is called
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dynamically i-ordinary if there exists such gn with multiplicity mn such that i ∤ mn for all

n ≥ 1.

For example, if for all n ≥ 1, fn has an irreducible factor gn ∈ K[x] with odd multiplicity

such that gn ∤ f i for any 0 ≤ i < n, then f becomes dynamically 2-ordinary.

We chose the terminology dynamically ordinary as such for the following reason: Based on

the existing results and conjectures in the area (see, for instance, [15, Conjecture 1.2]), almost

all polynomials are expected to satisfy a stronger property called eventual stability, which

means that the number of irreducible factors of iterates of f stabilizes after some n. We note

that there is very little known about this conjecture, and it appears out of reach in most cases.

See [8, 9, 15] for some partial results.

In this work, we proved new results about dynamically ordinary/2-ordinary polynomials

over a general field K (see Proposition 2.6, Theorem 2.3, Theorem 3.2 and Theorem 3.4),

which lead to a complete classification of dynamically 2-ordinary polynomials when K is a

finite field odd characteristic.

Theorem 1.5. Let Fq be a finite field and f ∈ Fq[x] a polynomial with deg(f) = d ≥ 2. Let

char(Fq) = p for some odd prime p. Then, f is not dynamically 2-ordinary if and only if one

of the following conditions hold:

(a) f = A(x−B)p
e

for some A,B ∈ Fq, e ≥ 1.

(b) f = Ag2 for some A ∈ Fq, g ∈ Fq[x].
(c) f = Axg2 for some A ∈ Fq, g ∈ Fq[x].
(d) f = Ah2 +B, where A,B ∈ Fq, and h =

∑n

i=0 aix
i satisfies

a0 = ±
√

−B
A
, i(2i− 1)Bai = −2(n+ i− 1)(n− i+ 1)ai−1

for i ∈ {1, 2, . . . , n}.

(e) f = A(x−B)g2, where A,B ∈ Fq, and g =
∑n

i=0 aix
i satisfies

±a0 =
√

− 1

A
, i(2i− 1)Bai = −2(n− i+ 1)(n+ i)ai−1

for i = 1, 2, . . . , n.

The structure of the paper is as follows: In Section 2, we classify all dynamically ordinary

polynomials over finite fields. We then use the results of Section 2 to classify all dynamically

2-ordinary polynomials over finite fields odd characteristic in Section 3. Finally, in Section 4,

we use our results on dynamically 2-ordinary polynomials together with Weil’s bound for

character sums to prove Theorem 1.1 and Theorem 1.3.

Acknowledgements. We thank Rob Benedetto for helpful comments related to the material

in this paper. We also thank Andrea Ferraguti for a helpful feedback on an earlier draft of the

paper. G.Micheli was partially supported by NSF grant number 2127742.

2. DYNAMICALLY ORDINARY POLYNOMIALS

Let K be a field. Recall that we call a polynomial f ∈ K[x] dynamically ordinary if for

all n ≥ 1, there exists an irreducible factor gn of fn such that gn ∤ f i for any 0 ≤ i < n. In

this section, we will first give a sufficient condition for a polynomial of degree at least 2 over
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a general field to be dynamically ordinary, and then will use this to classify all dynamically

ordinary polynomials over finite fields.

Our first result gives a sufficient condition for a polynomial to be dynamically ordinary over

a finite field. For n ≥ 0 and α ∈ K, define the set Rn,α(f) by

Rn,α(f) = {β ∈ Fq |fn(β) = α}.
We first recall that the preimages of a point α ∈ K under iteration by f lead to an infinite

rooted tree, which is a fundamental object of study in arithmetic dynamics. The presence of

this tree structure will be convenient for our purposes as well.

Definition 2.1. Let K be a field, and f ∈ K[x] a polynomial with deg(f) = d ≥ 2. Let

α ∈ K . Define the set Tα(f) by the disjoint union

Tα(f) = ⊔∞
i=0Ri,α(f).

Tα(f) has a natural tree structure, as follows: For any i ≥ 0, draw an edge between β ∈
Ri+1,α(f) and θ ∈ Ri,α(f) if and only if f(β) = θ. We call Tα(f) f -preimage tree of α.

We say that Tα(f) is repeating if there exist distinct non-negative integers n,m such that

Rn,α(f) ∩Rm,α(f) 6= ∅.

Lemma 2.2. Let K be a field and f ∈ K[x] a polynomial with deg(f) = d ≥ 2. Let α1, α2 be

distinct roots of f . Suppose that Tα1(f) is repeating. Then Tα2(f) is not repeating. Moreover,

0 is periodic, 0 ∈ Tα1(f), and 0 6∈ Tα2(f).

Proof. Suppose for the sake of contradiction that the trees Tα1(f) and Tα2(f) are both repeat-

ing. Thus, for any j ∈ {1, 2}, there exist two positive integers mj , nj , with mj < nj such that

Rnj−1,αj
(f) ∩ Rnj−mj−1,αj

(f) 6= ∅. Let βj ∈ Rnj−1,αj
(f) ∩ Rnj−mj−1,αj

(f).
This forces that

(1) fnj(βj) = fnj−mj (βj) = 0.

Using (1) immediately yields

0 = fnj(βj) = fmj (fnj−mj (βj)) = fmj (0),

thus 0 is periodic with period dividing mj . By definition of βj and using (1), we obtain

(2) αj = fnj−1(βj) = fmj−1(fnj−mj (βj)) = fmj−1(0).

We now let t be the exact period of 0. It follows that mj = tkj . Combining this with (2), we

obtain

αj = fmj−1(0) = f tkj−1(0) = f t−1(f t(kj−1)(0)) = f t−1(0),

where we used the fact that 0 has exact period t in the last equality. Since t does not depend

on j, this forces α1 = α2, which is a contradiction. From this we also deduce that 0 cannot lie

in Tα2(f), or otherwise f t−1(0) = α2 6= α1. �

Proposition 2.3. Let K be a field and f ∈ K[x] a polynomial with deg(f) = d ≥ 2. Suppose

f 6= A(x−B)d for any A,B ∈ K. Then f is dynamically ordinary.

Proof. To prove Proposition 2.3, it suffices to prove the following statement: For any n ≥ 1,

there exist β ∈ Rn,0(f) such that β /∈ Ri,0(f) for i < n. We will now prove this statement.

By assumption on f , the statement clearly holds for n = 1. We can now fix some n ≥ 2.

Note that if α1, α2, . . . , αd ∈ R1,0(f) (not necessarily distinct), we have

Rn,0(f) = f−(n−1)(α1) ∪ f−(n−1)(α2) ∪ · · · ∪ f−(n−1)(αd).
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Since f 6= A(x−B)d, f has at least two distinct roots, so we can use Lemma 2.2 to establish

that there is at least one non-repeating subtree Tα(f) and this subtree does not contain the zero.

Let α′ be any other root of f . We will now show that for every n ≥ 1, Rn,α(f) has roots that

do not appear in Rm,α′(f) for any m < n, and therefore f is dynamically ordinary: Let β be a

root of fn − α and of fm − α′. Then, α = fn(β) = fn−m(fm(β)) = fn−m(α′). By applying

f , we conclude that 0 is periodic. Also, if t is the period of 0 we also get f t−1(0) = α, showing

that 0 is in the subtree Tα(f), which is a contradiction. �

In the rest of the section, we will study the polynomials of the form f = A(x−B)d ∈ K[x].
This will eventually lead to a complete classification of dynamically ordinary polynomials

whenK is a finite field. We start by slightly extending the definition of the notion dynamically

ordinary.

Definition 2.4. Let K be a field, and f ∈ K[x] a polynomial with deg(f) = d ≥ 2. Let

α ∈ K. We say the pair (f, α) is dynamically ordinary if for all n ≥ 1, fn − α has an

irreducible factor in K[x] that does not divide f i − α for i < n. Similarly, we say the pair

(f, α) is dynamically 2-ordinary if for all n ≥ 1, fn − α has an irreducible factor with odd

multiplicity in K[x] which does not divide f i − α for i < n.

Recall that if α = 0, then we simply say f is dynamically ordinary (resp. dynamically

2-ordinary). The following lemma will be crucial in the proof of our next result.

Lemma 2.5. Let K be a field, and f ∈ K[x] a polynomial with deg(f) = d ≥ 2. Let α ∈ K,

and g(x) = ax + b ∈ PGL2(K) such that g(α) = 0. Set h = g ◦ f ◦ g−1. Then, (f, α) is

dynamically ordinary if and only if h is dynamically ordinary.

Proof. For any i ≥ 1, it follows by direct computation that β ∈ Ri,α(f) if and only if g(β) ∈
Ri,0(h).

First assume that (f, α) is dynamically ordinary. For n ≥ 1 and β1, β2, . . . , βk ∈ K, let

gn = An

∏k

j=1(x − βj) ∈ K[x] be an irreducible factor of fn − α such that gn ∤ f i − α for

i < n. Therefore, we have

{g(β1), g(β2), . . . , g(βk)} ⊆ Rn,0(h).

Since β1, β2, . . . , βk cannot lie in Ri,α(f) for i < n, it follows that g(β1), g(β2), . . . , g(βk)
cannot lie in Ri,0(h) for i < n. If we let hn = gn ◦ g−1 ∈ K[x], hn becomes an irreducible

factor of hn which does not divide hi for i < n. This shows that h is dynamically ordinary.

We now assume that h is dynamically ordinary. For n ≥ 1, let hn be an irreducible factor

of hn such that hn ∤ hi for i < n. Similar to the argument in the first part, it follows that the

polynomial gn = hn ◦ g ∈ K[x] is an irreducible factor of fn − α that does not divide f i − α
for i < n. The proof of Lemma 2.5 is now complete. �

We are now ready to give a sufficient condition for a polynomial of the form A(x − B)d

over a general field to be dynamically ordinary.

Theorem 2.6. Let K be a field and f = A(x − B)d ∈ K[x] for some A,B ∈ K, where

d ≥ 2. Suppose B 6= 0. For any positive integer n, set Z0 = A, W0 = −B, Zn = AZd
n−1, and

Wn = AW d
n−1−B. Then f is not dynamically ordinary if and only if the following conditions

hold.

(1) char(K) = p for some prime p, and d = pk for some k ≥ 1.

(2) The sequence Hn = Wn/Zn repeats at least once.
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Remark 2.7. If B = 0, f is trivially not dynamically ordinary. Also note that if char(K) = 0,

Theorem 2.6 implies that any polynomial f ∈ K[x] is dynamically ordinary as long as f is

not of the form Axd.

Proof. We have R1(f) = {B}. Note that f is dynamically ordinary if and only if for all

n ≥ 2, there is β ∈ f−(n−1)(B) with β /∈ f−j(B) for j < n − 1. It follows that f is

dynamically ordinary if and only if (f, B) is dynamically ordinary. Let h = gfg−1, where

g = x − B ∈ PGL2(K). Using Lemma 2.5, we conclude that f is dynamically ordinary if

and only if is dynamically ordinary. A direct calculation yields

h = Axd − B.

Thus, Proposition 2.3 implies that f is dynamically ordinary unless we have

(3) Axd − B = A(x−X1)
d

for some X1 ∈ K. If X1 = 0, then B = 0, which contradicts the hypotheses on f . Therefore,

X1 6= 0. Now, Axd − B has a single root if and only if d = pk is a power of the characteristic

of K. In this case, we have that the n-th iteration of f is Znx
dn +Wn, which has dn

√

−Wn/Zn

as the only root. The claim follows immediately by observing that dn
√

−(·) is a bijection of

K.

�

Since d = pk, we have that dn
√· is a bijection of any finite field of characteristic p. This

allows us to give an explicit classification of dynamically non-ordinary polynomials when K
is finite.

Corollary 2.8. Let Fq be a finite field and f ∈ Fq[x] a polynomial with deg(f) = d ≥ 2.

Let char(Fq) = p. Then, f is not dynamically ordinary if and only if the following conditions

hold:

(1) f = A(x−B)d for A,B ∈ Fq.

(2) d = pe for some e ≥ 1.

Proof. Use Theorem 2.6 with K finite and observe that the sequence Hn is necessarily repeat-

ing. �

3. DYNAMICALLY 2-ORDINARY POLYNOMIALS

Let K be a field. Recall that f is dynamically 2-ordinary if it satisfies the following: For all

n ≥ 1, fn has an irreducible factor gn with odd multiplicity such that gn ∤ f i for any 0 ≤ i < n.

In this section, we will give necessary and sufficient conditions for a dynamically ordinary

polynomial to be dynamically 2-ordinary, which will imply Theorem 1.5 using Corollary 2.8.

We start with a technical lemma, which shows that if a polynomial is not dynamically 2-

ordinary, then its roots must satisfy some strong algebraic conditions. Lemma 3.1 will be

crucial in the proofs of the results in this section.

Lemma 3.1. Let K be a field such that char(K) 6= 2, and f ∈ K[x] be a polynomial with

degree d ≥ 2. Suppose that f is not dynamically 2-ordinary. If d is odd, then f has at most

one root with odd multiplicity in K . If d is even, then there exists a root B of f with odd

multiplicity such that f − B = Ah2 for some h ∈ K[x] and A ∈ K, and f has exactly one

more root with odd multiplicity.
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Proof. First, observe that the problem is purely geometrical, so we can consider the problem

for K algebraically closed. If f is a square, then there is nothing to do. Let α, β be distinct

roots of f appearing with odd multiplicity. Since at most one of the subtrees Tα(f) and Tβ(f)
is repeating by Lemma 2.2, we can assume without any loss that Tβ(f) is non-repeating.

Moreover, the roots z of fn − β can never appear as roots of fm − θ for any root θ 6= β of

f and any m < n, or otherwise we get fm(z) − θ = 0 and fn(z) − β = 0, which forces

fn(z) = β = fn−m(θ) = fn−m−1(0). But then this implies that β is in the orbit of 0 (and 0 is

periodic) which is impossible by Lemma 2.2 (0 cannot be present in a non-repeating subtree).

Therefore, to deny dynamically 2-ordinarity, we need all factors of fn−β to appear with even

multiplicity for some n ≥ 1, which means that fn − β must be a square. This concludes the

proof for the odd degree case, since fn − β has odd degree for n ≥ 1 and therefore can never

be a square. For f of even degree, take now the smallest n ≥ 1 for which fn − β is a square.

Any irreducible factor of fn − β is a divisor of f − βn for some root βn of fn−1 − β. But

now fn−1 − β is not a square, so there exists βn with odd multiplicity so that fn − β factors

as c(f − βn)
2e+1g, where g is coprime to f − βn (because all factors f − γ are coprime for

distinct γ’s) and some c ∈ K. So, f − βn must be a square, say h2. But now being a square

is a geometric condition up to the squareness of the leading term of h, from which we obtain

that f = Ah2 +B for some A,B ∈ K.

We now want to show that B is a root of f . To see this, let α, β be roots of f . Recall that at

least one of the two subtrees Tα(f) or Tβ(f) would be non-repeating by Lemma 2.2. Suppose

that Tβ(f) is non-repeating. Again, the only chance to deny dynamically 2-ordinarity is that

all new factors appear with even degree, from which it follows that fn − β is a square. But

since we are in odd characteristic and f = Ah2 +B, this happens only if B = β.

Now we want to conclude that there is exactly one other root with odd multiplicity. But

this is immediate: Suppose that there are at least three distinct roots other than B with odd

multiplicity. One of them, say α, has to lead to a non-repeating subtree Tα(f). To deny

dynamically 2-ordinarity, we would again need fn−α to be a square for some n ≥ 1. Similar

to the previous paragraph, this forces α = B, a contradiction. Hence, there is exactly one root

with odd multiplicity other than B, completing the proof of Lemma 3.1. �

We are now ready to classify all dynamically ordinary polynomials f ∈ K[x] that are

dynamically 2-ordinary. We will split the question into two cases based on whether deg(f) =
d is even or odd.

Theorem 3.2. Let K be a field such that char(K) 6= 2, and f ∈ K[x] a dynamically ordinary

polynomial with deg(f) = d ≥ 2. Suppose that d is even. Then f is not dynamically 2-

ordinary if and only if f satisfies one of the following conditions:

(1) f = Ag2 for some A ∈ K, g ∈ K[x].
(2) f = Ah2 +B, where A,B ∈ K, and h =

∑n

i=0 aix
i satisfies

a0 = ±
√

−B
A
, i(2i− 1)Bai = −2(n+ i− 1)(n− i+ 1)ai−1

for i ∈ {1, 2, . . . , n}.

Proof. If f = Ag2, f is clearly not dynamically 2-ordinary, so that case can be excluded. Now,

using Lemma 3.1, we conclude that we can restrict to f = Ah2 + B with B a non-zero root

of f . First, we would like to prove that the only other root with odd multiplicity is zero, i.e.

f = Ax(x− B)g2 for some g ∈ K[x].
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As Lemma 3.1 provides, the only admissible form of f isA(x−B)(x−α1)g
2. Now, the pair

(f, α1) cannot be dynamically 2-ordinary, as otherwise f would be dynamically 2-ordinary.

Note that f − α1 = Ah2 + B − α1 cannot be a square because in odd characteristic this is

possible only if α1 = B, which will make f a square as well, contradicting the assumption.

So, consider two distinct roots β1, β2 of f − α1 with odd multiplicity. By Lemma 2.2, we can

assume without any loss that the subtree Tβ2(f) is non-repeating. Similarly to how we argued

in the proof of Lemma 3.1, then, for f to be not dynamically 2-ordinary, fn − β2 must be a

square for some n ≥ 1. But, since f is of the form Ah2 + B and the characteristic is odd, we

again conclude that β2 = B. Hence, B is both a root of f and a root of f − α1, allowing us to

conclude α1 = 0.
Thus, we have

(4) f = Cx(x−B)g2

for some C ∈ K and g ∈ K[x]. Recall that we also have

(5) f − B = Ah2

for some h ∈ K[x]. Taking the derivatives of both equations and simplifying lead to

(6) Cg((2x− B)g + 2x(x− B)g′) = 2Ahh′.

Let ℓg, ℓh be the leading coefficients of g and h, respectively. Using (4) and (5), assume

without loss that
ℓg
ℓh

=
√

A
C

. Note that g and h cannot have any common roots. Set n = d
2
. By

comparing leading coefficients in (6), then, we obtain

(7) g =
1

n

√

A

C
h′.

Using this together with (4) and (5), and simplifying yields

n2(h2 +
B

A
) = x(x− B)(h′)2.

Differentiating both sides gives

(8) 2n2h = (2x−B)h′ + 2x(x−B)h′′.

This is a second order, linear differential equation. Let h =
∑n

i=0 aix
i, which gives h′ =

∑n−1
i=0 (i+1)ai+1x

i. Comparing the coefficients of both sides in (8) and simplifying yields the

formula

(9) i(2i− 1)Bai = −2(n+ i− 1)(n− i+ 1)ai−1

for i = 1, 2, . . . , n. Recalling f(0) = 0 and by comparing constant coefficients of both

sides in (5), we also have a0 = ±
√

−B
A

, completing the proof of only if direction. Finally,

conditions (1) and (2) clearly imply that f is not dynamically 2-ordinary, finishing the proof

of Theorem 3.2. �

Next, we will show that the polynomials arising in Theorem 3.2 (2) are K-conjugate to Td
when char(K) = 0 or char(K) ≥ d, where Td is the Chebyshev polyomial of degree d.
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Proposition 3.3. Let K be a field such that either char(K) = 0 or char(K) ≥ d and char(K)
is odd. Suppose that f ∈ K[x] is defined as follows: f = Ah2 + B, where A,B ∈ Fq, and

h =
∑n

i=0 aix
i satisfies

a0 = ±
√

−B
A
, i(2i− 1)Bai = −2(n+ i− 1)(n− i+ 1)ai−1

for i ∈ {1, 2, . . . , n}. Then f is K-conjugate to Td(x).

Proof. Let bi :=
ai
a0
Bi

√
−1. Recalling a0 = ±

√

−B
A

, this immediately yields

f = B

(( n
∑

i=0

bi
( x

B

)i

)2

+ 1

)

,

which we observe being independent of A, so we can select A = −2 without changing f .

Since we only consider the question up to linear conjugacy, and f is K-conjugate to g :=
(
∑n

i=0 bix
i)2 + 1 for any choice of B (by γ(x) = Bx ∈ PGL(2, K)), we conclude that B can

be freely chosen and this does not affect the conjugacy class of f .

Recall from the proof of Theorem 3.2 that the polynomial h is a solution of the differential

equation

2n2h = (2x−B)h′ + 2x(x−B)h′′.

Reorganizing and simplifying, we obtain

((x−B/2)2 − (B/2)2)h′′ + (x− B/2)h′ − n2h = 0.

We now specialize to B = 2, which yields

((x− 1)2 − 1)h′′ + (x− 1)h′ − n2h = 0.

This is the defining differential equation of the Chebyshev polynomial Tn(x) shifted by 1.

By the form of the solutions of the differential equation and the assumption on char(K), it

is clear that the polynomial solution is unique up to a constant multiple. Hence, we obtain

h(x) = CTn(x − 1) for some C ∈ K. Remember that we fixed A = −2, so using this h in

the expression f = −2h2 +B, then, we get

(10) f = −2(CTn(x− 1))2 + 2

Note that the constant coefficient of Tn(x− 1) is Tn(−1) = 1. Hence, −2C2 + 2 = 0, which

forces C = ±1.Using this in (10), we obtain

f = −2(Tn(x− 1))2 + 2.

Observe that f is K-conjugate to −2(Tn(x))
2 + 1. Now, noticing that T2(x) = −2x2 + 1,

it follows that f is K-conjugate to T2 ◦ Tn = T2n, where the last equality is a well-known

identity. (see [20, Pg. 329, Proposition 6.6]) This completes the proof of Proposition 3.3. �

Theorem 3.4. Let K be a field such that char(K) 6= 2, and f ∈ K[x] a dynamically ordinary

polynomial with deg(f) = d ≥ 2. Suppose that d is odd. Then f is not dynamically 2-ordinary

if and only if f satisfies one of the following conditions:

(1) f = Axg2 for some A ∈ K, g ∈ K[x].



10 GOKSEL AND MICHELI

(2) f = A(x−B)g2, where A,B ∈ K, and g =
∑n

i=0 aix
i satisfies

±a0 =
√

− 1

A
, i(2i− 1)Bai = −2(n− i+ 1)(n+ i)ai−1

for i = 1, 2, . . . , n.

Proof. Again, we reason over the algebraic closure of K, as the problem is completely equiv-

alent. Suppose that f is not dynamically 2-ordinary. Since f is clearly not dynamically 2-

ordinary when condition (1) holds, we can assume without any loss that f is not of the form

Axg2. Using Lemma 3.1 we recall that f has at most one root B with odd multiplicity.

If TB(f) were a non-repeating subtree, we can argue similarly to the proof of Lemma 3.1

to conclude that f is dynamically 2-ordinary. Hence, TB(f) is repeating, 0 lies in TB(f), and

0 is a periodic point of f by Lemma 2.2.

Let α1 be a root of f − B appearing with odd multiplicity. Then f − B = A(x − α1)k
2

because otherwise there would be at least one root α of f −B with odd multiplicity such that

Tα(f) is non-repeating, from which we can again conclude that f is dynamically 2-ordinary.

Let us now show that α1 = 0, so that the full orbit of 0 is {0, B}. To do this, we need to

observe some facts about ramification of the covering of P1 induced by f .

From the first paragraph, we have f = A(x− B)g2 for some A,B ∈ K. Note that g and k
cannot have a common root (unless B is zero, which was excluded earlier). Now, if g or k has

a root with multiplicity larger than or equal to 2, using abc theorem for function fields on the

triple (f,−f − B,B) gives a contradiction:

deg(f) ≤ ((d− 1)/2 + 1) + ((d− 1)/2− 1 + 1)− 1 = d− 1.

So g and k have all distinct roots and no common root.

Now consider the covering given by the map f on P1: Looking at all roots of k and g, we

observe that it has at least d−1 branch points over ramified image values (because these are in

correspondence with the zeroes of f ′), so we exhausted ramification at finite points (because

g, h are coprime) and for all other finite β we must have f − β unramified. This means that

there cannot be an α2, different from B and α1, for which f − α1 = (x − α2)g
2 (again, g

cannot have roots in common with h or k, or f is not a well defined map).

Now we are ready to prove that α1 = 0. Suppose the contrary. Recall that B is at the first

level, and α1 is at the second level of the tree (since the image of α1 is B). Since we exhausted

ramification with the preimages of 0 and B, we are sure that f − α1 has no repeated root. We

can now see that the zero can only lie in one subtree rooted at one of roots of f − α1, because

otherwise if it is in two of them then f−α1 would have repeated roots: Since 0 is periodic and

α1 is in the orbit of zero (because by assumption Tα1(f) is repeating, hence 0 ∈ Tα1(f)), the

appearence of 0 in two distinct subtrees (each rooted at a root of f −α1) at distance t from α1

for some t ≥ 1 would guarantee that f t−1(0) is a double root for f −α1. By Lemma 2.2, then,

at most one of the subtrees rooted at roots of f − α1 would be repeating. Let θ be a root of

f − α1 such that Tθ(f) is non-repeating. Note that B is a root of f with odd multiplicity that

does not appear earlier in the tree, and α1 is also such a root of f 2. For n ≥ 3, considering the

roots of f (n−2) − α1 (which are clearly roots of fn) that lie in Tθ(f) would lead to roots of fn

with multiplicity one which do not appear at any previous level. Therefore, f is a 2-ordinary

polynomial, a contradiction. We conclude α1 = 0.
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From the facts that α1 = 0 and 0 is periodic, we conclude that f(0) = B, which leads to

the following equations for f :

(11) f = A(x− B)g2

and

(12) f − B = Cxh2

for some A,B,C ∈ K, g, h ∈ K[x]. Taking the derivatives of both equations and simplifying

leads to

(13) Ag(g + 2(x− B)g′) = Ch(h+ 2xh′).

Noticing that g and h cannot have common factors, and that deg(g) = deg(h), and (hence)

deg(g + 2(x−B)g′) = deg(h + 2xh′)

by (13), we obtain

(14) g = D(h+ 2xh′), h = E(g + 2(x− B)g′)

for some D,E ∈ K. Set n = d−1
2

. Using (11) and (12), we can assume without any loss that

ℓg
ℓh

=
√

C
A

. Using this in (13), direct computation leads to

(15) D =
1

2n+ 1

√

C

A
,E =

1

2n + 1

√

A

C
.

Using these expressions for D and E in (14), we obtain

(16) (2n+ 1)g =

√

C

A
(h+ 2xh′)

and

(17) (2n+ 1)h =

√

A

C
(g + 2(x−B)g′).

Using (17) in (16), and simplifying yields

(18) ((2n+ 1)2 − 1)g = (8x− 2B)g′ + (4x2 − 4Bx)g′′,

which is a second order, linear differential equation. Let g =
∑n

i=0 aix
i. Comparing the

coefficients of both sides in (18) and simplifying leads to

(19) i(2i− 1)Bai = −2(n− i+ 1)(n+ i)ai−1

for i = 1, 2, . . . , n. Finally, recalling that f(0) = B, and using this in (11) gives g(0) = a0 =

±
√

− 1
A

, completing the proof of only if part of the theorem.

Conversely, by the first part of the proof, conditions (1) and (2) clearly imply that f is not

dynamically 2-ordinary, finishing the proof of Theorem 3.4. �

Proof of Theorem 1.5. This now immediately follows from Corollary 2.8, Theorem 3.2, and

Theorem 3.4.

�
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Next, we will show that the polynomials arising in Theorem 3.4 (2) are K-conjugate to −Td
when char(K) = 0 or char(K) ≥ d. We will first state a lemma, which will be crucial in the

proof. From now on, we will use another normalization of Chebyshev polynomials, given by

T̃d(x) =
1
2
Td(2x). By following the notation in [10], let ψ1(x) = x− 2, ψ2(x) = x+ 2, and

ψn(x) =
∏

gcd(k,n)=1
0<k<n

2

(

x− 2 cos(
2πk

n
)

)

for n > 2. It is easy to see that ψn has integer coefficients for all n ([10, Theorem 2.1]).

Therefore, the polynomials ψn can be taken over any field.

Lemma 3.5 ([10]). Let d ≥ 1 be odd. Then we have

(1) T̃d(x)− 2 = ψ1(x)

(

∏

k|d
k 6=1

ψk(x)

)2

.

(2) T̃d(x) + 2 = ψ2(x)

(

∏

k|d
k 6=1

ψ2k(x)

)2

.

Proposition 3.6. Let K be a field such that either char(K) = 0 or char(K) ≥ d and char(K)
is odd. Suppose that f ∈ K[x] is defined as follows: f = A(x−B)g2, where A,B ∈ Fq, and

g =
∑n

i=0 aix
i satisfies

±a0 =
√

− 1

A
, i(2i− 1)Bai = −2(n− i+ 1)(n+ i)ai−1

for i = 1, 2, . . . , n. Then f is K-conjugate to −Td(x).

Proof. Let bi :=
ai
a0
Bi

√
−1. Recalling a0 = ±

√

− 1
A

, this immediately yields

f = B(
x

B
− 1)

( n
∑

i=0

bi
( x

B

)i

)2

,

which we observe being independent of A, so we can select A = −1 without changing f .

Since we only consider the question up to K-conjugacy, and f is K-conjugate to h := (x −
1)(
∑n

i=0 bix
i)2 for any choice of B (by γ(x) = Bx ∈ PGL(2, K)), we conclude that B can

be freely chosen and this does not affect the conjugacy class of f .

Now, observe that replacing x with −(x + 2) in Lemma 3.5 (1) and Lemma 3.5 (2), we

obtain

(20) T̃n(−(x+ 2))− 2 = −(x+ 4)(gn(−(x+ 2)))2

and

(21) T̃n(−(x+ 2)) + 2 = −x(gn(−(x+ 2)))2.

Letting Fn = T̃n(−(x+ 2))− 2, Gn = gn(−(x+ 2)), A = −1, B = −4, C = −1, Equations

(20) and (21) yield

Fn = A(x−B)G2
n

and

Fn − B = CxG2
n.

Therefore, by (11) and (12), we conclude that Fn, the K-conjugate of T̃n(−x) = −T̃n(x) by

γ = x+2 ∈ PGL(2, K), is a solution to the differential equation in (18) for the specialization
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B = −4. By the form of the solutions of the differential equation and the assumption on

char(K), it is clear that the polynomial solution is unique up to a constant multiple. Hence,

we conclude Fn = Df for someD ∈ K. Now, the constant coefficient of f is -4 by the values

of a0, A and B. Moreover, the constant coefficient of Fn is also −4 by Lemma 3.5 (2). Hence,

D = 1, and Fn = f . We conclude that f is K-conjugate to −Td(x), as desired.

�

4. SQUARE PATTERNS IN ORBITS

In this section, we will give an application of our earlier results to a problem related to

squares in orbits of polynomials over finite fields. We start by recalling the Weil’s bound on

multiplicative character sums, which will play a fundamental role in our proofs.

Theorem 4.1 (Weil Bound on Character Sums). Let χ be the quadratic character on Fq de-

fined by χ(a) =
(

a
q

)

for any a ∈ Fq. For f ∈ Fq[x], set d = deg(f). If f is not a perfect

square in Fq[x], then

|
∑

x∈Fq

χ(f(x))| ≤ (d− 1)
√
q.

Notation 4.2. For any a ∈ Fq and f ∈ Fq[x], we let sa be the sequence {χ(f ℓ(a))}ℓ≥1. We

also denote by sa(ℓ) the ℓ-th element of this sequence.

We are now ready to prove our first main result.

Theorem 4.3. Let q be an odd prime power and f ∈ Fq[x] be a dynamically 2-ordinary

polynomial of degree d. Let a ∈ Fq. Suppose that the sequence sa is periodic, and letm := ma

be its period. Then

|Of(a)| = O

(

mq
2 log2(d)+1
2 log2(d)+2

)

,

where the implied constant is only dependent on d.

Remark 4.4. Theorem 4.3 implies that if the orbit is large, then the sequence of squares cannot

obey a recurrence of low order. For example, if all elements in Of (a) are squares (so m = 1),

and f has degree 2, then we have |Of(a)| = O(q
3
4 )

Now, suppose for example that f is a permutation polynomial, and the orbit of an element

is roughly Cq for 0 < C ≤ 1. Then, the period m of the sequence sa must be at least Dqε.
In other words, we cannot have a structured (in terms of the squareness of the elements of the

orbit) large orbit.

Proof of Theorem 4.3. Let L be a positive integer. First, observe that Of (a) is endowed with

a natural graph structure given by the action of f . We will refer to this graph as the functional

graph of f starting at a. We want to count separately the elements of Of (a) that are within

distance L from the 0 in functional graph of f starting at a and all the other elements of Of (a).
Denote by

Of,0,L(a) = {x ∈ Of (a) : f
i(x) = 0 for some i ∈ {0, . . . , L}}.

Clearly, Of,0,L(a) ≤ 2L+ 1. Let Of,0,L(a)
c be the complement of Of,0,L(a) in Of (a). Let us

denote by sa(ℓ) the ℓ-th element in the sequence sa. Our purpose is to provide an estimate for
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|Of(a)| using a suitable character sum:

|Of(a)| ≤ 2L+ 1 +

m−1
∑

i=0

∑

x∈Of,0,L(a)c

L
∏

ℓ=1

(

1 + sa(ℓ+ i)χ(f ℓ(x))

2

)

.

Let us explain the upper bound above. First, Of (a) is split into Of,0,L(a) and its complement,

which leads to the 2L+1 summand. Now, we need to observe that the sum counts at least one

for every element of Of,0,L(a)
c: If x ∈ Of,0,L(a)

c, then f ℓ(x) 6= 0 for all ℓ ≤ L and

1 + sa(ℓ+ i)χ(f ℓ(x))

2

is 1 for at least one i ∈ {0, . . . , m− 1} since the sign of sa(ℓ + i) will agree with the sign of

χ(f ℓ(x)) for at least one i ≤ m− 1, as the period of the sequence sa is m.

Now, since
∏L

ℓ=1

(

1+sa(ℓ+i)χ(fℓ(x))
2

)

is positive for all x ∈ Fq, we can upper bound again by

summing over all x’s:

|Of(a)| ≤ 2L+ 1 +

m−1
∑

i=0

∑

x∈Fq

L
∏

ℓ=1

(

1 + sa(ℓ+ i)χ(f ℓ(x))

2

)

.

Using ideas similar to [12, 18], we are going to bound

Bi :=
∑

x∈Fq

L
∏

ℓ=1

(

1 + sa(ℓ+ i)χ(f ℓ(x))

2

)

uniformly in i with a certain B, from which it will follow that

(22) |Of(a)| ≤ 2L+ 1 +mB.

Observe that

L
∏

ℓ=1

(

1 + sa(ℓ+ i)χ(f ℓ(x))

2

)

=
1

2L

∑

T⊆{1,...,L}

∏

t∈T

sa(t+ i)χ(f t(x)).

Exchanging the sums in x and T yields

Bi =
q

2L
+

1

2L

∑

∅(T⊆{1,...,L}

∑

x∈Fq

∏

t∈T

sa(t + i)χ(f t(x)),

which can be rewritten as

Bi =
q

2L
+

1

2L

∑

∅(T⊆{1,...,L}

(

∏

t∈T

sa(t+ i)

)

∑

x∈Fq

∏

t∈T

χ(f t(x)),

where
∏

t∈T sa(t+ i) ∈ {−1, 1, 0}. Therefore,

Bi ≤
q

2L
+

1

2L

∑

∅(T⊆{1,...,L}

∣

∣

∣

∣

∣

∣

∑

x∈Fq

χ

(

∏

t∈T

f t(x)

)

∣

∣

∣

∣

∣

∣

.
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Note that
∏

t∈T f
t(x) is never a square in Fq[x] because by assumption, for all t ∈ T , there

is always a new irreducible factor dividing f t with odd multiplicity. Therefore, we can use

Weil’s bound to get

Bi ≤
q

2L
+

1

2L

(

dL+1 − 1

d− 1

)√
q

∑

∅(T⊆{1,...,L}

1 =
q

2L
+

(

dL+1 − 1

d− 1

)√
q.

It follows that

(23) Bi ≤
q

2L
+ dL+1√q.

Note that the above inequality is true for all L, so we need to optimize L so that the inequality

becomes the strongest possible. For that, we need to fix L such that q

2L
∼ dL+1√q as q grows.

Therefore, we need

lim
q→∞

q

2LdL+1
√
q
= lim

q→∞

√
q

2L+(L+1) log2(d)
= lim

q→∞

√
q

2L(log2(d)+1)+log2(d)
= 1.

A direct computation yields the choice

L ∼ log2(
√
q/d)/(log2(d) + 1).

Therefore, by directly computing q/2L with this choice of L, we obtain

B = O

(

q
2 log2(d)+1
2 log2(d)+2

)

.

Combining this and the choice of L with (22) completes the proof.

�

Remark 4.5. Notice that the constant in the O can be made explicit by simply choosing L to

be the floor of log2(
√
q/d)/(log2(d) + 1) and replacing it in the inequality (23).

Proof of Theorem 1.1. This is an immediate consequence of Corollary 2.8, Theorem 3.2, The-

orem 3.4, Proposition 3.3, Proposition 3.6, and Theorem 4.3. �

Using a similar method, we next prove an asymptotic result on the maximum length of

consecutive squares in dynamical orbits over finite fields.

Theorem 4.6. Let q be an odd prime power and f ∈ Fq[x] be a dynamically 2-ordinary

polynomial of degree d. Let a ∈ Fq. Then the longest sequence of consecutive squares (or

non-squares) in Of (a) has lengthO
(

q
2 log(d)+1
2 log(d)+2

)

, where the implied constant is only dependent

on d.

Proof. We can restrict to the case of squares, as the case of non-squares is completely anal-

ogous. Suppose that there is a set Y of 4S + 1 consecutive squares in Of(a), which means

that there is an element b ∈ Of (a) such that f i(b) is a square for every i ∈ {1, . . . , 4S + 1}.

Consider two subsets Y1, Y2 of Y , which we now describe: Let Y1 be the set of elements of Y
which have distance at most S from the zero in the functional graph of f starting at a. Note

that Y1 = ∅ if the zero does not lie in Of(a), and in general, we have |Y | ≤ 2S+1. Moreover,

set

Y2 = {f i(b) : i ∈ {3S + 2, . . . , 4S + 1}}
The set Y2 consists of the only elements of Y such that if one applies f a number of times less

than or equal to S, one could land outside Y (these are essentially the “last” S elements of Y ).
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Set X = Y \ (Y1∪Y2) and observe that X has size at least S. Now, all elements x ∈ X satisfy

the following properties:

• f i(x) is non-zero for all i ∈ {1, . . . , S} because x 6∈ Y1
• f i(x) is a square for all i ∈ {1, . . . , S} because it is not in Y2 and therefore f i(x) must

land in Y .

So we established that for some c ∈ Of (a) there is a set X ′ ⊆ X of S elements

{f(c), f 2(c), . . . fS(c)}
that are all squares, and such that f i(x) 6= 0 and f i(x) is a square for any x ∈ X ′ for all

i ∈ {1, . . . , S}. Now, choose L < S and consider the set T (L) of elements x ∈ Fq such that

f i(x) is a square for all i ∈ {1, . . . , L}, and f i(x) 6= 0. Clearly X ′ ⊆ T (L), so if we can

provide an estimate for T (L), we can just tune L to minimize |T (L)| and get the strongest

possible bound on S (and therefore on 4S + 1). Observe now that

|T (L)| =
∑

x∈T (L)

L
∏

ℓ=1

(

1 + χ(f ℓ(x))

2

)

because the internal product in the sum is counting one for every element in T (L). By extend-

ing the summation index to Fq and observing that we are only adding positive or zero values,

we get

|T (L)| ≤
∑

x∈Fq

L
∏

ℓ=1

(

1 + χ(f ℓ(x))

2

)

.

Now argue exactly as in the estimate for Bi in the proof of Theorem 4.3 with the sa con-

sisting of the constant sequence of ones and choose again L ∼ log(
√
q/d)/(log(d) + 1),

getting S = O(q
2 log(d)+1
2 log(d)+2 ) and concluding the proof. It is worth noting that if the choice

L ∼ log(
√
q/d)/(log(d) + 1) is not possible, the claim is immediately true because then we

would have S = O(log(
√
q/d)/(log(d) + 1)), which would give a tighter bound. For the case

of non-squares, simply replace
1+χ(fℓ(x))

2
with

1−χ(fℓ(x))
2

. �

Proof of Theorem 1.3. This immediately follows by combining Corollary 2.8, Theorem 3.2,

Theorem 3.4, Proposition 3.3, Proposition 3.6, and Theorem 4.6. �
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[15] R. Jones and A. Levy, Eventually stable rational functions, Int. J. Number Theory, 13(9) (2017), 2299–

2318.

[16] J. Juul, P. Kurlberg, K. Madhu, and T.J. Tucker, Wreath products and proportions of periodic points, Int.

Math. Res. Not. IMRN 13 (2016), 3944–3969

[17] D. Lukas, M. Manes, D. Yap, A census of quadratic post-critically finite rational functions defined over Q,

LMS Journal of Computation and Mathematics 17(A) (2014), 314-329.

[18] A. Ostafe and I. Shparlinski, On the length of critical orbits of stable quadratic polynomials, Proceedings

of the American Mathematical Society, vol. 138, n.8, p. 2653–2656, 2010.

[19] X. Shao, Polynomial values modulo primes on average and sharpness of the larger sieve, Algebra Number

Theory 9 (2015), no. 10, 2325–2346

[20] J.H. Silverman, The arithmetic of dynamical systems, Graduate Texts in Mathematics, vol. 241. Springer,

New York (2007).

[21] J.H. Silverman, Moduli spaces and arithmetic dynamics, CRM Monograph Series, Volume 30. American

Mathematical Society, Providence, RI, 2012.

[22] J.H. Silverman, Variation of periods modulo p in arithmetic dynamics, New York J. Math., 14:601–616,

2008.

TOWSON UNIVERSITY, TOWSON, MD 21252, USA

Email address: vgoksel@towson.edu

UNIVERSITY OF SOUTH FLORIDA, TAMPA, FL 33620, USA

Email address: gmicheli@usf.edu


	1. Introduction
	Acknowledgements

	2. Dynamically ordinary polynomials
	3. dynamically 2-ordinary polynomials
	4. Square patterns in orbits
	References

