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Gaussian statistics for left and right eigenvectors of complex

non-Hermitian matrices
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Abstract

We consider a constant-size subset of left and right eigenvectors of an N x N i.i.d. complex

1
non-Hermitian matrix associated with the eigenvalues with pairwise distances at least N~27°¢,
We show that arbitrary constant rank projections of these eigenvectors are Gaussian and jointly

independent.
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1 Introduction

Eigenvector statistics of random matrix ensembles have been extensively studied in random matrix
theory. In the case of Hermitian random matrices, which can be viewed as Hamiltonians of disor-
dered quantum systems, the Quantum Unique Ergodicity (QUE) conjecture [34] asserts that their
eigenvectors tend to be distributed uniformly on a sphere. For Gaussian orthogonal and Gaussian
unitary ensembles this statement is trivially correct due to their invariance under multiplication by
orthogonal and unitary matrices respectively. A great deal of work has been done to show that
the behavior of the eigenvectors of (generalized) Wigner ensemble is consistent with QUE: delocal-
ization of eigenvectors [21], asymptotic normality and independence of finitely many deterministic
projections of eigenvectors [9, 30], the size and normality of other eigenvector statistics [14, 16, 6, 5].
Similar results have been established for other Hermitian ensembles in [10, 8, 1].

In the case of non-Hermitian i.i.d. ensembles, less is known. The delocalization of the eigenvectors
has been established in [32, 33, 3, 4, 27, 28]. Some work has been done on the size and distribution
of the overlaps O;; = (u;,u;)(v;, v;), where u;, u; and v;,v; are the right and left eigenvectors of
a non-Hermitian ii.d. matrix A, see e.g. [7, 12, 19]. Overlaps O;; are of particular interest for
the non-Hermitian models as they govern [7, 24] the evolution of eigenvalues and eigenvectors of
A; under the flow dA4; = \/LNdBt, where B; is a Brownian motion. In this work we obtain the
Gaussianity of the deterministic projections of eigenvectors of A.

The standard process for proving Gaussianity of the eigenvector statistics for a Hermitian en-
semble H is the well-known three-step strategy, initially used for the local eigenvalue statistics in
[20]:

1. Local laws for the resolvent of H;

2. Gaussianity of the eigenvector statistics of a Gaussian divisible ensemble H; = H ++/tB, where
B is GOE;

3. Comparison of the eigenvector statistics of the initial ensemble H and H;.

The key component of this argument is the second step, which is done using the Eigenvector Moment
Flow (EMF), first developed in [9]. EMF is derived from the evolution of eigenvectors under the flow
dH; = \/LﬁdBt, where B; is a standard Hermitian Brownian motion. The non-Hermitian analogue
of this eigenvector evolution is a lot more complicated, see e.g. [7, 24].

In this paper we take a different approach to the second step of the three-step strategy. Our
method is inspired by the supersymmetric approach recently used to prove the universality of local
eigenvalue statistics of complex i.i.d. non-Hermitian matrices in the bulk in [29] and extended to
the real case in [18, 31]. This method allows us to compute the moment generating functions of
the eigenvector statistics of the Gaussian divisible ensemble A + v/¢B directly through asymptotic
analysis of the exact integral formulas for these functions at the time-scale t = N —gteo,

Some of the details behind the third step for non-Hermitian matrices are also different from what
is done the Hermitian case [25]. As in [29], this comparison is done through Girko’s formula, and this
requires translating eigenvector statistics into eigenvalue statistics in some sense. More is explained
towards the end of the introduction.

Now we state the main result of this paper.

Theorem 1. Let A be an N x N complex random matriz with i.i.d. entries satisfying EA;; = 0,

E|A;|° = N7! and E|A;|” < C,N/2. Fiz e, > 0, mp,my, € Zy, set m = mg + my,.
Consider deterministic points in the complex plane {zjo = z?(N)};n:l C C such that ‘Z?’ <l-—7

for any 1 < j < m and ’z? — 22’ > N-V2te for any distinct 1 < j,k < m. Let (Aj,u;) denote
an eigenvalue and the corresponding right eigenvector of A for 1 < j < mp and (\j,v;) denote an

eigenvalue and the corresponding left eigenvector of A for mp+1 < j < m. Let {T; = Tj(N)};.nzl



be a family of deterministic bounded rank matrices with bounded norm. Then for any test function
F e CxX(C™xR™), we have

lim EF (\/N()\l 29, VN O — 22, 1Ty, I\vamlP) (1.1)
— 00
= lim EF (\/N(Al 29, VN — 22), 22, Z;i) , (1.2)
—00
where Z = (Z1,...,ZN) consists of independent Gaussian random variables Z; ~ N (0, || T}||%) which
are independent of A.
Theorem 1 implies convergence in distribution of || Thu1||?, . .., || Tmvm||? to squares of independent
Gaussians. The point of including vV N(\; —29),..., v/ N (A —29) is to pin down the corresponding
eigenvalues near 20, ..., 20 . Based on the universality result for local eigenvalue statistics in Theorem

1.2 of [29] (and its proof), we anticipate that
lim EF (\/N(Al 20, VN — 20), 22, an)
—00

= / EF(wy,. .., Wn, Z3,..., Zﬁl)p(GTgUE(wl, ey W )dwy . dwyy,

where the expectation in the second line is with respect to Z1,...,Z,,, and
1 1 2 2 — m
pE}TgUE(wh cs W) = det ;eii(‘“’j‘ +wel )+ij€] .
JiA=1

(We can assume that z? converge as N — oo by taking a subsequence and observe that the limiting
m-point correlation function pg?gUE in Theorem 1.2 of [29] is independent of said limits of z?) This
should follow exactly from the proof of Theorem 1.2 in [29], but we have stated Theorem 1 in the
above way since this argument is not written down.

As mentioned above, the proof of Theorem 1 follows the three-step strategy. The first step is

carried out in [3, 17, 15, 12], where the authors establish the local laws for the resolvent of the
Hermitization of A:
—in  A—z !
G.on= (" )

In particular, the results we use in our proof are the averaged and isotropic local laws as well as
the two-resolvent averaged local laws with possibly different shifts z; and z2. The second step is
covered in Sections 2-6. Here we adapt the method of [29] to access left and right eigenvectors.
The first technical aspect of this step is analyzing the resolvents [(A — 2)*(4 — 2) +n*> + Y]~! and
[(A—2)(A—2)*+n*+Y] !, where Y is finite rank, Hermitian, and possibly negative. The method of
[29] depends crucially on various positivity properties and estimates for the resolvents when Y = 0.
We must ensure these properties are stable under perturbation by Y'; this is why we require isotropic
local laws in addition to the estimates used in [29]. Moreover, when studying multiple eigenvalues,
we must also analyze these resolvents after projecting to the orthogonal complement of the span
of finitely many eigenvectors. Isotropic local laws for deterministic vectors alone no longer suffice.
We must also remove the projection using various perturbations and the concentration estimates in
Section 6 of [29] (this is the content of Section 6).

The third step, the comparison between the eigenvector statistics of a general i.i.d. matrix and
a Gaussian divisible matrix, is done in Sections 7 and 8. This argument follows the same framework
as the eigenvector comparison argument of [25] for the Hermitian matrices. The key novelty of our
proof is the approximation of the eigenvector statistics with certain functions of G* in Lemma 21
and Girko’s formula [23]. This approximation relies on the level repulsion estimate for the singular
values of A — z in Proposition 23 that we derive using Theorem 2.10 of [19] and Theorem 3.2 of [11].
The rest of the argument is a standard Green function comparison, see e.g. [26].



1.1 Notation

We denote the standard basis vectors in C™ by e; ,, for 1 < j < m. Whenever the dimension of the
space is clear from the context we omit it and write e; = e ,,,. We write [a,b] = Z N [a,b]. Given a
matrix X, normalized trace of X is (X) = N~!Tr X.

1.2 Acknowledgements
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2 (Gaussian divisible matrices

In this section we state the main results for Gaussian divisible matrices. For any A € My (C) we
define its Hermitization by
0 A—
Hz = ( Z> y 2 € C.

A*—z 0
The resolvent of this Hermitization G, (n) = (H, —in)~ " can be written as

B ”71:{2(7]) Hz(n)(A —2)
G=(n) = ((A* —2)H.(n) int(n) ) 7

where

H.(n)=[(A=2)"(A-2) +7°] ",

. —1
H.(n) = [(A=2)(A—2)"+n*] .
We will now condition on some assumptions on A; we explain shortly why they hold with probability
1 —O(N~P) for any D > 0. Consider ¢y > 0. We assume that for any 7,n1,72, € [N’%““, 10],

n* = max{ni,n2} and z, 21, 22 € C such that |z|, |z1], |z2| < 1 — 7 for some fixed 7 > 0, there exist
constants ¢ = ¢(ep) > 0 and C' = C(eg) > 0 such that

Al: We have

et < (H.(n)) <Cnt, (A1.1)
ey 2 < (Ha(n).(n)) < Cn~2, (A12)
[(H.(n)*(A = 2))| < Cn ", (A1.3)
e < (H.(n)*) <Cn. (A1.4)

For 0 1 00

BJ_(O O)®IN0r (1 0)®IN
we have

(G (m)B1G:(12)B2)| < C. (AL.5)



A2: We have
(H, (1) Hy (12) 2 () (A21)
(e () ey (1)) = ¢ ()72 (A22)

<Hz1 (nl)ﬁ22(772)> = e+ |z — 22)?)

(A2.3)

We fix m families of finite rank deterministic matrices T, where j € [1,m] and m € Zy. Then
matrices 7T have spectral decomposition

lj
TiT = 4iawWinWy (2.1)
k=1

where g; 1 are positive constants and {w ; }, are deterministic orthonormal vectors for each j. We
make the following assumption on A in relation to matrices 7}.

A3: For any wi,wa € {Wj i, Wjk, £ Wjk,, Wik £IiWjk, }je[[l,m]],kl,kge[[l,lj]]’ we have

Wi H. (n)ws — (H.(n)) wiws| < Cy~ 2N~ 2, (A3.1)

wiH,(n)ws — <ﬁz(n)> WTWQ} < C?ng*%. (A3.2)

Let us explain why assumptions A1, A2, A3 hold for i.i.d. matrices A with probability 1 —
O(N~P) for any D > 0 fixed. All of A1 is explained in Section 7 of [29]; see after Lemma 7.1 in
[29]. For A2, see (8.3)-(8.5). For A3, see Proposition 29.

Now, following [29], for any z € C such that |z|] < 1 and ¢ > 0, we define 7, ; > 0 such that
t(H,(n.+)) = 1. By (Al.1), we know ct < n,; < Ct for finite constants C,c > 0 for all [z| <1 —7
and ¢ > N~1/2%¢_ (The existence and uniqueness of such 7, ; for [2| < 1 and ¢ > N~/2+¢ holds by
Theorem 1.1 in [29].)

Theorem 2. Suppose t = N-zteo for some €9 > 0 fized. Let mp,my € Z,. For any j € [1,mg]
let (A\j,u;) denote an eigenvalue-right-eigenvector pair of My, and for any j € [mr+1,mg+my] let
(A\j,vj) denote an eigenvalue-left-eigenvector pair of My. Assume that there exists v > 0 such that
INj — Ax| > N~V for any distinct j, k € [1,mg] and for any distinct j, k € [mgr +1,mg +myz].
Let {T}}je1.mp+my] e deterministic, finite-rank matrices. There exists k > 0 and q > 0 depending

only on Ty, ..., Ty ptm, such that for all qu, ..., ¢mp+m, < 4, we have
mpr mRr+mr
Ex []expNas I Tyus 1) [ explNa;lIT0501%) (2.2)
Jj=1 j=mpr+1

= [ det[1 — tq; Hx, (nx, )T; T3] " [1+ O(N )] .

j=1
Above, Ey denotes expectation conditioning on A1, ..., Amptmy, -

The choice ¢ = N~37¢ can perhaps be improved to t = N~27¢, or even t = N =1+ see the end
of Section 1 in [29]. For this reason, often in the proof we use only the lower bounds ¢ > N~1/2+¢,

Theorem 2 gives joint normality in the large N limit of finitely many components of finitely many
left and right eigenvectors (subject to a separation condition on eigenvalues for eigenvectors on the
same side, right or left). This is the content of the following result.



Corollary 3. The random vector (N ||Tju;||?, N||Trvrl|?)jx converges in distribution to (Z3, Z}) ik,
where Z; ~ N(0,||T;||2) are independent (here, || - || is the Frobenius norm for square matrices).

Proof. By Theorem 2, it suffices to show that for the above choices of T}, we have
det[1 — tq; H, (13, )T T3]~ = [L — tq; | T B 7 [L + O(N ")

for small enough ¢; > 0 and for some x > 0. To this end, we claim

~

J
det[1 — tq; H, (mj,,f)T;Tj]*1 = | |1 - tqjq;nw;  Hy, (M, )W) " [T+ O(NT)]
k=1

~
<)

(1= qigjklwiel®) ™" [1+O(NT)]

|
—

=
—

— tqj|Ty|IE) = (1 + O(N )],

where vectors w; and scalars g; are defined by (2.1). The second line holds by (A3.1) and
t = (Hy,;(nx,,t)). It suffices to show the first line. To this end, for any j, define the vectors

PN %H ( )1/2 .
x],k_qj'_’k Aj 77>\j,t Wik

and let {y;x} be the collection of orthogonal vectors obtained by Gram-Schmidt applied to {x; s}
without dividing by the norm. In particular, we have

-1

i i
det[1 — tq; Hy, (n,\j)t)T;‘Tj]_l =det |1 —tg; ij,kx;,k = H [1-— tqjy;-‘_’kyj,k]_l.
k=1 k=1

By (AL.1) and (A3.1), we know X} X, = O(N~Y2t73/2) if k 2 m and O~ < [x;4[* < Ot~
for some C' > 0. It follows by Gram-Schmidt that y7 ,y;r = Xj ; X;6[1 + O(N~1/2¢=1/2)]. Thus,

¢

J J

~

H[l —tqjy;pyin] b= [ — taxSx e (1 4+ O(N 2 H/2)
k=1

~ ol
SOl
—

(1= tq;q;.,6 W Hx, (nx,,) Wik (1 + O(N V27 1/2))7 1

b
I
—

By (A3.1) and ¢ > N~Y/3+<0 and t(Hy, (nx,¢)) = 1, we know for some x > 0 that

tq;qj kW H, (x, 0) Wik = ¢4,k [(H,\j (nx,,6)) + O(N_l/Qt_3/2)}
=qjqjk [1 + O(N_l/Qt_1/2)] =q;q; k[l + O(N™")].
In particular, since g;, ¢ # 0 and |g;| is small, this implies that
[1— tq3a. W Ho,y (13,0 )Wj0e(1+ O(N /27 1/2)) 7
= [1 = tq;q; kW) H, (i, 0)wik] ~H (1 + O(N 2712,
which completes the proof. |

The first main step to prove Theorem 2 is the case where mpr + my = 1. The second is the case
Q1y- -y Gmut+ms < g, where we have a priori bounds of the form exp[Ng;|Tju;|%] < 1.



Proposition 4. Suppose t = N~ 3teo for some eg > 0 fized. Let (A\1,u) denote an eigenvalue-right-
eigenvector pair of My, and let T' be a fixed deterministic finite rank matriz. There exists kK > 0 and
qr > 0 such that for all ¢ < qr, we have

1

E Ngq|Tul?] =
A1 exp[ QH U’H] det[l_tqH)\l(n)\l,t)T*T]

[1+O(N"")]. (2.3)

Let (A\2,v) denote an eigenvalue-left-eigenvector pair of My, and let T be a fixved deterministic finite
rank matriz. There ezists k > 0 and qp > 0 such that for all ¢ < qr, we have
1

E», exp[Ng[|Tv|*] = 7
2 det[l — tqHx, (1r,,0)T*T]

[1+O(N"")]. (2.4)

Proposition 5. Retain the setting of Theorem 2. Then (2.2) holds for all 1, ..., ¢mutm, < 0.

Proof of Theorem 2. Proposition 4 implies the term inside the expectation in (2.2) (for small enough
q;) is tight as N — oo, and its expectation converges along subsequences to that of its subsequential
limits. Proposition 5 identifies these subsequential limits. |

3 Change of variables

In this section, we prepare the necessary change of variables for multiple left/right eigenvectors. For
any positive integer j consider a manifold

Q; =CxSN7I x CN.
We define Householder transformations R; : S¥=9 — U(N — j + 1) via

(e1 —u)(er —u)*
ler — ul?

Rj(u) = In—jt1 —2

Now, define the maps
‘I)f, (I)]L : Qj X MN_J‘((C) — MN_J‘+1((C)
given by the data

j— i - A wi o
@f()\j,u(a 1)7wj7M(a)) =Rj(u(ﬂ 1)) (03 ng)> Rj(u(] 1)),

j— j i Aj 0 o
(I)]L()\j, 'U(J 1),wj7 M(])) = Rj(’l)(] 1)) (wJJ M(J)) Rj(’l}(J 1))'
Finally, consider a map

mRr+mr
D : H Qj X MN—mR—mL ((C) — MN((C)

j=1
given by the composition of several @f and fIJJL maps

®=dfo(Idx ®f)o...o(ldx @] )o(Idx L . )o...0(ldx &k

m mR+mL) .

For brevity we denote the total number of steps by m = mpg + my.



Lemma 6. The Jacobian of ® is given by the following:
|2H|det)\ — M2,

Proof. Since @ is the composition of several @f and fIJJL maps, we have the chain rule

J(®) = ﬁJ(‘I)f) ﬁ J(@)

j=mpr+1

We now claim that
J(®f) = J(@F) = |det[r; — MO

for j € [1,m]. For the maps ®%, this holds by Lemma 3.1 of [29]. For the maps ®%, we use Lemma

3.1 in [29] (this lemma holds for left eigenvectors as well, since one can always replace MU~1, for
which we apply Lemma 3.1 of [29], by its adjoint). It remains to note

det[)\; —MU)]‘ =TI e =0 |detpr; — aemy).
k=j+1

O

We now apply this transformation to the ensemble M; = A + t2B. Since B is Gaussian, the
distribution of M; is given by the following density with respect to flat measure on My (C), the
space of N x N complex matrices:

ptangant = ()" esp {=2rs100n - ot - )

Now, by following the computations in Section 4 of [29] and combining them with Lemma 6, we
have the following formula, which uses notation A¢) and b; that we define afterwards:

p(M)AM, = AN [T |detfp, — M2 (3.1)

Jj=1

N2
x (ﬁt) exp {—%Tr [(M™ — Ay (™) — A<m>)]}
™

i N, o - - N G- . (e
« [T { - F a0 )t ph T exo {54070 - a0}
j=1 j=mpr+1
Lo {-Fho-u} T eo{-Fi ok}
Jj=1 j=mpr+1
mp
x A dut=) H doU—1) HdedM (m)
Jj=1 j=mpr+1
::ﬁA(u,...,u(mR_l) plme) v(m_l) LW, .. wm,Mt(m))
MR
< dA ] duti=b) H dpU=1 HdedM (m)
Jj=1 j=mpr+1



Here, Mt(m) is the same as M (™) from above after applying the change-of-variables procedure to M.
The vectors b; € CN~7 and the matrices AU) € My_;(C) are defined by the identities

aj

Rj (V=) AUV R (uU=1) = (c, 2(73)) :
J

We clarify that (3.1) holds with the additional adjoint in the third line because the (mp + 1)-st
through m-th steps are obtained by following Section 4 of [29] but for the adjoint of AU) instead of
AU) itself. This is because we perform the change-of-variables with respect to the left eigenvector;
see the proof of Lemma 6. In the rest of the paper we will be computing expectations of functions
of u?), (@), w; conditionally on A. Thus we can integrate out M (m) by following Section 5 of [29]
verbatim. Ultimately, we have the following in which Cy ¢ x depends only on N, ¢, A1 (and it may
vary from line to line):

[ TTethyy =) esp { S ar™ — a0y — a0y anrf
My —_2(C) 3

j=1

= e [ [ det[H, (s, )] H | det[V; G (s, V1™ L+ O(NT9)]
j=1

Here, V; = I @ uU~Y for j € [1,mg] and V; = I, @ U~V for j € [mg + 1,m], and 6 > 0 is fixed.
Also, e (1) is the same as G (1) but for the matrix A®*) instead of A. We can also integrate out
w; variables because they are Gaussian. In particular, the marginal of px after integrating out w;

variables and M, (m) §

[))\(’U,,...,u(mRil),’U(mR),...,’U(m 1) CNtAHdet H)\ 77)\ t H|detV G] 1)(77)\ t)V”m
J=1 J=1
xHexp{——n A5 “>||2}
< IT e {-F1a0 <oy}, (32)
j=mgr+1

Additionally, we introduce the following measures on S 7.
05 (W) = 60 A079) exp { = TNATD 0D Laul D, € [,
05007 = K505, A7) exp { - FHA0 = )00 b, € 1,
where
505, 4070) = [ oxp {- A = 2002 0, € 1l
K, A970) = [ exp {=EA07D < 000D, € g+ 1,

From Lemma 4.1 of [29], we have

_ J-1 , —1
K5 (g, AU7D) = O [T [etlvy 682, Vi (14 0v)).
k=1



The measures of the variables w; are Gaussian on CV =7 and given by

N—j
N N .
dw;(w;) = (E) GXP{—THUU - bj||2} dwy, J € [1,mg],
NNV N ,
awsln) = (%) e {=Fhhuy - e aw, j € lmn+1ml,

The the marginal of px after integrating out Mt(m) (but not w; variables) is

mpg m m
ﬁA(u,...,u(mR_l),v(mR),...,v(m_l),wl,...,wm)Hdu(j_l) H dol—1 Hdwj
j=1 j=mpr+1 j=1
i i j
= Ow.ex [ det[Hy, (x,.4)] ‘det[Vj*Gf\Jj Y, Vi)

Jj=1

Xﬁdyj(u(jl)) ﬁ duj(v@*”)ﬁdwj(wj) [1+O0(N7?)].

j=mpr+1 J=1

4 Proof of Proposition 4

We prove (2.3), since (2.4) follows by the same argument (just replace A by A* to make left eigen-
vectors into right eigenvectors; in particular, this is why (2.4) has H instead of H). Now, to compute
Ey exp[Ng||Tu||?], we use (3.2) and integrate out everything except u (equivalently, set m = mpg = 1
in our application of (3.2)). This gives the formula

Ex, exp[Nq||Tu||?] ~ det[Hy, (nx, +)] " / NAUTul =AU | det VG, (i, 1) Va]ldu

SN—-1

— e?nil,t det[H)\l (TD\l,t)]_l / e—%m*[(Af)\l)*(Af)\l)Jrn/z\l,t*th*T]u| det[Vl*GAl (77)\1)‘/1”(:1”

SN—-1

N 2 — *
=tet Mt det[HA1 (77)\1715)] 1K¢1 /N |det[V1 G, (77)\1-,75)‘/1”(1#(1(’”’)’ (41)
SN -1
where ~ means true up to a factor of 1+ O(N %) for § > 0, and where

SN—1

dptg(u) == que—%u*[(A—,\l)*(A—,\1)+n§1,t—th*T]udu'

Before we can further analyze K, and the other remaining terms, we need a preliminary estimate.
For convenience, let us the use the notation Hy 4(n) := [(A—A)*(A—\) +n*—tqT*T]~ 1. Note that
Hy0r(n) :== Hx(n). Let us also use the following more general notation, since it will be important
for the proof of Proposition 5. For any j > 0, recall AY). Define

HY) () = [(AD = X)*(AD = \) + 7 — tqT"T)
Y, () = [(AY = N)(AD =X 40— 1q7*T]!

We also define H)(\j)(n) = Hij())T(n) and fl§j)(77) = H)(\J())T(n) Here, we always assume that 7" has
the same dimension as AU, and that T is finite rank.

10



Lemma 7. Fiz A € C. There exists qr > 0 such that if ¢ < qp, then for some finite-rank, positive
semi-definite Hermitian matriz Y with operator norm ||Y|lop = O(1), we have

HY ) (e) = HY (nx.) 31T+ Y Y (3,0) %
Moreover, we have (H)(\J;(n,\t» = (H)(\j)(ﬁ,\,t» +O(N—Y). The same is true for H in place of H.

Proof. We prove the claim for H and not H; for H, again, the same argument applies (just replace A
by A*). Also, We first assume j = 0; we comment on general j at the end. Recall C~*¢ <), < Ct
for some C' > 0. By the Woodbury matrix identity, we have

Hyq(nae) = Hx(nxe) + Hx(nae) Tt g™ = THx(qx,)T*] " " THx(nae)-

By (Al1l.1) and (A3.1), since T*T is a finite rank projection with O(1) operator norm, we have
|THx(nae)T*|lop = O(t™1). Hence, we can choose gr > 0 such that if ¢ < gr, then the term
in square brackets on the RHS is a Hermitian operator that is bounded below by Cq~'t~!. In
particular, the second term on the RHS of the above identity has the form tqHx (nx,¢)T* XT Hx(nx1)
with X Hermitian, bounded, and positive, i.e.

Hy g(xt) = Hx(nae) + tqHx(nx )T X T Hx (1 1)
= HA(W)\,t)% {I + tqH)\(ﬁ)\,t)%T*XTH)\(nA,t)% } HA(nA,t)%-

To prove the first estimate, it suffices to show that the second term inside the curly brackets without
the factor ¢ has operator norm O(1). This term is a finite rank, positive operator, so we can bound
its operator norm by its trace. This gives

[LH(10.0) *T* XTHx(110.0)* lop < #Tx Ha(nx,0) 2T XTHa ()
=tTIr TH)\ (nA,t)T*X
< t[| X |JopTr THx(nx,)T™.
Again, we use (Al.1) and (A3.1) to get tTr THyx(nx)T* = O(1). Now use || X|lop = O(1) to get the
first estimate. For the comparison of normalized traces, we have
Tr Hy(p0) 2T XTH(x1)2 = Te THy(nx 1)T* X
=O)TrTH\(nx)T* = Ot );
the last line holds by || X|lop = O(1), by (Al.1), and (A3.1), and by 17;1 = O(t~1). Multiply by
O(N~'t) to conclude. For general j # 0, the same argument works. Indeed, all we need are
ITHY ()T op = O™") and Ty THY (3, )T* = Ot ™").
The former follows from the latter. The latter follows by interlacing (and the corresponding estimate

without the (j) superscript). O

We proceed to analyze K,. By Lemma 7, we know C ™ Hy, (nx, 1) < Hx, q(a,t) < CHx, (n3, 1)
for a finite, positive constant C. In particular, by Lemma 6.1 in [29], we have

Ky = CovsdetlH, o, 1)) [ 57 et + ipHy, o(m, 0] dp.
R

The two-sided bound C~YHy, (nx, ) < Hx, q(nr,.t) < CHy, (1, ¢) is used in the proof of Lemma 6.1
of [29] only to guarantee that Hy, 4(nx,,¢) is strictly positive. We now use it to justify the following
approximation (see immediately after the proof of Lemma 6.1 in [29)]):

;N . _ iN . 1
/ezfpdet[lﬂpﬂxl,q(ml,t)] 1dp’~*/e *pexp{—sz<Hxl,q(m1,t)>—§Np2<HA1,q(m1,t)2>}dp~
R

R
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By the trace estimate in Lemma 7, we can continue as follows (below, Ky t.x, = O(1)):
ilp : L2 2
€t exp _ZNp<H>\1,q(77>\17t)> - ng <H)\17q(77>\1,t) > dp
R
. 1
= / I PI—t(Hx; q(nx,.¢0))] exp {—gNP2<H/\1,q(77A1,t)2>} dp
R

. 1
= /ReXP{mN,t,Alp} exp {_§Np2<H>\1,q(77>\1,t)2>} dp

= 27 exp{ — WiAR
N1/2 <H>\17q(77>\1,t)2>1/2 2N<H/\1,q(77/\1,t)2> '

The last line follows by Gaussian Fourier transform. The bounds C~'Hy, (na, +) < Ha, 4(nr, ) and
(Hx, (1, .4)?) = C7'n3°, and Ky x, = O(1) show that the exponential in the last line is &~ 1. Now,
note that if ¢ > 0, then Hx, (0, ,+) — Hx, (Mr,,¢) > 0, and that if ¢ < 0, the reverse inequality holds.
This follows by Lemma 7. In particular, Hx, 4(nx, ¢) — Hx, (a, 1) is always positive or negative semi-
definite; it cannot have both positive and negative eigenvalues. Using this, we have the following,
where the last line follows by Hy, 4(7x, ) < CHjy, (0, ,+) and Lemma 7:

1 1 1
[(Hxy g 0)?)? = (Hoy g, 0)?) 2| S (Hy q(a0)?) — (Ho, (700,0)%)]
S (HHM,q(n)\l,t)HOp + ||H)\1 (nA17t)||0p)|<H>\17q(77>\1,t) - H>\1 (77)\1,t)>|
S HH>\1 (77)\17t)||0]3||<H)\17q(77>\17t) - H>\1 (77)\1,t)>| /S N_lt_2'
Because C~1Hy, (nx, 1) < Ha, q(1ay,t), we also have (Ha, q(n,,0)?)Y2 2 (Hx, (a,,0)2)Y? 2 t73/2,

We deduce from this and the previous display that (Hy, 4(nx,.+)?)/? &~ (Hy, (1, )%)/? since t < 1.
Ultimately, since (Hy, (nx,.+)?) depends only on N,t (recall that \; is fixed), we have

Kq = On,pdet[Hx, 4(nx 1)) / e TP det[l +ipHn, o o)] " dp ~ O det[Hy, q(n o)) (4:2)
R
We now control the dug(u) integration. First, we record the following from Section 6 of [29]:

| det[vl*le (77)\1715)‘/1” = nil,t(u*HA1 (nAlyt)u)(u*H)\l (77)\17,5)11,) + |U*H>\1 (77)\1775)(‘4 - )‘1)’UJ|2'

We claim the following concentration estimates:

N 1= log N _ 2
Hq <|77)\1th Hy, (nAl,t)U— t77,\11,t<H/\1 (nkl,t)H)\l (77>\1-,t)>| 2 m) <e “log Na (43)
* 7] 1 /7 2 log N —~Clog? N
Hq |77)\1th Hy, (77A1,t)u - tn)\17t<H)\1 (77A1,t) >| = W <e ) (44)
. 17 log N —Clog?
thq (lml,tu Ho, (ag,0) (A = A)u — 3 (H, (7a,,0) (A = M) > W) <e s N (45)

For ¢ = 0, these estimates are exactly the content of Lemma 6.2 in [29]. Assuming these estimates
hold, we can finish the proof of Proposition 4 by following the calculation after the proof of Lemma
6.3 in [29] (in said calculation, we set j = 1, so that Lemma 6.3 in [29] is unnecessary). In particular,
this would give

[ 1tV Gl Vil (1) Cov .

We can combine the previous display with our computation (4.2) of K, and (4.1) to get

Ex, exp[Nq||Tu|[?] &= Cy 1, det[Hy, (nx,0)] " det[Hy, 4(nx, )] = Cneon, det[l — tqHy, (na,,)T*T] 7!
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where the last identity follows from an elementary resolvent identity. To finish the proof of Proposi-
tion 4, it suffices to note that the constant Cn ¢ x, on the far RHS is equal to 1 + O(N ") for some
x> 0. This can be verified by plugging in ¢ = 0 in the above identity.

We now show (4.3)-(4.5). We give details for (4.3); it amounts to adjustments in the proof of
Lemma 6.2 in [29]. The other two estimates follow by the same adjustments. We first prove

‘ 1,7 log N —Clog?
(s, = 005 (i, D, () 2 ) < (a)
The bound (4.3) would then follow by proving the same but replacing Hy, (na,.¢) by its negative:

. 1,5 log N —Clog?
o (=000 (04 013, O ) s ) = i ) < O

As in Lemma 6.2 in [29], this holds by the same argument as the proof of (4.6), so we focus on (4.6).
By following the proof of Lemma 6.2 in [29], we eventually apply Markov to the LHS of (4.6). In
particular, let Y be a Hermitian, semi-definite matrix. (Any matrix is a linear combination of such
matrices Y.) We must control the following for » > 0:

my(r) = ef%ﬁTr [Hh(mlvf)y] /SAP1 eru*yudﬂq(u)

r 5 2 * « 2 « -
_ e*ﬁtTY [Hxl(ml,t)yle¥m1,thfl e*%“ [(A=A1)"(A=A1)+ny, —tqT T*Wty]udu'
SN-1

For the choice of Y which produces (4.6), as in the proof of Lemma 6.2 in [29], we pick r =
N~1/2log N. Tt turns out by inspection of the proof of Lemma 6.2 in [29] that we always have
r < N~Y/2t=1/210g N, so the following argument will use only this. Our choices of Y will also
always satisfy ||Y]|op = O(1). As in our computation of K, from earlier, we use Lemma 2.3 in [29]
to get

/ o Xt [(A=A) (A=A}, —taT T 5V Ju g,
gN-1

=Cnyt det[H)\lyq,T(n)\l,t)]/Rei¥p det[l +ipHx, g,y (nx, )]~ dp,
where Hy, qv (nx,.1) := [(A = M) (A= X)) + 03, , — tqT*T — N~'rtY]~'. (Technically, for this to
apply, we need Hy, 4.v(1x,,¢) > 0 in order to perform a Gaussian integration. This holds by Lemma
7 and the trivial bound N7 ||Y||lop = O(N~'%).) In fact, this gives Hx, 4. (nx,t) 2 Hxyg(a,t). In
particular, we can again approximate the determinant in the dp integration by a Gaussian density.
It also allows us to restrict to the region |p| < N—1/2¢3/21og N. Ultimately,

/ei%p det[I 4 ipHyx, ¢,y (nx, )] "dp

R

~ i%? —inN(H _1 2N H 2 d

~ [ e TP exp{ —ipN(Hx, q,v (Ma,.¢)) 5P (Hxy g,y (M2,,6)7) ¢ dp
R

~ iNp _inN(H _lzNH 24 d

~ | e Pexp  —ipN(Hx q(0x.0)) = 50" N{Hxq(0x,,6)7) ¢ dp.
R

(The last line follows since (Hx, 4,y (x,.4)) = (Hay,q(Mar 1)) + O(N~1¢72) by resolvent perturbation,
the bound N ~¢||Y||op = O(N=1t), and (Hy, 4(nx, 2)) S (Ha, (72.4)) St see Lemma 7. Multiply
by p = O(N~Y?t3/21og N) to get an error inside the exponential of O(N~/2t=1/2). A similar
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perturbation shows p? N (Hy, 4.y (7x,.1)%) = D> N{(Hy, 4(nx, ¢)?) + O(N ) for some § > 0, hence the
last line follows.) On the other hand, we have

det[Hkl,q,T(nAht)] = det[Hkhq(n}\li)] det[I - NﬁthHkl,q(,'bq,t)1/2YH>\17q(77>\1,t)l/z]il
= det[HM;Q(n)\l,t)] exXp {—TI’ log [1 - N_lrtHkl,q(nkl,t)1/2YH>\17q(77>\1,t)l/ﬂ } :

Ultimately, we have

my (1) % oo By et a0 [ €

. 1
et exp { <ipN{Hy yns) = 502N ) | ap
R

)}

my () ~ Oy €50 { =T [y g (2 )N 18] = Tr og (1= N7t o g (30,0} Y [ (s 0) ™

NG

X €Xp {—Tl” [H)\1;Q(77>\1,t)N71rtY] — Tr log (1 - Nﬁlrt[Hh7q(77>\1,t)%Y[HM,q(TD\l,t)i

By our asymptotics for K, from earlier, we deduce

[N

D}

The exponential on the RHS is equal to 1 when we set = 0; this means Cn ¢, =~ 1. At this point,
we can now follow the proof of Lemma 6.2 and use elementary log-inequalities to get

Tr [H>\17Q(77>\1,t)%Y[HAl,q(TD\l,t)_%P
1- ||N71TtH)\17q(77)\17t)%Y[H)\lyq(n)\lyt)_% ||0p

We must now control the terms inside the exponential. This is done for ¢ = 0 in the proof of Lemma
6.2. To inherit the estimates for all ¢ < gr (with ¢r > 0 small enough), it suffices to show that

~ 1~ 1 ~ 1~ 1
[Hx1,q(an,6) 2 Y Hxy g (ay,6) 2 lop S 1H X (000,6) 7Y Hxy (0130,2) 7 op

~ 1~ ~ 1 ~ 1~ ~ 1

TrH)\l,q(nAht)2YH)\l,q(TD\l,t)YHAhq(T/)\l,t)2 5 ’I‘I’H)\l (77>\1,t)2YH>\1 (77>\17t)YH>\1 (77)\1,15)2

for Hy 4(n) == [(A=\)(A=\)*+n?—tqT*T]. Both follow by semi-definiteness of Y and Hy, 4(nx, +) <
CHy, (n»,.¢); this can be shown by using the exact same proof of Lemma 7 (but with A — A replaced
by its adjoint). The bound (4.6) follows, and the proof is finished. O

my (r) < exp {

5 Proof of Proposition 5

For any j € [1,m] consider the composition of first j Householder transforms

j
H (Ik 1 @ Ry (uth~ 1))) , j € [1,mg];
k=1
m j
Uj = ﬁ (Ik—l @Rk(u(k_l))) H (Ik—l @Rk(v(k_l))) , j € [mg+1,m].
k=1 k=mpr+1

We start by expressing the finite-rank projections of left and right eigenvectors uj, v; through the
integration variables «U—1 (=1 This is the content of the following lemma.

Lemma 8. Set e; = min{eg,v}. Then for j € [1,mr] we have

0 N-E-e
|Tj|uj = [T;|Uj- (u(j1)> +Ou ( 1) :

For j € [mg + 1, m] we have
0 N-i-a
Tjloj = |T5|Uj1 { -1 ) + O ( )
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The error terms here are bounded in the sense of stochastic domination, defined below, with
respect to the measure u, where
m m
dp = H dvy; Hdwj.
j=1 j=1

Definition 9 (Stochastic domination). Suppose
X={Xn(s): N€Zi,se€ Sy} andY ={Yn(s): N € Zy,s € Sy}

are sequences of random wariables, possibly parametrized by s. We say that X is stochastically
dominated by Y uniformly in s with respect to measure p and write X <, Y or X = O,(Y) if for
any €,D > 0 we have

supP,, (Xn(s) > NYn(s)) < NP

SN

for large enough N.

We prove Lemma 8 in section 6, where we collect all technical high probability estimates with
respect to the measure p. In view of Lemma 8, consider the event £ := N7, &;, where for some

K > 0 small,
9 0
& = ITjusll” = IT51U-1 { ,5-1)

0
= {||ijj||2 = ‘ T5|Uj1 (v(jl))

By Lemma 8 and a union bound, we know that Ex1gc = O(N~P) for large D > 0. Since ¢; < 0
for all 7 by assumption, this gives

2

+ O(N‘l‘“)} if j < mp,

2

+ O(N‘l‘“)} if j >mpg+1.

MR mpr+mr,
[TexoNglITyul”) [ explNg;lITyv;0%) (5.1)
=1 j=mpr+1
mpR 0 21 mr+mp 0 2
Hexp [NQj |Tj|Uj,1 (u(j_1)> H exp [NQj |Tj|Uj71 (’U(j_l)> + O(N—D),
Jj=1 Jj=mpr+1

where, as before, &~ means true up to a factor of 1 + O(N~?) for some § > 0. Now use (3.2):
MR
H exp [qu

0 21 mr+mp 0 2
|T5|Uj—1 (u(j—l)) ] I e leJj |T5|U;j—1 (,U(j—l)> ]
i=1

j=mpr+1
~ Crvx [ det(Ha, (0] / / [T etV &S i, V3™
‘_ SN*I SN?mJ:l

— O [(AGTD A (O A=t TV T [u Y oy

p=1)x A”’”*Aj)(A”’l)*Aj)*+n§j,rtqu;j’”’*Tj(j’l)]v(j’l)dv(j—l)

gl
AL
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Above, Tj(jfl) is the restriction of T;U;_; to the orthogonal complement of e1,...,e;_1. For j < mg,
we set

N, G, G=1) )% (AG—1) _ . 2 G- G- ], (1) )
3,457 '_/ e t" o St At T 70 u dul=1),
SN —i
. _ CN Gk | AG=D) a Yy aGm) N 2 Lt ,T‘(J'*l)v*T(jfl) w0 o
de.,qj,T'(u(J 1)) = quj Tje T [( i) ( 3) Myttt i ] du(J 1),

and for j > mp + 1, we define
LN GG [(AG-D x Y (AGD a2 g GG G- o
Kjg;.m ':/ e [ )t 3V b T ST g b,
SN—J

. N, G=1),x G=1) _ G=D_ 2NV 4p?2  —tg. 7T Dxpl=1] (G—1) .
] G-1)\ . p—1 T (A X)) (A X)) N o —tas T T v (j—1)
dy]#Zj;Tj (U ) T Kj,qj,Tj [ ’ ! ! ] dv :

With this notation, we can write

MR 0 2] mrp+mpr 0 2
Ex < []exp [N‘b’ |T5|Uj-1 (u(jl)) ] IT ew qug‘ |T5|Uj-1 (,U(jl)) ] (5.2)

j=1 j=mpr+1
~ CNita H det[Hy, (nx, )] " Kjq,.1;

j=1
m mRpR m
* j—1 j i i
X/S]H.../SM TT 10tV G (n, Vil T vy, WD) T vz, (060).
" =1 j=1 j=mr+1

Similar to the proof of Proposition 4, we now focus on the following two lemmas. The first computes
det[Hy, (77,\],7,5)]_1Kj,qj7;rj for all j. The second computes the remaining spherical integrals.

Lemma 10. There exists an event £ such that Exlg = O(N~P) for any D > 0 fived and such that
on £, we have the following for all j =1,...,m:

det[Hy, (nx, )] Kj g1

0 0 * * 3 * ~(0—1 —
~ det [I —lg; <0 H(j_l)(m )) Ui T;T;U H | det[V} Gg\[ )(77/\15715)‘/@” ! (5.3)
X it =1
j—1
~ det[ — tq; Ha, (m, )T T3~ [ 1 det VG5 )Vl (5.4)
r=1
Lemma 11. For all j =1,...,m, there exists a constant Cn . ; such that

»éN ) |det[Vj*Ggi'_l)(nkjvt)‘/j”jd’/jy%»Tj (u(j_l)) ~Cnt,j-
=7

Assuming Lemmas 10 and 11, since ¢; < 0, we can deduce from (5.2) that

mp O 21 mr+mp O 2
Ex < [ exp quj |T5|Uj—1 (u(j—l)) ] I ew leJj |T5|U;j—1 (,U(j—l)> ]
j=1 J=mpr+1

~ Cnaa [ [ detll —tq;Hy, (nx, )T T3 + O(N™P).

Jj=1
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We set ¢ = 0 to get Cn¢,x = 1. Next, we use the finite rank property of 75 to get the trivial bound
det[I — tq; Hx, (nx, )T T5] < I1Hy, (nx, 0) 115, < 7€ for some C' = O(1). This is much bigger than
N-Pif D > 0 is large enough, so the second term in the second line of (5.1) is much smaller than
the first term therein. We deduce

mp mpr+mg
ExS [T expNa | TyuslP] T]  exp[Na; [ Tyv5]°)
j=1 j=mpr+1
mp 0 2] mr+mp 0 2
~ E)‘ 1_[1exp [NQj |Tj|Uj_1 (u(J1)> ‘ H 1€Xp [NQj |Tj|Uj_1 (’U(jl)) ] s
J= J=mpr+

at which point it suffices to combine the previous two displays to conclude the proof of Proposition
5. Thus, the finish the proof of Proposition 5, we must prove Lemmas 10 and 11. We prove the
latter first, since it is short.

Proof of Lemma 11. In Lemmas 6.2 and 6.3 of [29], it is shown that there is a decomposition SV =7 =
G, U G]c such that the following hold.

1. On G;, we have |det[Vj*G(Ai71)(n>\j)t)V}]|j ~ C 4, for some Cy ¢ 2 N~7Y with v = O(1).

7j ~Y
2. We have v 0,.7,(G) = O(N~P) for any large, fixed D > 0. This and | det[V}*G&ifl)(nM,t)V}H =
O(t=%) for some C' = O(1) (along with t > N~!) give the following for any D > 0 fixed:

/GC | det [V G5 (i, V3P v,y (w0 D) S NP
J

Thus, it suffices to show that for any ¢; < 0 independent of N, we have the inequality of measures
dvjq, 1, < NYdwj 0,1, for some C = O(1) (note that v 7, has no dependence on T}). To this end,
note that by construction and the assumption ¢; < 0, we have dvj 4, 1, < Kj_,qu,Tj Kjo1;dvjor,. By
Lemma 10, we have
-1
Gy ISG0, = det[I —tq; Hy, ()T T}
Because T''T} is finite rank by assumption, the determinant on the RHS is bounded above by a finite
power of the operator norm of tq;Hy,(n»,,), which is at most O(t~*). Since ¢ > N~!, we obtain

K;qu)TjKj,QTj = O(t~%) as desired. O
The rest of this section is dedicated towards the proof of Lemma 10. We assume j = 1,...,mg;

for j =mpr+1,...,m, just replace AU—1 — A; by its adjoint.

5.1 Proof of (5.3)

In this step, there is no need to restrict to an event £. Throughout the proof of (5.3), we will adopt
the notation

HY D, 0) = (AT = 0) (A0 = ) — g, 7T

45 J
here Tj(j_l) is the restriction of T;U;_1 (see Lemma 8) to the orthogonal complement of e1, ..., €e;_1.
In particular, we choose T = Tj(J_l) in the context of Lemma 7.

The argument is similar to the proof of (4.2). Lemma 7 gives

CilH)(\‘j_l)(n)\j,t) < H,(\Z:Ii)(ﬁ,\j,t) < CHf\i_l)(nAj,t)a
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where C' > 0 is a fixed constant. This gives H)(\i;) (7x,,t) > 0, and we can follow the proof of Lemma

6.1 in [29] verbatim to get
K. — Cv,id H(J'*l) D Qot[] 4 H(J 1) 1q
3:45,T; N.t,5 det] Xj\d; (0] [ e et[] +ip (nAj,t)] D.
R

The above two-sided resolvent bound also lets us approximate the last determinant in the previous
display by a Gaussian factor, as in the discussion after Lemma 6.1 of [29]. In particular, with more
explanation after, we have

/ eip det[I + ipH)(\i:;)(n,\M)]*ldp
R

_ / e3P exp {_ﬂ log [I + ipHg:I?(mj,t)] } dp
R

JqJ j‘Z]

- 1
</ e exp { <iNpUHY ) (i, 00 — SN (0, 0%
|p|<N5N 1/2t3/2

Indeed, to show that the last line holds, we use the inequality Relog[l + iz] > Cz? for a fixed
constant C' > 0 along with TrH)(\]j:;)(mjyt)Q = N(H(] 1)(77>\ +)?) = Nt=3. This lets us restrict

Ajrj

dp integration from R to |[p| < N°N~1/2¢3/2 After this, we Taylor expand and control the third-
order error term by interlacing (H(J 1)(77,\]7 )Y = (H), .q, (1r;,0)%) + O(N7172%) and (A1.4) to get
(Hi (17, 0)%) S 72FF2(Hy, g, (s, ) < 82407

Tr log [1+ipHY 2 (13,.0)]

. 1 _ _
= iNp(HY D (,.0)) + NP (Y (13,.0)%) + O(ND*E%) + Ot ™)

. — 1 — —1/2,— _3/2,—
:sz<H)(\‘;1q1)(n)\j,t)>+§Np2<H)(\‘;7qi)(n>\j7t)2>+O(N36N 1/24 1/2)+O(N35N 3/24 3/2)'

Now use ¢t > N~1/2. Finally, by the same token, we can again remove the constraint on p in the
R-integration after controlling the Taylor expansion above. In particular, we have

/e tpdet[I—i—sz(J )(77,\],15)] Ydp
R

) 1
~/ ezfpexp{—uva“ D (as)) = SNp2(HTD (o t>2>}dp
R

Ajds 2 X245
(G-1) 1
:/e pl—t(HY ™D (1x;.0)] exp{ 2Np <H(J 1)(77A ) >}dp.
R

By interlacing and Lemma 7, we get t(H(J 1)(77,\]7,5)> = t(Hx,q, (1, 1)) +O(N 1Y) = t(Hy, (05, 0))+
O(N~'¢~1). By definition of 7y, ;, we also have 1 — t(Hx, (nx,,)) = 0. Hence, for some quantity
kNt = O(N~1t1)), we have

i p—t(HY D (. 1 -
/Re L=t (HY (g 0)] eXp{——NPQ<H§i7q§)(77x\j,t)2>}dp
:/e TPRN 1] exp{——NP2<H(J 1)(77/\J,t) >}dp

R

V2m KR

= — exp 4 — =
NY2(HT D (ny, )2)1/2 AN (HY D (s, 0)2)

)
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where the last line follows by Gaussian integration. Now, we use <H§J;1i)(77’\fvt)2> <t™% so that

42
RNt ~3,-6
exp { — =exp{O(Nt7 %)} ~ 1,
2N (H} oy 1)(77>\ %)

Ajrqj

where the last bound follows by ¢ > N~'/2. On the other hand, by interlacing once again, we have

NE(HT Dy, )22 = N2 {(Hy, g, (00,02 + O(N 14}

Ajrqj

By (A1.4), we have (Hy, 4, (1)) 2 t~. Hence, if we now use ¢ > N ', the RHS of the previous
display is ~ NY/2(H,, 4. (nx,.¢+)?)'/2. At this point, we can follow the display before (4.2) to get

V2m KR

exp 4 — =
N1/2<H(J 1)(m,,) Y12 2N<H§i,q?(mj,t)2>

~ Cn.

By combining our computations thus far, we deduce

K%ijj = CN,tyj det[H(J (77>\ t)] / ei¥p det[I+ iPH/(\]]‘-:z?(mj,t)]fldp
R
~ O g det[HY D (s, 0)].

By the previous display and elementary resolvent identities (see the display after (6.3) in [29] for
the second line below), we have

det[H, (nAj,t)]_lKj,qj,Tj ~ Ot det[Hy, (,.0)] 7 det[HY D (s, 1))

NcNUHMetng“ D () Val| 7 det[HT ™ (s, 007 det [V ()],
=1

as well as

det[H ™V (my, )] det[HY .V (na, )] = det(] — g HY ™ (s, )T~ I~

J J
=det [ -1 ; ! U:_\T;T;U
= de — g5 0 H)(\inl)(nAj,t) j—145L3Y5=11|>
where the last line follows from recalling that Tj(j Y is the restriction of T;U;_1 to the orthogonal

complement of e1,...,e;_1. This completes the proof of (5.3). O

5.2 Proof of (5.4)

By the spectral theorem and finite rank property of T}, we can write 17T} = Eijzl 45,k Wj kW, for
gj,kx > 0. If we define

O VIR U T
N0 =Y, )T

then we have

0 0 &
det [I—tQj (0 Hgl)(ﬁ,\j,t)) Ui T;T;Uj

=det | — tz 45X G- 1)x§.{,;1)’*
k=1

19



Lemma 15 and polarization give nggl)’*xgzl) =X 1 Xjm + O(N~1t73), where

1
Xk o= Hx, (nx,,6) 2 Wik,

We now argue as in the proof of Corollary 3. By (Al.1) and (A3.1), we have X} ; X, = O(N~1/2¢=3/2)
if k £ mand C~1t~! < |x; /> < Ct~! for some C > 0. In particular, following the proof of Corollary
3, we have the following on an event & satisfying Ex1l¢ = O(N~P) for any D > 0 fixed:

¢ —1

~
<

: ' - r , —1
—1 —1),* j—1 o
det | Tt aqjqjuxsy VY =TI |1~ taainlxfs VP2 +ov "t 3)}

k=1 k=1

6 -
j—1
~ 1 — tgjq; k%Y, )IQ}
k=1
i T —1

2 L - 0 0 -
P 4495,k W; xYji—1 0 H>(\J] 1)(77>\j,t) j—1Wjk
2

" 1,311
[1 —tq;q, kW  Hy, (mx,0) Wik + OV Ly 3)} .

>
Il
—

The second line follows by tqjqj7k|x§‘f,€_ 1 |2 > 1 that we justified in the previous paragraph and the

assumption ¢ > N~1/3%¢ for some ¢ > 0. The last bound follows again by Lemma 15. Again, we
can remove the O-term by using (A1.1) and (A3.1); this gives w7, Hx; (nx,,¢0)Wj . = (Hx; (nx,,0))[1 +
O(N_l/Qt_3/2)] > t~1. The same reasoning that gave the first line in the above display yields

L5
* - - -1 * —
H [1 —tq;q;, kW  Hy, (0,6 ) Wik + O(N Ly 2)} ~ det[l —tqjHy, (nAj,t)Tj T;] L
k=1
which completes the proof. |

6 Concentration

In this section we prove the concentration estimates with respect to the measures v; and w;. First,
we state a master concentration inequality below. This was essentially proved in Lemma 6.2 of [29].
We state it in a more general form.

Lemma 12 (Master concentration inequality). For any j € [1,mg] and any Hermitian matriz
B e Mn_;1+1(C) such that

- N . 2
| T ] < € e (1, 08" 5

we have

<v N

. . t i t
wI=D* g, =1 _ N’I‘rH)(j 1)(77/\j7t)B’ max{\/g,K}. (6.1)
In particular, in case of rank 1 matrix B, we have

o ¢ .
w0 0* Byl <, NTrH/(\]j )(nx, 4)B. (6.2)
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For any j € [mg + 1,m] and any Hermitian matric B € My_;+1(C) such that

—— —— L 2
H\/Hg\i 1)(77,\j,t)B\/H§i 1)(77,\j,t) < K and Tr (Hg 1)(77,\j,t)B) <8,

we have

. ) t ~ i t
W00 Byl — T AL ”(mj,t)B‘ <y & max{\/E,K} . (6.3)
In particular, in case of rank 1 matrix B, we have
. . t ~ (i
WI=D*Byli=Y < NTng Y (na,.0)B. (6.4)
Proof. Consider the right eigenvector case of j € [1,mg]. The case of the left eigenvector step

j € [mgr +1,m] is proved similarly after replacing A with its adjoint. In the right eigenvector case
we show that

p (u(Jl)’*BuUl) - ST HI 0, 0B > N max { V5, KN51}> < e ONT,
The proof of the other side of the inequality is analogous. Define the moment generating function

. ] t i
m(r, B) = E, exp {r (u(]_l)’*Bu(]_l) - NTYH)(j 1)(n,\j,t)B) } .

-1
. tVS tKN* (N N
r = | max NN = min t\/g’N‘;ltK )

By Markov’s inequality, we have

We take

. . t i
1 (r (u(J_l)’*Bu(J_l) - N’I‘r Hg 1)(77,\j7t)B> > N‘51) < e_Nélm(r, B). (6.5)

In the proof Lemma 6.2 of [29] it is shown that if Z[|B|| <1 —¢ for 0 < ¢ < 1, then

B T‘2t2 . 2
m(r, B) < eXP{C 1WTF (H§J] 1)(77>\j7t)B) }

In our case, since r < N~ Lo,
t
SIBI N <1-c
Hence, we have
28 1
m(r,B) <expqc N2 < exp {c } .
Plugging this into (6.5) and dividing by r on the left, we get the desired bound. O

Lemma 13. For any j € [1,m — 1] and k,1 € [1,m], we have

<H,(\]k) (Mrk.t) Hﬁf’ (77Az,t)> = (Hx, (x..¢) Hx, (13,,)) + O <—) ,

Y ~ N ~ 1
< )(\Jk) (TD\k,t) H>(\Jz) (nkz,t)> = <H>\k (nkkﬂf) Hy, (nkz,t)> + 0 <—
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In particular, these together with A2 imply

(HS) (o) HS () ) 272

(HY () A () ) 2870 (4 [ = M)

<ﬁ§i) (Mxit) FI§§’ (77,\L,t)> >t
Proof. We prove the first estimate, the other two a proved similarly. It is sufficient to show that we
can reduce the index j by 1 with the error O (ﬁ), ie.
<H§J,C) (nAk,t) Hﬁf) (77>\z,t)> = <H§J,;_1) (mk,t) Hg_l) (nAl,t)> +0 (%) .

We will consider j € [1, mpg], the other case is proved the same way, the only modification is the
replacement of uU—1) with v~ For i = k, [ consider

7

By Lemma 2.1 of [29], we have

, , o o
(H (i) HY (70 ) = (HE (v, Y () )
S VI Y L RO U YO L
Nu(jflx*ﬁg:l)(mkﬁt)uufl)
w0~ o ) O ) D O™
Nul=0+ 1™ (15, uti=D)

) Y Y . 2
u(]_1)7*H§Jk 1)(77>\k,t)H§Jl 1)(77>\l,t)U(J_1)

Nu(j—l)mf[ﬁ*l)(mk)t)u(j—l)uu—l),*]?{g*l)(ml)t)u(j—l) '
To bound the second and the third term we note that
W=D (g DS O DL (a0 S 67470 7D (g )ul Y
and to bound the last term we note that

k

i RN AT NTE:
A a0 07

) i i 2
[0 B sy ) ) <

S I T R (W TR

Then

) . n i il 1
<H)(\Jk) (nAkﬂf) H)(\Jl) (TD\z,t)> = <H>(\Jk Y (TD\k,t) H>(\Jl Y (n)\ht)> +0 (W)
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Now we use Woodbury’s identity to get

(=1 (=1 i—1 i—1
(S e ASY () = (HE () HY ™ O )

w0 (AGD = NJHY Y (ga, ) HY ™ (a0 ) HY ™ (1,,0) (AG™D — M) =D

* N2 -0+ fgl—1 (G-1)
nAk,tu Ak (nAkyt)u
(A0 W i ) H T (i ) B () (A9 = )ul D
N, 0D HG ™ (3, o) ul=D
W=D (A6 A HE D (i, D HE D (i, )(AGD = )bV
+

Nnik,mil,tu“*l)**ﬁg” ) U(jfl)u(jfl)’*ﬁ,(\jlil) (Mn,t) ul=1)
To bound the first two error terms we note that

w0 (AT = N H )R O ) Y O, (4972 = A7
< 2D (40D /\k)Hﬁfl)(mk,t)z(A(j‘” — Ap)fulY
< t_2u(j_1)’*ﬁ)(\iil)(nAk,t)U(j_l).

To bound the final error term we use Cauchy-Schwarz as follows.
. . - j— i * j— 2
[0 (A0 - N (e ) B (0 (A0 = ) a7

; , , 2 - ‘ ‘ 5
< BG40 = X w0 DYV ) (A6 = ny b
<ul=D AP0 (g, JubDuGD T iy, Jul)
This concludes the proof.

Corollary 14. For any j € [1,mg] and any k € [1,m] we have

N P . —1
1 (G—1) (J %
-<Vj m <H>\j (77 At )H)\k (TD\k, )> )

J

\u“‘*“v*ﬁi{;‘”<mk,t>u<ﬂ'*> —t(BG Y, ) V ne))|
1
2

1 - i
<H(J 1)(77>\ t)H,(\J,c 1)(77>\k,t>>

J

For any j € [mgr + 1,m] and any k € [1,m] we have
}u“‘*”v*Hiﬂ“”<mk,t>u<ﬂ*1> (A0 ) HSY )|
1
2

(G-1) (g
<., \/_t <H (nx, ) HY ow )> ;

’u@-mﬂgw(mk,t)uo‘—w_t 1070 (i, VB ()|
1
2

J

) »
" (A, )AL ()
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As a consequence,

- « - . _ - w7 (i— . —1

1=, H}(\Jk 1)(,'7)\]“15)”(] 1) ., t 1 =0, H}(\Jk 1)(,'7)\]“15)”(] 1) -, (f+|)\k—)\l|2) . (6.8)
- w7 (i— - _ - « S - 1

U= H)(\Jk 1)(77Ak,t)U(J b =t 1 U=h, H)(\Jk 1)(77Ak,t)U(J b =, (t-i— [Ak —)\l|2) . (6.9)

Additionally, for any deterministic unit vector w € SN =7, we have

W o, A0 = A0 <, o B w, (6:10)
w B, (A0 = X[ <, o B (6.11)
WA D, 0| <, s B (6.12)
W*H,(\iil)(ﬁ,\k,t)u(j_l)r =y %W H(J )(mk,t)wa (6.13)
w1 < %W*Hf\i_l)(ﬁAj,t)W (6.14)

for j € [1,mg] uniformly in w and

W*fol)(n,\k,t)(A(j_l) — )\k)*v(j_l)r <, %W*Hﬁifl)(mw)w, (6.15)
WU (g, )(AGD )\k)*vu—l)‘? <, %W*Hﬁ’”(mm)w, (6.16)
w HI D (5, ) v(j—l)f %, ﬁw*gg‘c—l)(nm)w, (6.17)
woH{ ! )(mk >‘ <y W HA Y ()W (6.18)
w*v(j_l) < NW*H)(‘T )(77,\j,t)W (6.19)

for j € [mgr + 1,m] uniformly in w.

Proof. We prove the concentration bounds with respect to the right eigenvector measures v; for
j € [1,mg]. The concentration bounds with respect to the left eigenvectors are proved the same
way after replacing A with A*. To show (6.6), we note that

H [HT (i, VES ™ (VY )

- 1 2 1 —
1 (Y o) BV 0n0)) < g (HY D, 0HS ™ ()

Then (6.6) follows by Lemma 12 and Lemma 13. The proof of (6.7) is analogous. We now need to
address

—2 -2 —4
<Mt St

and

o 4 o2

[whHG 2, ) (A7) = A ut =)

— u(j—l),*(A(j—l) _ )\k)*g/(\ifl)(n/\ki)ww*ﬁgfl)(mk)t)(A(j—l) _ )\k)u(j—l),
We use Lemma 12 for the rank 1 matrix

B= (A - )‘2)*ﬁ>\2 (77)\2,75)WW*I~{>\2 (77>\2,t>(A - /\2)
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It remains to compute

t i
NTI"HX Y (1r,,¢)B

t = , . _ o
= W i ) (A9 = N HY (0, ) (AT = M) HY (W

1 L~ . . . (i
< ™ HN T ) (A9 = M)A ) HY T () w

1~ 1 i 1~
=V H,(\Jk (a0 )W — mnik,tw Hi”k J(a0)?w < T H,(\Jk ()W

Thus, Lemma 12 implies (6.10). Now, we deal with

i ) 2 ) L o _
W*H,(\]k Y (i, )u =) :u(Jfl)"*H,(\]k 1)(77/\k,t)ww*H,(\]k D (i, 0)ub =Y,

We consider a rank 1 matrix
B =AY (i, )ww HY ™D (i, ).

Then it is easy to check that

t - t = - - i
STHY (B = ow HY D (n, DHY T () HY Y (13w

1 =~
S WW H,(\i )(Tb\k-,t)w

Plugging this into Lemma 12 gives us (6.12). Finally, the bound (6.14) follows directly from Lemma
12 with B = ww™. O

Lemma 15. For any j € [1,m — 1], any k € [1,m] and any deterministic vector w € CY we have

w U (O G 0 ) Uw=w"H),( w (1 +0,, (—1 )) (6.20)
7 \0 HAJ;C)(n,\k,t) ! AT Yiml \ Nt3 ’

W*W(O ~(‘O )UW—W*EI ( )W(1+(’) : (—1 )) (6.21)
7\0 H,\Jk)(mk.,t) ! Mt ot \ N3

Proof. We show the first estimate by induction over j. The other estimate is proved similarly. It is
sufficient to show that for any w € SV =7 we have

: 0 0 , . 1
R (01D ) (1) _ w1
w8 () o i ) () v = o (140 (575

uniformly in w. Define

—1

A9 () = KAU_I) _ /\k)* (I — ul=Dy=1%) (AO'—l) —~ /\k) + nim}

By Lemma 2.1 of [29], we have

w*R; (u(j_l)) (8 H)(\j)(on,\k t)> R; (u(j_l)) w
k :

(i ) 2
[w B (g Ju Y|

* 7] (j_l)
=w'H w G '
N (M) u(j*1)=*H/(\]]c_l)(mk,t)u(j*l)
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We can use the Woodbury’s identity to express I?I)(ifl)(n,\m) in terms of Hg:l)(n,\k)t) as follows.

AV (n3,0)

Hﬁ‘i_l)(mk,t) (AU-D — Ak)*uwfl)u(jfl).,* (AG=D — xy) Hﬁ‘i_l)(mk,t)
1 —ul=0 (AG=D = X\ HY ™Yy 0) (AG=D — Ap) =D

Hij,;_l)(mk,t) (AG-D — ,\k)* w0 Dy =% (AG-D — )y) H&i‘”(mw)

—1
=HJ ™V (i) +

= H{ V() + T _ . (6.22)
o 13, w0 =D H D (3, uG=D)
Using this identity and Corollary 14 we see that
v 27 (1) . N
* frli=1 wpr(i—1) _ ‘W ngk (Mxe.t) (A(J 2 _)‘k) ul 1)‘
WL (nkkﬂf)w - W H)\k (nkkﬂf)w = 2 -1 7U-1) G-1)
M tW J= HM (Mg, )ul
1 -1
<1/j WW H>(\Jk )(T])\k_’t)w.
Using (6.22) again we get
e 2 o 2
}W*H,(\]k 1)(77Ak,t)u(ﬁl)’ S ’W*Hﬁi 1)(77Ak.,t)u(ﬁl)}
e e (1 . o 21 1) (1 . N
) ’W Hiyk )(mk_’t) (A(J 1)_)\k) wli 1)‘ ‘u(ﬂ 1), Hiﬂk )(n%t) (A(J 1)_)\k) w( 1)’
py 2
o (1070 A i)
and
u(jfl)-,*]:f[)(\ifl)(nl\ht)u(j*l)
. 2
(-1 = G-1 — A" <H>}
> G=1) =) (-1, O H ) (4 M)
Z nax § u Ak (n)\k,t)u ) B 1 ~(j—1) 1
M W HY T (i 1) ul =)
Thus, combining these two bounds with Corollary 14, we get
L =D G-1|? L g1 G-nl*
w0 D[ B )
u(ﬂ"l)v*flﬁi_l)(mk,t)u(ﬂ’—l) ~ u(j—l)wﬂii_l)(n)\ki)u(j—l)
) ) . 2
’W* i‘[l)(mk,t) (AG=D = \,) u(rl)’
1R, uG D HY ™D (0, )ul=D
L e pgG=1)
v W HY ™ (1g0) W,
which completes the proof. O

Corollary 16. Suppose w € CV is a deterministic unit vector. Then for any j € [1,mg] we have

o \|° ¢
W*Ujfl (u(j_l)> < NW*H)\j (nAj,t)W-

For any j € [mgr + 1,m] we have

o \® ¢t .-
W*Ujfl (’U(j_l)> < NW*H)\J. (nAj,t)W-

Proof. Follows directly from the bounds (6.14) and (6.19) from Corollary 14 and Lemma 15. O
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6.1 Proof of Lemma 8
First, we get the high probability bounds on some quantities involved in the proof of Lemma 8.

Lemma 17. For any k,j € [1,mg] such that k < j we have

-1 2

i I (e () ()

l=k+1

t+ A — N2

For any k,j € [mg + 1,m] such that k < j we have

j—1 0 ’
wy, H (Il—k—l DR (U(l_l))) (v(j1)>

I=k+1

t+ A — A2

Proof. We prove the first right eigenvector bound. The other bound is proved similarly. Since the
measure wy,(wy,) is Gaussian with mean by, and variance &, we have [|wg — b < t2N~z. Thus

wy, ﬁ (Il—k—l O R (U(l_l)» (u(jol))‘
l:k-f-_l
= |by, Jl_Il (szkq &R (U(lil))) (u(]‘o_l)> + O, (téN*%)
I=k+1
= [yt 4= g (1) 121;[ (1 @ R (u0)) (u(jol)> O, (AN
= [utD (A6 - ) I_HZ (v o R (1)) (u(jo_n) + 0L, (HEN7H).
For brevity we denote
j-1
Uk,j—1 = H (Il—k DR (u(l_l))) )
I=k

Now we use Lemma 12 with
B=U;,_, (A<k—1> - Aj) (k=) g (k=1 (A<k—1> - Aj) Upjo1.

Since this is a rank 1 matrix, by Lemma 12 we have

(k=D (AR=D X\ U, 0 ‘np(’ )

! ( =) Uk (u(j1)> T N o BYTY (1)
t 0 0 *

_ L0 (401 N . . k=1 _ ) D)
N (A ’\J)U’W—l (o HY™Y (mj,t)> Uki (A AJ) “

t 1) _ 0 0 . B * _
N (AR ) Uy (o HI (1, t>> Ut yn (A0 =) b

2
0 0
(k—1),% (E=1) _ . . . . * .
(A Aj) Uk j—2 <0 Hg—z) (1a,.0) (A2 — \)) u(32)>

N, =2 Y (i, ) w2

IN

tlu

+
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where in the last step we used Lemma 2.1 of [29] and Woodbury’s identity. As long as j > k + 2,
we can use concentration in ©=2) to bound the numerator of the final term by

t 1)k _
NU(k b, (A(k b _ )\j) Uk j—2
0 0
>< . ) * - . )
0 HY™ () (A9 = 2) HY ™2 (a1, 0) (A2 =) B (i, 0)
X Up j—2 (A(k_l) - )‘j) ulh=Y

in the sense of stochastic domination with respect to v;_;. We deal with the resolvent product in
the middle by bounding the middle H with a trivial norm bound as follows.

o . * i_9 i j—2
HY™ () (4972 =0 ) HEZD (my10) (4972 =0 ) HE (n,0)
<o YT () (A7 =) (A9 = ) HETP ()
< n;j’,l,tﬂii’” (1x,¢) -
Then putting the previous three displays together we get

2
1)k _ U 0
w (A(k ! _)\j) kit (u(jl))

t 0 0 *
(k—1),x (E—=1) _ y. . . * (E=1) _ y. (k—1)
i (A /\j) Uk, j—2 <O H}(\]j_g) (nAj,t)> Uk j—2 (A )\J) U

. o~ i —1

-<l/j,l/j7]

J

Now using the concentration lower bound (6.8), we get

2
—1),% R - Uk i— -
wF=1s (A(k 2 /\j) kig=1 <u(j 1))
0

t 0
L= (AUH)_A.)U - -
N )Pk 00 HYT (0,

<1/]‘,1/]‘71

)> Urj_a (A(kfl) _ /\j)* u k1)

Now we repeat these steps until we get

_ * - O
w1, (AU“ b— /\j) Uk,j—1 <u(j‘1)>

e () (5 ) ) ()

We use Lemma 2.1 of [29] and Woodbury’s identity again to get

2
1) _ U 0
w (A(k ! _)\j) kit (u(j1)>

t _ *
=V k1 Nu(kil)ﬁ* (A(kil) - )‘j) H>(\]j Y (nAj,t) (A(kil) - )‘j) u(kil)

2
t(u(k—1)7* (A(k—l) —\) Hi’:fl) (mr, 1) (A(k—l) _ )\j)* u(k—l))
Nng\j,tu(k;_l))*‘f{[}(\l;il) (n)\j,t) u(k_l)

t+ Ak — A2
T TN

2

<Uj~)k+1

+
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This concludes the proof. O
Now we are ready to prove Lemma 8.

Proof of Lemma 8. First, we note that if M) has eigenvalue A with right eigenvector u; and left
eigenvector ¥;, then M (G=1) also has eigenvalue A with right and left eigenvectors given by

i1 = Ry (w0 ) <M> L 1= Ry (u07Y) (0> . jellmgl (6.23)

’ﬁj ’Dj
fij1 = Ry (070 <§ ) L =Ry (007) (A:M) . jelma+lm].  (624)
J Uj
Using this observation, we can express the left and right eigenvectors of M denoted by ui, ..., Uny,
Umpils -« U through u, ..., u(me=1 ylme) (m=1)  For instance, take j € [1,mg]. We con-

secutively apply the identities (6.23) to compute the right eigenvectors of MU=2 . MM M cor-
responding to the eigenvalue A;. In the end, we get

j—1 j—s
0 ”Z 3 > . . 0
u; = Uj—1 (u(J1)> + a(zl, e ,Zk.;,_l)US_l (’LL(Sl)) , (625)
s=1 k=1 S:i1<i2<...<ik+1:j

where the scalar coefficients are given by

k
. . 1 s 0
CL(’Ll, .. ,’LkJrl) = H()\ln — )\ik+1) lwinUin71:n+171 (u(in+1—1)> .
n=1

Using Lemma 17 to bound the coefficients a(iy, ..., ix+1), we get

k
laGin, .. yikr)]? < (NOTF T+ iy = X )i = X172
n=1
where i1 = j. We split the set of indices I = {i1,...,4} into two disjoint subsets I = I; U 5 such
that
L={iel:|\—)|>tY2),
L={iel: NTVXv <\ — )| <tV/2).
Then
k
H Ao, — A2 < ¢ InIyIRI0-20),
n=1

If |I1| > |I2|, we bound each term (¢ + |A
(Nt)~F = (Nt)~I1l=I2l Then

— Xiny. [?) in the product above by a constant and write

n

|
, , 1"
la(it, ... igg)|” < N7II=2ulll=2h=1k] < (—Nt3> = N8Il < N,

If |I1] < |I2|, we note that for the distance between to eigenvalues to be larger that 2t1/2, at least
one of them has to be outside of the set I, thus

Hn e [LA]: [Ny, — Aoy | > 2t1/2}’ <2|n|.
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- A < 5t, and for any n in this set

Then for any n outside of this set we can bound ¢ + |\;, i |

t+|Xi, — i, 1| <C. Then the product is bounded by

k
TL G+ M, = Ny [?) S 2572000 = glEal-10l,

n=1
Hence,
. . 2 T — _ _
la(in, .. igg)|? < N-HIm2olER=8I0E < e,

Plugging these coefficient bounds into (6.25), we get

—1
0 e . 0
|Tj|u; = [T;|Uj-1 (u(jl)) +) ON~)|T|Us s (u(51)> :

s=1
Here €; = min{ep, v}. Now we recall that
Lo
T = a2 wikw),.
s=1
Thus it remains to show that
‘W;kUs—l (u(so_l)) ’ < N3,

This follows by Corollary 16 and the assumption A3. The proof in the left eigenvector case is
similar. O

7 Proof of Theorem 1

Given Theorem 2, the first step is the following moment matching, which is Lemma 3.4 in [22].
Lemma 18. Fiz 8> 0 and t = N~P. There exists a matriz A such that the following hold.
1. The entries of A satisfy EA;; = 0 and E|A;;|> = N=' and E|A;|P < C,N—P/2.

2. Consider A and M, = (1+t)"/2(A+t'/2B), where B is sampled from an independent Gaussian
ensemble. Set my(i, j) = EAY, and my(i,j) = E(M,)f;. Then for all i,j and k = 1,2,3 and
for some 6, > 0, we have

mk(iaj):mk(ivj) and m4(i,j):ﬁl4(i,j)—|—0(1\]76t)

3. The matrices A and M, are independent.

(Condition 2 is sometimes referred to as “matching up to three-and-a-half moments”.) Theorem
1 follows by Theorem 2 and the comparison result below for matrices which match up to three-and-
a-half moments.

Theorem 19. Take A and M, from Lemma 18. Fix positive integers mpg, my. Fiz deterministic
{z? = z?(N)}?:”l-i_mL C C such that |2)| < 1—1 for each j and for some T > 0 independent of N.
Next:

o For any j € [1,mg] let (\j,u;) denote an eigenvalue-right-eigenvector pair of A, and for any
j€lmr+1,mr+mc] let (\;,v;) denote an eigenvalue-left-eigenvector pair of A.
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o Similarly, let (\;(t),u;(t)) denote an eigenvalue-right-eigenvector pair of My for j € [1,mg],
and (Xj(t),v;(t)) denote an eigenvalue-left-eigenvector pair of My for j € [mr+1,mr+mr].

o For any j, let T be a deterministic, finite-rank matriz.
o For any j, write \j = 2 + N=Y22; and \;(t) = 2 + N=22().

o Setz = (zj)?fi"_mL and T = (N||Tju;||*, N[ Txvr||?) k. Similarly, set z(t) = (z; (t))"f‘l"'mL
and T(t) := (N[ Tju; ()12, Nl Tevr (t)[12) .-

For any test function F € C2°(C™rH™ML x RMEYML) e have

lim EF(z,T)= lim EF(z(t), T(t)),
N—o0 N—o0

where the expectation is over all the randomness in A and M,, respectively.

The rest of this section is dedicated to the proof of Theorem 19. The strategy is based on Girko’s
formula, and for this reason, we must express eigenvector statistics in terms of eigenvalues. We start
with the following construction.

Definition 20. Fiz §y > 0 small, and set ny := N='7  Fiz any finite-rank matriz T € Moy (C),
and define

_ Np

)2_|_ Te2N\2 L 2 HTukH2

V(z,T) :== Nogy'Tr [T*TImG. (nv)] Z @
k

Above, & are eigenvalues of the Hermitization H., and uj are the corresponding eigenvalues. We
adopt the convention £ > 0 for allk € [1, N], and & = —&7,, for any k € [—N, —1]. We also impose
& <& for k < L. The sum on the far RHS of the previous display is over all k € [—N,1] U [1, N].

Fix any right eigenvalue-eigenvector pairs (A1, u1), ..., (Amp, Umy ) and left eigenvalue-eigenvector
pairs (Amp+1s Ump+1)s - - - (Mmg+mr» Ump+my ). Now, fix j = 1,...,mpg. Since (A — \j)u; = 0, we
have

0
Wy, < ) 0.
J u]
Similarly, for any j =mpg +1,...,mg + my, since u] A=) = Ajuj, we have

Ui\ _
HA]. (0) =0.

We now provide the following, which essentially compares V(A;,T') to the corresponding eigenvector
information we are interested in. We explain its utility afterwards.

Lemma 21. We have
N 2
VT = 3 (5,2)2777:772||TUZH2 +1 (g < NTV) O(1) + O(NTOV ),
k=+1 \°k v

Above, O is with respect to the randomness of the matrix A. Now, fit any j=1,...,mr+myp. We
have

VO, T) = 3 NITw |2 +1 (&7 < N770V/2) 0(1) + O(N 0V /2),
k=+1
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Proof. To prove the second claim, we set z = A; and use Sijl = 0. To prove the first claim, it suffices
to show

Nt . . ilsy s
> Ep Tuil =1 (g < N o) 0N,
k#+1 Ok Vv

We first write, for some ¢ > 0 small and independent of N,

Nt Nn?, N
Y Tl = 3 e el 3 AL @ LTl

kt+1 k£l k£l
|€R1<c [&xl>c

Using the trivial bound || Tu| = O(1) and 5 = N~272%V | we have

Nn%/ 2 —1-26 1 —25
Y L ITuiP SN VY 5 SNV
Wz G2+ T &2+
|€x1>c 1€x1>c

Next, for |£f]| < ¢, we can use delocalization (see Proposition 30) and the finite-rank property of T
to get N||Tui||> = O(1); note that delocalization only holds for bulk singular values in Proposition
30. Now, we write

o
Z &2 +nt Z (&7)? +77v+ Z +77 (1)

k#+1 k£+1 k£+1
€k <c [€k|<c [€kI<c
|k|<Ne |k|>Ne

The first term on the RHS is bounded deterministically by N€. For the second term on the RHS,
we use rigidity (Proposition 30) to bound it by O(N~°). In particular, this gives || > N~1|k| +
O(N™') > N~k since |k| > N¢, with which we can bound the second term on the RHS. Since
€ > 0 is arbitrary, we get the a priori bound

N 2
T = 0(1).
kgl (fk) 772
It remains to show that
1 (g7 > N—1-0v/2 NW%/ T2 = O(N—9v/2
&2 > el Tl = oW o),

k#+1 Ok Vv

1€51<c
We again use N||Tu||?> = O(1) and (7.1). By the assumption & > N~1=v/2 we have

77V 77‘2/ N*tstre
2 EErm S 2 @RS '

kA+1L k#+1 K
[k|<N® [K|<N<

Also, we can again use rigidity to show the second term on the RHS of (7.1) is O(N ). Now choose
€ = dy /2 to conclude. O

If we choose T appropriately, then our computations before Lemma 21 show that N ||Tu;\Ej1||2 =

N||Tju;||* for j < mpg, and NHTuj[lH2 N||Tjv;]|? for j > mp + 1. We expand on this more later
when it is more relevant. First, we present the following technical result, which is important to
various estimates in the proof of Theorem 19.
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Lemma 22. Fiz Hermitian T € Man(C), and assume ||T||op = O(1). Fiz n < N~1. We have

sup |V.TrTG.(n)| = O(N~ 2y 2Tr VT*T), (7.2)
|zl<1-7
sup |VETrTG.(n)| = O(N~ 2 *Tr VT*T). (7.3)
|zl<1-7

The O is with respect to randomness of A. In particular, we have
V'V (2, T) = O(N~1™/2p =m0 o =1,2. (7.4)

Proof. By union bound over a very fine net and elementary resolvent bounds for G (n), it is enough
to prove the proposed bounds for a fixed deterministic |z] <1 — 7. We first write (for some ¢ > 0
small and independent of N)

G.)=G+Go= Y Mella  §o Uala

z _ 4 z _ g
a:|éz|<c ga mn |z |>c 50‘ “n

Bounds for |V.Tr T'G| and |V2Tr T'G| are simple to establish since ||@HOp = O(1). Thus, we prove
bounds for |V, Tr TG| and |[V2Tr T'G|. The advantage of this decomposition is the use of delocaliza-
tion estimates (Proposition 30) for all relevant eigenvectors.

Fix any Y, Y1,Y2 € {F12, F21 }, where Ej2 and Ea; are the 2N x 2N block matrices

(0 Iy (0 0
Bae (0 ). mae (00).

By resolvent perturbation identities, it suffices to prove

TrGTGY = O(N~3/2)2Te VT*T), (7.5)
Tr GTGY1GY2 = O(N 2 Tr VT+T). (7.6)

Now, for any vectors u, v and any matrix X, we write Xy, := u*Xv. We have

Tué ug Yugug

TrGTGY = :
= (&8 —in)(&5 —in)

By Proposition 30 applied to uZ, because T is deterministic and Hermitian, we have [Tz “73' =

O(N~'Tr+/T*T). By Proposition 31, we also have Yazuz | = O(N=Y2 4641215 N " He). If we plug
these bounds into the previous display and use rigidity of &7, we have

N=% +|€2]0)a)=i5]
(€& —in)(&5 —in)

Tr GTGY| = N"'Tr VT+*TO | >
o,

= O(N=3/22Te VT*T).

(The last estimate also uses rigidity of £%.) This proves (7.5). To show (7.6), we similarly have

Tugu; (Sfl)u;u,ﬁ (YYZ)u,zyug

a,Byy

. (N3 + €2 10101215 (V"2 + [€51051= 1))
= N! *TO
NTTeVTTO | S € —in)&; —mE —m) ’

By

at which point we again use rigidity of 2 to conclude (7.6). O
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We now reduce comparison of N||Tuj[jl||2 to that of V((A;,T) via level repulsion.

Proposition 23. Fiz any |z| <1 —7 with 7 > 0 fized. If § > 0 is small enough, then we have
P(é—; < N—1—5) < N—2.16'

We defer the proof of this to the end of this entire section. The coefficient 2.1 in the exponent is
not important; it just needs to be strictly bigger than 2.

Note that Proposition 23 is for fized |z| < 1, whereas we will need it for random z. To this end,
we use a net argument; we ultimately conclude the following.

Lemma 24. Fiz any zo € C such that |z0| < 1—7 with 7 > 0 independent of N. Choose any R > 0
independent of N, and let B,,(RN~Y?) C C be the ball of radius RN~'? around zy. If § > 0 is
small enough, then there exists ¢ = ¢(0) > 0 such that

i (3/\ € Spec(A) N B, (RN~Y/2): €} < N—l—ﬁ) — O(N™°).

Proof. Throughout this argument, we set n = N =179 where 0 < §; < 6 (and § > 0 will be a small
parameter chosen shortly). Let ¢ : R — R>( be a smooth test function such that

1, z>1.9
_J)5 = 7.7
e {07 o (7.7)
For convenience, set B := B,,(RN~'/2). We claim that for some ¢ > 0, we have
n —c
— < .
E {d) (rzneaé( 2ImTr Gz(n)>} < N7€, (7.8)
where the expectation is over randomness of the matrix A. To see that this is enough, we first note
N 2 2 N 2
n 1 2n n
—ImTrG.(n) = > + —_—. 7.9
TG00 =) e 2 G T G (79)

Thus, if there is z € B for which £&§ < N~'7% < 5, then on this event, we have

2
Ui
nIlmTr G, (n) > 2—7—— =109
) (€5)? +n?

In particular, since this statement is deterministic in z, we have the bounds

P (3)\ € Spec(A) N B., (RN~Y2) . ¢} < N*H) <P (max gImTr G.(n) > 1.9>

zeB
<E [qﬁ <maé( gImTr Gz(n))} ,
ze

at which point we conclude. To prove the remaining estimate (7.8), Let £ C B be such that the
distance between any point in B to £ is at most N'/27p, and |£| = O(N?+2%1). Here, € > 0 is
small. Fix 0 < d2 < §; such that 2¢ + 267 — 2.152 < 0. We claim

E [¢ < max gImTer(n)>] <Y P (gImTer(n) > 1.1)

zeBNE
zeEBNE

< D PEG=NTTY)

zEBNE
S |E|N72.152 5 N26+26172.152'
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The first bound follows by union bound and definition of ¢. To show the second bound, we first use
the identity in (7.9) to get the upper bound
Ui S
—ImTrG,(n) <1+ —_——.
2 <142 e

If the LHS of the previous display is > 1.1, then £&§ < N~'7% (for N large enough). Indeed, if not,
then the k = 2 term in the sum is O(N~"). The same is true for the first N7 many terms, where
7 < k. Now we use rigidity to handle the remaining terms; see the proof of Lemma 21, for example.
The last line follows by Proposition 23. By construction of d, we deduce

E {¢ (Z?BE’L%% gImTr Gz(n))} <N

To extend from B N E to B, take any z; € B and 2z, € £. By (7.2) for T = I, we have
[1Tx G,y (1) = 1Tx Gy ()| = O(N ™27 21 = 2]).
Now use |21 — 22| < N'/27¢p to conclude. O
Now, by Lemmas 21 and 24, to conclude the proof of Theorem 19, it suffices to show the following.
Proposition 25. Retain the setting of Theorem 19. Define
V= (V(Aj, Fiz @ Tj), V(Ak, Fo1 @ T)) j i
V(1) := (V(A;i(8), Fra @ Tj), V(Ak(t), For @ Tk)) .

where j € [1,mg] and k € [mgr + 1,mg + mr], and where Fia, Fo; are the 2 x 2 matrices

0 1 0 0
F12 = <0 0> and FQl = <1 0> .

For any test function F € C2°(C™MrT™ML x RMRTMLY e have

lim EF(z,V) = lim EF(z(t), V(1)),

N —o0
where the expectation is over all the randomness in A and M, respectively.
Let us now prove Theorem 19 assuming that Proposition 25 holds.

Proof of Theorem 19. By Lemmas 21 and 24, we get EF(z, T) = EF(z, V) 4+ O(||F||c1 N %), where
k > 0. But M; has the same structure as A, so EF(z(t), T(t)) = EF(z(t), V(t)) + O(||F||c: N —").
Theorem 19 follows immediately by these two estimates and Proposition 25. |

7.1 Proof of Proposition 25

We approximate general F' € C2°(C™rHTme 5 RMa+mL) by products of functions FW) € C2°(C x R)
and provide estimates uniform with respect to some norm on F) (this can be done by taking cutoffs
of the Fourier transform). In particular, we consider

mpr+mrp, 1

N
F(zV)= ][] NZf(j)(/\k),
j=1 k=1

FO)(z) = NF(]:) (NV2(2—29), V(2,12 ®Tj)) 1<j<mg
NFG) (N1/2(z -2, V(z, F1 ®T;)) mp+1<j<mp+myg

J
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and likewise for F'(z(t), V(t)). Fix 1 <j < mg; the following analysis holds similarly for mg +1 <
¢ < mp+mp. For convenience, we define the function fU)(z) := FU(z, V(29 + N=22 Fa0Ty)),
so that fO)(z) = NfO(NV2(z — 2y)). We claim that the quantity

1 1 . .
£my LIV -] 10z = 1, (4,59),

satisfies the bound E|€| = O(N~") for some x > 0. Above, D = {z € C: |z| < 1} is the unit disc.
Moreover, we introduced

N—1+108y

T (A g9) = g [Af9G) [ ImG) = T (i),

N-—1-105y
and m(in) is defined via the self-consistent equation

k&

w + m(w)

=w+m,(w) — ,  Im[m,(w)]Im[w] > 0.

m.(w)

Let us briefly sketch the proof; it is the same argument as Theorem 2.4 in [13]. We start with a priori
bounds. Let V; and A; mean gradient and Laplacian, respectively, with respect to the z-variable
in the first input into ), and let & mean derivative with respect to the second input into f().
Finally, let A be the total Laplacian. We first compute

AFD(2,V(z, Fia @ Ty)) = Ay fD 42N "2V, fO) - (8, f DV, V (2, Fia © T}))
+ N O fDPIV.V (2, Fra @ Tj) || + N0 fOAV (2, Fra @ Ty).
Since FU) € C2°(C x R), its derivatives are O(1) deterministically. Using this and (7.4), we have
AFD(2)] = O(1+ N2 + N4yt + N7%0%) = O(N*Y),

where we recall 5y = N™17% with §y; > 0 small. On the other hand, since §y > 0 is small, resolvent
perturbation also gives the bound |A f U)(2)] = O(N*). This last deterministic bound, for example,
shows that |£] = O(N'?). Next, by (3.2) in [13], which is a deterministic identity that holds even
for our random test function fU) in place of g therein, we must first prove the following estimates:

/ A9 (2)log|det[H. —iT]|d* = ON~B|AFD| L1 c)) = O(N™),
C
+o0 .
/ Af(j) (Z)/ (Immz(in) _ L) dnd?z = O(N_QSHAf(J)HLl((C)) — O(N_94),
C N100 Ui +1

The first estimate in each line is by Lemma 3.1 in [13]. To prove the second estimate in each line,
we use the compact support property of f() along with [|AfU)|| =) = O(N*). Next, we define
the quantities

. 0
I = L / Af(J)(z)/ (ImG.,(n) — Imm, (in))dnd>z,
2 C 0

NlUU
1717\,100 = S / Af(j)(z)/ (ImG(n) — Imm, (in))dnd?z,
! 2 C n

1

where 79 = N717199V and 5, = N~=1109v To conclude E|E| = O(N ") for some x > 0, according
to proof of Theorem 2.4 in [13], it suffices to prove

100 ~( = 100 —k
11+ 11 | = O(|Af D)) = ON®Y) and  E[I§°| +E[L) | = O(N™").
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The first estimate follows from Lemma 3.1 in [13], by HAf(j)Hp((c) < ||Af(j)|\Loo((c) (because f))

is compactly supported) and by our earlier estimate || A ]| o (c) = O(N*). To prove the second
estimate, we write the following with L > 0 large but fixed:

1 . 1 e
Ig":%/CAf(J)(z)xN Z log(1+)\—g)d2z

Ap<N-L k
+i/Af<j>(z)xi > log 1+"—8 a2z
2 C N )\%
)\kZNfL
1 . To
——/Af(J)(z) x/ I, (in)d?z
21 C 0
=1+ 114 III.

Using the deterministic bound |AfW (2)| = O(N?|AfY)(2)]) = O(N®), follow (3.5) and use (2.15),
all in [13], to show that if L > 0 is large enough, then E[I| = O(N*N %) = O(N ). For II, we use
the earlier bound ||Af(j)|\L1((c) = O(N*V) to get the following for ¢ > 0 small and D > 0 large:

|11
IAfD L1c)

The calculation (3.7) in [13] shows that the expectation on the RHS of the previous estimate is
O(N—2%) for some x > 0 fixed depending only on L > 0. Thus, we can choose dy,e¢ > 0 small
enough so that E|II| = O(N~"). Finally, bounding E|III| = O(N ") uses the same argument as for
I1, except we only need the bound Imm, (in) = O(1), which can be deduced from (2.12) in [13]. We
have shown E|[°| = O(N~*). The proof of E|I,J]\1[mo| = O(N ") follows by the same argument. In

particular, note the deterministic bound |I,]7\17100| = O(N209); this and |AfU)(2)] = O(N*V) give

E[II| < N¥VHE +O(N~D).

|I717\1[100 |
IAFD L1y
By the proof of Proposition 3.3 in [13], the expectation on the RHS is O(N ~2%). So, if we take §,¢e > 0

small, we get E|I7J7\{mo| = O(N~"). The proof of Theorem 2.4 in [13] now gives E|€| = O(N~"). In
particular, the comparison in Proposition 25 amounts to comparison of I, (A, f (j)) and

E[I}™| < NYVHE +O(ND),

N—1+108y

Is, (Mg, fO)) := %/@Af(j) (z)/ (ImG, +(n) — Tmm. (in))dnd?z,

N-—1-106y

where G ; is G, but with M, instead of A. Precisely, by the proof of Proposition 2.5 in [13], we
have the following.

Lemma 26. Suppose there exists a constant ¢ > 0 such that

mpr+mr mpr+mrp
E H Iév (A7 f(J)) —E H It5v (Mt7 f(J)) = O(N_c) (710)
j=1 j=1

Then Proposition 25 follows.

7.2 Proof of (7.10)

We start with the following construction.
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Definition 27. Take A and M, as in Lemma 18. Define the matrices

o o (0 M, L., (0 A
R A R ]

Let p?j and p denote laws of 7—[0 and ’Hllj, respectively, and for any 6 € [0, 1], define the interpolated

law pfj =(1- H)pij + Hpij. Now, for any 6 € [0,1], let H® be a matriz of size 2N x 2N that satisfies
the following properties. First, the triple (H°,H? H') is jointly independent. Second, the marginal
distribution of H? is given by the product measure

Hpu (dH7).
Neat, for any indices (i,j) and any A € C, define the matriz 7—[ z;)

Joa 1= {H  (09) # (k.0

Finally, for any n > 0 and z € C, define the resolvents

0 = : 0 =z .
Gn) = [H9 - (z 0) - m] » Gl ()= [”?3 B (z 0) - “7} '

We note that we do not require H% to be independent from H% for 6; # 65. By calculus, we
have the following for any smooth F : C2N*2N _ C, provided all expectations exist:

d 0 97{” 0.HY,,
GEFH) Z E{ ( ) >> — (H(m( )ﬂ (7.11)

1,j=1

0,
(H(U)

Now, we combine (7.11) with equations (1.7)-(1.8) in [26]. This gives

d X a\"
0 0
EF (H7) Z Z n,(ij) |‘<d7{e}> F(H")
n=14,j=1 ij

where the coefficients are defined by

1 0
00 K@ o Eet’Hij _ Eet?—tij
2 : n, (i5) FetMy, :

+ &,

Because A and M, match up to three and a half moments, one can easily check that
0 n=123

O(N727%) n=4

O(N—™?) 5<n</t

0 _
Ko ) =

where 8, is from Lemma 18. Next, & satisfies the usual Taylor series estimate below, where N —¢/2

. . . T 0 . . . .
comes from bounding the t** coefficient in Ee'*ii —Ee'?ii uniformly in 7 as in the K z (ij) estimate
above:

l+1
d
&l = N:E — FH)| (1 0 30|+
€l = §j S < dHf) (1)) (14 2 = 11

7,j=1
2 1/2

38



The second bound uses Cauchy-Schwarz and moment bounds on 7—[‘9 uniformly in 6 € [0,1] and 4, j.
So, we have the following.

Lemma 28. Suppose F : C?N*2N _ C is smooth and satisfies the following for any £ > 0 fized:

d N 2t ArCoy
sup sup E || —5 | F(H")| =O(NZNY), (7.12)
ij=1,...,N 4<n</ dH7;
d e+l 21) /?
sup E | sup || =7 F(H?) = O(N9V). (7.13)
ij=1,...,N oeloq] |\ dH;;
Then for v > 0 small, we have EF(H') = EF(H°) + O(N—%t),
Now, define the function
N—1+106y
I, (0, f9)) = /Af @) ( )/ (ImG? (1) — Imm, (in))dnd?z,
N-—1-106y

where we recall f)(z) = NfO/(NY/2(z — 2y)) with fU) € C®(C). Let T := [N~17100v N-1+100v]
and m := mpgr + my, for convenience. We compute

HL; (0,79 | = / ) / B (T A9 () (G, () — T, i) | TT dnget®=;
Jj=1 j=1

:/ Nm/ H j w7 ImG 04 N-1/2g (nj)—Immz;uerl/z (in;)) Hdnjd wj,

where the second line holds by change-of-variables w; = N'/2(z— 2) and the observation A fO(z) =
NAFO(NYV2(z — 2¥)). Thus, by Lemmas 26 and 28, we are 1nterested in the function

m

7—[9 = H ’LUJ IIIlG 0+N 1/24 (’I]J) — ImmZ;‘)_’_Nfl/zwj (ZT]J»

In particular, by Lemmas 26 and 28, to complete the proof of Theorem 1, it suffices to prove (7.12)-
(7.13) for this choice of F. Indeed, this would give

mpr+mr mpr+mrp, B )
E H Iy (A, fOY —E| [ I, 0, f9)
j=1

—E ﬁlgv(l,f(”) —E ﬁfav<07f<”)

Jj=1 Jj=1

:/ Nm/ [EF(H') — EF(}°)] ﬁdﬁjd%a‘

j=1

-0 N—%/ Nm/ [ dnjd?w; | = O(N~ % NOmiv),
Km m | —
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The last line follows by Lemma 28 and the fact that f() is compactly supported in C (here, KC C
is a compact subset). Then, we use the fact that [Z| < 2N~1*1%v_ Now, by the Leibniz rule, to
show (7.12)-(7.13) with the above choice of F, it suffices to show that for any n > 0 and locally
uniformly in w; € C and n; € Z, we have

d n
— | A;(H wj,m;) =0 (N (7.14)

where A;(H? wj,n;) either has the form g(V (2§ + N~1/2w;,T)) with T finite-rank and Hermitian
and g € C>°(C) or the form (ImG? 20N/ (77j) —Immo, n-1/2y, (in;)). (Such A;j(H?, w;,m;) have

m-th order derivatives that are deterrmmstmally O(N®m) if p; > N=17109 and 6y > 0 is small;
this can be checked by elementary resolvent perturbation identities. Thus, an O-estimate is enough.
We also note that straightforward regularity bounds in 6 of A; (H?, wj,n;) let us use a net argument
to extend (7.14) to the same estimate but with a supremum over 6 € [0, 1], upon possibly changing
the constant C,, > 0.)

We are left to prove (7.14). First, the assumption g € C2°(C) and the local law (see Theorem
2.6 in [12]) imply (7.14) for n = 0, so we focus on n > 1. By definition of V(z,T), it suffices to show
that locally uniformly in z € C and uniformly in n € [N~1710v N=1+100v] " for any finite-rank,
Hermitian T', we have

(%) TrTG%(n) = O(NCov) (7.15)
(ﬁ) Tr ImG? (n) = O(NFn0v), (7.16)

For this, we record the following consequence of resolvent perturbation identities:

a\" "
(dH" ) Go(n) = CoG2n) [AGIM)]" . (Aij)ke = dindej + 6iedjn.
ij

Using this identity and a spectral decomposition T = Zizl TaWoW,, We have
d n
<W> TrTGI(n) = CaTr TG (n)[Ai; G2 ()] G ()
¢
= CorawiGl(n)eie; Gl (n)e; ... ;G (n)wa,

where the product has at most n + 2 many factors of the form x*G?(n)y with x,y deterministic
unit vectors. By rigidity and delocalization, i.e. Proposition 30, for eigenvalues & and eigenvectors
u, of G%(n), we have the following for some ¢ > 0 independent of N:

1 1 x*upuly
XGQ xukuky_ 4 . kk
Z §k —in Nzk:ﬁk—m Z §k —in

k:|&k|>c

= (’)(N‘ln_l) +0(1) = O(N'Vv),

The last term in the first line has the form x*Y'y, where ||Y||op = O(1), hence it is O(1).
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Combining the previous two displays gives (7.15). To prove (7.16), we write InG?(n) = G%(n) —
G%(n)*. In particular, it suffices to prove (7.16) but with ImGY(n) replaced by G%(n) and G%(n)*.
We prove (7.16) with ImGY (1) replaced by G?(n); for G%(n)*, the same argument works. Note that

0 _ * 0
(@) Tr GZ(T]) = ; <W§"]> Trekesz(T]).

The estimate (7.15) with 7' = eje} implies that the RHS of the previous display is O(N1+Cnov),
This proves (7.16), so as mentioned right before (7.15), this shows (7.14) and thus completes the
proof of Theorem 1. O

7.3 Proof of Proposition 23

This argument has three steps. First, we reduce to proving the estimate for £5(¢), the second-smallest
singular value of the matching matrix M, from Lemma 18. Then, we further reduce to proving the
estimate for the second-smallest singular value of a Ginibre matrix. Finally, we cite known estimates
for the Ginibre case. As argued in the proof of Lemma 24, we have

P(& < N7 SE [0 (ST GL(n)] -

Now, define Gy .(n) := [H¢. — in]~t, where H; . is defined by

L 0 Mt —Z
e = ((Mt —z) 0 ) '
Since ¢ : R — R is smooth and compactly supported, we can use (7.16) and n < N~! and Lemma
28 to deduce

E {qﬁ (gImTr Gz(n))} ) {qﬁ (gImTr Gt,z(n))} = O(N~%/2),

(The input (7.13) to use Lemma 28 can be shown, again, by (7.16) and a standard net argument.)
As argued in the proof of Lemma 24, we have

E ¢ (FImTr e (n)) | S P& < N717%),
where £ (t) is the second-smallest (positive) singular value of M, and d, is any fixed number strictly
smaller than §;. Summarizing so far, we have proven
P(g5 < N7 SP(EG(H) < N717%) 4 N2

We now use Theorem 3.2 in [11]. This gives the following. There exists a matrix W (t) whose entries
are i.i.d. standard complex Gaussians mutiplied by (1 +¢)*/2 such that if {(t)}x are the singular
values of W (t) with pg(t) < pgs1(t) for k> 1 and p_p(t) = pg(t), then

P(|&5(t) = p3(t) S NTF) S NP

for any fixed D > 0, where x > 0 is fixed. (This requires that (ImG, .(n)) = O(1) for all n > N~1+¢
for some € > 0 fixed. Such an estimate follows by the local law in (3.6) in [17] combined with (3.7)
n [17].) Since x > 0 is fixed, for small enough ¢, we deduce

P(& < N0 SP(ua(t) < N7%) 4 N70/2 = P((1+¢)2p(0) < N717%2) + N7/,

We now use Theorem 2.10 in [19]; this shows that the first term on the far RHS of the previous
display is O(N°N~%%2) with ¢ > 0 fixed but otherwise arbitrary. If we choose ¢ > 0 small enough
and d, sufficiently close to &y, then the far RHS of the previous display becomes O(N~219) for § > 0
small enough. This completes the proof.
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8 Green’s function estimates

The purpose of this section is to record various auxiliary bounds for Green’s functions. These bounds
are mostly standard. First, recall the Hermitization H, of A and Green’s function:

oim (g0 A07) and Gulw =i

for n > 0. Green’s function can be written as

B mflz(g) =(M)(A —z)
GZ(’I]) = ((A* _ E)Hz(ﬁ) i?’]Hz(n) ) ’

where

N -1

H.(n) = [(A-2)"(A=2)+7n] ",
. -1
H.(n) = [(A=2)(A—2)"+7°] .
We assume A has entries that satisfy EA;; = 0 and EA?J- = N~! and E|A;;|P < C,N7P/2 for all
p > 2. As in Definition 20, we let £} be eigenvalues of the Hermitization H., and we let uj, be the
corresponding eigenvalues. We adopt the convention {f > 0 for all k € [1, N], and & = —¢#,, for
any k € [N, —1]. We also impose {f < & for k < £.
We now introduce a deterministic local law approximation for GG,. Define

M. (w) :_(mz<w> —Zuxw)), () s )

—Zu,(w)  m.(w) w+m,(w)’
where m (w) satisfies the self-consistent equation

1 2
— vt ma(w) — —

Im[m. (w)]Im[w] > 0. (8.1)

m(w) w4+ m(w)’

Proposition 29. Fiz any deterministic matriz Y € Moy (C) with |Y||op = O(1) and any determin-
istic unit vectors x,y € C*V. Fizx any 7 > 0. Fiz any n > N1 for any e > 0, and fiz |2| <1 — 1.
We have

(Y(G:(n) — M:(in))) = O (N~'y7)
X' (G2 (n) = M.(im)y = O (N7H/27/2)
In particular, we have (A3.1)-(A3.2).

Proof. The first two bounds are (3.6) in [17]. We now show (A3.1); the proof of (A3.2) is similar.

We use the first two bounds with Y = <O 0 > and x* = (0 wj) and y* = (0 w3), so
0 In

inwy H.(n)wa — m(in)wiwg = O(N71/27771/2)
(inH.(n)) — m(in) = O(N~'n~1).
This gives (A3.1). O

Define the following limiting empirical spectral density of H, for £ € R:

1
p-(E) := lim —|[Imm.(E + in)|.

n—0t
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With this, we define two objects. The first is the quantile v; , for any |j| < N via the equation

j + N iz
— = . (E)dE.

5N _r (E)
Note that ;. = —v_;.. The second is the x-bulk B, , := {E € R : p,(E) > x!/3}, where x > 0.
These notations are taken from Section 2 of [12]. By Example 2.5 in [12],if |2| <1 —7 with 7 >0
fixed, then we can take x > 0 small enough depending only on 7 such that B, , contains an interval
around 0.

Proposition 30 (Rigidity and delocalization, Corollaries 2.8 and 2.9 in [2]). Suppose |z| < 1—7 for
some T > 0. Fiz any £ > 0 small enough, and suppose i . € By, .. We have |§f — x| = O(N71).
Moreover, we have ||uf||. = O(N~1/2).

Next, we note that

—Z

Im[M. (E)] = Imfm.(E)] - % ( 0 ‘OZ) C Imfme(0) = VIZ 2P (8.2)

Proposition 31 (Eigenstate thermalization hypothesis, Theorem 2.7 in [12]). Fiz any deterministic
matriz Y € Man(C) such that ||Y]lop = O(1). We have

. (ImM..(v,)Y') (ImM (v;)(En1 — Eg)Y) ’ -
max |u;”Yu?—§;,;,———" —_;; =O(N
iy | T YT T I () J (ImM. (7)) (

where O is with respect to randomness of A, while E11, Eos are the 2N x 2N block matrices

_(In O (0 0
E11 = < 0 0> and EQQ = (O IN) .

Thus, by (8.2), if (Y E11), (Y E2) =0, then

Nl=

),

uf’*Yu§ = 5‘i|:‘j‘O(N_1i) + O(N_1/2).

Proposition 32. Suppose |z1],|22] < 1 —7 for some 7 > 0 and m1,my € [N~3+<0 10]. Define
n* = max{ny,n2}. Then there exists a constant ¢ > 0 such that for any D > 0 we have

P ((Hey () Hey () < () 7) < NP (8.3)
P ((Her(m)Hen () < (7)) < N7P (8.4)

P (<H (1) Hes(2) ) < - ) <N7P (8.5)

n*(n* + |21 — 22/?)

for large enough N uniformly in z1, z2, 71, 72.
Proof. Define n, = min{n;,n2}. To show (8.3), we note that

(Haz, (m)Hz, (n2)) = _771—1772 (G2, (M) E2G.,(n2)Ea) .

Now we use Theorem 3.5 of [15] to approximate this trace by a deterministic quantity

—3eo
(H.,(m)H., (12)) = —ﬁ (B~ [M., (m)E2a M., (n2)|Ea2) + O (]\;1772 ) .
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Here B : Moy (C) — Myn(C) is a linear operator given by
B(:) = Id — M, (m)S(-) M-, (12)-

By a straightforward computation we see that

. 1 _ |m21 (nl)mzz(n2)| ¢
(B e, On) BaaMes ()| B) = e S e o P Gl =

for some constant c. Here we used that |m_,(n;)| is bounded below by a constant; for n > ¢y for any
fixed ¢p > 0, this follows by continuity of solutions to (8.1), and for n < ¢, this follows by Lemma
3.2 in [17] if ¢o > 0 is small enough. We also used that the denominator is bounded above by a
constant, which can be readily checked using properties of m_,(7;), and positive since we know that
(H.,(m)H,(n2)) > 0. This concludes the proof of (8.3). The bound (8.4) is proved the same way.

Now we prove (8.5). If |z — z3| < N~ %, we use Theorem 3.3 of [17] and if |z — 2| > N~ 7, we
use Theorem 3.5 of [15] to get

(Has ) s (0)) = = (G () i o) )

1 Ne 1
=—— (B! M., E9M,, FEs1)+ O ( —) .
min2 < [ (771) ' (772)] 21> N2 mine

(The quantity 3, in Theorem 3.5 of [15] is bounded below uniformly by Lemma 6.1 in [15].) Since
ne > N~/3%€ the error term O(N©N~'5-%) is much smaller than 7, '. Thus, we can drop the
O-term in the second line. Again, we can directly compute

(BN 1) B Mz, () )

_ Imey (n)me, (2)] (1= (12aPuz, (01)? = ma, (m)?) (122202, (72)? — M, (112)°)) (3.6)
11— 21220z, (M) sy (02) 2 — Mz (11)%M02, (02)? ' '

Now from the self-consistent equation (8.1) for m(n), we see that
0 < [2*us(n)* — m=(n)* < 1—nlm.(n| <1 —en.

Thus
— (B7 M., (m)E12M-, (n2)]Ea1) > c(m + n2)

for some constant ¢. The denominator of (8.6) is the determinant of B. From the calculations in
Appendix B of [17] we see that

det B 5 m + 72 + |Zl — 22|2.

This concludes the proof of (8.5). O
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