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Abstract

We introduce methods for discovering and applying sparse feature circuits.
These are causally implicated subnetworks of human-interpretable features
for explaining language model behaviors. Circuits identified in prior work
consist of polysemantic and difficult-to-interpret units like attention heads
or neurons, rendering them unsuitable for many downstream applications.
In contrast, sparse feature circuits enable detailed understanding of unan-
ticipated mechanisms. Because they are based on fine-grained units, sparse
feature circuits are useful for downstream tasks: We introduce SHIFT, where
we improve the generalization of a classifier by ablating features that a
human judges to be task-irrelevant. Finally, we demonstrate an entirely un-
supervised and scalable interpretability pipeline by discovering thousands
of sparse feature circuits for automatically discovered model behaviors.

1 Introduction

The key challenge of interpretability research is to scalably explain the many unanticipated
behaviors of neural networks (NNs). Much recent work explains NN behaviors in terms
of coarse-grained model components, for example by implicating certain induction heads
in in-context learning (Olsson et al., 2022) or MLP modules in factual recall (Meng et al.,
2022; Geva et al., 2023; Nanda et al., 2023, inter alia). However, such components are
generally polysemantic (Elhage et al., 2022) and hard to interpret, making it difficult to
apply mechanistic insights to downstream applications. On the other hand, prior methods
analyzing behaviors in terms of fine-grained units (Kim et al., 2018; Belinkov, 2022; Geiger
et al., 2023; Zou et al., 2023) demand that researchers begin with the answer: they assume
the existence of curated data that isolates the target behavior. Such approaches are not
well-suited for discovering unanticipated mechanisms.

We propose to explain model behaviors using fine-grained components that play narrow,
interpretable roles. Doing so requires us to address two challenges: First, we must identify
the correct fine-grained unit of analysis, since obvious choices like neurons1 are rarely
interpretable, and units discovered via supervised methods require pre-existing hypotheses.
Second, we must address the scalability problem posed by searching for causal circuits over
a large number of fine-grained units.

We leverage recent progress in dictionary learning (Bricken et al., 2023; Cunningham et al.,
2024) to tackle the first challenge. Namely, we train sparse autoencoders (SAEs) to identify
directions in an LM’s latent space which represent human-interpretable features. Then, to
solve the scalability challenge, we employ linear approximations (Sundararajan et al., 2017;
Nanda, 2022; Syed et al., 2023) to efficiently identify SAE features which are most causally
implicated in model behaviors, as well as connections between these features. The result is

∗Correspondence to s.marks@northeastern.edu and aa.mueller@northeastern.edu.
1We use “neuron” to refer to a basis-aligned direction in an LM’s latent space (not necessarily

preceded by a nonlinearity).
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Figure 1: Overview. Given contrastive input pairs, classification data, or automatically
discovered model behaviors, we discover circuits composed of human-interpretable sparse
features to explain their underlying mechanisms. We then label each feature according to
what it activates on or causes to happen. Finally, if desired, we can ablate spurious features
out of the circuit to modify how the system generalizes.

a sparse feature circuit which explains how model behaviors arise via interactions among
fine-grained human-interpretable units.

Sparse feature circuits can be productively used in downstream applications. We introduce
a technique, Sparse Human-Interpretable Feature Trimming (SHIFT), which shifts the gener-
alization of an LM classifier by surgically removing sensitivity to unintended signals—even
without knowing what those signals are in advance. We demonstrate SHIFT by debiasing a
classifier in a worst-case setting where an unintended signal (gender) is perfectly predictive
of target labels (profession).

Finally, we demonstrate our method’s scalability by automatically discovering thousands of
LM behaviors with the clustering approach of Michaud et al. (2023), and then automatically
discovering feature circuits for these behaviors.

Our contributions are summarized as follows (Figure 1):

1. A scalable method to discover sparse feature circuits. We validate our method by
evaluating feature circuits on a suite of subject-verb agreement tasks.

2. SHIFT, a technique for removing sensitivity to unintended signals without disam-
biguating data.

3. A fully-unsupervised automatic feature circuit discovery pipeline that identifies
circuits for thousands of automatically discovered LM behaviors.

We release code, data and autoencoders at github.com/saprmarks/feature-circuits.

2 Formulation

Feature disentanglement with sparse autoencoders. A fundamental challenge in NN
interpretability is that individual neurons are rarely interpretable (Elhage et al., 2022). Re-
cently, Cunningham et al. (2024); Bricken et al. (2023) have shown that sparse autoencoders
(SAEs) can be used to identify interpretable directions. We closely follow Bricken et al. (2023)
to train SAEs for attention outputs,2 MLP outputs, and residual stream activations for each
layer of Pythia-70M (Biderman et al., 2023). Given an input activation x ∈ Rdmodel from one
of these model components, the corresponding SAE computes a decomposition

x = x̂ + ϵ(x) =
dSAE

∑
i=1

fi(x)vi + b + ϵ(x) (1)

into an approximate reconstruction x̂ as a sparse sum of features vi and an SAE error term
ϵ(x) ∈ Rdmodel . The features vi ∈ Rdmodel are unit vectors, the feature activations fi(x) ∈ R are
a sparse set of coefficients, b ∈ Rdmodel is a bias, and we take dSAE = 64 · dmodel. The SAEs

2In other words, the output of the attention layer’s out projection.
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are trained to minimize an L2 reconstruction error and an L1 regularization term which
promotes sparsity. Details about our SAEs and their training can be found in Appendix B.

Scalably training better SAEs is an active area of research, and we develop our methods with
rapid future progress in mind. However, at present SAE errors ϵ(x) account for a relatively
significant 1–15% of the variance in x. Our methods handle these SAE errors gracefully by
incorporting them into our sparse feature circuits; this gives a principled decomposition
of model behaviors into contributions from potentially-interpretable features and error
components not yet captured by our SAEs. We additionally note that the main bottleneck to
scaling our methods to larger models is the training of the SAEs themselves. As we expect
increasing public availability of SAEs for large open-source models, we treat scaling SAEs
themselves as out-of-scope and focus on the scalability of our core methods.

Attributing causal effects with linear approximations. Let m be a real-valued metric
computed via a computation graph (e.g., a NN); let a ∈ Rd represent a node in this graph.
Following prior work (Vig et al., 2020; Finlayson et al., 2021), we quantify the importance of
a on a pair of inputs (xclean, xpatch) via its indirect effect (IE; Pearl, 2001) on m:

IE(m; a; xclean, xpatch) = m
(

xclean

∣∣∣do(a = apatch)
)
−m(xclean). (2)

Here apatch is the value that a takes in the computation of m(xpatch), and m(xclean|do(a =

apatch)) denotes the value of m when computing m(xclean) but intervening in the computation
of m by manually setting a to apatch. For example, given inputs xclean =“The teacher” and
xpatch =“The teachers,” we have metric m(x) = log P(“are”|x) − log P(“is”|x) the log
probability difference output by a LM. Then if a is the activation of a particular neuron,
a large value of IE(m; a; xclean, xpatch) indicates that the neuron is highly influential on the
model’s decision to output “is” vs. “are” on this pair of inputs.

We often want to compute IEs for a very large number of model components a, which
cannot be done efficiently with (2). We thus employ linear approximations to (2) that can
be computed for many a in parallel. The simplest such approximation, attribution patching
(Nanda, 2022; Syed et al., 2023; Kramár et al., 2024), employs a first-order Taylor expansion

ˆIEatp(m; a; xclean, xpatch) = ∇am|a=aclean

(
apatch − aclean

)
(3)

which estimates (2) for every a in parallel using only two forward and one backward pass.

In practice, since we use small models, we can instead employ a more expensive but more
accurate approximation based on integrated gradients (Sundararajan et al., 2017):

ˆIEig(m; a; xclean, xpatch) =

(
∑
α

∇am|αaclean+(1−α)apatch

)
(apatch − aclean) (4)

where the sum in (4) ranges over N = 10 equally-equally spaced α ∈ {0, 1
N , . . . , N−1

N }. This
cannot be done in parallel for two nodes when one is downstream of another, but can be
done in parallel for arbitrarily many nodes which do not depend on each other. Thus the
additional cost of computing ˆIEig over ˆIEatp scales linearly in N and the serial depth of m’s
computation graph.

The above discussion applies to the setting where we have a pair of clean and patch inputs,
and we would like to understand that effect of patching a particular node from its clean to
patch values. But in some settings (§4, 5), we have only a single input x. In this case, we
instead approximate the indirect effect IE(m; a; x) = m(x|do(a = 0))−m(x) of setting a to
0. We get the modified formulas for ˆIE(m; a; x) from (3) and (4) by replacing a with 0.

3 Sparse Feature Circuit Discovery

In this section, we introduce sparse feature circuits, which are computational sub-graphs
that explain model behaviors in terms of SAE features and error terms. We first explain

3
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Figure 2: Overview of our method. We view our model as a computation graph that includes
SAE features and errors. We cache activations (Step 1) and compute gradients (Step 2) for
each node. We then compute approximate indirect effects with Eq. (3; shown) or (4) and
filter according to a node threshold TN (Step 3). We similarly compute and filter edges (Step
4); see App. A.1.

our circuit discovery algorithm (§3.1). Then, we analyze circuits found with our technique
to show that they are both more interpretable and more concise than circuits consisting
of neurons (§3.2). Finally, we perform a case study of the circuits we discovered for two
linguistic tasks related to subject-verb agreement (§3.3).

3.1 Method

Suppose we are given an LM M, SAEs for various submodules of M (e.g., attention outputs,
MLP outputs, and residual stream vectors, as in §2), a dataset D consisting either of con-
trastive pairs (xclean, xpatch) of inputs or of single inputs x, and a metric m depending on
M’s output when processing data from D. For example, Figure 2 shows the case where D
consists of pairs of inputs which differ in number, and m is the log probability difference
between M outputting the verb form that is correct for the patch vs. clean input.

Viewing SAE features as part of the model. A key idea underpinning our method is that,
by applying the decomposition (1) to various hidden states x in the LM, we can view the
feature activations fi and SAE errors ϵ as being part of the LM’s computation. We can
thus represent the model as a computation graph G where nodes correspond to feature
activations or SAE errors at particular token positions.

Approximating the IE of each node. Let ˆIE be one of ˆIEatp or ˆIEig (see §2). Then for each
node a in G and input x ∼ D, we compute ˆIE(m; a; x). We apply some choice of node
threshold TN to select nodes with a large (absolute) IE.

Consistent with prior work (Nanda, 2022; Kramár et al., 2024), we find that ˆIEatp accurately
estimates IEs for SAE features and SAE errors, with the exception of nodes in the layer 0
MLP and early residual stream layers, where ˆIEatp underestimates the true IE. We find that
ˆIEig significantly improves accuracy for these components, so we use it in our experiments

below. See Appendix C for more information about linear approximation quality.

Approximating the IE of edges. Using an analogous linear approximation, we also compute
the average IE of edges in the computation graph. Although the idea is simple, the math-
ematics are somewhat involved, so we relegate the details to App. A.1. After computing
these IEs, we filter for edges with absolute IE exceeding some edge threshold TE.

Aggregation across token positions and examples. For templatic data where tokens
in matching positions play consistent roles (see §3.2, 3.3), we take the mean effect of
nodes/edges across examples. For non-templatic data (§4, 5) we first sum the effects
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Figure 3: Faithfulness for circuits (a) and their complements (b), measured on held-out data.
Faint lines correspond to the structures from Table 1, with the average in bold. The ideal
faithfulness for circuits is 1, while the ideal score for their complements is 0.

of corresponding nodes/edges across token position before taking the example-wise mean.
See App. A.2.

Practical considerations. Various practical difficulties arise for efficiently computing the gra-
dients needed by our method. We solve using a combination of stop gradients, pass-through
gradients, and tricks for efficient Jacobian-vector product computation; see App. A.3.

3.2 Discovering and Evaluating Sparse Feature Circuits for Subject–Verb Agreement

To evaluate our method, we discover sparse feature circuits (henceforth, feature circuits)
for four variants of the subject-verb agreement task (Table 1). Specifically, we adapt data
from Finlayson et al. (2021) to produce datasets consisting of contrastive pairs of inputs
that differ only in the grammatical number of the subject; the model’s task is to choose
the appropriate verb inflection. We use this data along with our SAEs from §2 to discover
circuits for Pythia-70M.

We evaluate circuits for interpretability, faithfulness, and completeness. For each criterion,
we compare to neuron circuits discovered by applying our methods with neurons in place of
sparse features; in this setting, there are no error terms ϵ.

Interpretability. We asked human crowdworkers to rate the interpretability of random
features, random neurons, features from our feature circuits, and neurons from our neuron
circuits. Crowdworkers rate sparse features as significantly more interpretable than neurons,
with features that participate in our circuits also being more interpretable than randomly
sampled ones; see App. D.

Faithfulness. Given a circuit C and metric m, let m(C) denote the average value of m overD
when running our model with all nodes outside of C mean-ablated, i.e., set to their average
value over data from D.3 We then measure faithfulness as m(C)−m(∅)

m(M)−m(∅)
, where ∅ denotes the

empty circuit and M denotes the full model. Intuitively, this metric captures the proportion
of the model’s performance our circuit explains, relative to mean ablating the full model
(which represents the “prior” performance of the model when it is given information about
the task, but not about specific inputs). We find that model components in early layers
typically handle specific tokens; since the tokens appearing in our held-out evaluation set
don’t necessarily align with those in our circuit discovery set, there isn’t prima facie reason
for early circuit components to generalize. We thus measure the faithfulness of our circuits
starting at layer 2.

We plot faithfulness for feature circuits and neuron circuits after sweeping over node
thresholds (Figure 3a). We find that small feature circuits explain a large proportion of
model behavior: the majority of performance is explained by less than 100 nodes. In
contrast, around 1500 neurons are required to explain half the performance. However,
as SAE errors are high-dimensional and coarse-grained, they cannot be fairly compared
to neurons; we thus also plot the faithfulness of feature circuits with all SAE error nodes

3Following Wang et al. (2023), we ablate features by setting them to their mean position-specific
values.
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Structure Example clean input Example output

Simple The parents p(is)− p(are)
Within RC The athlete that the managers p(likes)− p(like)
Across RC The athlete that the managers like p(do)− p(does)
Across PP The secretaries near the cars p(has)− p(have)

Table 1: Example clean inputs x and outputs m for subject-verb agreement tasks.

The girl/girls that the teacher sees

33 8

Embeddings, layer 0-4 MLP, resid

Layers 4-5 attn, resid

Layers 2-3 attn, MLP, resid

4 4 15 5

has/have

Noun number 
detection

PP/RC detection
PP/RC end detection

Verb form 
discriminators

Figure 4: Summary of the circuit for agreement across RC (full circuit in appendix F.1). The
model detects the number of the subject. Then, it detects the start of a PP/RC modifying the
subject. Verb form discriminators promote particular verb inflections (singular or plural).
Squares show number of feature nodes in the group and triangles show number of SAE
error nodes, with the shading indicating the sum of ˆIE terms across nodes in the group.

removed, or with all attention and MLP error nodes removed. We find (unsurprisingly) that
removing residual stream SAE errors severely disrupts the model and curtails its maximum
performance. Removing MLP and attention errors is less disruptive.

Completeness. Are there parts of the model behavior that our circuit fails to capture? We
measure this as the faithfulness of the circuit’s complement M \ C (Figure 3b). We observe
that we can eliminate the model’s task performance by ablating only a few nodes from our
feature circuits, and that this is true even when we leave all SAE errors in place. In contrast,
it takes hundreds of neurons to acheive the same effect.

3.3 Case study: Subject–verb agreement across a relative clause

We find that inspecting small feature circuits produced by our technique can provide insights
into how Pythia-70M arrives at observed behaviors. To illustrate this, we present a case
study of a small feature circuit for subject–verb agreement across a relative clause (RC).

To keep the number of nodes we need to annotate manageable, we set a relatively high
node threshold of 0.1, resulting in a circuit with 69 nodes and faithfulness .19 (computed
as in §3.2). We summarize this circuit in Figure 4; the full circuit (as well as small circuits
for other subject-verb agreement tasks) can be found in App. F.1. We depict SAE features
with rectangles and SAE errors with triangles. We generally noticed circuits discovered
with qualitatively better SAEs attributed a smaller proportion of the total effect to SAE error
nodes; this suggests that our circuit discovery technique could be adapted into a measure of
SAE quality.

Our circuit depicts an interpretable algorithm wherein Pythia-70M selects appropriate verb
forms via two pathways. The first pathway consists of MLP and embedding features which
detect the number of the main subject and then generically promote matching verb forms.
The second pathway begins the same, but moves the relevant number information to the
end of the relative clause by using PP/RC boundary detectors.

We find significant overlap between this circuit and the circuit we discovered for agree-
ment across a prepositional phrase, with Pythia-70M handling these syntactically distinct
structures in a mostly uniform way. In accordance with Finlayson et al. (2021), we find less
overlap with our circuits for simple agreement and within RC agreement (Appendix F.1).
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Accuracy

Method ↑Profession ↓Gender ↑Worst group

Original 61.9 87.4 24.4
CBP 82.5 55.0 63.1
SHIFT 88.5 54.0 76.0
SHIFT + retrain 93.1 52.0 89.0

Neuron skyline 80.6 65.6 46.5
Feature skyline 88.5 54.0 62.9
Oracle 93.0 49.4 91.9

Table 2: Accuracies on balanced data for the ground-truth label (profession) and spurious
label (gender). “Worst group accuracy” refers to whichever profession accuracy is lowest
among male professors, male nurses, female professors, female nurses.

4 Application: Removing unintended signals from a classifier without
disambiguating labels

NN classifiers often rely on unintended signals—e.g., spurious features. Nearly all prior
work on this problem relies on access to disambiguating labeled data in which unintended
signals are less predictive of labels than intended ones. However, some tasks have structural
properties which disallow this assumption. For example, inputs for different classes might
come from different data sources (Zech et al., 2018). Additionally, some have raised concerns
(Ngo et al., 2024; Casper et al., 2023) that sophisticated LMs trained with human feedback
(Christiano et al., 2023) in settings with easy-to-hard domain shift (Burns et al., 2023; Hase
et al., 2024) will be misaligned because, in these settings, “overseer approval” and “desirable
behavior” are equally predictive of training reward labels. More fundamentally, the problem
with unintended signals is that they are unintended—not they are insufficiently predictive—
and we would like our methods to reflect this.

We thus propose Spurious Human-interpretable Feature Trimming (SHIFT), where a human
changes the generalization of a classifier by editing its feature circuit. We show that SHIFT
removes sensitivity to unintended signals without access to disambiguating labeled data, or
even without knowing what the signals are ahead of time.

Method. Suppose we are given labeled training data D = {(xi, yi)}; an LM-based classifier
C trained on D; and SAEs for various components of C. To perform SHIFT, we:

1. Apply the methods from §3 to compute a feature circuit that explains C’s accuracy
on inputs (x, y) ∼ D (e.g., using metric m = − log C(y|x)).

2. Manually inspect and evaluate for task-relevancy each feature in the circuit from
Step 1.

3. Ablate from M features judged to be task-irrelevant to obtain a classifier C′.
4. (Optional) Further fine-tune C′ on data from D.

Step 3 removes the classifier’s dependence on unintended signals we can identify, but may
disrupt performance for the intended signal. Step 4 can be used to restore some performance.

Experimental setup. We illustrate SHIFT using the Bias in Bios dataset (BiB; De-Arteaga et al.,
2019). BiB consists of professional biographies, and the task is to classify an individual’s
profession based on their biography. BiB also provides labels for a spurious feature: gender.
We subsample BiB to produce two sets of labeled data:

• The ambiguous set, consisting of bios of male professors (labeled 0) and female
nurses (labeled 1).

• The balanced set, consisting of an equal number of bios for male professors, male
nurses, female professors, and female nurses. These data carry profession labels
(the intended signal) and gender labels (the unintended signal).

7



The ambiguous set represents a worst-case scenario: the unintended signal is perfectly
predictive of training labels. Given only access to the ambiguous set, our task is to produce
a profession classifier which is accurate on the balanced set.

We train a linear classifier based on Pythia-70M using the ambiguous set; see App. E.1
for details. We apply SHIFT by first discovering a circuit using the zero-ablation variant
described in §3.1; this circuit, shown in App.F.2, contains 67 features. We manually interpret
each feature using an interface similar to that shown in App. D; namely, we inspect contexts
and tokens from The Pile (Gao et al., 2020) that maximally activate the feature, as well as
tokens whose log-probabilities are most affected by ablating the feature. We judge 55 of
these features to be task-irrelevant (e.g., features that promote female-associated language
in biographies of women, as in Figure 18; see App. G for more examples). Although
this interpretability step uses additional unlabeled data, we emphasize that we never use
additional labeled data (or even additional unlabeled inputs from the classification dataset).

Baselines and skylines. To contextualize the performance of SHIFT, we also implement:

• SHIFT with neurons. Perform SHIFT, but using neurons instead of SAE features.
• Concept Bottleneck Probing (CBP), adapted from Yan et al. (2023) (originally for

multimodal text/image models). CBP works by training a probe to classify inputs
x given access only to a vector of affinities between the LM’s representation of x
and various concept vectors. See App. E.2 for implementation details.

• Feature skyline. Instead of relying on human judgement to evaluate whether a
feature should be ablated, we ablate the 55 features from our circuit that are most
causally implicated in spurious feature accuracy on the balanced set.

• Neuron skyline. The same as the feature skyline, but using 55 neurons instead.
• Oracle. A classifier trained on ground-truth labels on the balanced set.

Results. We find (Table 2) that SHIFT near-completely removes our classifier’s dependence
on gender information, with Step 3 of SHIFT providing the bulk of the improvement. We
further find our judgements of which features are task-relevant to be highly informative:
SHIFT without retraining matches the feature skyline.

Moreover, SHIFT critically relies on the use of SAE features. When applying SHIFT with
neurons, essentially none of the neurons are interpretable, making it difficult to tell if they
ought to be ablated; see Appendix G for examples. Because of this, we abandon the SHIFT
with neurons baseline. Even using the balanced set to select neurons for removal (the neuron
skyline) fails to match the performance of SHIFT.

5 Unsupervised Circuit Discovery at Scale

So far, we have relied on human-collected data to specify LM behaviors for analysis. How-
ever, LMs implement numerous interesting behaviors, many of which may be counterintu-
itive to humans. In this section, we adapt our techniques to produce a near fully-automated
interpretability pipeline, starting from raw text data and ending with thousands of feature
circuits for auto-discovered model behaviors.

We do this in two steps:

1. Behavior discovery. We implement variants of the quanta discovery approach from
Michaud et al. (2023), which work by clustering contexts based on vectors derived
from Pythia-70M activations, gradients or both. Implementation details can be
found in App. H.

2. Circuit discovery. Given a cluster, we apply the zero-ablation variant of our tech-
nique from §3 using datasetD = {(xi, yi)}, the set of contexts in the cluster together
with the next token appearing in The Pile, and metric m = − log P(yi|xi).

We present example clusters, as well as interesting features participating in their associated
circuits (Figure 5). Full annotated circuits can be found in App. F.3, and an interface for
exploring all of our clusters and (unlabeled) circuits can be found at feature-circuits.xyz.
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Cluster 382: Incrementing sequences Cluster 475: “to” as infinitive object
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Step 1. Download the latest CompsNY 3.49 Full 
Step 2. Double click the Setup file and follow the prompts […] 
Step 3. After the main install closes, click OK […] 
Step 4
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British Prime Min David Cameron says in televised remarks he would like Britain to

Reader bloggers are asked to

Objects which can precede  
object complements

Direct the user to

Other words which precede  
infinitive objects

According to This infection leads toIt’s up to you to

Example features involved:

Figure 5: Example clusters and features which participate in their circuits. Features are
active on tokens shaded blue and promote tokens shaded in red. (left) An example narrow
induction feature recognizes the pattern A3 . . . A and copies information from the 3 token.
This composes with a succession feature to implement the prediction A3 . . . A→ 4. (right)
One feature promotes “to” after words which can take infinitive objects. A separate feature
activates on objects of verbs or prepositions and promotes “to” as an object complement.

While evaluating these clusters and circuits is an important open problem, we generally
find that these clusters expose interesting LM behaviors, and that their respective feature
circuits can provide useful insights on mechanisms of LM behavior. For instance, we
automatically discover attention features implicated in succession and induction, two
phenomena thoroughly studied in prior work at the attention head level using human-
curated data (Olsson et al., 2022; Gould et al., 2023).

Feature circuits can also shed interesting light on their clusters. For example, while the
clusters in Figure 5 seem at first to each represent a single mechanism, circuit-level analysis
reveals in both cases a union of distinct mechanisms. For cluster 475, Pythia-70M determines
whether “to [verb]” is an appropriate object in two distinct manners (see Figure 5 caption).
And for cluster 382, the prediction of successors relies on general succesion features, as well
as multiple narrow induction features which recognize patterns like “A3 . . . A”.

6 Related Work

Causal interpretability. Interpretability research has applied causal mediation analysis
(Pearl, 2001; Robins & Greenland, 1992) to understand the mechanisms underlying particular
model behaviors and their emergence (Yu et al., 2023; Geva et al., 2023; Hanna et al., 2023;
Todd et al., 2024; Prakash et al., 2024; Chen et al., 2024, inter alia). This typically relies on
counterfactual interventions (Lewis, 1973), such as activation patching or path patching on
coarse-grained components (Conmy et al., 2023; Wang et al., 2023). Some techniques aim to,
given a hypothesized causal graph, identify a matching causal mechanism in an LM (Geiger
et al., 2021; 2022; 2023); in contrast, we aim here to discover causal mechansisms without
starting from such hypotheses.

Robustness to spurious correlations. There is a large literature on mitigating robustness to
spurious correlations, including techniques which rely on directly optimizing worst-group
accuracy (Sagawa et al., 2020; Oren et al., 2019; Zhang et al., 2021; Sohoni et al., 2022; Nam
et al., 2022), automatically or manually reweighting data between groups (Liu et al., 2021;
Nam et al., 2020; Yaghoobzadeh et al., 2021; Utama et al., 2020; Creager et al., 2021; Idrissi
et al., 2022; Orgad & Belinkov, 2023), training classifiers with more favorable inductive
biases (Kirichenko et al., 2023; Zhang et al., 2022; Iskander et al., 2024), or editing out
undesired concepts (Iskander et al., 2023; Belrose et al., 2023; Wang et al., 2020; Ravfogel
et al., 2020; 2022a;b). All of these techniques rely on access to disambiguating labeled data in
the sense of §4. Some techniques from a smaller literature focused on image or multimodal
models apply without such data (Oikarinen et al., 2023; Yan et al., 2023). Our method here
is inspired by the approach of Gandelsman et al. (2024) based on interpreting and ablating
undesired attention heads in CLIP.
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Feature disentanglement. In addition to the recent work SAE work of Cunningham et al.
(2024); Bricken et al. (2023), other approaches to feature disentanglement include (Schmid-
huber, 1992; Desjardins et al., 2012; Kim & Mnih, 2018; Chen et al., 2016; Makhzani & Frey,
2013; He et al., 2022; Peebles et al., 2020; Schneider & Vlachos, 2021; Burgess et al., 2018;
Chen et al., 2018; Higgins et al., 2017, inter alia).

7 Conclusion

We have introduced a method for discovering circuits on sparse features. Using this method,
we discover human-interpretable causal graphs for a subject–verb agreement task, a classi-
fier, and thousands of general token prediction tasks where no clear right or wrong answer
exists. We can edit the set of features that models have access to by ablating sparse fea-
tures that humans deem spurious; we find that this is significantly more effective than a
neuron-based ablation method which has an unfair advantage.
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Limitations

The success of our technique relies on access to SAEs for a given model. Training such SAEs
currently requires a large (but one-time) upfront compute cost, which poses an obstacle
to running our methods. Additionally, model components not captured by the SAEs will
remain uninterpretable after applying our method.

Much of our evaluation is qualitative. While we have quantitative evidence that feature
circuits are useful for improving generalization without additional data (§4), evaluating
dictionaries and circuits without downstream tasks is challenging.
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Figure 6: Computing edge weights. We compute all gradients between adjacent components
by backpropagating from the activation of a downstream feature activation. Then, when
computing contributions to non-adjacent nodes, we correct for indirect contributions by
subtracting off a product of Jacobians. Finally, we compute estimated indirect effects via
specific paths by multiplying gradients w.r.t. m by the source node’s activation difference.
We only keep edges with an estimated effect above edge threshold TE (a hyperparameter).

A Methodological Details

A.1 Computing Edge Weights

Let e be an edge between an upstream node u and downstream node d, corresponding
to an upstream activation au and downstream activation ad. When estimating the causal
importance of e, we consider two cases:

(a) e connects a layer ℓ residual stream component and a layer ℓ attention or MLP
component, or e connects a layer ℓ attention or MLP component and a layer ℓ+ 1
residual stream component;4

(b) e connects a layer ℓ residual stream component and a layer ℓ+ 1 residual stream
component.

In case (a), the indirect effect of e corresponds to the result of intervening to set d =

d
(

xclean|do(u = upatch)
)

, but not intervening on any other downstream node on which au

has a direct effect. As with nodes, we use a linear approximation:

ˆIE(m; e; xclean, xpatch) = ∇dm|dclean
∇ud|uclean

(
upatch − uclean

)
(5)

≈ m
(

xclean

∣∣∣do
(

d = d
(

xclean

∣∣∣do
(

u = upatch

))))
If d is an SAE error, then the naive approach to computing is expression involves performing
dmodel backwards passes; fortunately we can still compute the product in a single backwards
pass as explained in §A.3.

In case (b), we would like to give e a score that represents the effect that au has on m via
ad, but which is not already explained by compositions of edges of edges of type (a) via
intermediate activations am. As is shown in Figure 6, for each intermediate activation am, we
can correct for the nontransitive effect through am by subtracting off a product of Jacobians.
In general, we set

ˆIE(m; e; xclean, xpatch) = ∇dm|dclean

(
∇ud|uclean

−∑m ∇md|mclean
∇um|uclean

) (
upatch − uclean

)
(6)

where the sum is taken over intermediate nodes m between u and d.
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Figure 7: Aggregation of node/edge effects across examples (and sometimes, across token
positions). Each feature is labeled as “token position, feature index.” If we have templatic
data, we preserve token position information, and treat the same features in different token
positions as different features. If we have more general non-templatic data, we first sum
across positions, and then take the example-wise mean of the position-aggregated effects.

A.2 Aggregating across token positions and examples

Figure 7 summarizes how we aggregate effects across examples (and optionally across token
positions). For templatic data where tokens in matching positions play consistent roles (see
§3.2, 3.3), we take the mean effect of nodes/edges across examples. In this case, we treat
the same feature (or neuron) in different token positions as different nodes altogether in the
circuit, each with their own separate effects on target metric m.

For non-templatic data (§4, 5), we first sum the effects of corresponding nodes/edges across
token positions before taking the example-wise mean. This means that each feature appears
in the circuit once, representing its effects at all token positions in an input.

A.3 Practical considerations

Here we review a number of tricks that we use to compute the quantities defined above
efficiently. The backbone of our approach is to, given an activation x ∈ Rdmodel of some
submodule for which we have an SAE, use the SAE to compute the quantities fi(x) and ϵ(x)
in (1), and then intervene in our model’s forward pass to set

x←∑
i

fi(x)vi + b + ϵ(x). (7)

Even though x was already numerically equal to the right-hand side of (7), after the inter-
vention the computation graph will incorporate the variables fi(x) and ϵ(x). Thus, when
we use Pytorch’s autograd algorithm to peform backpropogation of downstream quantities,
we will automatically compute gradients for these variables.

An alternative approach for computing gradients (which we do not use) is to simply run
the model without interventions, use backpropogation to compute all gradients ∇xm, and
use the formulas

∇ fi
m = ∇xm · vi, ∇ϵm = ∇xm

which follow from the chain rule when m is any function of x.

Stop gradients on SAE errors to compute SAE feature gradients. The natural way to
compute the SAE error ϵ(x) is by first using the SAE to compute x̂ and then setting ϵ(x) =
x− x̂. However, if we take this approach, then after applying the intervention (7) we would
have

∇ fi
m = ∇vxd m∇ fi

xd = ∇xd m∇ fi (x̂ + xu − x̂) = 0
4As Pythia models employ parallel attention, the layer ℓ attention components have no effect on

the layer ℓ MLP components.
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where xd the copy of x which is downstream of fi in the computation graph, and xu is
the copy which is upstream of fi. To fix this, we apply a stop gradient to ϵ(x) so that
xd = x̂ + stopgrad(xu − x̂).

Pass-through gradients. Although the stop gradient from above solves the problem of
vanishing gradients for the fi, it interferes with the backpropogation of gradients to further
upstream nodes. In order to restore exact gradient computation, we implement a pass-
through gradient on the computation of our dictionary. That is, in the notation above, we
intervene in the backwards pass of our model to set

∇xu m← ∇xd m.

Jacobian-vector products. Done naively, computing the quantities in (5) and (6) when d or
m ∈ Rdmodel are SAE errors would take O(dmodel) backwards passes. Fortunately, one can
use the following trick: when A is a constant 1× n matrix, x ∈ Rm, and y = y(x) ∈ Rn is a
function of x, we have

A∇xy = ∇x(Ay)
where the right-hand side is a 1×m Jacobian which can be computed with a single back-
ward pass. Thus we can compute (5) with only two backwards passes by first computing
∇dm|dclean

and then computing ∇u

(
∇dm|dclean

)
with another backwards pass, where the

second ∇dm|dclean
is treated as a constant (e.g., by detaching it in Pytorch). A similar trick

can be applied for (6).

B Details on Sparse Autoencoders

B.1 Architecture

Following Bricken et al. (2023), our SAEs are one-layer MLPs with a tied pre-encoder bias.
In more detail, our SAEs have parameters

WE ∈ RdSAE×dmodel , WD ∈ Rdmodel×dSAE , bE ∈ RdSAE , bD ∈ Rdmodel

where the columns of WD are constrained to be unit vectors. Given an input activation
x ∈ Rdmodel , we compute the sparse features activations via

f =
[

f1(x) . . . fdSAE
(x)
]
= WE(x− bD) + bE

and reconstructions via
x̂ = WDf + bD.

The feature vectors vi ∈ Rdmodel are the columns of WD.

B.2 Training

Fix a specific choice of activation in Pythia-70M, e.g. MLP output, attention output, or
residual stream in a particular layer. Following Cunningham et al. (2024); Bricken et al.
(2023) we train an SAE for this activation by sampling random text from The Pile (Gao et al.,
2020) (specifically the first 128 tokens of random documents), extracting the values x for this
activation over every token, and then training our SAE to minimize a loss function

L = Lreconstruction + λLsparsity = ∥x̂− x∥2 + λ∥f∥1

consisting of a L2 reconstruction loss and a L1 regularization term to promote sparsity. This
loss is optimized using a variant of Adam (Kingma & Ba, 2014) adapted to ensure that the
columns of WD are unit vectors (see Bricken et al. (2023) or our code for details). We use
λ = 0.1 and a learning rate of 10−4.

Following Nanda (2023), we cache activations from 10000 tokens in a buffer and randomly
sample batches of size 214 for training our SAE. When the buffer is half-depleted, we
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replenish it with fresh tokens from The Pile. We train for 120000 steps, resulting in a total of
about 2 billion training tokens.

A major obstacle in training SAEs is dead features, that is, neurons in the middle layer of
the SAE which never or rarely activate. We mitigate this by, every 25000 training steps,
reinitializing features which have not activated in the previous 12500 steps using the same
reinitialization procedure described in Bricken et al. (2023).

Finally, we use a linear learning rate warmup of 1000 steps at the start of training and after
every time that neurons are resampled.

B.3 Evaluation

Here we report on various easy-to-quantify metrics of SAE quality. Note that these metrics
leave out important qualitative properties of these SAEs, such as the interpretability of their
features (App. D). Our metrics are:

• Variance explained, as measured by 1− Var(x−x̂)
Var(x) .

• Average L1, and L0 norms of f.

• Percentage of features alive as measured by features which activate at least once
on a batch of 512 tokens.

• Cross entropy (CE) difference and percentage of CE recovered. The CE difference
is the difference between the model’s original CE loss and the model’s CE loss when
intervening to set x to the reconstruction x̂. We obtain percentage of CE recovered
by dividing this difference by the difference between the original CE loss and the
CE loss when zero-ablating x. These CE losses are computed averaged over a batch
of 128 contexts of length 128.

These metrics are shown in Tables 3–6. Note that we index residual stream activations to be
the layer which outputs the activation (so the layer 0 residual stream is not the embeddings,
and the layer 5 residual stream is the output of the final layer, immediately preceding the
final decoder).

% Variance Explained L1 L0 % Alive CE Diff % CE Recovered

96 1 3 36 0.17 98

Table 3: Embedding SAE evaluation.

Layer % Variance Explained L1 L0 % Alive CE Diff % CE Recovered

Attn 0 92% 8 128 17% 0.02 99%
Attn 1 87% 9 127 17% 0.03 94%
Attn 2 90% 19 215 12% 0.05 93%
Attn 3 89% 12 169 13% 0.03 93%
Attn 4 83% 8 132 14% 0.01 95%
Attn 5 89% 11 144 20% 0.02 93%

Table 4: Attention SAE evaluation by layer.

C Quality of Linear Approximations of Indirect Effects

Figure 8 shows the quality of our linear approximations for indirect effects. Prior work
(Nanda, 2022; Kramár et al., 2024) investigated attribution patching accuracy for IEs of
coarse-grained model components (queries, keys, and values for attention heads, residual
stream vectors, and MLP outputs) and MLP neurons. Working with SAE features and errors,
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Layer % Variance Explained L1 L0 % Alive CE Diff % CE Recovered

MLP 0 97% 5 5 40% 0.10 99%
MLP 1 85% 8 69 44% 0.06 95%
MLP 2 99% 12 88 31% 0.11 88%
MLP 3 88% 20 160 25% 0.12 94%
MLP 4 92% 20 100 29% 0.14 90%
MLP 5 96% 31 102 35% 0.15 97%

Table 5: MLP SAE evaluation by layer.

Layer % Variance Explained L1 L0 % Alive CE Diff % CE Recovered

Resid 0 92% 11 59 41% 0.24 97%
Resid 1 85% 13 54 38% 0.45 95%
Resid 2 96% 24 108 27% 0.55 94%
Resid 3 96% 23 68 22% 0.58 95%
Resid 4 88% 23 61 27% 0.48 95%
Resid 5 90% 35 72 45% 0.55 92%

Table 6: Residual (Resid) SAE evaluation by layer.

our results echo previous findings: attribution patching is generally quite good, but some-
times underestimates the true IEs. Notable exceptions are the layer 0 MLP and the residual
stream in early layers. We also find that our integrated gradients-based approximation
significantly improves approximation quality.

D Human Interpretability Ratings for Sparse Features

We asked human crowdworkers to rate the interpretability of random features, random
neurons, features from our feature circuits, and neurons from our neuron circuits on a 0–100
scale (Table 7). Crowdworkers rate sparse features as significantly more interpretable than
neurons, with features that participate in our circuits also being more interpretable than
randomly sampled features.

See Figures 9 and 10 for examples of the human annotator interface. Humans were presented
with the tokens on which the feature activated most strongly, followed by the tokens whose
probabilities were most affected in Pythia-70M when the feature was ablated. This is
followed by a series of example contexts in which the feature activated on some subset
of tokens, where feature activations are shown in varying shades of blue (darker shades
indicate higher activations). On the same page below the contexts, we ask annotators to

Activation type Interpretability

Dense (random) 32.6
Dense (agreement) 30.2
Dense (BiB) 36.0

Sparse (random) 52.8
Sparse (agreement) 62.3
Sparse (BiB) 81.5

Table 7: Human interpretability ratings for dense (neuron) vs. sparse (autoencoder) features.
We present mean interpretability scores across features on a 0–100 scale. We show scores for
features that were either uniformly sampled (random), the top 30 by ˆIE from the subject–
verb agreement across RC task (agreement; §3.3), or the top 30 by ˆIE for the Bias in Bios task
(BiB; §4).
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Figure 8: Approximate IEs (y-axis) and exact IEs (x-axis) using attribution patching (a; top)
or integrated gradients (b; bottom). Each point corresponds to an SAE feature or SAE error
at one token position of one input. Data were collected from 30 inputs from our across RC
dataset.

Figure 9: The human annotation interface used to obtain the interpretability ratings in
Table 7. Here, we show the instructions, top-activating tokens, the token probabilities that
were most affected when ablating the feature, and example contexts with feature activation
values.
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Figure 10: The human annotation interface used to obtain the interpretability ratings in
Table 7. Here, we show the rating interface on the same page as the content in Fig. 9, below
the example contexts. Humans were asked to write a textual description of each feature,
assign a 0–100 interpretability rating, and assign a 0–100 semantic complexity rating to each
feature.

write a textual description of the feature, and rate both its interpretability and its semantic
complexity on 0–100 scales.

Crowdworkers were recruited from the ARENA Slack channel, whose members are machine
learning researchers interested in AI alignment and safety. The selection of annotators
certainly influenced our results; a truly random sample of human annotators would likely
display higher variance when annotating features.

One common error pattern we notice is that annotators often label features according to
semantic groupings (e.g., “text about politics,” and do not pay attention to syntactic context
(e.g., “plural nouns”). Future work could address this design bias by testing variants of the
instructions.

E Implementation Details for Classifier Experiments

E.1 Classifier training

Here we describe how we train a classifier on Pythia-70M for the Bias in Bios (BiB) task
of §4. To mimic a realistic application setting, we search over hyperparameters to train
high-performing baseline and oracle classifiers (using the ambiguous and balanced datasets,
respectively). Hyperparameters were not selected for strong SHIFT performance.

The inputs to our classifier are residual stream activations from the end of the penultimate
layer of Pythia-70M.5 We mean-pool over (non-padding) tokens from the context In pre-
liminary experiments, we obtained slightly worse baseline and oracle performance when
instead extracting representations over only the final token. We also obtained slightly worse
performance when training the classifier on activations from the final layer of Pythia-70M.

We then fit a linear probe to these representations with logistic regression using the AdamW
optimizer (Loshchilov & Hutter, 2017) with a learning rate of 0.01 for a single epoch. When
retraining after performing SHIFT, we tune only this linear probe—not the full model.

5The implication of this is that we freeze the LM and only update the parameters of the classifier.
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For unclear reasons, we were unable to fit a probe with greater-than-chance accuracy when
applying logistic regression to representations extracted from the final layer; this is why we
used penultimate layer representations above.

E.2 Implementation for Concept Bottleneck Probing

Our implementation for Concept Bottleneck Proving (CBP) is adapted from (Yan et al., 2023).
It works as follows:

1. First, we collect a number of keywords related to the intended prediction task. We
use N = 20 keywords: nurse, healthcare, hospital, patient, medical, clinic, triage,
medication, emergency, surgery, professor, academia, research, university, tenure,
faculty, dissertation, sabbatical, publication, and grant.

2. We obtain concept vectors c1, . . . , cN for each keyword by extracting Pythia-70M’s
penultimate layer representation over the final token of each keyword, and then
subtracting off the mean concept vector. (Without this normalization, we found that
concept vectors have very high pairwise cosine similarities.)

3. Given an input with representation x (obtained via the mean-pooling procedure
in App. E.1), we obtain a concept bottleneck representation z ∈ RN by taking the
cosine similarity with each ci.

4. Finally, we train a linear probe with logistic regression on the concept bottleneck
representations z, as in App. E.1.

We decided to normalize concept vectors but not input representations because it resulted
in stronger performance.

F Feature Circuits

F.1 Subject–Verb Agreement

Here, we present the full agreement circuits for various syntactic agreement structures,
where we annotate all features and do not collapse similar features into the same nodes. All
circuits here are discovered with TN = 0.1 and TE = 0.01 unless otherwise noted. In each
circuit, sparse features are shown in rectangles, whereas causally relevant error terms not yet
captured by our SAEs are shown in triangles. Nodes shaded in darker colors have stronger
effects on the target metric m. Blue nodes and edges are those which have positive indirect
effects (i.e., are useful for performing the task correctly), whereas red nodes and edges
are those which have counterproductive effects on m (i.e., cause the model to consistently
predict incorrect answers).

First, we present agreement across a relative clause (Figure 11). The model appears to detect
the subject’s grammatical number at the subject position. One position later, features detect
the presence of relative pronouns (the start of the distractor clause). Finally, at the last token
of the relative clause, the attention moves the subject information to the last position, where
it assists in predicting the correct verb inflection.

The circuit for agreement across a prepositional phrase (Figure 12) looks remarkably similar
to agreement across a relative clause; these two circuits share over 85% of their features, and
many of the same features are used for detecting both prepositions and relative clauses.

For simple agreement (Figure 13, discovered with TN = 0.2 and TE = 0.02), many of the
same features that were implicated in noun number detection and verb number prediction in
the previous circuits also appear here. The model detects the subject’s number at the subject
position in early layers. In later layers, these noun number detectors become inputs to verb
number promoters, which activate on anything predictive of particular verb inflections.

Finally, the circuit for agreement within a relative clause (Figure 13, discovered with TN =
0.2 and TE = 0.02) appears to have the same structure as that for simple agreement: subject
number detectors in early layers, followed by verb number promoters in later layers.
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Figure 11: The full annotated feature circuit for agreement across a relative clause. The
model detects the subject’s number at the subject position. Other features detect relative
pronouns (the start of the distractor clause). Finally, at the last token of the RC, the attention
moves the subject information to the last position, where it assists in predicting the correct
verb inflection.

Figure 12: The full annotated feature circuit for agreement across a prepositional phrase.
The model detects the subject’s number at the subject position. Other features detect
prepositional phrases (the start of the distractor clause). Finally, at the last token of the RC,
the attention moves the subject information to the last position, where it assists in predicting
the correct verb inflection.

Figure 13: The full annotated feature circuit for simple agreement. The model detects the
subject’s number at the subject position in early layers. In later layers, these are inputs to
features which activate on anything predictive of particular verb inflections.
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Figure 14: The full annotated feature circuit for agreement within a relative clause. The
model detects the subject’s number at the subject (within the RC)’s position in early layers.
In later layers, these features are inputs to features which activate on anything predictive of
particular verb inflections.

Figure 15: The full annotated feature circuit for the Bias in Bios classifier. Many nodes
simply detect the presence of gendered pronouns or gendered names. A few features attend
to profession information, including one which activates on words related to nursing, and
another which activates on passages relating to science and academia.

F.2 Bias in Bios Circuit

Here, we present the full annotated circuit discovered for the Bias in Bios classifier (described
in §4 and App. E). The circuit was discovered using TN = 0.1 and TE = 0.01. We observe that
the circuit (Figure 15) contains many nodes which simply detect the presence of gendered
pronouns or gendered names. A few features attend to profession information, including
one which activates on words related to nursing, and another which activates on passages
relating to science and academia.

F.3 Cluster Circuits

Here, we present full annotated circuits discovered for automatically discovered behaviors
(described in App. H). First, we present the circuit for incrementing number sequences
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Figure 16: The full annotated feature circuit for incrementing number sequences. The model
first detects the presence of specific number tokens, like “3”. Later, it learns more robust
semantic representations of those numbers, like “iii” and “Three”. Then, the model uses a
series of narrow and general succesion and induction features to increment the next number.

(Figure 16), discovered with TN = 0.4 and TE = 0.04. We note that this circuit includes many
features which perform either succession (Gould et al., 2023) or induction (Olsson et al.,
2022). The succession features in the layer 3 attention seem to be general; they increment
many different numbers and letters (as in Figure 5). The induction features are sensitive only
to specific tokens: for example, contexts of the form “x3. . . x3”, where “3” is a literal. These
compose to form specific successor features in layer 5: the most strongly-activating layer 5
residual feature specifically increments “3” to “4” given induction-like lists, where each list
item is preceded by the same string (e.g., “Chapter 1. . . Chapter 2. . . Chapter 3. . . Chapter”).

The circuit for predicting infinitival objects (Figure 17, discovered with TN = 0.25 and
TE = 0.001) contains two distinct mechanisms. First, the model detects the presence of
specific verbs like “remember” or “require” which often take infinitival objects. Then, the
model uses two separate mechanisms to predict infinitive objects. The first mechanism
detects present-tense verbs, participles, or predicate adjectives which can be immediately
followed by infinitival direct objects (e.g., “They were excited to. . . ”). The second mechanism
detects nominal direct objects that can directly precede infinitival object complements (e.g.,
“They asked us to. . . ”). Finally, these two mechanisms both influence the output in layer 5
without fully intersecting.

G Sample Features

G.1 Sparse Features

Here, we present examples of sparse features with high indirect effects on the Bias in Bios
task. Some of these features clearly activate on terms related to medicine or academia, which
are related to the target profession classification task. Others simply detect the presence of
“he” or female names.

G.2 Neurons

For contrast, we also present examples of dense features—that is, neurons from MLPs, layer-
end residuals, and the out-projection of the attention—with high indirect effects on the Bias
in Bios task. We cannot directly interpret the activation patterns of these neurons, and so
it is difficult to run the SHIFT with neurons baseline. We therefore instead compare to the
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Figure 17: The full annotated feature circuit for predicting “to” as an infinitival object. The
model first detects the presence of verbs that often take infinitival objects. Then, it uses one
mechanism to detect present-tense verbs, participles, or predicate adjectives which take
infinitival objects, and another mechanism to detect direct objects that can directly precede
infinitival object complements. Finally, these two mechanisms both influence the output in
layer 5 without fully intersecting.

Figure 18: An example sparse feature from the Bias in Bios task (attn 3/22029). This
feature detects female-related words in biographies of women. It also promotes words like
“husband” and “née”. This feature probably contributes to preferences for the spurious
correlate of gender; we therefore ablate it.

Figure 19: An example sparse feature from the Bias in Bios task (resid 2/31098). This
feature activates on words related to nursing, including “RN” and “nurse”. This probably
relates to the target task of profession prediction. We therefore keep it.
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Figure 20: An example neuron from the Bias in Bios task. This appears to activate on
beginnings and ends of sentences, but also more strongly on any token in a sentence that
contains capital letters or numbers. We cannot deduce whether this would contribute more
to gender or profession names.

Figure 21: An example neuron from the Bias in Bios task. This activates positively on tokens
starting with capital letters, but negatively on many other tokens (whose unifying theme
we cannot deduce).

neuron skyline, where we allow the skyline an unfair advantage by simply ablating neurons
which have positive effects on gender-based probabilities given the balanced set.

H Discovering LM Behaviors with Clustering

In this section, we describe our unsupervised method for discovering language model
behaviors. More specifically, following Michaud et al. (2023), we cluster contexts from
The Pile according to the Pythia-70M’s internal state during inference. In this section, we
describe our clustering pipeline and methods.

H.1 Filtering Tokens

We must first locate (context, answer) pairs for which an LM correctly predicts the answer
token from the context. We select The Pile (Gao et al. (2020)) as a general text corpus and
filter to pairs on which Pythia-70M confidently and correctly predicts the answer token,
with cross-entropy lower than 0.1 or 0.3 nats, depending on the experiment. The model
consistently achieves low loss on tokens which involve “induction” (Olsson et al., 2022)—i.e.,
tokens which are part of a subsequence which occurred earlier in the context. We exclude
induction samples by filtering out samples in which the bigram (final context token, answer
token) occured earlier in the context.

H.2 Caching Model-internal Information

We find behaviors by clustering samples according to information about the LM’s internals
when run on that sample. We find clusters of samples where the model employs similar
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mechanisms for next-token prediction. We experiment with various inputs to the clustering
algorithm:

• Dense Activations: We take activations (residual stream vectors, attention block
outputs, or MLP post-activations) from a given context and concatenate them. To
obtain a vector whose length is independent of the context length, we can either use
the activations at the last N context positions before the answer token, or aggregate
(sum) across the sequence dimension. We experiment with both variants.

• Sparse Activations: Rather than dense model activations, we can use the activations
of SAE features. We concatenate and aggregate these in the same manner as for
dense activations.

• Dense Component Indirect Effects: We approximate the indirect effect of all
features on the correct prediction using 2 without a contrastive pair—namely,
by setting apatch = 0. The negative log-probability of the answer token m =

− log p(answer) serves as our metric for the correct prediction of the next token. The
computatiom of linear effects requires saving both (1) activations and (2) gradients
w.r.t m at the final N positions for each context in the dataset. We optionally
aggregate by summing over all positions.

• Sparse Indirect Effects: Similarly, we can compute the linear effects of sparse
activations on the correct prediction.

• Gradient w.r.t. model parameters: As in Michaud et al. (2023), we also exper-
iment with using gradients of the loss w.r.t. model parameters, but with some
modifications. We describe this method in more detail in §H.3 below.

H.3 Hyperparameters and Implementation Details

We apply either spectral clustering or k-means clustering. For spectral clustering, given
either activations or effects xi for sample i, we compute a matrix of pairwise cosine simi-
larities Cij = xi · xj/(||xi||||xj||) between all pairs of samples. Before performing spectral
clustering, we normalize all elements of C to be in [0, 1] by converting the cosine similarities
to angular similarities: Ĉij = 1− arccos(Cij)/π.

We use the scikit-learn (Pedregosa et al., 2011) spectral clustering implementation with
k-means. For all inputs except gradients w.r.t. model parameters, we used spectral clustering
across 8192 samples. We chose k (the number of total clusters) to maximize the number of
clusters implicated in more than one input context.

We also experimented with using gradients w.r.t. model parameters as inputs, as in Michaud
et al. (2023). Here, we scale up our approach to 100,000 samples. It is intractible to perform
spectral clustering given 100,000 samples, so we instead use k-means clustering. Rather
than clustering the gradients themselves (which are high-dimensional), we cluster sparse
random projections of the gradients down to 30,000 dimensions. When projecting, we use a
matrix with entries {−1, 0, 1}. When sampling the entries of this matrix, sample a nonzero
value with probability 32/30000, and if nonzero, sample −1 or 1 with equal probability. For
a sparse projection matrix with dimensions Rn×30000, there will on average be 32 · n nonzero
entries, where n is the number of parameters in the model.6

6We only consider gradients w.r.t. non-embedding and non-layernorm parameters.
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