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Abstract. Modern text-to-image (T2I) diffusion models can generate
images with remarkable realism and creativity. These advancements have
sparked research in fake image detection and attribution, yet prior stud-
ies have not fully explored the practical and scientific dimensions of this
task. In addition to attributing images to 12 state-of-the-art T2I genera-
tors, we provide extensive analyses on what inference stage hyperparam-
eters and image modifications are discernible. Our experiments reveal
that initialization seeds are highly detectable, along with other subtle
variations in the image generation process to some extent. We further
investigate what visual traces are leveraged in image attribution by per-
turbing high-frequency details and employing mid-level representations
of image style and structure. Notably, altering high-frequency informa-
tion causes only slight reductions in accuracy, and training an attribu-
tor on style representations outperforms training on RGB images. Our
analyses underscore that fake images are detectable and attributable at
various levels of visual granularity than previously explored.
Keywords: Generative Models · Image Attribution · Image Forensics

1 Introduction
In recent years, the emergence of advanced text-to-image (T2I) diffusion mod-
els [7, 45, 52, 54, 56, 57, 60, 62] has markedly transformed the landscape of image
generation. These advancements enable the creation of highly realistic and imag-
inative visual content directly from textual descriptions, heralding new possibili-
ties for creative expression and practical applications. However, this progress also
introduces significant challenges in differentiating real images from AI-generated
images and accurately identifying their origins. Addressing these challenges is vi-
tal for copyright enforcement, digital forensics, and maintaining the integrity of
visual content across digital platforms.

Previous studies [5,8,11,39,67,71,80] have primarily focused on differentiating
AI-generated images from real ones, with some research extending to the attribu-
tion of images to their source generators, notably in GAN variants [10,29,47,75]
and diffusion models [17,32,65]. Yet, these investigations have largely been con-
ducted using generative models that may not reflect the latest advancements in
the field. Moreover, these studies have not fully explored the broader, practical,
and scientific dimensions of these tasks, which we aim to further examine.
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As a first step, our work unifies "real vs. fake" classification and image attri-
bution into a single task by simply treating real images as an additional category.
We expand the analysis to include a comprehensive range of state-of-the-art T2I
diffusion models, as of March 2024. This includes Stable Diffusion (SD) 1.5 [60],
SD 2.0 [60], SDXL [54], SDXL Turbo [62], Latent Consistency Model (LCM) [45],
Stable Cascade [52], Kandinsky 2.1 [57], DALL-E 2 [56], DALL-E 3 [7], along
with Midjourney versions 5.2 and 6 [1]. To encompass a wide range of visual
concepts, we utilize 5,000 captions from MS-COCO [42] for natural scenes and
employ GPT-4 [4] to generate another 5,000 creative and surreal prompts. For
each prompt, we generate multiple images from each model, amassing nearly half
a million AI-generated image dataset to train our image attributor, where the
details are discussed in Sec. 3. Regarding performance, our top-performing at-
tributor reaches an accuracy exceeding 90%, significantly surpassing the baseline
random chance of merely 7.69%, as detailed in Sec. 4.1.

Moving beyond previous research that focused on attributing images to their
originating generators, our study probes further into whether nuanced changes
in hyperparameters during the inference phase of the same T2I diffusion model
can be identified. We examine hyperparameters including model checkpoints
at different training iterations, scheduler types, the number of sampling steps,
and initialization seeds. A significant finding from our experiments is the abil-
ity to distinguish between initialization seeds with 98%+ accuracy, employing
ten unique seeds for image generation within a consistent generator framework.
While the accuracy in identifying other hyperparameters doesn’t reach the excep-
tional levels observed with initialization seeds, they all notably exceed random
chance. This suggests that even subtle variations in the generation process can
indeed be discerned to some extent. More details are discussed in Sec. 4.2.

In the workflow involving AI-generated images, users often enhance these
images further by importing them into additional software or models for regional
editing via SDXL Inpainting [54] or Photoshop Generative Fill (Ps GenFill)
[2], or employing tools like Magnific AI [3] for texture enhancement at higher
resolutions. This raises an essential question: Can we still trace these post-edited
images back to their original generators, and to what extent is this feasible? In
Sec. 4.3, we mimic user-driven regional editing using SDXL Inpainting and Ps
GenFill, alongside utilizing Magnific AI on a selected group of test images. Our
discussion thoroughly examines and provides insights into how these post-editing
interventions impact the image attribution performance.

Lastly, while prior research has demonstrated notable success in differentiat-
ing "real vs. fake" images and accurately attributing them to their origins, the
exact nature of the detectable traces recognized by classifiers and their locations
within the images remain elusive. In Sec. 5, we delve deeper into this scientific
question by introducing perturbations in the high-frequency domain and con-
verting images into various mid-level representations, such as depth maps and
Canny edges, to assess their impact on image attribution accuracy. This strat-
egy aims to unearth detectable traces across different levels of visual granularity,
enriching our understanding of how classifiers recognize and attribute images.
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Notably, our investigations reveal that training the image attributor using style
representations—specifically, the Gram matrix—enhances accuracy beyond what
is achievable with attributors trained on original RGB images. Furthermore, in-
troducing perturbations to high-frequency signals within images results in only
minor performance decreases in the attributors. When these models are trained
on mid-level representations, they maintain commendable accuracy levels that
significantly surpass random chance. This observation suggests that detectable
traces extend beyond just the high-frequency domain, encompassing mid-level
aspects of texture, structure, and potentially the layout of images.

Overall, our key contributions are as follows:
· Developed an extensive dataset of nearly half a million AI-generated images

from cutting-edge T2I models with a variety of natural and surreal prompts.· Achieved over 90% accuracy in training an image attributor across 12 con-
temporary T2I generators and real images, significantly outperforming ran-
dom chance for the 13-way classification task.· Pioneered the exploration of detectability regarding minor hyperparameter
modifications during the inference stage of T2I diffusion models.· Innovatively replicated user editing workflows on AI-generated images using
various tools, thoroughly evaluating their effect on attribution accuracy.· Introduced a novel approach for analyzing detectable traces within images
through high-frequency perturbations and conversion to diverse mid-level
representations, yielding significant insights.

2 Related Work
Classifying Fake vs. Real Images. The rise of sophisticated image generators
facilitates creating highly realistic images with diverse artistic styles, which has
spurred research aimed at detecting synthetic images from real images. Wang et
al . [71] introduced a CNN model that identifies images generated by GANs [30]
and low-level vision models [12,19]. They showed that training diversity is crucial
for fake image detectors to achieve good generalization. Additionally, Yu et al .
[75] discovered that different GAN architectures, training sets, and initialization
seeds lead to distinct fingerprints in the generated images.

Various approaches detect synthetic images using visible [48] and invisible
artifacts that can lie in the spatial or frequency domain [31]. Spatial domain
methods often estimate these digital fingerprints using deep learning methods
[8, 67] or by averaging their noise residuals [46]. These detection methods may
use local image patches [11], combine local and global image features [39], or
use gradients extracted by a pretrained CNN [69]. Moreover, style and texture
information have been utilized for fake image detection [5, 43, 80]. Amoroso et
al . revealed that real and fake images are more easily separable using style
features rather than semantics [5], and Zhong et al . [80] found it more challenging
for generative models to synthesize rich texture regions. Another line of work
suggests that GAN-generated images can be detected by studying artifacts in
the frequency domain [6, 8, 16,20,22,23,25,46,59,70].

Recently, there is a trend towards identifying images generated by diffu-
sion models [9, 24, 34, 65, 72, 78, 81]. Wang et al . [72] discovered that features of
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diffusion-generated images are more easily reconstructed by pretrained diffusion
models than real images, and Cozzolino et al . [18] observed that images from
diffusion models have spectral peaks that distinguish them from real images. Fur-
thermore, the idea of learning classifiers that leverage both visual and language
features to supplement low-level features has gained interest [18,50,73]. Ojha et
al . [50] found that using the feature space of CLIP [55] improves generalization
ability for detecting fake images from GANs and diffusion models.

Detecting Fake Image Attribution. In addition to recognizing synthetic
images, some approaches strive to identify the source of generated images. Yu
et al . [75] discovered that different GAN architectures, training sets, and initial-
ization seeds can lead to fingerprint features for attribution. RepMix [10] traces
GAN images to their generators while being invariant to semantic content and
image perturbations. Girish et al . [29] and Marra et al . [47] developed an al-
gorithm for online detection and attribution of GAN images. Recent work has
also explored fake image detection and attribution from diffusion models [17]
and T2I generation models [65]. Guarnera et al . [32] proposed a hierarchical ap-
proach to categorize images into real or fake, GAN or diffusion-generated, and
the specific generator. Guo et al . [33] takes a similar approach, but they also
determine whether the image was entirely synthesized or only partially edited.

Analyzing Images Generated by Diffusion Models. There have been
works studying scene knowledge within pretrained diffusion models [14,21,77], as
well as methods for examining the geometry of diffusion-generated images [61].
Du et al . [21] discovered that generative models contain rich information about
scene intrinsics, and they train a low-rank adapter [36] to produce surface nor-
mals, shading, albedo, and depth. Sarkar et al . [61] revealed that synthetic im-
ages can be differentiated from real ones by analyzing their geometric properties.

In contrast, our work extends beyond prior research by delving deeper into
the specific inference stage hyperparameters, image modifications, and levels of
visual granularity that are discernible by an image attributor.

3 Dataset Generation
In this work, our objective is to detect and comprehend image attributions for
contemporary text-to-image (T2I) models, while also investigating the extent to
which traces can be detected across different generators and within the nuanced
variations of inference stage controls. To achieve this, we first generate images
using a variety of modern T2I models, employing a wide range of text prompts
to ensure diversity. Subsequently, we maintain a consistent generator while ad-
justing inference time hyperparameters, which include the number of inference
steps, scheduler types, model checkpoints, and random seeds.

3.1 Images from Diverse Generators and Prompts
As of March 2024, we have employed the following state-of-the-art, open-source
T2I models for image generation: SD 1.5 [60], SD 2.0 [60], SDXL [54], SDXL
Turbo [62], Latent Consistency Model (LCM) [45], Stable Cascade [52], Kandin-
sky 2 [57], DALL-E 2 [56], DALL-E 3 [7], along with Midjourney versions 5.2
and 6 [1]. To generate images, we use the OpenAI API for DALL-E 2 and 3,
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an automation bot for Midjourney 5.2 and 6, and the Hugging Face diffusers
GitHub repository [53] for the remaining models.
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Fig. 1: A depiction of images generated for our dataset, showcasing two distinct types
of prompts: MS-COCO [42] derived captions are displayed at the top, while creative
prompts generated by GPT-4 are featured at the bottom. For both categories, images
were produced using 12 different T2I generators.

To gather a broad spectrum of text prompts, we include both descriptions
of natural scenes and imaginative, surreal prompts. This diversity is achieved
by leveraging around 5,000 captions from the MS-COCO dataset [42], comple-
mented by approximately 5,000 prompts generated by GPT-4 [4]. The GPT-4
generated prompts stem from a wide-ranging collection of popular user prompts
found online, details of which are provided in the supplemental materials. Uti-
lizing this comprehensive set of prompts, we generate images across all the text-
to-image (T2I) models referenced, as depicted in Fig. 1. For each prompt, we
generated one image for DALL-E 2 and 3 (due to cost considerations), four
images for Midjourney, and five images for the other models, culminating in
a dataset exceeding 450K generated images. It’s important to note that not all
images were used during training; the specifics are in the supplemental materials.

3.2 Images from Varying Hyperparameters at Inference Stage
In this research, we expand our focus beyond simply identifying the source gen-
erators based on their architectures, to a deeper analysis of the critical yet subtle
choices made during the inference stage that have a profound effect on the gener-
ated outputs. Initially, we investigate the possibility of identifying specific model
checkpoints within the same architecture, specifically Stable Diffusion (SD) [60],
based on different training iterations. To facilitate this, we generated images
using five versions of SD from 1.1 to 1.5. Despite sharing a common architec-
ture, each version was trained for a distinct number of iterations. Next, we delve
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into the impact of using different schedulers or samplers [35, 40, 68, 79] during
the inference phase for the same generator. We question whether the generated
images can reveal which scheduler was employed. Furthermore, drawing inspi-
ration from studies indicating that the use of different seeds in GAN-generated
images can be detected [76], we seek to apply this concept to diffusion models
to determine if the choice of seed is detectable in the resulting images. Finally,
we conduct experiments with diffusion steps ranging from 5 to 50 in increments
of 5 to investigate whether the number of sampling steps employed can leave
detectable traces in the images. Selected samples of images generated under
different hyperparameter adjustments are presented in Fig. 2.

Seeds:
Checkpoints: 100723

Schedulers

Inference StepsSeeds

Checkpoints (Training Iterations)

Fig. 2: An illustration showcasing the diversity in generated images influenced by
varying hyperparameters: different model checkpoints (within the same architecture),
diverse scheduling algorithms, varied initialization seeds, and a range of inference steps.

4 Detecting Image Attribution in RGB
In this section, we benchmark the performance of image attribution across 12
modern text-to-image generators, and we examine the impact of various archi-
tectures, training sizes, and cross-domain influences on task performance. We
then delve into the detectability of traces for various hyperparameter adjust-
ments during the inference stage. Finally, inspired by typical user workflows, we
investigate whether AI-generated images can still be attributed to their original
generators after being modified by distinct software or models.

4.1 Training Image Attributors

Problem Setup and Model Performance. Prior research has demonstrated
deep networks’ ability to distinguish AI-generated images from real ones [11,18,
39, 46, 48, 50, 71] and to identify their sources [10, 65, 75] effectively. Our study
builds on this foundation by merging the tasks of discerning "AI-generated vs.
Real Images" and attributing images to their sources into a singular framework.
This is achieved by including real images in our dataset and treating them as an
additional ‘generator’, enabling a more detailed analysis of AI-generated content.
Concerning the architecture of the image attributor, which functions as an image
classifier, previous studies [18,50] have demonstrated that a straightforward lin-
ear probe or nearest neighbor search, when applied to a large pretrained model
like CLIP [55], can effectively differentiate AI-generated images from real ones.
Inspired by these findings, we employ three network architectures to tackle the
attribution task across 12 modern mainstream text-to-image (T2I) generators—
such as SDXL Turbo [62], DALL-E 3 [7], and Midjourney 6—plus a real image
dataset. These architectures include an EfficientFormer [41] trained from scratch,
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a CLIP [55] backbone connected with a linear probe and MLP, and DINOv2 [51]
with a similar configuration. We also analyze the impact of incorporating text
prompts as additional inputs similar to Sha et al . [65], which we found to provide
slight yet consistent improvements across all architectures, as shown in Tab. 1.

E.F. (scratch) CLIP+LP CLIP+MLP DINOv2+LP DINOv2+MLP

w/o text 90.03% 70.15% 73.09% 67.68% 71.33%
w/ text 90.96% 71.44% 74.19% 69.44% 73.08%

Table 1: Quantitative evaluation (13-way classification accuracy) of various architec-
tures for image attribution learning performed across 12 generators and a corresponding
set of real images, with each category containing an equal number of images. The prob-
ability of randomly guessing the correct source is 1

13
, corresponding to 7.69% accuracy.

In this context, "E.F." refers to EfficientFormer. The first and second rows in the re-
sults table indicate classifiers trained without and with text prompts, respectively.

Analyzing Classifier Performance Across Generators. To provide a
more granular view of our analysis, we delve into the performance specifics of
each classifier, illustrating a detailed accuracy breakdown through a radar graph
and a corresponding confusion matrix, as depicted in Fig. 3. Our findings reveal a
noticeable challenge in differentiating between generators from the same family,
with notable pairs including "SD 1.5 vs. SD 2.0," "Midjourney 5.2 vs. Midjourney
6," and "LCM (2 steps) vs. LCM (4 steps)." While Midjourney’s architecture
remains undisclosed to the public, it is reasonable to infer that versions 5.2 and
6 likely share a similar underlying architecture from our analysis. Interestingly,
DALL-E 3 presents more confusion when compared to Midjourney versions 5.2 /
6, rather than with DALL-E 2. We attribute this to the significant architectural
differences: DALL-E 2 incorporates pixel diffusion in its decoder stage, whereas
DALL-E 3 employs multi-stage latent diffusion alongside a distinct one-step VAE
decoder, similar to [60], leading to divergent generative characteristics. Finally,
we demonstrate that the accuracy of the attributor consistently improves with
an increase in the number of training images, as shown on the right side of Fig.
3. However, due to budget constraints, fully exploring the dataset expansion up
to the saturation point is deferred to future research endeavors.

Fig. 3: Left/Middle: Accuracy and confusion matrix of EfficientFormer trained with
text prompts, which achieved the highest accuracy in Table 1. Right: Accuracy of
EfficientFormer as we vary the number of training images.
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Cross-domain Generalization. As highlighted in Sec. 3.1, user prompts
vary significantly, with some describing natural scenes and others depicting cre-
ative or surreal concepts. This diversity led us to examine how a classifier, trained
on images generated using MS-COCO captions, would perform when applied to
images created from GPT-4’s inventive prompts, and conversely. The results,
presented in Tab. 2, show a noticeable decline in performance when the classifier
is trained and tested across these differing domains. Since we keep the same set
of generators and only change the style of prompts, this outcome underscores
that learning image attribution uses the visible content in the generated images.

Train on MS-COCO Train on GPT-4 Train on Both

Test on MS-COCO 89.04% 71.07% 85.78%
Test on GPT-4 69.24% 79.35% 81.06%

Table 2: Cross-domain generalization accuracy in image attributors. The amount of
training and testing data was kept consistent across trials, and an equal number of
images was sourced from MS-COCO and GPT-4 prompts for the ‘Train on Both’ trial.

4.2 Analyzing the Detectability of Hyperparameter Variations

T2I generators often have several adjustable hyperparameters at the inference
stage that affect the generated image quality. A natural question that arises
is whether images produced using different hyperparameters are distinguish-
able. To investigate this, we target four hyperparameter choices for Stable Dif-
fusion [60]: model checkpoint, scheduler type, number of sampling steps, and
initialization seed. Specifically, we compared Stable Diffusion checkpoints 1.1
to 1.5, each of which are trained using a different number of iterations on the
LAION dataset [63]. We then examined the detectability of images generated
using eight schedulers: DDIM [68], DDPM [35], Euler [40], Euler with ancestral
sampling [40], KDPM 2 [40], LMS [40], PNDM [40], and UniPC [79]. Addition-
ally, we generated images using both SD 2.0 and SDXL for ten different sampling
steps ranging from 5 to 50, and ten different seeds ranging from 1 to 10. For each
hyperparameter choice, we train a separate EfficientFormer [41] to classify the
generated images, and the results are illustrated in Tab. 3 and Fig. 4. As shown
in Tab. 3, all six classifiers can detect the hyperparameter choice better than ran-
dom chance. Interestingly, the initialization seed achieves nearly 100% accuracy,
which aligns with prior work by Yu et al . [75] that found different seeds lead to
attributable GAN fingerprints. Moreover, when looking at the confusion matrix
for different sampling steps using SDXL in Fig. 4, we see that images generated
using fewer steps are more detectable than those generated using more steps,
likely because fewer steps noticeably degrades the generation quality.

4.3 Assessing Detectability of Post-Editing Enhancements

A common workflow for utilizing AI-generated images involves users identifying
unwanted artifacts or distracting areas within these images. They often import
these images into additional models or software for further editing and refine-
ment, such as SDXL Inpainting [54] or Photoshop Generative Fill (Ps Gen-
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Checkpoints Schedulers Sampling Steps Seeds

Random Chance 20% 12.5% 10%/10% 10%/10%
Accuracy 30.21% 20.18% 25.96%/56.64% 98.80%/99.94%

Table 3: Comparison of accuracy for detecting hyperparameter values based on gen-
erated images. For the ‘Sampling Steps’ and ‘Seeds’ trials, we trained and evaluated on
images from SD 2.0 and SDXL, and the accuracies are formatted as SD 2.0 / SDXL.
Notably, the ‘Seeds’ trial attains near perfect performance.

Fig. 4: Confusion matrices for different hyperparameter adjustments, including the
Stable Diffusion version, scheduler type, and number of inference steps. We observe
that images generated with fewer SDXL sampling steps are more detectable, likely due
to visible degradation in the image quality.

Fill) [2], to enhance local regions. Many text-to-image applications are con-
strained to relatively low resolutions, typically around 1K, or produce images
with smooth/blurry texture. Consequently, some professionals opt to upscale or
refine the details of these generated images using advanced tools, such as Mag-
nific AI [3]. This practice leads to a pertinent question: Is it possible to still
detect the original source generator after the images have undergone further
modifications using a variety of software or other AI models? For instance, an
image initially created by Midjourney 6 [1] could subsequently be edited with
SDXL Inpainting, Photoshop GenFill, or Magnific AI, as illustrated in Fig. 5.

SDXL Inpainting

Photoshop Generative Fill

Magnific AI

Midjourney V6

4X UpsamplingSmall (0~15%) Medium (15~30%) Large (30~60%)

Small (0~15%) Medium (15~30%) Large (30~60%)

Fig. 5: Left: Original image generated by Midjourney 6. Middle: Local modifications
utilizing SDXL inpainting and Photoshop Generative Fill across three masks with
small, medium, and large holes. Right: The image upscaled 4X by Magnific AI.

To simulate typical user edits, we generated free-form masks across three size
categories—small (0 to 15%), medium (15 to 30%), and large (30 to 60%)—re-
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SDXL Inpainting Ps Generative Fill Magnific AI

Edit Region Ratio 0 ∼ 15% 15 ∼ 30% 30 ∼ 60% 0 ∼ 15% 15 ∼ 30% 30 ∼ 60% 100%

Random Chance 7.69% 7.69% 7.69% 7.69% 7.69% 7.69% 33.33%
Original Image 90.96% 90.96% 90.96% 90.96% 90.96% 90.96% 93.33%
Post-Editing 64.96% 61.56% 55.62% 88.21% 85.44% 71.91% 70.00%

Table 4: Comparison of post-editing detection accuracy across different AI models. We
use the best performing image attributor in Table 1 for evaluation, which is Efficient-
Former trained with text prompts. Accuracy declines at a similar rate after modifying
the image using SDXL Inpainting [54] and Photoshop (Ps) Generative Fill [2].

flecting the common range of edits applied to images. These masks were applied
to the entire test set for pixel regeneration using SDXL Inpainting [54] and Ps
GenFill [2]. We then assessed the best performing image attributor in Tab. 1,
EfficientFormer trained with text prompts, on these post-edited images. Accord-
ing to Tab. 4, we observed a monotonic decrease in accuracy with respect to
the modified area of the images. Notably, SDXL Inpainting resulted in greater
accuracy loss compared to Ps GenFill for the same images and masks. We hy-
pothesize this disparity arises because the SDXL Inpainting model closely relates
to the SDXL text-to-image (T2I) model included in our training generator pool,
potentially skewing edited images towards an SDXL-like appearance, whereas Ps
GenFill does not closely resemble any generator in our training set. This observa-
tion is validated in the corresponding confusion matrix, which we have shared in
the supplemental materials. For texture enhancements via Magnific AI [3], bud-
get constraints limited our examination to 10 examples from each of the three
generators: DALL-E 3, Midjourney 6, and SDXL Turbo. This limitation set a
basic random chance of classification at 33.33%. This analysis, reflected in the
last column of Tab. 4, shows approximately 23% degradation, despite editing all
pixels in the images. Despite the noted performance reductions, the accuracy for
all post-edited images remains significantly above random chance, establishing
a strong baseline for the task of post-editing image attribution.

5 Detecting Image Attribution Beyond RGB
Previous studies have demonstrated that training a standard deep network can
effectively distinguish between real and generated images, as well as correctly
attribute generated images to their original generators. In Sec. 4.1, we observed
that a lightweight transformer achieves high accuracy for these tasks, mirror-
ing these findings. These prior studies have suggested that the attributor may
leverage middle-to-high frequency information to differentiate images. However,
it remains unclear what exactly constitutes this "middle-to-high frequency infor-
mation" and to what extent the network can still identify detectable traces in the
images as we incrementally remove visual details. Therefore, this section presents
an extensive empirical study on the impact of progressively eliminating visual
information at various levels of granularity on image attribution performance.

High-Frequency Perturbation. Prior research [6,8,16,20,22,23,25,46,59,
70] has identified that generators leave unique fingerprints in the high-frequency
domain, allowing attributors to learn these high-frequency details and achieve
high performance. As an initial step, we investigate the effects of introducing
high-frequency perturbations to images on the attributor’s performance, which
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aims to enforce the classifier learn beyond high-frequency details. For simplicity,
we train a separate EfficientFormer [41] on each set of perturbed images. Figure
6 illustrates our observations under four types of perturbation: Gaussian blur,
bilateral filtering, adding Gaussian noise, and SDEdit [49]. We note that these
perturbations result in a modest decrease in classification accuracy. Specifically
for SDEdit, the high-frequency traits of SDXL are embedded into every image,
regardless of their source generators, by undergoing processing via the encoder,
diffusion UNet, and decoder of SDXL [54]. Remarkably, this process led to only
a minor reduction in accuracy, suggesting a robustness in the attributor’s ability
to identify generator-specific fingerprints despite high-frequency modifications.

90.96%

81.78%

Original

Gaussian Blur
radius = 5 radius = 10

Bilateral Filter
diameter = 5 diameter = 10

Add Gaussian Noise
std = 15 std = 25

SDEdit
strength: 0.01 strength: 0.05

77.45% 90.30% 87.54%

83.56% 81.23% 86.34% 84.58%

Fig. 6: We showcase a generated image before and after perturbing its high-frequency
details via Gaussian blurring, bilateral filtering, adding Gaussian noise, and SDEdit
[49]. We trained EfficientFormer on images after each high-frequency perturbation and
observed a mild decline in the respective test accuracy, as indicated beside the images.

Middle-Level Representation. High-frequency perturbations result in only
minor performance degradation, which suggests that the detectable traces left
by different generators might also reside within the mid-frequency domain. To
delve deeper into the presence of these detectable traces, we convert the im-
ages into various mid-level representations. These include ‘Albedo,’ [21] ‘Shad-
ing,’ [21] ‘Canny Edge,’ ‘Depth Map,’ [74] ‘Surface Normal,’ [21] and ‘Perspective
Fields,’ [37] utilizing readily available models for the transformations. This ap-
proach aims to uncover the extent to which these mid-level frequencies carry
generator-specific information that can be leveraged for attribution. We proceed
by training a distinct EfficientFormer [41] for each mid-level representation, and
we show their classification accuracies in Fig. 7 and confusion matrices in Fig.
8. Notably, although the overall accuracy for the attributors trained on Canny
Edge, Depth Map, and Perspective Field images is not high in Fig. 7, they
demonstrate remarkable performance at discerning real images from fake images
in Fig. 8. This finding aligns with previous work by Sarkar et al . [61] suggesting
that generative models often fail to generate accurate geometry.
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RGB Canny Edge Depth Map Surface NormalShadingAlbedo Perspective Field

90.96% 53.97% 43.74% 31.09%58.34%73.13% 39.08%

Fig. 7: We present an RGB image and its mid-level representations. We trained Effi-
cientFormer on each mid-level representation and include the corresponding test accu-
racy under each image. Please keep in mind that the random chance is 1

13
or 7.69%.

Fig. 8: Confusion matrices for image attributors trained on mid-level representations.
Remarkably, attributors trained on "Canny Edge," "Depth Map," and "Perspective
Field" images are significantly better at detecting real images than synthetic images.

Image Style Representation. Given the perceptible differences in styles or
tones among image generators, it’s common to observe distinct characteristics
in their outputs. For instance, Midjourney [1] often produces images with a
‘cinematic’ quality, while DALL-E [7,56] sometimes tends to create images with
overly smooth textures and cartoonish appearances, as shown in Fig. 1. This
observation leads to a pertinent question: if we train an attributor solely on the
stylistic representations of images, can we still identify the source generators?

To capture the style representation of images, we adhere to the methodol-
ogy established in prior style transfer literature [27,38], employing a pretrained
VGG network [66] to extract features across multiple layers. Subsequently, we
calculate the Gram matrix [26] for each layer of the network. If we denote the
feature at a specific layer as F ∈ RH×W×N , then the Gram matrix is the cosine
similarity between each channel in the feature representation, yielding a matrix
of dimensions G ∈ RN×N . This process aims to distill the stylistic essence of
images, providing a unique fingerprint for each generator’s output. Specifically,
we reshape and concatenate the Gram matrices extracted from multiple layers,
and then train EfficientFormer [41] using these aggregated feature vectors.
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Remarkably, the image attributor achieves an accuracy of 92.80% when
trained on style representations, surpassing the performance of the attributor
trained on original RGB images by 1.84%. The superior accuracy achieved by
this style-based image attributor highlights the critical role of stylistic features,
such as texture and color patterns, in distinguishing generators more effectively
than traditional RGB data. This suggests that the unique signatures of image
generators might be more intricately tied to their style rather than the direct
visual content. This insight not only advances our understanding of image at-
tribution techniques but also emphasizes the potential of leveraging stylistic
elements for more nuanced AI recognition and analysis tasks.

Furthermore, given the exceptional performance of training on style features
for image attribution, we seek to understand what insights we can extract from
raw values in the Gram matrices without any model training. To achieve this,
we average the Gram matrix from a single layer of VGG across 450 images
per generator, and we visualize the density distribution of its values in Fig. 9.
We observe that LCM (2 steps) and LCM (4 steps) have similar image style
distributions, as does SDXL and SDXL Turbo. Additionally, since we use real
images from the MS-COCO dataset [42], the generators with distributions closer
to that of real images in Fig. 9 likely generate more natural image styles.

Fig. 9: Left: Confusion matrix for EfficientFormer trained on aggregated style features
obtained from Gram matrices. Compared to EfficientFormer trained on original RGB
images in Figure 3, we observe that training on image style reduces misclassification
between generators of the same family, such as "Midjourney 5.2 vs. Midjourney 6."
Right: Density distribution of values in the averaged Gram matrix (log-scaled) using
450 images per generator. We include real images as a distinct ‘generator’. Image style
is moderately distinguishable across generators by analyzing Gram matrices alone.

Image Composition Pattern. Beyond stylistic differences, we hypothesize
that various generators might create images with unique composition patterns
or layouts from the same text prompt. For instance, given identical prompts,
some generators may depict humans in portrait-style photos, while others may
place humans further from the camera, treating them as elements within the
larger scene. These variations could stem from each generator’s learning with its
distinctively ‘curated’ training data distribution and proprietary prompt aug-
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mentation techniques, features that are often integral to commercial models like
DALL-E [7, 56] and Midjourney [1]. To test our hypothesis, we analyze 100 im-
ages generated from the same prompt for each generator. We employ Grounded
SAM [58] to compute segmentation masks, serving as a proxy for layout repre-
sentation. For instance, as depicted in Figure 10, by averaging the segmentation
masks for ‘person’ and ‘corgi’ across 100 images from each generator, created
from the prompt ‘a couple, a daughter, and a corgi walking,’ we visualize the
distribution of image composition. This reveals unique layout patterns among
the generators, supporting our hypothesis.

Prompt: “a couple, a daughter and a corgi walking”

DALL-E 2 DALL-E 3
Kandinsky

2.1
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Fig. 10: Image composition analysis across generators for a single prompt. We visualize
the averaged segmentation masks for the ‘person’ and ‘corgi’ classes. Some generators,
such as Stable Cascade, tend to produce objects at specific locations. We also list the
top three inserted classes and the number of images (out of 100) with these classes.

Given the noticeable variations in the layout of generated images for a spe-
cific prompt, we further investigate whether a classifier can learn to attribute
images based solely on their composition. To this end, we segment 111 semantic
classes using Grounded SAM [58] and subsequently train EfficientFormer [41] on
the segmentation maps with their input prompts by concatenating their respec-
tive embeddings. This approach enables the classifier to achieve an accuracy of
17.66%, despite relying on such a coarse representation. Remarkably, this accu-
racy is more than twice that expected by random chance (7.69%), suggesting that
distinct patterns in layout generation do indeed exist across these generators.

6 Conclusion
In this study, we present in-depth analyses on the detection and attribution of im-
ages generated by contemporary text-to-image (T2I) diffusion models. Through
rigorous testing, our image attributors, trained to recognize outputs from 12
different T2I diffusion models along with a category for real images, reached an
impressive accuracy of over 90%, significantly surpassing random chance. Our
investigation into the role of text prompts, the challenge of distinguishing genera-
tors within the same family, and the ability to generalize across domains provides
comprehensive insights. Pioneeringly, we delved into the detectability of hyper-
parameter adjustments at inference time and assessed the effects of post-editing
on attribution accuracy. Going beyond mere RGB analysis, we introduce a new
framework for identifying detectable traces across various levels of visual detail,
offering profound insights into the underlying mechanics of image attribution.
These analyses provide fresh perspectives on image forensics aimed at alleviating
the threat of synthetic images on copyright protection and digital forgery.
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A Human Performance
In computer vision and machine learning, human performance is typically seen
as the benchmark for AI models. However, in the case of image attribution,
the scenario reverses—AI significantly outperforms humans. This is highlighted
by an experiment conducted by one of our co-authors, who has extensive expe-
rience with AI-generated images. Tasked with attributing 650 images to their
correct source generators, the co-author achieved only a 37.23% accuracy rate.
This figure, while better than the 7.69% random chance level, is markedly in-
ferior to the accuracy of our top AI classifier, which has 90%+ accuracy. This
outcome underlines the exceptional challenge of image attribution, where even
well-informed individuals struggle. It showcases the necessity of AI in assisting
humans with tasks that are beyond their natural proficiency, emphasizing AI’s
potential to enhance human performance in specialized domains.

From the perspective of the human evaluator, differentiating between certain
AI image generators and others can be nuanced yet discernible. The Latent Con-
sistency Models (LCM) [45], at 2 and 4 steps, are notable for their occasional
oversmooth artifacts, a result of undersampling, making them easier to identify
compared to other models. DALL-E 3 [7] is distinguished by its tendency to pro-
duce surreal, cartoonish images, though these often exhibit repetitive patterns.
DALL-E 2 [56], on the other hand, is characterized by a unique ‘sharp’ visual
artifact, likely a consequence of its pixel diffusion process in the decoder, setting
it apart from other models. Midjourney versions 5.2 and 6 [1] typically deliver
the highest quality images, sometimes with a distinctive cinematic style.

Real images, however, are generally more straightforward to identify. One
can often look at the detailed object regions—like hands and text—where AI-
generated images tend to falter. The naturalistic photo style of real images also
serves as a key differentiation factor from AI-generated content. Other genera-
tors, such as SD 1.5 [60], SD 2.0 [60], SDXL [54], SDXL Turbo [62], Kandinsky
2.1 [57], and Stable Cascade [52], present a greater challenge for human evalua-
tors to distinguish due to the subtlety of their differences.

B Data and Implementation Details
GPT-4 Generated Prompts. Building upon Section 3 of our main paper,
this section delves into the methodology behind generating creative and surreal
prompts using GPT-4 [4]. As illustrated in Fig. 11, our process begins with the
formulation of system-level instructions directing GPT-4 to act as an assistant
for writing text prompts. We then supply a specific context and a collection of
several hundred exemplary prompts. This setup enables GPT-4 to synthesize and
generate new, innovative prompts based on the provided examples and context.

Image Generation. We employed 12 T2I diffusion models to generate RGB
images without watermarks, and the generated image sizes are as follows:

· 512 × 512: Kandinsky 2.1, SD 1.1, SD 1.2, SD 1.3, SD 1.4, SD 1.5, SD 2.0,
SDXL Turbo· 1024 × 1024: DALL-E 2, DALL-E 3, LCM (2 steps), LCM (4 steps), Mid-
journey 5.2, Midjourney 6, SDXL, Stable Cascade
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User: I am trying to generate 
thousands of novel prompts for 
AI to generate images using 
tools, such as Midjourney, 
Stable Diffusion, and DALL-E. 
You can use your prior knowledge 
abour popular prompts, and I am 
also providing you a few hundred 
examplar prompts in below:

Cat looking at it and ‘on top of 
the world, cyberpunk poster, in 
the style of Erik Jones, social 
media portraiture, sparth, 
vibrant color fields, graffiti 
and street art, highly detailed 
figures, hyper-detailed
……

Could you learn from these 
prompts and generate 30 more 
prompts that are sufficiently 
diverse and novel covering 
various content and styles. 

GPT 4

System: You are an AI 
assistant to help generate
image text prompts.

Response:
A surreal depiction of a city skyline turning into a wave, in the style of 
Salvador Dali
A cybernetic eagle soaring over a futuristic cityscape, rendered in the style of 
Moebius
An old oak tree sheltering a boy, a dog and a horse, reflecting Johanna Basford's 
style
A steampunk table setting, complete with cogs and gears, in a dingy Victorian 
room, Max Ernst style
The Milky Way stretched across a desert landscape, in vivid neon colors, 
reflecting the style of Brandon Woelfel
An armored dinosaur in a dramatic rainforest battle, inspired by classic paleoart
An underwater castle made of coral, filled with merfolk, in the style of Ohnaka 
Akane
A miniaturized New York City, with tiny taxis and pedestrians, mimicking Tatsuya 
Tanaka's miniature calendar
A fiery phoenix rising from a cityscape, reflecting the style of Simon Stålenhag’s 
retro futuristic scenes
A regal king standing heroically on a dragon's head, detailed in the style of 
Yoshitaka Amano
A romantic scene of two people kissing under cherry blossom trees, digital oil 
painting style of Leonid Afremov
A dark space station inhabited with multi-species aliens living harmoniously, 
vibrant color tones and intricate details, H.R Giger’s surrealism style
A demon and an angel playing chess on the edge of a cliff during a storm, in the 
style of Francisco Goya
An 8k ultra-detailed mural of graffiti covering an entire city block, reflecting 
the style of Banksy
A hyper-detailed print of a wise owl reading a spellbook, in the style of Brian 
Froud’s fantasies
……

Fig. 11: An illustration of how we use the GPT-4 API to massively generate thousands
of creative and surreal prompts.

We also use 5000 real images from the MS-COCO [42] 2017 validation set.
More Visualizations of Hyperparameter Variations. As an extension

of Fig. 2 in the main paper, we show more generations by hyperparameter vari-
ations in Fig. 12.

Sampler

Inference StepsSeeds

Checkpoints (Training Iterations)

Sampler

Inference StepsSeeds

Checkpoints (Training Iterations)

Sampler

Inference StepsSeeds

Checkpoints (Training Iterations)

Fig. 12: More examples showcasing the diversity in generated images influenced by
varying hyperparameters: different model checkpoints within the same architecture,
diverse scheduling algorithms, varied initialization seeds, and a range of inference steps.

Training Data. For Sec. 4.1 and 5, we view image attribution as a 13-way
classification task with 12 text-to-image diffusion models and 1 set of real images.
An exception is the cross-domain generalization study, where we exclude real
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images as a 13th class because there are no real images for the GPT-4 generated
prompts. We use 3200 training, 450 validation, and 450 testing images per class.

For Sec. 4.2, we analyze four hyperparameters: Stable Diffusion checkpoint,
scheduler type, number of sampling steps, and initialization seed. When train-
ing classifiers for SD checkpoints, schedulers, and sampling steps, we use 20000
training, 2500 validation, and 2500 testing images per class. For seeds, we use
3200 training, 450 validation, and 450 testing images per class.

For Sec. 4.3, we run inference using the EfficientFormer [41] trained with
text prompts from Sec. 4.1. For SDXL Inpainting [54] and Photoshop Generative
Fill [2], we use 450 images from each of the 13 classes. For Magnific AI [3], we
use 10 images from each of DALL-E 3, Midjourney 6, and SDXL Turbo.

Data Augmentation. During training, we first resize each image to have a
shorter edge of size 224 using bicubic interpolation, then center crop the image to
size 224× 224, and finally randomly flip the image horizontally with probability
0.5. During validation and testing, we only resize and center crop the images.

Image Attributors. We selected three network architectures for the image
attribution task, and we use the code implementation from MMPretrain [15]. Our
primary architecture is EfficientFormer-L3 [41] trained from scratch because it is
a lightweight transformer. Moreover, we employ a pretrained, frozen transformer
backbone attached to a linear probe (LP) or multilayer perceptron (MLP). The
backbone is either CLIP ViT-B/16 [55] or DINOv2 ViT-L/14 [51], and the MLP
consists of three linear layers with sigmoid activation and hidden dimension 256.
For the linear probe and MLP classifier heads, there are 768 channels in the input
feature map for CLIP+LP and CLIP+MLP, and 1024 channels for DINOv2+LP
and DINOv2+MLP.

To train image attributors with text prompts, we compute text embeddings
using a pretrained CLIP [55] text encoder. Then, we concatenate image embed-
dings from the backbone with text embeddings as input to the classifier head.

For all image attributors, we set a batch size of 128 and train for 2000 epochs.
We use the checkpoint with the best validation accuracy. Additionally, we utilize
the AdamW optimizer [44] with learning rate 0.0002 and weight decay 0.05. The
learning rate scheduler has a linear warm-up period of 20 epochs, followed by a
cosine annealing schedule with a minimum learning rate of 0.00001.

Perspective Fields. We use the code implementation from [37]. Each input
to the attributor trained on Perspective Fields has a size of 640× 640× 3. The
first 640 × 640 channel contains latitude values, and the next two 640 × 640
channels contain gravity values. We adapt the code from [37] to visualize the
Perspective Field on a black image in Fig. 5 of the main paper.

C Additional Experiments
C.1 Color Analysis

In addition to studying image style and image composition pattern, we examine
whether different generators produce images with distinct color schemes. We use
100 images generated from a set of fixed prompts for our analysis. In Fig. 13, we
visualize the density distribution of pixel values in each RGB color channel. We



Detecting Image Attribution for T2I Diffusion Models in RGB and Beyond 23

discover that Kandinsky 2.1 [57], Midjourney 5.2 [1], and Stable Cascade [52]
often generate images with a wider range of pixel intensity values. In Fig. 14, we
observe that these three generators often create images with glow and shadow
effects, which can lead to higher and lower intensities.

Prompt: “a couple, a daughter and a corgi walking”

Prompt: “a girl dancing”

Prompt: “a person ride a bike”

Prompt: “two cars, a truck, and an airplane in the cityscape”

Fig. 13: Density distribution of pixel values in RGB color channels after averaging 100
images for each prompt and generator. Kandinsky 2.1 [57], Midjourney 5.2 [1], and
Stable Cascade [52] tend to create images covering a wider range of pixel intensities.

C.2 Frozen vs. Fine-tuned CLIP/DINOv2 Backbone

In Sec. 4.1 of the main paper, we evaluated the accuracy of a frozen CLIP
[55] backbone connected with a linear probe and MLP, and a frozen DINOv2
[51] backbone with a similar configuration. In this section, we compare using a
frozen and fine-tuned backbone for the CLIP and DINOv2 linear probes. Table
5 indicates that a CLIP backbone provides marginally better performance than
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DALL-E 2 DALL-E 3
Kandinsky

2.1
LCM

(2 steps)
LCM

(4 steps)
Midjourney

5.2
Midjourney

6 SD 1.5
Stable

Cascade
SDXL
TurboSDXLSD 2.0

Prompt: “a couple, a daughter and a corgi walking”

Prompt: “a girl dancing”

Prompt: “a person ride a bike”

Prompt: “two cars, a truck, and an airplane in the cityscape”

Fig. 14: Visualization of 100 images averaged together for each prompt and generator.
Consistent with our observations in Fig. 13, we see that Kandinsky 2.1 [57], Midjourney
5.2 [1], and Stable Cascade [52] often produce images with glow and shadow effects.

a DINOv2 backbone when the backbone is frozen. However, the reverse holds
true when the backbone is fine-tuned.

CLIP + LP DINOv2 + LP

Backbone Frozen Fine-tuned Frozen Fine-tuned

Accuracy 70.15% 95.31% 67.68% 96.67%
Precision 69.95% 95.51% 67.36% 96.71%
Recall 70.15% 95.32% 67.68% 96.67%
F1 70.00% 95.34% 67.45% 96.67%

Table 5: Quantitative comparison of using a frozen or fine-tuned backbone to train
CLIP [55] and DINOv2 [51] linear probes. CLIP achieves higher accuracy than DINOv2
when the backbone is frozen, but the opposite is true when the backbone is fine-tuned.

C.3 Image Resolutions
The default EfficientFormer [41] takes inputs of size 224× 224. We examine the
performance of using five additional image resolutions between 128 × 128 and
1024× 1024 for the image attribution task. As illustrated on the left side of Fig.
15, accuracy tends to increase as image resolution increases.

C.4 Cropped Image Patches
Our previous experiments use most, if not all, image pixels for the image attribu-
tion task. We also explore the opposite: how few pixels are necessary to achieve
good performance? Inspired by [13,80], we crop a single patch of each image and
then train EfficientFormer [41] on these patches instead of the full-sized images.
Specifically, we first resize each original image to have a shorter edge of size 512,
then center crop the image to create a patch of size k × k, and finally resize
the patch to 224 × 224. We utilized k = [2, 4, 8, 16, 32, 64, 128, 256] and resized
images using bicubic interpolation.

On the right side of Fig. 15, we see that accuracy increases with image patch
size. Remarkably, even training an image attributor on 2 × 2 patches can lead
to 22.29% accuracy, which is well above the random chance accuracy of 7.69%.
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Fig. 15: Left: Accuracy of our EfficientFormer [41] image attributor across six image
resolutions on the 13-way classification task. In general, accuracy increases as image
resolution increases. Right: Accuracy of EfficientFormer across eight image patch sizes.
Interestingly, using 2 × 2 image patches can achieve 22.29% accuracy, whereas the
probability of randomly guessing the correct generator is 1

13
, corresponding to 7.69%.

D Elaboration on Results in the Main Paper

In this section, we expand upon the results from the experiments performed in
the main paper. Figure 16 and Table 6 showcase the confusion matrices and
evaluation metrics for the image attributors in Sec. 4.1. Furthermore, Figure 17
and Table 7 present the confusion matrices and evaluation metrics for the cross-
domain generalization study in Sec. 4.1. Additionally, Figure 18 illustrates the
confusion matrices for post-editing enhancements in Sec. 4.3. Lastly, Figure 19
visualizes the averaged segmentation masks across generators for two additional
prompts, which is an extension of our image composition analysis in Sec. 5.

E.F. (scratch) CLIP+LP CLIP+MLP DINOv2+LP DINOv2+MLP

Accuracy 90.03/90.96 70.15/71.44 73.09/74.19 67.68/69.44 71.33/73.08
Precision 90.07/90.98 69.95/71.30 73.13/74.12 67.36/69.09 71.20/72.91
Recall 90.03/90.96 70.15/71.44 73.09/74.19 67.68/69.44 71.33/73.08
F1 90.04/90.96 70.00/71.25 73.07/74.12 67.45/69.17 71.23/72.93

Table 6: Additional quantitative evaluation of image attributors for 13-way classifi-
cation, consisting of 12 generators and a set of real images. The values (percentages)
represent training each attributor Without / With text prompts.

E Grad-CAM Visualizations
Figure 20 showcases the Grad-CAM [28, 64] heatmaps for image attributors
trained on various image types, including the original RGB images, images after
high-frequency perturbations, and mid-level representations. We observe that
the image attributors trained on RGB images and images after high-frequency
perturbations tend to pay attention to smooth image regions, such as the sky or
ground. Nonetheless, even though the attributors focus on varied image regions,
it remains difficult to explain how they make their decisions for each image.
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Train on MS-COCO Train on GPT-4 Train on Both

Accuracy 89.04/69.24 71.07/79.35 85.78/81.06
Precision 89.07/70.38 71.81/79.29 85.88/80.87
Recall 89.04/69.24 71.07/79.35 85.78/81.06
F1 88.99/68.44 71.06/79.21 85.78/80.86

Table 7: Cross-domain generalization in image attributors. The amount of training
and testing data was kept consistent across trials, and an equal number of images was
sourced from MS-COCO and GPT-4 prompts for the ‘Train on Both’ trial. The values
(percentages) represent testing on images from MS-COCO / GPT-4 prompts.
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Fig. 16: Confusion matrices for image attributors in Sec. 4.1. It’s important to note
that the backbone for the CLIP and DINOv2 models are frozen.
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Fig. 17: Confusion matrices for cross-domain generalization in Sec. 4.1.
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Fig. 18: Confusion matrices for evaluating on post-edited images in Sec. 4.3.
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Prompt: “a girl dancing”
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Fig. 19: Additional image composition analyses across generators. We show the aver-
aged segmentation masks for each semantic class indicated on the left side. We also list
the top three inserted classes and the number of images (out of 100) with these classes.

Fig. 20: Grad-CAM [28,64] visualizations for image attributors trained on each image
type, where each column represents a distinct attributor. The first and third rows
illustrate the Grad-CAM heatmaps overlaid on the input images. The second and
fourth rows show the input images without Grad-CAM. The first example on the top
is based on a real image from MS-COCO [42], while the second example on the bottom
is based on a fake image generated by SDXL Turbo [62]. We notice that the attributors
trained on RGB images and images after high-frequency perturbations often focus on
relatively smooth image regions, such as the sky or ground.


	Detecting Image Attribution for Text-to-Image Diffusion Models in RGB and Beyond

