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Motivated by recent experimental observations of Kondo resonances in cobalt atoms on single layer 1T-TaSe2,
we theoretically investigate the effect of coupling a U(1) quantum spin liquid with a spinon Fermi surface to a
lattice of Anderson impurities. Within the slave-rotor formalism, we find that above a critical coupling strength
between the spin liquid and impurity lattice, the spinons hybridize to form heavy quasiparticles near the Fermi
level, realizing a spinon Kondo lattice phase analogous to heavy fermion materials. Using the Bethe-Salpeter
equation and accounting for emergent gauge fluctuations, we compute the spectral density and density of states,
revealing the formation of spinon-chargon bound states in the spinon Kondo lattice phase. We characterize
the thermodynamic and spectroscopic signatures of this phase, demonstrating specific heat and neutron scatter-
ing responses distinct from a pure quantum spin liquid. Our findings establish the spinon Kondo lattice as a
framework to study the rich physics of spin liquids.

I. INTRODUCTION

Quantum spin liquids (QSL) and resonating valence bond
(RVB) states were initially introduced by Anderson as a
physical mechanism to explain high Tc superconductivity in
cuprates [1, 2]. QSL is a quantum paramagnetic Mott insu-
lator phase which evades a long-range magnetic order even
at zero temperature. Instead, the QSL is an exotic quantum
phase of quantum matter described by topological order [3, 4]
and many-body long-range entanglement [5]. The emergent
gauge fields and symmetry classification by projective sym-
metry group are used to reveal the existence of a variety of
quantum phases with the same symmetry yet with distinct
properties. Among all, the U(1) quantum spin liquid with
spinon Fermi surface is a spin liquid where spinons are gap-
less forming a Fermi surface and are coupled with emergent
U(1) gauge fields [6, 7]. Due to the presence of spin-charge
separation in Mott insulators, the elementary dynamical units
are fractionalized to spinons and chargons [6, 8–10]. The
spinons are charge neutral spin-1/2 fermion and chargons are
spinless boson with electron change −e. Therefore, this U(1)
quantum spin liquid and some of their physical characteris-
tics resemble those of Fermi liquids. For example, the entan-
glement entropy in real space follows a logarithmic area law
S E ∼ L log(L), where L represents the boundary length, for
both the U(1) quantum spin liquid and Fermi liquid [11, 12].
On the other hand, the coupling of conventional metals to lo-
calized magnetic moments gives rise to the Kondo bound state
and the Kondo effect [13–15], characterized by a prominent
Kondo resonance peak in the electronic spectrum.

The recent experimental observation of resonant states in
cobalt atoms on single-layer 1T-TaSe2 provided evidence of
the spinon Kondo effect in a spin liquid [16]. It has been found
that the coupling of the U(1) quantum spin liquid with impu-
rities leads to the emergence of the spinon Kondo effect [17].
Although the spin liquid is an insulator, it exhibits properties
similar to the electronic Kondo effect, with the spinon spec-
trum resembling the electron spectrum in the Kondo effect.
Resonance peaks appear at the inner edges of the upper and
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lower Hubbard bands in the spin liquid, which are attributed to
the formation of spinon-chargon bound states induced by the
emergent gauge fields near the impurity. Therefore, despite
the complexity of the U(1) quantum spin liquid compared to
the Fermi liquid, it often exhibits similarities due to the pres-
ence of a Fermi surface in its internal dynamical units.

The Kondo lattice model is formed by coupling a Fermi liq-
uid to a lattice of magnetic ions. The hybridization between
the latter and the host electrons dissolves the impurity spins
into the Fermi liquid, endowing them with electric charge
[18]. This process gives rise to the formation of heavy fermion
quasiparticles [15, 19, 20], known as heavy Fermion mate-
rials, characterized by a significant increase in the effective
mass of the quasiparticles. Furthermore, if the magnetic inter-
action between ions is taken into account and assuming they
form a spin liquid, a phase transition from a heavy fermion
phase with a large Fermi surface to a fractionalized Fermi liq-
uid (FL∗) phase occurs as the Kondo interaction strength de-
creases [21–23].

Motivated by recent scanning tunneling spectroscopy mea-
surements on single-layer 1T-TaSe2 and the observation of
Kondo resonances [16], we speculate that similar phenomena
to the Kondo lattice may arise when a quantum spin liquid
is coupled with a lattice of magnetic ions. The main mes-
sage of our work is to introduce and convey the concept of
the spinon Kondo lattice phase. We introduce a model con-
sisting of a quantum spin liquid coupled to a lattice of An-
derson impurities (AL) and explore its connection to heavy
fermion effects. In particular, we aim to answer the follow-
ing questions: i) how does the Anderson impurity lattice af-
fect the spinon Fermi surface and the single-particle spectra
of spinons and chargons? ii) does the coupling between the
impurity lattice and the U(1) quantum spin liquids give rise
to new quantum phases? iii) what is the influence of emer-
gent gauge fields in the U(1) quantum spin liquids on the
system? iv) what are the possible experimental signatures of
phases? To address these questions, we organize the paper as
follows. Sec. II begins with the Hubbard model coupled with
Anderson impurity lattice and analyzes the phases using the
slave rotor method and mean-field approximation, elucidating
the quantum phase transitions and parton single-particle spec-
tra. In Sec. III, we investigate the physical electron excita-
tions through parton Green’s functions and the Bethe-Salpeter
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equation, taking into account the effects of emergent gauge
fields on the Green’s functions and single-electron spectrum.
In Sec. IV, we explore the thermodynamic properties and rel-
evant observables of our model. The Sec. V summarizes the
main findings. The details of derivations of some expressions
are relegated to Appendices.

II. SLAVE ROTOR APPROACH TO ANDERSON
IMPURITY LATTICE

The Hamiltonian of the Hubbard model, coupled to an im-
purity lattice [15], in the spin liquid phase can be expressed as
follows:

H =
∑
i, j,σ

ti jc
†

i,σc j,σ +
∑
iσ

ϵdd†i,σdi,σ + V
∑
iσ

c†i,σdi,σ + h.c.

+
UQSL

2

∑
i

(nic − 1)2 +
U
2

∑
i

(nid − 1)2, (1)

where c(d) are fermionic annihilation operators of electrons
residing on sites of the lattice of itinerant electrons (Ander-
son impurities), and the corresponding number operators are
nic =

∑
σ c†i,σci,σ and nid =

∑
σ d†i,σdi,σ. In this expression, ti j

is the hopping integral, ϵd is the energy of the impurity elec-
tron, σ = {↑, ↓} is the spin index, V is the strength of the cou-
pling between the itinerant and impurity electrons. UQSL is
the Hubbard interaction between host itinerant electrons, and
we assume that it is strong enough to drive the host system
into a spin liquid phase. U is the Coulomb repulsion between
electrons on a single Anderson impurity.

We utilize the slave rotor construction [9, 10] to express
the electron operators as composites of spinon and chargon
operators: ci,σ = fi,σX†i and di,σ = ai,σY†i , where Xi = e−iθi

and Yi = e−iϕi represent the field operators of spinons and
chargons, respectively. Substituting these relations into Eq.
(1), we obtain:

H =
∑
i, j,σ

ti j f †i,σ f j,σX†j Xi + h.c. −
∑
iσ

(
µ + h1,i

)
f †i,σ fi,σ

+
∑
iσ

(
ϵd − h2,i

)
a†i,σai,σ + V

∑
iσ

f †i,σai,σY†i Xi + h.c.

+ UQSL

∑
i

P†i Pi + i
∑

i

h1,iPiXi − i
∑

i

h1,iX
†

i P†i

+ U
∑

i

Q†i Qi + i
∑

i

h2,iQiYi − i
∑

i

h2,iY
†

i Q†i

+
∑

i

λ1,i

(
X†i Xi − 1

)
+

∑
i

λ2,i

(
Y†i Yi − 1

)
+

∑
i

h1,i +
∑

i

h2,i. (2)

Here, Pi and Qi are the momenta conjugated to the coordinates
Xi and Yi, respectively. µ is the chemical potential of itiner-
ant electrons. λ1,i and h1,i are the Lagrange multipliers that
ensure the constraints X†i Xi = 1 and LX,i = i(XiPi − X†i P†i ) =

∑
σ f †i,σ fi,σ − 1 hold. Similarly, λ1,i and h1,i regarding Yi fields

are defined. We use the Hubbard-Stratonovich transformation
to decompose the four-field terms with auxiliary fields. The
Eq. (2) then becomes H = HQSL + HAL + Hc, where HQSL
describes the host electron layer with

HQSL =
∑
i, j,σ

ti jχ
X
ji f †i,σ f j,σ + h.c. −

∑
i,σ

(
µ + h1,i

)
f †i,σ fi,σ

+
∑
i, j

χ
f
i jX
†

j Xi + UQSL

∑
i

P†i Pi

+
∑

i

λ1,i(X
†

i Xi − 1) −
∑
i, j

χX
jiχ

f
i j, (3)

HAL describes the second layer consisting of Anderson impu-
rities with

HAL =
∑
i,σ

(ϵd − h2) a†i,σai,σ +
∑

i

λ2,i

(
Y†i Yi − 1

)
+

∑
i

h2,i

+ U
∑

i

Q†i Qi + i
∑

i

h2,iQiYi − i
∑

i

h2,iY
†

i Q†i , (4)

and Hc describes the coupling between the two layers

Hc = −
∑

i

uiY
†

i Xi +
∑
i,σ

wi f †i,σai,σ +
∑

i

2uiwi

V
. (5)

In the mean-field approximation, the coupled fields and La-
grange multipliers satisfy the following self-consistent equa-
tions at the saddle point:

u = −
2V
βN

∑
k,n

G(a, f †, iωn,k, σ), (6)

w = −
V
βN

∑
k,n

G(X,Y†, iνn,k), (7)

1 = −
1
βN

∑
k,n

G(Y,Y†, iνn,k)eiνn0+ , (8)

0 = −
1

2UβN

∑
k,n

iνnG
(
Y,Y†, iνn,k

) [
eiνn0+ + e−iνn0+

]
+

h2

U
+

1
βN

∑
k,n

G
(
a, a†, iωn,k, σ

)
−

1
2
. (9)

In these equations, we set h2,i = 0, since LY,i =
∑
σ a†i,σai,σ −

1 = 0 is always a solution of Eq. (9), which means that the
impurity lattice still maintains the single-occupation state of
the electrons. The constant N is the number of unit cells and
β = 1/kBT is the inverse temperature. ωn = (2n + 1)π/β and
νn = 2nπ/β are the fermionic and bosonic Matsubara frequen-
cies, respectively. Additionally, we have used the spin liquid
mean-field Hamiltonian that matches the recent experiment on
single-layer 1T-TaSe2 [16]:

HQSL =
∑
k,σ

h f (k) f †
k,σ

fk,σ +
∑

k

ω2
X(k)X†

k
Xk + UQSL

∑
k

P†
k

Pk,

(10)
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(a)

(b)

(d)(c)

FIG. 1. (a) Spinon dispersion relation of isolated U(1) spin liquid,
along path through symmetry points Γ,K,M,Γ in triangular lattice
Brillouin Zone. (b), (c) The spectral functions of spinons and char-
gons of U(1) spin liquid respectively. The spectral functions is ob-
tained from D(ω) = − 1

πN

∑
k ImG(ω + i0+,k). (d) Electron spectral

function, which is obtained by convolution of spinons and chargons’
Green’s functions.

where spinon energy h f (k) = tFγ(k) − µ, ωX(k) =√
−tXγ(k) + λ1 is chargon frequency, and nearest neighbor

form factor γ(k) = 2(2 cos 1
2 kxa cos

√
3

2 kya + cos kxa) and a is
lattice constant. Here, tF = 0.05 eV, tX = 0.019 eV are spinon
and chargon hopping, µ = −0.04 eV is the spinon chemi-
cal potential, and local interaction UQSL = 0.775 eV, λ1 =

0.157 eV is Lagrange multiplier. The relation between Mott
gap and parameter λ1 are ∆g =

√
UQSL(λ1 − 6tF) = 0.25 eV.

The Green’s functions in equations above are (see Appendix
B for details):

G0( f , f †, iωn,k, σ) =
1

iωn − h f (k)
, (11)

G0(a, a†, iωn, σ) =
1

iωn − ϵd
, (12)

G( f , a†, iωn,k, σ) =
wVG0( f , f †, iωn,k, σ)

iωn − ϵ0 − w2G0( f , f †, iωn,k, σ)
, (13)

G0(X, X†, iνn,k) =
−1

ν2
n

UQS L
+ ω2

X(k)
, (14)

G(X,Y†, iνn,k) =
uG0(X, X†, iωn,k)

ν2
n

U + λ2 + u2G0(X, X†, iνn,k)
, (15)

G(Y,Y†, iνn,k) =
−1

ν2
n

U + λ2 + u2G0(X, X†, iνn,k)
. (16)

(a)

(b)

(c) (d)

FIG. 2. (a) The mean field parameters u and w as a function of the
coupling V . (b) The spinon dispersion relation in spinon Kondo lat-
tice phase. (c) Spinon and chargon spectral functions of spin liquid
part in spinon Kondo lattice phase. (d) Spinon and chargon spectral
functions of Anderson lattice part in spinon Kondo lattice phase.

A. Uncoupled model: the spin liquid phase

First, let us set V = 0, the uncoupled layers. As pointed out
earlier, we consider the limit of a large UQSL/t ensuring that
the system is deep within the Mott insulator phase with a spin
liquid ground state. Within the slave-rotor framework, the in-
sulating Mott phase is characterized by the vanishing quasi-
particle weight given by the expectation value of the rotor field
Z = ⟨X⟩ [9, 10, 24, 25], implying that the charge is stripped
off electrons. In Fig. 1, we show the electronic structure of
the Mott phase. Fig. 1(a) depicts the energy band dispersion
of the spinons h f (k) on the triangular lattice. The Fermi level
corresponding to half-filling is shown by a dashed line, and
it is seen that the spinons form a Fermi surface. Fig. 1(b)
shows the corresponding density of states of spinons D f (ω) =
(1/N)

∑
k A f (ω,k) where A f (ω,k) = −(1/π)ImG0( f , f †, ω +

i0+,k, σ) is the spinon spectral density. The density of states
of chargons DX(ω) = (1/N)

∑
k AX(ω,k) with AX(ω,k) =

−(1/π)ImG0(X, X†, ω + i0+,k) is shown in Fig. 1(c). The
Mottness of the original electrons is, however, given by the
spectral density of the convoluted spinon and chargon Green’s
functions, Dc(ω) = (1/N)

∑
k Ac(ω,k) with Ac(ω,k) =

−(1/π)ImG0(c, c†, ω + i0+,k, σ), where G0(c, c†, iωn,k, σ) =
β−1 ∑

νm
G0( f , f †, iωn + iνm,k, σ)G0(X, X†, iνm,k). The den-

sity of states D(ω) is shown in Fig. 1(d), where the formation
of upper and lower Hubbard bands is clearly seen.

B. Spinon Kondo lattice phase

Having established the spin liquid phase on the triangular
lattice as described in the preceding subsection, we now con-
sider the hybridization of the spin liquid phase with a lattice of
Anderson impurities. The coupling strength is given by V , 0
(see Eq. (1)), whose effects are encapsulated in the fields ui
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(a) (b)

FIG. 3. (a) Spectral function of electron for Anderson lattice part
in spinon Kondo lattice phase, where blue and red line refer the in-
teraction strength Vr = 0 eV and Vr = 0.225 eV respectively. (b)
Spectral function of electron for QSL part in spinon Kondo lattice
phase, where blue and red line refer the same meaning as (a).

and wi in Eq. (5), which determine the hybridization between
the spinons (chargons) of the spin liquid phase and the spinons
(chargons) on the Anderson impurity, respectively. To exam-
ine the effects of V , 0, we solved the self-consistent equa-
tions in Eqs. (6)-(7) along with the constraints in (8) and (9)
numerically.

The variation of the hybridization fields u and w as a func-
tion of the coupling strength is shown in Fig. 2(a). There is
a critical coupling strength Vc beyond which the hybridiza-
tion fields u and w acquire nonzero values. When V < Vc,
u and w are equal to zero, indicating that the system consists
of two separate layers; the spin liquid phase and the Ander-
son impurity lattice are uncoupled. For V > Vc, u and w are
greater than zero, placing the system in the hybridized phase
characterized by heavy spinons near the Fermi level, where
the dispersion becomes nearly flat, as seen in Fig. 2(b). This
phase is termed a spinon Kondo lattice phase. It is important
to note the distinct difference between the spinon Kondo lat-
tice phase and the normal heavy fermions in the Kondo lattice
model. In the latter, a normal metal is antiferromagnetically
coupled to a lattice of magnetic impurities as J

∑
i c†i σci · Si.

Here, the coupling strength J is relevant, and the model tran-
sitions to a heavy fermion model as soon as J , 0. However,
in our model, there is a critical value of coupling strength, Vc,
where the phase transition occurs.

Furthermore, the spinon Kondo lattice phase is character-
ized by two spinon bands separated by a small gap, as shown
in Fig. 2(b), analogous to the Kondo insulator phase. Indeed,
the hybridized bands open a gap between them. Since the spin
liquid phase and the impurity lattice are both singly occupied,
the spinon occupation number (1+1) mod 2 is equal to zero,
leading the system to form a spinon Kondo insulator.

III. SPINON-CHARGON BOUND STATES

In a U(1) quantum spin liquid, there exists an emergent
U(1) gauge symmetry between the spinons and chargons.
At low energies, the corresponding U(1) gauge field is non-
compact and mediates a Coulomb potential [26, 27] with
the assumption of deconfined quantum spin liquid, which
tends to bind the spinons and chargons together into elec-
trons [7, 8, 17, 27].To analyze bound states, we employ

the Bethe-Salpeter equation to calculate the electron Green’s
functions. We define new field operators ψs(iωn,k, σ) =
(a(iωn, σ), f (iωn,k, σ))T , Zc(iνn,k) = (Y(iνn), X(iνn,k))T for
spinons and chargons, respectively.

In the ladder approximation, the Bethe-Salpeter equation is
given by [28–30]:

Gψe (k1) = − (βN)−1
∑

q

Gψs (k + q) ⊗GZc (q)

×

12 − (βN)−1
∑

q

K∗p (iνn) Gψs (k + q) ⊗GZc (q)

−1

,

(17)

where k = (iωn,k), q = (iνn, q), the Green’s functions Gψe/s (k)
and GZc (q) are defined as Gψe/s (k) = G(ψe/s, ψ

†

e/s, iωn,k, σ),
and ( GZc (q) = G(Zc,Z

†
c , iνn, q), respectively. In this context,

⊗ denotes the Kronecker product, resulting in a 4 × 4 matrix,
and we consider only the i, j ∈ {1, 4} block. 12 represents the
two-dimensional identity matrix. The 2 × 2 matrix K∗(iνn) is
the approximate two-body interaction kernel with zero entries
except for [K∗(iνn)]22 = −

iνn
UQS L

Vr. We focus on the screened
Coulomb potential at the same lattice site, where Vr = Λ f , as
detailed in Appendix E. Here, Λ f is defined as the spinon half
bandwidth, Λ f = (max[h f (k)] −min[h f (k)])/2.

The electron Green’s functions for the Anderson lattice and
the spin liquid part are denoted as GAL and GQSL, respectively,
and are given by GAL/QSL =

[
G(ψe, ψ

†
e , ω + i0+,k1, σ)

]
11/22

.
Subsequently, we derive their spectral densities
AAL/QSL(ω,k1) = − 1

π
Im

[
G(ψe, ψ

†
e , ω + i0+,k1, σ)

]
11/22

and the density of states for each lattice as DAL/QSL(ω) =
− 1
πN

∑
q,σ AAL/QSL(ω,k1). The results are illustrated in Fig. 3.

Notably, the very sharp peaks near ω ≃ 1.8 eV correspond
to the lower and upper Hubbard excitations on the Anderson
impurity, which remain unaffected by the Coulomb potential.
However, the middle bands, which arise from hybridization
with the spin liquid, are influenced by the formation of the
bound state. The impact of the Coulomb potential and the
spinon-chargon bound states is more pronounced in the den-
sity of states of the parent quantum spin liquid. As depicted
in Fig. 3(b), the Coulomb potential shifts the correlated
excitations at high energies toward the edge of the Hubbard
band.

IV. THEROMODYNMIC PROPERTIES WITH GAUGE
FIELD CORRECTION

A. Neutron scattering: spinon susceptibility

Neutron scattering can measure the collective excitations
of a system, and the response is characterized by the spinon
susceptibility. In a spin liquid with gapless spinons, emergent
U(1) gauge fields mediate a Coulomb potential V(r − r′) =
g2

|r−r′ | between the spinons (refer to Appendix D for detailed
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(a) (b)

FIG. 4. (a),(b) Spectral density of spinon susceptibility χ0/RPA in
spinon Kondo lattice phase along high symmetry points without and
with RPA correction.

derivations). Consequently, collective excitations are antic-
ipated to manifest in the higher energy regions and may be
detectable in neutron scattering experiments on quantum spin
liquid states [31]. In our spinon Kondo lattice phase, the emer-
gent Coulomb potential causes the magnetic excitations to
exhibit significant variations compared to the non-interacting
case.

We analyze the longitudinal component of the mag-
netic susceptibility χ(iνn, q) = −

∫ β

0 ⟨S z(τ, q)S z(0, q)⟩ eiνnτdτ,
where S z(τ, q) denotes the z-component of the electron spin
operator S z(τ, q) = c†

q,↑
(τ)cq,↑(τ) − c†

q,↓
(τ)cq,↓(τ). Given that

the chargons in the spin liquid possess an energy gap, their
contribution to the ground state is negligible; therefore, we
focus solely on calculating the spinon susceptibility. The ex-
pression for the non-interacting spinon susceptibility is as fol-
lows:

χ0(iνn, q) =
1
βN

∑
k,σ

G(k + q, σ) ⊗G(k, σ), (18)

where G(k, σ) = G(ψs, ψ
†
s , iωn,k, σ). The random-phase ap-

proximation (RPA) susceptibility is

χRPA(iνn, q) =
χ0(iνn, q)

1 − V(q)χ0(iνn, q)
, (19)

from which we calculate the spectral density ARPA =

− 1
π
ImχRPA.
Fig. 4 (a) and (b) depict the excitation spectrum of the

spinon Kondo lattice phase, considering the bare and RPA
susceptibilities, respectively. A low-energy branch of exci-
tations is present, along with a continuum of particle-hole ex-
citations at higher energies within the bare spectral density.
The coupling between the parent quantum spin liquid and the
Anderson impurity lattice is evidenced by a gap in the excita-
tion spectrum. Fig. 4(b) presents the same excitation spectrum
while incorporating the Coulomb interaction V(q) through the
RPA. The low-energy branch remains largely unaffected, but
the upper continuum undergoes significant modifications due
to the Coulomb interaction. Notably, the Coulomb interaction
propels the magnetic excitations near the Γ = (0, 0) point to
substantially higher energies.

(c) (d)

(a) (b)

FIG. 5. (a) Internal energy difference ∆Uc = Uc − Uc,0 of electrons
in QSL respect to temperature square T 2, where Uc QSL electron
internal energy and the Uc,0 is defined as the internal energy of QSL
electron at T = 0 K. (b) Temperature dependence of specific heat
of QSL electron. (c) Internal energy difference ∆Uψe of electron in
spinon Kondo lattice phase respect to temperature T . Uψe and Uψe ,0

are the electron internal in spinon Kondo lattice phase in arbitrary
temperature and T = 0 K respectively. (d) Temperature dependence
of electron specific heat in spinon Kondo lattice phase.

B. Internal energy and specific heat

We analyze the internal energy and specific heat of the
spinon Kondo lattice phase using the bound-state electron
Green’s function. For a U(1) quantum spin liquid with a
spinon Fermi surface, the specific heat and thermal conduc-
tivity resemble those of a typical Fermi liquid; that is, they are
proportional to the temperature at low temperatures [32, 33].
However, in our spinon Kondo lattice phase, the presence of
the Anderson lattice leads to the formation of a spinon Kondo
insulator, as depicted in Fig. 2(b), indicating that its internal
energy and specific heat properties should differ.

The internal energy is calculated using the formula
U = ⟨H⟩ =

∫
ωD(ω)n f (ω)dω, where D(ω) is the

spectral function. As discussed below Eq. (17), the
electron density for the spinon Kondo lattice phase is
Dψe (ω) = − 1

πN
∑

q,σ,i, j Im
[
G(ψe, ψ

†
e , ω + i0+, q, σ)

]
i j

. For
comparison with a quantum spin liquid phase, we also con-
sider the density of states of the latter phase as Dc(ω) =
− 1
πN

∑
q,σ ImG(c, c†, ω + i0+, q, σ); for details see Appendix

E. Here, n f (ω) = 1
exp(βω)+1 represents the Fermi distribution

function. With these, the internal energy and specific heat can
be calculated, and the results are shown in Fig. 5.

As demonstrated in Fig. 5(a), the internal energy of the pure
spin liquid exhibits a linear relationship with the square of the
temperature at low temperatures. This results in the specific
heat being proportional to the temperature, as anticipated in
the low-temperature regime approaching zero, as depicted in
Fig. 5(b). In contrast, the electron specific heat of the spinon
Kondo lattice phase remains invariant at low temperatures.
This leads to a pronounced peak in the specific heat at low
temperatures following a minimal zero plateau near T = 0 K,
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indicative of insulator-like behavior.

V. CONCLUSIONS

This work is primarily inspired by the recent experimen-
tal observations of the Kondo resonant state in cobalt atoms
on a single-layer 1T-TaSe2, which is a Mott insulator with a
spin liquid ground state [16]. This phenomenon is akin to
the Kondo effects observed in normal metals doped with di-
lute magnetic impurities. Theoretically, we consider a lattice
of single-level quantum dots, the Anderson impurity lattice,
which is coupled to a U(1) spin liquid with spinon Fermi sur-
face. To address the Mott insulator and spin liquid phases, we
employ the slave-rotor parton construction for both the An-
derson lattice and the parent quantum spin liquid layer.

Let us briefly recapitulate the main findings and answers to
questions posed in the introduction: (i) In the regime of strong
Hubbard interaction across all lattice sites, including the par-
ent triangular and Anderson impurity lattices, spinons persist
as the sole low-energy degrees of freedom. Beyond a critical
coupling between the parent triangular and Anderson impurity
lattices leads to the hybridization of spinons across different
layers, effectively dissolving localized spinons into the spinon
Fermi surface of the spin liquid state. (ii) The interaction be-
tween the Anderson impurity lattice and the U(1) spin liquid
gives rise to a novel phase, termed the spinon Kondo lattice
phase. Hybridization of spinons from both lattices results in
the formation of two spinon energy bands. Owing to half-
filling of both lattices, the lower band is fully occupied and
separated by a minor energy gap from the upper band, render-
ing the original spinon Fermi surface fully gapped and the hy-
bridized phase a spinon Kondo insulator. (iii) The slave-rotor
method inherently allows for an emergent local U(1) gauge
symmetry. We investigated the influence of U(1) gauge fields

by computing the bound state between spinons and chargons.
Our many-body calculations indicate that bound state fluc-
tuations do not significantly alter the spinon spectrum, only
shifting high-energy states towards the proximate Mott band
edges. (iv) Lastly, we examined the potential response of our
model to neutron scattering measurements by assessing the
magnetic susceptibility and to thermal measurements by eval-
uating the specific heat. Both measurements exhibit charac-
teristics indicative of the spinon Kondo insulator phase.

Following up our work presented here, there are a few di-
rections that we leave for future studies. In one front, one
may consider the tunneling between the quantum dots and
explore how it may affect the spinon Kondo lattice phase.
This might parallel the spinon analogue of the FL∗ phase.
On another front, a natural extension of our study would be
to consider broader classes of non-Abelian spin liquids with
Fermi surfaces, such as the SU(2) spin liquid [7, 8, 34, 35],
and their coupling to magnetic impurities. The presence of
spinon pairing terms could lead to the discovery of various ex-
otic topological quantum phases, including non-Abelian topo-
logical order, non-Abelian spinon metals, etc., which may
serve as potential models for topological quantum computa-
tion [36, 37]. Thus, the spinon Kondo lattice phase charac-
terized in this study presents potential theoretical and experi-
mental framework for the investigation of novel phases.
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Appendix A: Derivation of the slave rotor Hamiltonian in canonical form

According to [9, 10], the Hamiltonian of the U(1) quantum spin liquid with Anderson impurity lattice can be represented
using the slave rotor formalism. The Hamiltonian is given by:

H =
∑
i jσ

ti jc
†

i,σc j,σ +
∑
iσ

ϵdd†i,σdi,σ + V
∑
iσ

c†i,σdi,σ + h.c. +
UQS L

2

∑
i

∑
σ

c†i,σci,σ − 1

2

+
U
2

∑
i

∑
σ

d†i,σdi,σ − 1

2

=
∑
i jσ

ti j f †i,σ f j,σX†j Xi + h.c. −
∑
iσ

(
µ0 + h1,i

)
f †i,σ fi,σ +

∑
iσ

(ϵ0 − h2) a†i,σai,σ + V
∑
iσ

f †i,σai,σY†i Xi + h.c.

+
UQS L

4

∑
i

L2
X,i +

U
4

∑
i

L2
Y,i. (A1)

To compute the angular momentum in the Hamiltonian, it is useful to first consider a two-dimensional rotor described by
the coordinates (xi, yi) with the constraint x2

i + y
2
i = 1. The O(2) rotor is equivalent to the U(1) rotor, allowing the real space

coordinates to be represented by complex numbers Xi = xi + iyi. The relationships between the coordinate operators, derivative
operators, and momentum operators in real and complex coordinates are as follows:

(
xi
yi

)
=

( 1
2

1
2

1
2i −

1
2i

) (
Xi

X†i

)
,

∂

∂

(
Xi

X†i

) = ( 1
2

1
2i

1
2 −

1
2i

)
∂

∂

(
xi
yi

) ,
∂

∂

(
xi
yi

) = (
1 1
i −i

)
∂

∂

(
Xi

X†i

) , ( px,i
py,i

)
=

(
1 1
i −i

) (
Pi

P†i

)
. (A2)

Additionally, the angular momentum operator in complex coordinate is:

LX,i = xi py,i − px,iyi = i
(
XiPi − X†i P†i

)
, (A3)

and the square of the angular momentum operator can be expressed in terms of the momentum operators:

L2
X,i → p2

x,i + p2
y,i =

(
Pi + P†i

)2
−

(
Pi − P†i

)2
= 4PiP

†

i . (A4)

By incorporating these expressions similar ones for operator LY,i into the original slave rotor Hamiltonian Eq. (A1), we arrive
at the final form of the slave rotor Hamiltonian Eq. (2). It is important to note that the coefficients U

2 and UQS L

2 have been
redefined as U

4 and UQS L

4 , respectively, to ensure the correct atomic limit, as pointed out in [9].

Appendix B: Derivation of the self-consistent equations

To calculate the Green’s functions for spinons and chargons within the Hamiltonian denoted by Eqs. (3)-(5), we consider their
respective equations of motion separately.

For the spinon Green’s function, the equation of motion is given by:

(
iωn − ϵ0 −w
−w iωn − h f (k)

) (
G(a, a†, σ, iωn)

G( f , a†, iωn,k, σ)

)
=

(
1
0

)
. (B1)

Solving these linear equations yields the Green’s functions for the spinon: Eqs. (11)-(13):

G(a, a†, iωn, σ) =
1

iωn − ϵd −
w2

iωn−h f (k)

, (B2)
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G( f , a†, iωn,k, σ) =
wVG0( f , f †, iωn,k, σ)

iωn − ϵ0 − w2G0( f , f †, iωn,k, σ)
. (B3)

Similarly, For the chargon Green’s function, the equation of motion is:

G−1 (iνn,k)


G

(
Y,Y†, iνn,k

)
G

(
Q†,Y†, iνn,k

)
G

(
X,Y†, iνn,k

)
G

(
P†,Y†, iνn,k

)
 =


0
−i
0
0

 , (B4)

where G−1(iνn,k) is the inverse Green function of the chargon, expressed as:

G−1 (iνn,k) = iνn14 − i


0 U 0 0
−λ2 0 u 0

0 0 0 UQS L
u 0 −ω2

X(k) 0

 . (B5)

Following this method, one can derive the Green’s function expressions for the chargon, Eqs. (14)-(16):

G(Y,Y†, iνn,k) =
−1

ν2
n

U + λ2 + u2G0(X, X†, iνn,k)
, (B6)

G(X,Y†, iνn,k) =
uG0(X, X†, iωn, k)

ν2
n

U + λ2 + u2G0(X, X†, iνn,k)
, (B7)

G(X, X†, iνn,k) =
−1

ν2
n

UQS L
+ ω2

X(k) + u2G0(Y,Y†, iνn,k)
. (B8)

According to the definitions of u and w, and
〈
Y†Y

〉
= 1, we can obtain the Eqs. (6)-(8) in the main text.

Appendix C: Translate chargon into canonical boson representation

Plug the expressions for Xk =

√
UQS L
√

2ϵ(k)

(
hk + d†k

)
, Pk = i

√
ϵ(k)

2UQS L

(
h†k − dk

)
into chargon part Hamiltonian in spin liquid:

HC =
∑

k

ω2
X(k)X†k Xk + UQS L

∑
k

P†k Pk

=
∑

k

UQS Lω
2
X(k)

2ϵ(k)

(
h†k + dk

) (
hk + d†k

)
+

∑
k

ϵ(k)
2

(
hk − d†k

) (
h†k − dk

)
=

∑
k

ϵ(k)
2

(
h†khk + h†kd†k + dkhk + dkd†k

)
+

∑
k

ϵ(k)
2

(
hkh†k − hkdk − d†k h†k + d†k dk

)
=

∑
k

ϵ(k)
(
h†khk + d†k dk + 1

)
. (C1)

In this equation, ϵ(k) =
√

UQS LωX(k) represents the chargon dispersion relation, and operators h(†)
k and d(†)

k are the annihilation
(creation) operators for holons and doublons, respectively.
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Appendix D: Emergent U(1) gauge field in quantum spin liquid

In the context of quantum spin liquids, the slave rotor Xi and its associated angular momentum Li can be interpreted as gauge
fields, as discussed in seminal works by [38–40]. When the high-energy degrees of freedom for spinons and chargons are
integrated out at the Gaussian level, a dynamic term for an emergent U(1) gauge field can be derived:

S G =
1
g2

∫ β

0
dτ

∑
i

Re

∏
△

exp
(
−iAµ,ia

) . (D1)

Here, the gauge field Aµ,i arises from the Lagrange multiplier hi and local gauge redundancy. Furthermore, upon coarse-graining
the lattice model, the continuum low-energy effective action for the U(1) quantum spin liquid with spinon Fermi surface is given
by [17, 24, 25]:

S QSL = S S + S C + S M , (D2)

S S =

∫ β

0
dτ

∫
dr

∑
σ

[
f †σ,r (∂τ − iA0(r) − µ) fσ(r) +

ℏ2

2m f
(∂r + iA(r)) f †σ,r · (∂r − iA(r)) fσ(r)

]
, (D3)

S C =

∫ β

0
dτ

∫
dr

[
(∂τ + iA0(r)) X†(r) (∂τ − iA0(r)) X(r) + ℏ2v2

C (∂r + iA(r)) X†(r) (∂r − iA(r)) X(r) + ∆2
gX†(r)X(r)

]
,

(D4)

S M =
1

2g2

∫ β

0
dτ

∫
dr

[
(∇A0(r) + ∂τA(r))2 + (∇ ×A(r))2

]
. (D5)

The coefficients above are as follows: m f represents the effective mass of the spinon, vC denotes the effective velocity of the

chargon, and g is the effective coupling constant. The magnitude of g is given by g2 ∼
∆2
g

ttF
[6].

Utilizing the transformation of the chargon field Xr as outlined in the previous section Appendix B, we can derive the action
for the chargon in the Schrödinger form:

S C =

∫ β

0

∫
dr

[
h†r

(
∂τ + iA0,r

)
hr + d†r

(
−∂τ − iA0,r

)
dr + ϵ(∂r + iAr)h†rhr + ϵ(∂r + iAr)d†rdr

]
, (D6)

where ϵ(k) =
√
ℏ2v2

Ck
2 + ∆2

g is low energy limit of lattice version chargon dispersion.
In the vicinity of the Hubbard band edge energies, the group velocity exhibits diminutive values, resulting in the transverse

component of gauge field fluctuations arising from the current-current correlation being negligible. Conversely, the dominant
influence stems from the longitudinal component of gauge field fluctuations. Through the process of integrating out the gauge
field A0,r, the interaction term between spinon, chargon and themselves can be derived:

S int =

∫ β

0
dτ

∫
drdr′V(r − r′)

∑
σ,σ′

[
f †σ,r fσ,r f †σ′,r′ fσ′,r′ −

(
XrPr − X†rP†r

) (
Xr′Pr′ − X†r′P

†

r′

)
+ 2i f †σ,r fσ,r

(
Xr′Pr′ − X†r′P

†

r′

)]
=

∫ β

0
dτ

∫
drdr′V(r − r′)

∑
σ,σ′

[
f †σ,r fσ,r f †σ′,r′ fσ′,r′ +

(
a†rar − b†rbr

) (
a†r′ar′ − b†r′br′

)
+ 2 f †σ,r fσ,r

(
a†r′ar′ − b†r′br′

)]
, (D7)

where Coulomb potential V(r − r′) = g2

|r−r′ | .
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Appendix E: Calculate the Green’s function and density of states of the two-body bound state by Bethe-Salpeter equation

In the system considered in this article, the electron at position ri is decomposed into spinon and chargon at the same lattice
site, so when considering the two particles forming a bound state, we only need to analyze the coupling at the same location.
Therefore, we start from the Bethe-Salpeter equation satisfied by two particles with same spatial coordinates:

G2 (4; 1) =G1,0 (4, 1) G1,0 (4, 1) +
∫

dXc,2dXc,3G0 (4, 3) G0 (4, 3) K∗ (3; 2) G2 (2; 1) (E1)

Here, G2 is the the two-body Green’s function, and G1,0 is the free single-particle Green’s function. Xc =
1
2 (x1 + x2) represents

the center coordinate. It is easily known that the system has a translation invariance, so G2 (4; 1) = G2
(
Xc,4 − Xc,1

)
, which is

independent of the relative coordinates, x̄ = x1 − x2, and only depends on the difference of the center coordinates.
Upon transforming to the momentum space, we obtain:

δ(Pc,4 − Pc,1)G2
(
Pc,1

)
=δ(Pc,4 − Pc,1)G0,p

(
Pc,1

)
∗G0,p

(
Pc,1

)
+ [β(2π)2]−2

∫
dPc,2dPc,3δ(Pc,4 − Pc,3)G0,p

(
Pc,3

)
∗G0,p

(
Pc,3

)
× δ(Pc,3 − Pc,2)K∗p

(
Pc,2

)
δ(Pc,2 − Pc,1)G2

(
Pc,1

)
. (E2)

In this equation, the integral over the central momentum Pc contains a sum over Matsubara frequencies. The Green’s functions
in the expression are independent of the relative momentum p̄ = 1

2 (p1 − p2), and it is easy to prove that the momentum of the
spinon and chargons are equal in the system considered in this article.

For instance, in the case of the U(1) spin liquid with spinon Fermi surface on triangular lattice, we need to replace the
Green’s functions in the above equation with those of the free spinons and chargons Eqs. (11)-(14), and substitute G2 (P1) =
−G(c, c†, iωn,k, σ).

Simultaneously, when analyzing the bound states of the spinons and charge carriers, it is necessary to consider the screen
from the spinon Fermi sea. Here, we apply the Lindhard approximation, considering only the static RPA-corrected emergent
Coulomb potential, Vs(q) = VRPA(ω = 0, q) = g2

q2+κ2 , where κ = g
√

N f represents the Thomas-Fermi screening, and N f = D f (0)
is the density of states at the Fermi energy of the spinons.

Additionally, since we only consider interactions between on the same lattice site, the Yukawa potential could be further
simplified to a local constant interaction [17]:

Vr ≈
g2

(2π)2

∫
1

g2N f
dq =

∫
dq

4π2N f
≈ Λ f , (E3)

where Λ f is the spinon half-bandwidth.
Therefore, the two-body kernel from local constant interaction can be concluded as a constant ladder approximation:

1
(2π)2

∫
dkK∗ (iνn,k) ≈ − iνnVr

UQS L
[17]. Finally, we obtain the approximate Bethe-Salpeter equation for host spin liquid:

In the ladder approximation, the Bethe-Salpeter equation is given by [28–30]:

G(c, c†, iωn,k1, σ) = −
1
βN

∑
iνn,k2

G( f , f †, iωn + iνn,k1 + k2, σ)G(X, X†, iνn,k1)

−
1
βN

∑
iνn,k2

G( f , f †, iωn + iνn,k1 + k2, σ)G(X, X†, iνn,k1)

× iνn
Vr

UQS L
G(c, c†, iωn,k1, σ). (E4)

The simplified corrected electron Green’s function is shown as:

G(c, c†, iωn,k1, σ) = −
1
βN

∑
iνn,k

′
1

G( f , f †, iωn + iνn,k1 + k
′
1, σ)G(X, X†, iνn,k

′
1)

×

1 − 1
βN

∑
iνn,k

′
1

iνn
Vr

UQS L
G( f , f †, iωn + iνn,k1 + k

′
1, σ)G(X, X†, iνn,k

′
1)


−1

(E5)
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(b)(a)

FIG. 6. (a) QSL bound state electron spectral density AQSL(ω,k) along high symmetry points. (b) QSL bound state electron spectral function
DQSL(ω). Both (a) and (b) are under local interaction strength Vr = 0.225 eV.

(a) (b) (c)

FIG. 7. (a), (b), (c) are spectral density of electron in spinon Kondo lattice phase along the high symmetry points for Anderson lattice part,
host spin liquid part and the whole system together respectively, all with the interaction strength Vr = 0.225 eV.

From this, the gauge field corrected electron spectral density can be obtained as AQSL(ω,k1) = − 1
π
ImG(c, c†, ω+ i0+,k1, σ), and

its spectral function DQSL(ω) = 1
N

∑
k1

AQSL(ω,k1), as shown in Fig. 6.
In terms of QSL with Anderson lattice, by substituting the complete spinon and chargon Green’s functions into Eq. (E2), and

define G2 (P1) = −G(ψe, ψ
†
e , iωn,k, σ), we can obtain the Eq. (17) discussed earlier.

Those full Green’s functions in Eq. (E2) are:

G−1(ψs, ψ
†
s , iωn,k, σ) =

(
G−1

0 (a, a†, iωn, σ) −w
−w G−1

0 ( f , f †, iωn,k, σ)

)
, (E6)

G−1(Zc,Z†c , iνn, k) =
(

G−1
0 (Y,Y†, iνn) u

u G−1
0 (X, X†, iνn,k)

)
. (E7)

Similar to Eq. (E4), the expression for the electron Green’s function in the QSLAL can be readily obtained:

G(ψe, ψ
†
e , iωn,k1, σ) = −

1
βN

∑
iνn,k2

G(ψs, ψ
†
s , iωn + iνn,k1 + k2, σ) ⊗G(Zc,Z†c , iνn,k1)

−
1
βN

∑
iνn,k2

G(ψs, ψ
†
s , iωn + iνn,k1 + k2, σ) ⊗G(Zc,Z†c , iνn,k1)

× iνn
Vr

UQS L
G(ψe, ψ

†
e , iωn,k1, σ). (E8)

As an analogy of Eq. (E4) The simplified corrected electron Green’s function for QSLAL is given in Eq. (17)
and their spectral function AAL/QSL(ω,k1) are shown in Fig. 7.


