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Abstract

It was recently suggested—based on general self-consistency arguments as well as results from the bootstrap [1]–[3]—
that the CFT describing the𝑄-state Potts model is logarithmic for generic values of𝑄, with rank-two Jordan blocks for 𝐿0
and 𝐿0 in many sectors of the theory. This is despite the well-known fact that the lattice transfer matrix (or Hamiltonian)
is diagonalizable in (arbitrary) finite size. While the emergence of Jordan blocks only in the limit 𝐿 → ∞ is perfectly
possible conceptually, diagonalizability in finite size makes the measurement of logarithmic couplings (whose values are
analytically predicted in [2], [3]) very challenging. This problem is solved in the present paper (which can be considered
a companion to [2]), and the conjectured logarithmic structure of the CFT confirmed in detail by the study of the lattice
model and associated “emerging Jordan blocks.”

1 Introduction
The bootstrap approach and the detailed study of four-point correlation functions have helped clarify the logarithmic
properties of the𝑄-state Potts model and𝑂 (𝔪) model conformal field theories (CFTs) for generic values of the parameters
𝑄 and 𝔪 (see, e.g., the special volume [4] for a general review of the topic of logarithmic CFTs). Many of the results
in this field, however, rely on self-consistency arguments, and have not been checked directly, particularly via numerical
calculations. A noticeable exception is the 𝑐 = 0 case, where the Jordan block mixing the stress–energy tensor 𝑇 and
its logarithmic partner 𝑡 [5], [6] was first observed in [7], leading to measurements of the famous “𝑏-numbers”—the
logarithmic couplings—and the resolution of several paradoxes involving the polymer–percolation and bulk–boundary
differences [8], [9]. This progress at 𝑐 = 0 was rendered considerably easier by the presence, already in finite size, of
Jordan blocks for the Hamiltonian going over to the CFT Jordan blocks for 𝐿0 and 𝐿0 in the continuum limit.

By contrast, despite the conjectured appearance of Jordan blocks in 𝐿0 and 𝐿0 for the 𝑄-state Potts and 𝑂 (𝔪) models
in the continuum limit [1], [2], their known lattice versions have Hamiltonians which, although non-hermitian, are fully
diagonalizable for generic values of 𝑄 and 𝔪, making the confirmation of their logarithmic structures—let alone the
measurement of the corresponding logarithmic couplings—significantly more difficult, both conceptually and technically.

Our goal in this paper is to surmount this obstacle by devising strategies to study “emerging” Jordan blocks and thus
confirm, in particular, the predictions of [2], [3]. While we focus here on a specific lattice model—the oriented loop model
in the terminology of [10] (this model is also referred to as the𝑈 (𝔪) model in [11]) describing the low-temperature𝑂 (𝔪)
model as well as hulls of 𝑄-state Potts model clusters1—the proposed approach is completely general.

***

Since this paper comes on the heels of many works devoted to the same lattice models and associated CFTs, we have
largely suppressed reminders of well-established facts, and follow as closely as possible the notations of our previous
papers on the subject, especially references [2], [12]. There is a very important exception to this, however: in [2], [12] we
used the notation (·|·) for the loop scalar product and ⟨·|·⟩ for the natural, positive-definite scalar product. For the present
paper we have decided to switch notations, and thus represent the loop scalar product by ⟨·|·⟩, so that it is denoted by the
same symbol as the product ordinarily used in CFT to represent, for example, correlation functions.

1As discussed in detail in [11], there is a small but significant difference between the low temperature phase of the𝑂 (𝔪) model and the𝑈 (𝔪) model
having to do with the allowed parities of non-contractible lines. This does not affect any of the results of this paper.
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The remainder of this paper is organized as follows. Section 2 establishes the context of our present study as well as
our notations. Though much of this material appears in some form in our previous work on the subject [2], [12], there are
some important additions and revisions that clarify the exposition, besides the shift in notation for inner products already
mentioned. In Section 2.2, we give a new exposition of the representation theory of Temperley–Lieb algebras, showing
how the standard modules relate to what we call natural representations, and clarify how the nature of the representations
changes when we continue to modify the Temperley–Lieb algebras. We also introduce a notation for link states, which
form the bases of our representations. In Section 2.6 we repeat our conjecture whose verification is a primary aim of this
paper. In Section 3 we introduce our methods and techniques for verifying this conjecture, as well as the difficulties that
necessitated the introduction of these techniques. Section 4 then shows the results of our calculations and discusses their
interpretation, and Section 5 concludes. The appendix explains in detail, with numerical examples, some subtleties present
in the model we study that had not previously arisen, and uses our new emerging Jordan blocks technique to replicate
earlier results, thereby enhancing its reliability.

Notations and definitions
We gather here some general notations and definitions that are used throughout the paper:

• Ta
𝑁
(𝔪) — the affine Temperley–Lieb algebra on 𝑁 sites with parameter 𝔪. We shall parametrize the loop weight

as 𝔪 = 𝔮 + 𝔮−1, with 𝔮 = ei𝛾 and 𝛾 = 𝜋/(𝑥 + 1) with 𝑥 > 0. The term “generic” indicates 𝑥 ∈ R+ \ Q—that is, 𝑥 is
irrational, or equivalently, 𝔮 is not a root of unity.

• 𝒲𝑗 ,e2𝜋i𝐾 — standard module of the affine Temperley–Lieb algebra with 2 𝑗 through-lines and pseudomomentum 𝐾 .

• 𝒲0,𝔮±2 — the irreducible quotient of the standard module 𝒲0,𝔮±2 .

• 𝒩𝑗 — the natural representation of Ta
𝑁
(𝔪) consisting of all link states with 2 𝑗 or fewer through-lines and no

pseudomomentum. It can be viewed as the vector space sum of 𝒲0,𝔮±2 and all 𝒲𝑘,1 with 1 ≤ 𝑘 ≤ 𝑗 , with the module
structure given by the natural action of the diagrams.

• 𝒩𝑗 — a quotient of 𝒩𝑗 that essentially replaces 𝒲0,𝔮±2 with 𝒲0,𝔮±2 .

• V𝑟 ,𝑠 — Verma module for the conformal weight ℎ𝑟 ,𝑠 , when either 𝑟 ∉ N∗ or 𝑠 ∉ N∗.

• Vd
𝑟 ,𝑠 — the (degenerate) Verma module for the conformal weight ℎ𝑟 ,𝑠 , when 𝑟, 𝑠 ∈ N∗.

• X𝑟 ,𝑠 — irreducible Virasoro module for the conformal weight ℎ𝑟 ,𝑠 .

• A conformal weight ℎ𝑟 ,𝑠 with 𝑟, 𝑠 ∈ N∗ will be called degenerate. For such a weight, there exists a descendant state
that is also primary: this descendant is often called a null (or singular) vector (or state). We will denote by 𝐴𝑟 ,𝑠 the
combination of Virasoro generators producing the null state at level 𝑟𝑠 corresponding to the degenerate weight ℎ𝑟 ,𝑠 .
𝐴𝑟 ,𝑠 is normalized so that the coefficient of 𝐿−𝑟𝑠 is equal to unity. Some examples are

𝐴1,1 = 𝐿−1, (1a)

𝐴1,2 = 𝐿−2 −
3

2(2ℎ1,2 + 1) 𝐿
2
−1, and (1b)

𝐴2,1 = 𝐿−2 −
3

2(2ℎ2,1 + 1) 𝐿
2
−1. (1c)

• In the bulk of the paper we consider only generic values of the parameter 𝔮 (i.e., 𝔮 not a root of unity), and thus
generic values of 𝑥 (i.e., 𝑥 irrational). It can happen, however, that the modules of interest are not irreducible even
then. We call them “non-generic” in the affine Temperley–Lieb case, and “degenerate” in the Virasoro case. In
earlier papers (see, e.g., [13]), we have used the names “partly non-generic” and “partly degenerate,” respectively,
since having 𝔮 a root of unity adds considerably more structure to the modules. We will not do so here, the context
clearly excluding 𝔮 a root of unity—except for the appendix.

• The continuum limit of the loop scalar product on the lattice is the usual Virasoro scalar product, for which we use
† to denote conjugates so ⟨𝑉1, 𝐿𝑛𝑉2⟩ = ⟨𝐿†𝑛𝑉1, 𝑉2⟩. When using this scalar product we shall also use the bra-ket
notation: |𝑉⟩ denotes a state 𝑉 (primary or not) and ⟨𝑉 | its dual.

• We denote by 𝜙𝑟 ,𝑠 a chiral primary field with conformal weight ℎ𝑟 ,𝑠 and 𝑟, 𝑠 ∈ R: the structure of the underlying
Virasoro module when 𝑟, 𝑠 ∈ N∗ will be made clear from the context, but will not appear in the notation. We will
also freely make use of the symmetries ℎ𝑟 ,𝑠 = ℎ−𝑟 ,−𝑠 .
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2 Preliminaries

2.1 From the Potts model to the dense loop model and its algebraic description
Sections 2 and 3 of [2] contain background material establishing the correspondence between the configurations of Fortuin–
Kasteleyn clusters (which might be more familiar to the reader) and those of loops. It is somewhat more convenient to
use the loop formalism, which makes the relationship with the 𝑂 (𝔪) model more transparent from the beginning, and
connects more naturally with work on diagram algebras. The remainder of this section describes the various algebraic
aspects of the loop model in detail as well as the representations to be studied.

2.2 Representations of various Temperley–Lieb algebras
2.2.1 Temperley–Lieb algebras

In terms of generators and relations, various algebras to which the name “Temperley–Lieb” (TL) is associated begin with
generators {𝑒 𝑗 } subject to relations

𝑒2
𝑗 = 𝔪𝑒 𝑗 , (2a)

𝑒 𝑗𝑒 𝑗±1𝑒 𝑗 = 𝑒 𝑗 , and (2b)
𝑒 𝑗𝑒𝑘 = 𝑒𝑘𝑒 𝑗 , ( | 𝑗 − 𝑘 | > 1) (2c)

where the indices take the values 1, . . . , 𝑁 − 1, with 𝑁 a fixed integer, and each value of 𝑁 defines a different algebra.
These relations are typically illustrated using diagrams for the generators. To represent generator 𝑒 𝑗 , on two horizontal
rows of 𝑁 points each, connect the neighboring pairs at 𝑗 and 𝑗 + 1, and vertically match all other pairs:

𝑒 𝑗 =

1

· · ·

𝑗 𝑗 + 1

· · ·

𝑁

(3)

When two generators are multiplied, the corresponding diagram is obtained following certain rules: stack the diagrams
from top to bottom (corresponding to left to right multiplication), replace closed loops with a numerical factor 𝑚, and
straighten out the curves that connect vertically. In any diagram of the algebra, the lines that connect from top to bottom
(rather than between two sites in the same horizontal row) are called through-lines, and the sites to which they are connected
are called free. The identity element 1 consists of a diagram with all 𝑁 vertical pairs of sites connected by straight through-
lines. It can be shown formally that this algebra of diagrams is isomorphic to the abstract Temperley–Lieb algebra defined
by generators and relations [14]. A basis for this algebra is the set of all isotopically distinct diagrams—pairings of two
rows of 𝑁 points each without crossings—that can be obtained by repeated multiplication of the generators.

A simple generalization is to adjoin a generator 𝑒𝑁 and site 𝑁 + 1, and to identify site 𝑁 + 1 with site 1, thereby
obtaining a periodic Temperley–Lieb algebra. The 𝑁 sites in the top and bottom rows can be thought of as being placed
on the inner and outer boundaries of an annulus, evenly spaced, and multiplication consists of nesting two annuli after
rescaling one so that its inner boundary matches the outer boundary of the other. In both cases the accessible diagrams
consist of planar pairings of points using curves that do not intersect. As before, the curves that join points on the inner
boundary to points on the outer boundary of the annulus are called through-lines. We may also depict the multiplication
more conveniently using “framing” rectangles, whose left and right boundaries are identified. Such framing rectangles
will be shown using dotted boundaries.

For the periodic case, it is possible for noncontractible closed curves to form that circle the annulus (this requires 𝑁 to
be even). These will be given the same weight 𝔪 as contractible loops, although one may consider giving contractible and
noncontractible loops different weights—with interesting consequences.

Some important representations of the Temperley–Lieb and periodic Temperley–Lieb algebras are obtained from the
following considerations. Begin with the regular representation 𝑅 on the basis given by the left action: 𝑅𝑎𝑏 = 𝑎𝑏, where 𝑎
and 𝑏 are basis diagrams. Since left-to-right multiplication corresponds to top-to-bottom stacking of diagrams, the pairings
in the bottom row of the composite diagram 𝑎𝑏 will be the same as those of the bottom row of 𝑏—the left multiplication
by 𝑎 will connect to only the top row of 𝑏. The output of the multiplication by 𝑎 is therefore largely determined by the top
row of 𝑏. We may therefore “cut across” the through-lines of the basis diagrams and retain only the top halves, which are
single rows of 𝑁 points, some of which are joined by curves and others that remain free. The lines attached to free sites
are also called through-lines—in the transfer matrix picture they may be thought of as being connected to the remote past.

We illustrate this process explicitly for the periodic Temperley–Lieb algebra on 𝑁 = 2 sites. The generators and the
identity element are

𝑒1 = , 𝑒2 = , id = (4)

3



(the dotted borders serve as a reminder that the left and right boundaries are identified). Further multiplication of the
diagrams gives

𝑒1𝑒2 = 𝔪 × , 𝑒2𝑒1 = 𝔪 × . (5)

The distinct upper halves are then , , and . Similarly, the distinct upper halves of the basis diagrams resulting
from the same process applied at 𝑁 = 4 are , , , , , , ,

, , , and . Such diagrams will be called “link diagrams” or “link states” hereinafter.
The collection of link states on 𝑁 sites furnishes a basis for the “natural representation” of the periodic Temperley–Lieb
algebra on 𝑁 sites. (For the ordinary Temperley–Lieb algebra the link states are restricted to those that do not cross the
boundary of the framing rectangle.) The action of a basis diagram of the Temperley–Lieb algebra on a link state results in
another link state. The natural representation is a module over its corresponding Temperley–Lieb algebra.

At this point we introduce the following convenient notation for link states, useful both as a compact notation and
for computation. A link state is represented by a collection of ordered pairings and singletons. The explicit notation
of singletons is optional, and a singleton (𝑖) represents a through-line at site 𝑖. A pairing (𝑖 𝑗) or (𝑖, 𝑗) denotes a curve
that starts from site 𝑖 and goes forward to 𝑗 in the rightward direction. When 𝑖 > 𝑗 such a curve starts from site 𝑖, goes
past the last site 𝑁 and crosses the boundary, returns periodically from behind site 1, then terminates at site 𝑗 . For the
three link states at 𝑁 = 2 exhibited graphically, their representations in this notation are (12), (21), and (1) (2). For the
𝑁 = 4 states, they are (12) (34), (23) (41), (14) (23), (21) (34), (32) (41), (43) (12), (12) (3) (4), (23) (1) (4), (34) (1) (2),
(41) (2) (3), and (1) (2) (3) (4). Since singletons are optional, these last five may well be denoted (12), (23), (34), (41),
and (). Of course, 𝑁 must be understood from context to avoid ambiguities, such as the two instances of (12) in 𝑁 = 2
and 4, but exactly the same ambiguity arises in the representations of elements of the symmetric group 𝑆𝑁 by disjoint
cycles when fixed points are omitted. And, as with 𝑆𝑁 , the order of the pairings and singletons is immaterial, though
the order of sites within a pairing is important. In this notation, the action of 𝑒 𝑗 on a state with singletons ( 𝑗) ( 𝑗 + 1) is
𝑒 𝑗 ( 𝑗) ( 𝑗 + 1) [· · · ] = ( 𝑗 , 𝑗 + 1) [· · · ], where [· · · ] stands for all other pairs, and 𝑒 𝑗 ( 𝑗 , 𝑗 + 1) [· · · ] = 𝔪( 𝑗 , 𝑗 + 1) [· · · ]. For
purposes of computation, the action of 𝑒 𝑗 on a general state can be reduced to an examination of several cases.

Hereinafter, we restrict to values of 𝑁 that are even. For even 𝑁 , the number of paired sites is even for a given link
state, and thus the number of through-lines is also even, a number we parametrize as 2 𝑗 . The action of the Temperley–Lieb
algebra on a link state can only keep constant or reduce the number of through-lines (this only needs to be verified on the
generators 𝑒𝑖). The natural representation thus admits a filtration by submodules:

𝒩𝑁/2 ⊃ 𝒩𝑁/2−1 ⊃ · · · ⊃ 𝒩𝑗 ⊃ · · · ⊃ 𝒩0 ⊃ 0. (6)

The notation 𝒩𝑗 indicates the submodule of all link states with 2 𝑗 or fewer through-lines; we will consider these as well
to be natural representations. The factors of this filtration are the subquotients 𝒲𝑗 ,1 ≡ 𝒩𝑗/𝒩𝑗−1 and consist of link
diagrams with exactly 2 𝑗 through-lines. The final factor is denoted 𝒲0,𝔮±2 ≡ 𝒩0. The first index in each of these gives the
number of pairs of through-lines, and the second index will be explained shortly. The modules 𝒲𝑗 ,1 are called standard
modules—they are modules over the Temperley–Lieb algebra when the multiplication rule is modified as follows: if the
action of a basis diagram of the Temperley–Lieb algebra on a link state results in a link state with fewer through-lines, then
the result is zero (this is precisely the meaning of the quotient). The standard modules 𝒲𝑗 ,1 are irreducible representations.
(As before, all modules ought to be additionally labeled with 𝑁 to avoid ambiguities, but we leave 𝑁 as implicit—this
omission is common in the literature.)

2.2.2 Affine Temperley–Lieb algebra

With periodic boundary conditions, it is natural to introduce a translation 𝜏. In diagrammatic terms, using the labels of
the right hand side of Eq. (5), 𝜏 consists of the diagram where site 𝑖 of the bottom row is connected to site 𝑖 + 1 (mod 𝑁)
of the top row for 𝑖 = 1, . . . , 𝑁 . The following additional defining relations are then obeyed diagrammatically:

𝜏𝑒 𝑗𝜏
−1 = 𝑒 𝑗+1, and (7a)

𝜏2𝑒𝑁−1 = 𝑒1 · · · 𝑒𝑁−1. (7b)

Moreover, 𝜏±𝑁 are central elements. The algebra generated by the generators 𝑒𝑖 and 𝜏±1, together with these relations
in addition to (2), is usually called the affine Temperley–Lieb algebra Ta

𝑁
(𝔪). The affine Temperley–Lieb algebra is

infinite-dimensional—since there are no rules for noncontractible loops, an arbitrary number of noncontractible loops can
be placed in a diagram with no through-lines, each giving rise to a distinct element of the algebra.

The standard modules𝒲𝑗 ,1 are also representations of Ta
𝑁
(𝔪), and are irreducible for 𝑗 > 0 and generic 𝔮, though there

are others. Importantly, 𝒲0,𝔮±2 is not irreducible—its submodule structure will be explained following the construction of
the other standard modules. The other standard modules are obtained as follows. For a given value of 𝑗 > 0, it is possible,
using the action of the algebra, to cyclically permute the free sites on the top row of a basis diagram of Ta

𝑁
(𝔪): this gives
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rise to the introduction of a pseudomomentum, which is parametrized by 𝜙. Whenever a diagram has 2 𝑗 through-lines
winding counterclockwise around the annulus 𝑙 times, this diagram may be replaced by one with the same connections
but with the through-lines unwound, multiplied by a numerical factor ei 𝑗𝑙𝜙 . Stated more simply, there is a phase ei𝜙/2 for
each complete counterclockwise winding of a through-line; however, it is impossible to unwind a single through-line on
its own without colliding with other through-lines. Similarly, for 2 𝑗 lines winding clockwise 𝑙 times, the numerical factor
is e−i 𝑗𝑙𝜙 when they are unwound, or e−i𝜙/2 per through-line per complete winding.

We will use an equivalent representation, where the phase is evenly graduated over the course of unwinding through-
lines, instead of abruptly applying it to each complete winding. Instead of a phase e±i𝜙/2 when a through-line makes a
complete winding (i.e., 𝑁 sites), we instead apply a phase e±i𝜙/2𝑁 for each site a through-line moves right or left. This
formulation preserves invariance under the translation operator. The rules regarding the phases associated to through-lines
translate to the standard modules 𝒲𝑗 ,ei𝜙 as follows. When a Ta

𝑁
(𝔪) basis diagram is stacked on top of a link state, the

phase e±i𝜙/2𝑁 is now attributed for each step right or left of a through-line, as before. Finally, a weight must be assigned
to noncontractible loops, which may differ from the weight for contractible loops. (The noncontractible loops are those
already present in the affine Temperley–Lieb diagrams; for 𝑗 > 0 the action of a diagram on a link state cannot generate
additional noncontractible loops without eliminating the through-lines.)

The dimensions of these modules 𝒲𝑗 ,ei𝜙 are then easily found by counting the link states. They are given by

𝑑 𝑗 =

(
𝑁

𝑁/2 + 𝑗

)
. (8)

Note that these dimensions do not depend on 𝜙, but representations with different ei𝜙 are not isomorphic.
The standard modules 𝒲𝑗 ,ei𝜙 are irreducible for generic values of 𝔮 and 𝜙. However, degeneracies appear whenever

the following resonance criterion is satisfied [15], [16]:

∃𝑘 ∈ N∗ : ei𝜙 = 𝔮2 𝑗+2𝑘 . (9)

The representation 𝒲𝑗 ,𝔮2 𝑗+2𝑘 then becomes reducible, and contains a submodule isomorphic to 𝒲𝑗+𝑘,𝔮2 𝑗 . The quotient
𝒲𝑗 ,𝔮2 𝑗+2𝑘/𝒲𝑗+𝑘,𝔮2 𝑗 is generically irreducible, with dimension

𝑑 𝑗 ≡ 𝑑 𝑗 − 𝑑 𝑗+𝑘 . (10)

There are also standard representations for 𝑗 = 0—i.e., no through-lines. There is no pseudomomentum, but repre-
sentations are still characterized by a second parameter, which now specifies the weight given to noncontractible loops
generated by the action of the algebra on a link state, which are not possible for 𝑗 > 0. Parametrizing this weight as 𝑧+ 𝑧−1,
the corresponding standard module is denoted 𝒲0,𝑧2 . This module is isomorphic to 𝒲0,𝑧−2 , so we denote both henceforth
by 𝒲0,𝑧±2 . If we identify 𝑧 = ei𝜙/2, the resonance criterion of Eq. (9) still applies.

It is natural to require that 𝑧 + 𝑧−1 = 𝔪, so that contractible and noncontractible loops get the same weight. Imposing
this requirement leads to the module 𝒲0,𝔮±2 , which is reducible even for generic 𝔮. Indeed, Eq. (9) is satisfied with 𝑗 = 0
and 𝑘 = 1, and hence 𝒲0,𝔮±2 contains a submodule isomorphic to 𝒲1,1. Taking the quotient 𝒲0,𝔮±2/𝒲1,1 leads to a simple
module for generic 𝔮, denoted by 𝒲0,𝔮±2 . It has dimension

𝑑0 = 𝑑0 − 𝑑1 =

(
𝑁

𝑁/2

)
−
(

𝑁

𝑁/2 + 1

)
, (11)

in agreement with Eqs. (8) and (10), so that we may extend the definitions of both to 𝑗 = 0. An explicit description of
𝒲0,𝔮±2 is given at the end of the next section.

2.2.3 Jones–Temperley–Lieb algebras

One may restrict to even powers of 𝜏. This is a natural choice from the point of view of the loop–cluster formulation since
loops then appear as objects surrounding clusters, and thus only occur in even numbers, so that the loop model can be
considered as defined on an oriented (often referred to as Chalker–Coddington) lattice [10]. Formally, the elements 𝜏±2

are adjoined to the algebra instead of 𝜏±1, and Eq. (7a) is replaced by

𝜏2𝑒 𝑗𝜏
−2 = 𝑒 𝑗+2. (12)

For this algebra, we give noncontractible loops the same weight 𝔪 as for contractible loops. Finally, we take a quotient by
the ideal generated by 𝜏𝑁 − 1. In terms of annular diagrams, one annular diagram becomes equivalent to another obtained
from the first by rotating the inner boundary through a full rotation, with the sites and attached curves following along with
it. The resulting object with the modifications described in this paragraph is called the augmented Jones–Temperley–Lieb
algebra 𝐽𝑇𝐿au

𝑁
(𝔪), and it is finite-dimensional [17]. 𝐽𝑇𝐿au

𝑁
(𝔪) is slightly larger than the Jones–Temperley–Lieb algebra

𝐽𝑇𝐿𝑁 (𝔪), introduced by Read and Saleur [10] and further studied by Gainutdinov, Read, and Saleur [18]. The difference
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is entirely in the ideal with zero through-lines—i.e., the annular diagrams in which points of the outer boundary are
paired together and points of the inner boundary are paired together (again, using curves that do not intersect), and no
point of the inner boundary is paired with a point of the outer boundary. In 𝐽𝑇𝐿au

𝑁
(𝔪), all such diagrams are allowed.

In 𝐽𝑇𝐿𝑁 (𝔪), only diagrams that can be drawn without crossing the periodic “boundary” between both pairs of sites 𝑁
and 1 are allowed—in other words, the diagrams that can just as well be drawn on the (nonperiodic) rectangle. This
ideal (the subalgebra of 𝐽𝑇𝐿𝑁 (𝔪) with zero through-lines) is also known as the oriented Jones annular subalgebra in the
Brauer algebra [19]. Formally, there is a covering homomorphism (surjection) of algebras 𝜓 : 𝐽𝑇𝐿au

𝑁
(𝔪) → 𝐽𝑇𝐿𝑁 (𝔪),

which acts nontrivially only in the zero through-lines subalgebra (of 𝐽𝑇𝐿au
𝑁
(𝔪)). Its action is best understood through an

example:

𝜓 : ↦→ (13)

The homomorphism 𝜓 essentially redraws (uniquely) the curves that keep the same pairs matched, but without crossing
the boundary of the framing rectangle.

The difference between 𝐽𝑇𝐿au
𝑁
(𝔪) and 𝐽𝑇𝐿𝑁 (𝔪) is analogous to the difference between 𝒲0,𝔮±2 and 𝒲0,𝔮±2 . Consider

the case 𝑁 = 2—i.e., the loop model for a two-site system, in the sector with no through-lines and with noncontractible
loops given the same weight 𝔪 = 𝔮 + 𝔮−1 as contractible ones. Let us first write the two elements of the Temperley–Lieb
algebra in the basis of the two link states 𝑣1 = (12) and 𝑣2 = (21):

𝑒1 = 𝔪

(
1 1
0 0

)
, and (14a)

𝑒2 = 𝔪

(
0 0
1 1

)
. (14b)

Clearly, 𝑒1 (𝑣1 − 𝑣2) = 𝑒2 (𝑣1 − 𝑣2) = 0. Meanwhile, at 𝑁 = 2 the action of 𝑒1 and 𝑒2 on the single state (1) (2) in 𝒲1,1
is zero by definition, since the number of through-lines would decrease. Thus we see that 𝒲0,𝔮±2 admits a submodule,
generated by 𝑣1 − 𝑣2, that is isomorphic to 𝒲1,1. Diagrammatically, using what is technically called a Loewy diagram, we
have

𝒲0,𝔮±2 :
𝒲0,𝔮±2

𝒲1,1

. (15)

In such a diagram, the bottom module is a submodule, while the top module is a quotient module. The arrow indicates
that within the standard module 𝒲0,𝔮±2 a state in 𝒲1,1 can be reached from a state in 𝒲0,𝔮±2 through the action of the
Temperley–Lieb algebra, but the opposite is impossible.

For 𝑁 = 2 sites, 𝒲0,𝔮±2 is obtained via a quotient of 𝒲0,𝔮±2 by 𝑣1 − 𝑣2. More colloquially, within 𝒲0,𝔮±2 , (12) and
(21) are identified, so that any state in the zero through-lines sector can be rewritten in terms of diagrams that do not
cross the periodic boundary. This feature extends to larger 𝑁: 𝒲0,𝔮±2 consists of all link states with zero through-lines that
do not cross the periodic boundary. Thus a basis of 𝒲0,𝔮±2 for 𝑁 = 4 is {(12) (34), (14) (23)}. Because this description
also characterizes 𝐽𝑇𝐿𝑁 (𝔪), 𝒲0,𝔮±2 is the natural building block for the natural representations of 𝐽𝑇𝐿𝑁 (𝔪), and we
may use the same symbol 𝜓 to denote the homomorphism 𝜓 : 𝒲0,𝔮±2 → 𝒲0,𝔮±2 . We denote the natural representations
of 𝐽𝑇𝐿𝑁 (𝔪) by 𝒩𝑗 = 𝜓𝒩𝑗 , which we define as the collection of all link states with 2 𝑗 or fewer through-lines, except
that in the case of zero through-lines, only those link diagrams that do not cross the periodic boundary are included.
Within these modules, whenever the action of the algebra produces a state with zero through-lines, it is redrawn with the
same connections but without crossing the boundary (e.g., for 𝑁 = 2, 𝑒2 (1) (2) = (21) = (12)). Note that this action is
only well-defined because contractible and noncontractible loops are given the same weight. The collection of natural
representations likewise admits a filtration:

𝒩𝑁/2 ⊃ 𝒩𝑁/2−1 ⊃ · · · ⊃ 𝒩𝑗 ⊃ · · · ⊃ 𝒩0 ⊃ 0. (16)

Now, the factors of the filtration, 𝒩𝑗/𝒩𝑗−1 = 𝒲𝑗 ,1 and 𝒩0 = 𝒲0,𝔮±2 , are irreducible for generic 𝔮. We note that 𝒩2 will be
especially important in what follows; 𝒩2 = 𝒲0,𝔮±2 +𝒲1,1 +𝒲2,1, where + in contrast to ⊕ indicates that the right side is
a vector space direct sum, but not a module direct sum. The modules 𝒩𝑗 may also be referred to as “glued modules” as
they are obtained from gluings of the standard modules.

***
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The discussion of this section can be abstracted to a more general class of algebras whose basis elements can be viewed
as the conjunction of two elements of a simpler set and whose multiplication follows certain rules analogous to the ones
above. Such axioms define what are known as cellular algebras, whose irreducible representations can be constructed
systematically. The Temperley–Lieb algebra is the prototypical example of a cellular algebra.

2.3 Identification of fields and operators on the lattice
A key component of our approach is the control of the correspondence between objects on the lattice and in the CFT. In
the following, we will rely on the so-called “Koo–Saleur” lattice construction of the Virasoro algebra generators. Recall
that, following [20], it is widely believed [12], [21] that

𝐿
(𝐿)
𝑛 = − 𝐿

2𝜋𝑣𝐹

2𝐿∑︁
𝑗=1

ei𝑛 𝑗 𝜋/𝐿
(
𝑒 𝑗 − 𝑒∞ + i

𝑣𝐹
[𝑒 𝑗 , 𝑒 𝑗+1]

)
+ 𝑐

24
𝛿𝑛,0, (17)

𝐿
(𝐿)
𝑛 = − 𝐿

2𝜋𝑣𝐹

2𝐿∑︁
𝑗=1

e−i𝑛 𝑗 𝜋/𝐿
(
𝑒 𝑗 − 𝑒∞ − i

𝑣𝐹
[𝑒 𝑗 , 𝑒 𝑗+1]

)
+ 𝑐

24
𝛿𝑛,0 (18)

furnish representations of Vir and Vir in the limit 𝐿 → ∞ when restricted to scaling states. In the preceding equations, 𝑒 𝑗
are the Temperley–Lieb generators described in Section 2.2, and

𝑒∞ = sin 𝛾
∫ ∞

−∞

sinh[(𝜋 − 𝛾)𝑡]
sinh(𝜋𝑡) cosh(𝛾𝑡) d𝑡 (19)

is a constant shift that represents the average ground-state value of 𝑒 𝑗 . 𝑣𝐹 = 𝜋 sin 𝛾/𝛾 is the “Fermi velocity” or “sound
velocity” whose value is known exactly from the Bethe-ansatz [12]. While the precise nature of the convergence is
subtle and under active study, numerical and analytical checks have demonstrated that many of the expected properties
of the Virasoro algebra are indeed recovered using (18) —see [12] for more detail. Thus, an eigenstate of 𝐿 (𝐿)

0 (𝐿 (𝐿)
0 )

with eigenvalue ℎ(𝐿) (ℎ(𝐿)) can be viewed as the lattice representation on 2𝐿 sites of a field with left (right) conformal
dimension ℎ ≡ lim𝐿→∞ ℎ(𝐿) (ℎ ≡ lim𝐿→∞ ℎ(𝐿)).

In the following, we will use the notation

𝐻
(𝐿)
𝑛 ≡ 𝐿

(𝐿)
𝑛 + 𝐿 (𝐿)

−𝑛 . (20)

Most conformal identities involving primary fields and Virasoro generators other than 𝐿0 and 𝐿0 hold just as well when
𝐿−𝑛 is replaced by 𝐿−𝑛 + 𝐿𝑛 and 𝐿−𝑛 is replaced by 𝐿𝑛 + 𝐿−𝑛, since the Virasoro generator with positive index annihilates
primary fields. Nevertheless, on the lattice, where this observation does not exactly hold, using this symmetric combination
tends to improve convergence. The scaling dimensions ℎ(𝐿) + ℎ(𝐿) are obtained by diagonalizing 𝐻 (𝐿)

0 = 𝐿
(𝐿)
0 + 𝐿 (𝐿)

0 .
The precise identification of conformal fields is a subtle process because the convergence ℎ(𝐿) → ℎ and ℎ(𝐿) → ℎ can be
slow, because these values are discretely parametrized by 𝐿 rather than a continuous parameter, making them more difficult
to follow, and because the number of states proliferates rapidly with increasing 𝐿. To label the scaling states correctly,
one must carefully follow sequences of eigenvalues ℎ(𝐿) with increasing 𝐿, paying attention to other characteristics such
as momentum and parity. The general methodology is explained in Appendix A.5 of [22]. For our present purposes, we
are for the most part interested in lattice analogues of fields within standard modules that are among the lowest excitations
of the Hamiltonian in their respective sectors (equivalently, among the largest eigenvalues of the transfer matrix). Their
identifications thus pose no unexpected challenges, and we typically label them with their positions within the spectrum.
At the same time, we also reference their positions within Tables 13 and 14 of [2], which carries out the field identification
process in great detail for the particular (generic) case 𝑄 = 1/2—this shows where the fields fit in among others with the
same 𝑗 in the modules 𝒲𝑗 ,𝑧2 .

2.4 Scalar products
2.4.1 Loop scalar product: irreducible modules

The loop scalar product ⟨·, ·⟩ (or ⟨·|·⟩; we will systematically use this second notation below) is obtained by gluing the
mirror image of one link state on top of the other and evaluating the result according to certain rules that we now describe.
As usual, a factor 𝔪 is given to each loop. However, unless all through-lines connect through from bottom to top the result
is zero. We also take into account the weight of straightening the connected through-lines: a through-line that has moved
to the right (left) is assigned the weight ei𝜙/2𝑁 (e−i𝜙/2𝑁 ) for each step, where 𝜙 is again the same parameter that appears
in 𝒲𝑗 ,ei𝜙 . Importantly, the ex ante inner product of any two states is nonzero—if the diagram produced by gluing two link
states produces no loops and movement of through-lines, its inner product is 𝔪0 (ei𝜙/2𝑁 )0 = 1. To illustrate this scalar
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product we take the following examples, where the solid lines around the rightmost diagrams signify that we assign them
a value according to the aforementioned rules:

⟨(12) (3) (4) | (1) (2) (34)⟩ =
〈 ��� 〉

= = 0, (21a)

⟨(14) (23) (5) (6) | (1) (23) (45) (6)⟩ =
〈 ���� 〉

= = e2i𝜙/𝑁𝔪 = ei𝜙/3𝔪,

(21b)

⟨(23) (41) | (14) (23)⟩ =
〈 ���� 〉

= = 𝔪2. (21c)

This loop scalar product is then extended by sesquilinearity to the whole space of loop states. The adjoint 𝑈† of a
word 𝑈 in the Temperley–Lieb algebra can be defined similarly by flipping the diagram representing it about a horizontal
line, as in the following example:

†

= . (22)

From this definition it is clear that the generators 𝑒𝑖 themselves are self-adjoint. By construction, this loop scalar product is
invariant with respect to the Temperley–Lieb action: ⟨𝑥 |𝑈𝑦⟩ = ⟨𝑈†𝑥 |𝑦⟩, where 𝑈 is a word in the Jones–Temperley–Lieb
algebra. The loop scalar product is of course not positive definite. It is however not degenerate (provided 𝔪 ≠ 0).

The loop scalar product is the simple translation of the natural 𝑈 (𝔪) scalar product [10] to the geometrical setting.
It is also the natural scalar product appearing in lattice correlation functions, and as such of course it goes over to the
conformal scalar product in the continuum limit [7]. Recall that this scalar product obeys in particular 𝐿†𝑛 = 𝐿−𝑛. For
these reasons we will also use the terminology “conformal scalar product” when referring to the loop scalar product on
the lattice.

2.4.2 Loop scalar product: natural or glued modules

Within the natural representations we define an inner product that is mostly the same as in the natural case, though we
drop the restriction that all through-lines must connect through from bottom to top for a nonzero result. Within 𝒩𝑗

with 𝑗 ≥ 1, for instance, the example (21a) would have a value of 1 instead of 0. Since these natural modules have no
pseudomomentum, there is no phase attributed to the lateral movement of through-lines: 𝜙 = 0. The inner product in
the example of (21b) is thus ei𝜙/3𝔪 = 𝔪, and (21c) remains unchanged. The JTL generators 𝑒 𝑗 remain self-adjoint with
respect to this inner product.

2.4.3 Positive-definite scalar product

Since the loop scalar product is not positive definite, it will be crucial in what follows to introduce another scalar product
that has these properties. We choose here the “native” product for which basic loop states are mutually orthogonal and of
unit norm square, and denote this product by (·, ·) (or (·|·); we will systematically use this second notation outside of this
section, to avoid confusion when writing vector components). This scalar product coincides with the formal limit 𝔪 → ∞
of the loop scalar product, after proper renormalization in each sector with a given number of through-lines. We will also
refer to this scalar product as the Euclidean scalar product, and the induced norm as the Euclidean norm or 2-norm. Note
that we do not discuss here the meaning of this scalar product in the conformal field theory itself.

2.5 Continuum limits: generating functions
While the results below appear in several of our papers already, they are useful to set up the context. We begin with the
standard parametrization 𝑥 ∈ (0,∞], in terms of which the loop weight is

𝔪 =
√︁
𝑄 = 2 cos

( 𝜋

𝑥 + 1

)
, (23)

and the corresponding central charge

𝑐 = 1 − 6
𝑥(𝑥 + 1) , (24)
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We will parametrize exponents using the Kac formula

ℎ𝑟 ,𝑠 =
[𝑟 (𝑥 + 1) − 𝑠𝑥]2 − 1

4𝑥(𝑥 + 1) . (25)

(although in many cases 𝑟, 𝑠 will not be integer). Define

𝐹𝑗 ,ei𝜙 =
𝑞−𝑐/24𝑞−𝑐/24

𝑃(𝑞)𝑃(𝑞)
∑︁
𝑒∈Z

𝑞
ℎ𝑒−𝑒𝜙 ,− 𝑗 𝑞

ℎ𝑒−𝑒𝜙 , 𝑗 , (26)

in which

𝑃(𝑞) =
∞∏
𝑛=1

(1 − 𝑞𝑛) (27)

and 𝑒𝜙 = 𝜙/2𝜋. As usual, 𝑞 and 𝑞 are the modular parameters of the torus. 𝑃(𝑞), the inverse generating function for the
partition numbers, can be written in terms of the Dedekind eta function as 𝑃(𝑞) = 𝑞−1/24𝜂(𝑞).

The continuum-limit partition function for the 𝑄-state Potts model is then given by

𝑍𝑄 = 𝐹0,𝔮±2 + 𝑄 − 1
2

𝐹0,−1 +
∑︁
𝑗>0

𝐷 𝑗 ,0𝐹𝑗 ,1 +
∑︁

𝑗>0,𝑘>1
𝑘 | 𝑗

∑︁
0<𝑝<𝑘
𝑝∧𝑘=1

𝐷 𝑗 , 𝜋 𝑝/𝑘𝐹𝑗 ,e2𝜋i𝑝/𝑘 , (28)

where 𝑝 ∧ 𝑘 is the greatest common divisor of 𝑝 and 𝑘 . The coefficients 𝐷 𝑗 ,𝐾 can be thought of as “multiplicities,”
although for generic 𝑄, they are not integers. Their interpretation in terms of symmetries is beyond the scope of this
discussion [11], [17]. They are given by

𝐷 𝑗 ,𝐾 =
1
𝑗

𝑗−1∑︁
𝑟=0

e2i𝐾𝑟𝑤( 𝑗 , 𝑗 ∧ 𝑟), (29)

( 𝑗 ∧ 0 = 𝑗 by definition) and

𝑤( 𝑗 , 𝑑) = 𝔮2𝑑 + 𝔮−2𝑑 + 𝑄 − 1
2

(i2𝑑 + i−2𝑑) = 𝔮2𝑑 + 𝔮−2𝑑 + (−1)𝑑 (𝑄 − 1). (30)

Equations (26) and (28) encode the operator content of the 𝑄-state Potts model CFT. The conformal weights arising
from the last term in Eq. (28) are of the form

(ℎ, ℎ) = (ℎ𝑒−𝑝/𝑘, 𝑗 , ℎ𝑒−𝑝/𝑘,− 𝑗 ). (𝑒 ∈ Z) (31)

The first two terms must be handled slightly differently. Using the identity

𝐹0,𝔮±2 − 𝐹1,1 =

∞∑︁
𝑛=1

𝐾𝑛,1𝐾𝑛,1 ≡ 𝐹0,𝔮±2 (32)

with the Kac character

𝐾𝑟 ,𝑠 = 𝑞
ℎ𝑟,𝑠−𝑐/24 1 − 𝑞𝑟𝑠

𝑃(𝑞) , (33)

we see that we get the set of diagonal fields (ℎ𝑛,1, ℎ𝑛,1) (𝑛 ∈ N∗). The partition function can then be rewritten as

𝑍𝑄 = 𝐹0,𝔮±2 + 𝑄 − 1
2

𝐹0,−1 + 𝐹1,1 +
∑︁
𝑗>0

𝐷 𝑗 ,0𝐹𝑗 ,1 +
∑︁

𝑗>0,𝑘>1
𝑘 | 𝑗

∑︁
0<𝑝<𝑘
𝑝∧𝑘=1

𝐷 𝑗 , 𝜋 𝑝/𝑘𝐹𝑗 ,e2𝜋i𝑝/𝑘 . (34)

We notice now that 𝐷1,0 = 𝔮2+𝔮−2− (𝑄−1) = 𝑄−2− (𝑄−1) = −1. Hence 𝐹1,1 disappears, in fact, from the partition
function. 𝐹1,1 corresponds geometrically to the so-called hull operator [23]—related to the indicator function that a point
is at the boundary of an FK cluster—with corresponding conformal weights (ℎ0,1, ℎ0,1). Therefore, this operator is absent
from the partition function. We will, nevertheless, continue to consider 𝒲1,1, since this module does appear in related
models, such as the oriented loop (or𝑈 (𝔪)) model [24]. We note meanwhile that the higher hull operators—related to the
indicator function that 𝑗 > 1 distinct hulls come close together at the scale of the lattice spacing—with conformal weights
(ℎ0, 𝑗 , ℎ0, 𝑗 ) in 𝐹𝑗 ,1 do appear in the partition function.
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The decomposition of the Potts-model partition function in Eq. (34) for generic 𝑄 is, in fact, in one-to-one correspon-
dence with an algebraic decomposition—exact in finite size—of the Hilbert space ℋ𝑄 in terms of modules of the affine
Temperley–Lieb algebra Ta

𝑁
(𝔪) [10]. This decomposition formally reads

ℋ𝑄 = 𝒲0,𝔮±2 + 𝑄 − 1
2

𝒲0,−1 +𝒲1,1 +
∑︁
𝑗>0

𝐷 𝑗 ,0𝒲𝑗 ,1 +
∑︁

𝑗>0,𝑘>1
𝑘 | 𝑗

∑︁
0<𝑝<𝑘
𝑝∧𝑘=1

𝐷 𝑗 , 𝜋 𝑝/𝑘𝒲𝑗 ,e2𝜋i𝑝/𝑘 . (35)

Eq. (35) is only formal in the sense that, for generic 𝑄, the multiplicities are not integers, and ℋ𝑄 cannot be interpreted
as a proper vector space. By contrast, the modules 𝒲𝑗 ,ei𝜙 are well-defined spaces with integer dimension independent of
𝑄. Note that one must take into account the fact that the sums e.g. in (35) must be properly truncated for a finite lattice
system.

The torus partition function in Eq. (28) is obtained by a trace over ℋ𝑄,

𝑍𝑄 = trℋ𝑄 e−𝛽𝑅𝐻e−i𝛽𝐼𝑃 , (36)

where the real parameters 𝛽𝑅 > 0 and 𝛽𝐼 determine the size of the torus, while 𝐻 and 𝑃 denote respectively the lattice
Hamiltonian and momentum operators. Introducing the (modular) parameters

𝑞 = exp
[
−2𝜋
𝑁

(𝛽𝑅 + i𝛽𝐼 )
]

and (37a)

𝑞 = exp
[
−2𝜋
𝑁

(𝛽𝑅 − i𝛽𝐼 )
]
, (37b)

we have, in the limit where the size of the system 𝑁 → ∞, with 𝛽𝑅, 𝛽𝐼 → ∞ such that 𝑞 and 𝑞 remain finite,

tr𝒲
𝑗,ei𝜙 e−𝛽𝑅𝐻e−i𝛽𝐼𝑃 𝑁→∞↦→ 𝐹𝑗 ,ei𝜙 , (38)

while in the 𝑗 = 0 case the relevant continuum limit is

tr
𝒲0,𝔮±2

e−𝛽𝑅𝐻e−i𝛽𝐼𝑃 𝑁→∞↦→ 𝐹0,𝔮±2 , (39)

hence ensuring the correspondence between (35) and (34).

2.6 Conjectured Virasoro modules
In [25] we proposed the following conjecture for generic 𝔮:

Conjecture 1 (Quotient loop-model module without through-lines). In the scaling limit

𝒲0,𝔮±2 ↦→
∞⊕
𝑛=1

X𝑛,1 ⊗ X𝑛,1. (40)

We use the notation X𝑟 ,𝑠 to generally denote irreducible Virasoro modules with highest weight ℎ𝑟 ,𝑠 . In the present
case, these modules are simply Kac modules, with the submodule generated by the unique singular vector at level 𝑟𝑠
factored out. This result does not involve Jordan blocks, and was well checked in [2]. We also proposed

Conjecture 2 (Loop-model modules with through-lines). For 𝑗 > 0 and 2 𝑗 through lines we have the scaling limit

𝒲𝑗 ,1 ↦→ (V0,− 𝑗 ⊗ V0, 𝑗 ) ⊕
∞⊕
𝑒=1

ℒ𝑒, 𝑗 . (41)

Here, V𝑟 ,𝑠 denotes the Verma module for highest weight ℎ𝑟 ,𝑠 with 𝑟 ∉ N∗ or 𝑠 ∉ N∗. As for the ℒ𝑒, 𝑗 they are
more complicated objects whose structure was conjectured based mostly on bootstrap consistency arguments as follows.
Considerations of the observed multiplicities of fields in the generating function and self-duality give rise to the following
quartet of fields, the simplest structure consistent with both considerations:

Ψ̃𝑒, 𝑗

Φ𝑒, 𝑗 = 𝜙𝑒, 𝑗 ⊗ 𝜙𝑒,− 𝑗 Φ𝑒, 𝑗 = 𝜙𝑒,− 𝑗 ⊗ 𝜙𝑒, 𝑗

Ψ𝑒, 𝑗 ≡ 𝐴𝑒, 𝑗Φ𝑒, 𝑗 = 𝐴𝑒, 𝑗Φ𝑒, 𝑗

𝐴
†
𝑒, 𝑗

𝐴
†
𝑒, 𝑗

𝐿0−ℎ𝑒,− 𝑗

𝐴𝑒, 𝑗 𝐴𝑒, 𝑗

(42)
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where 𝐴𝑒, 𝑗 is the operator in Virasoro theory creating a null state when acting on the highest weight state with conformal
weight ℎ𝑒, 𝑗 . In this diagram, 𝜙𝑒,± 𝑗 and 𝜙𝑒,± 𝑗 are Vir and Vir primaries from which are formed the fields Φ𝑒, 𝑗 and Φ𝑒, 𝑗 of
identical physical dimension 𝑥𝑒, 𝑗 = ℎ𝑒, 𝑗 + ℎ𝑒,− 𝑗 . The fields Ψ̃𝑒, 𝑗 and Ψ𝑒, 𝑗 = 𝐴𝑒, 𝑗Φ𝑒, 𝑗 = 𝐴𝑒, 𝑗Φ𝑒, 𝑗 both have dimension
𝑥𝑒, 𝑗 + 𝑒 𝑗 . They are in rank two Jordan blocks for 𝐿0 and 𝐿0. The corresponding structure of Virasoro modules defines the
quotient modules ℒ𝑒, 𝑗 :

V𝑒,− 𝑗 ⊗ V𝑒,− 𝑗

ℒ𝑒, 𝑗 ≡ 𝒬[(V(d)
𝑒, 𝑗

⊗ V𝑒,− 𝑗 ) ⊕ (V𝑒,− 𝑗 ⊗ V(d)
𝑒, 𝑗

)] : X𝑒, 𝑗 ⊗ V𝑒,− 𝑗 V𝑒,− 𝑗 ⊗ X𝑒, 𝑗

V𝑒,− 𝑗 ⊗ V𝑒,− 𝑗

(43)

This gives

trℒ𝑒, 𝑗 𝑞
𝐿0𝑞𝐿0 = 2

𝑞ℎ𝑒,− 𝑗

𝑃(𝑞)
𝑞ℎ𝑒,− 𝑗

𝑃(𝑞) + 𝑞
ℎ𝑒, 𝑗 − 𝑞ℎ𝑒,− 𝑗
𝑃(𝑞)

𝑞ℎ𝑒,− 𝑗

𝑃(𝑞) + 𝑞
ℎ𝑒,− 𝑗

𝑃(𝑞)
𝑞ℎ𝑒, 𝑗 − 𝑞ℎ𝑒,− 𝑗

𝑃(𝑞)

=
𝑞ℎ𝑒, 𝑗

𝑃(𝑞)
𝑞ℎ𝑒,− 𝑗

𝑃(𝑞) + 𝑞
ℎ𝑒,− 𝑗

𝑃(𝑞)
𝑞ℎ𝑒, 𝑗

𝑃(𝑞) .
(44)

In [2] we checked numerically part of this picture—essentially, the bottom component of the structure (that is, the
fact that 𝐴𝑒, 𝑗Φ𝑒, 𝑗 and 𝐴𝑒, 𝑗Φ𝑒, 𝑗 could be identified with a single field denoted Ψ𝑒, 𝑗 ). A crucial fact that remains to be
confirmed is the existence of a Jordan block for 𝐿0 and 𝐿0. Such Jordan cells have only be observed so far in the special
case of 𝔮 a root of unity, where the representation theory of the JTL2𝐿 (𝔪) algebra becomes non-semisimple, so the lattice
Hamiltonian itself exhibits Jordan blocks. The situation here is different since the Jordan cell is expected to only appear
in the continuum limit. As we shall see, this situation can still be studied analytically and numerically.

To each such diamond structure (42) is associated an indecomposability parameter, 𝑏𝑒, 𝑗 , such that

(𝐿0 − ℎ𝑒,− 𝑗 )Ψ̃𝑒, 𝑗 = (𝐿0 − ℎ𝑒,− 𝑗 )Ψ̃𝑒, 𝑗 = 𝐴𝑒, 𝑗Φ𝑒, 𝑗 = 𝐴𝑒, 𝑗Φ𝑒, 𝑗 , (45a)

𝐴𝑒, 𝑗𝐴
†
𝑒, 𝑗

Ψ̃𝑒, 𝑗 = 𝑏𝑒, 𝑗Ψ𝑒, 𝑗 , and (45b)

𝐴𝑒, 𝑗𝐴
†
𝑒, 𝑗

Ψ̃𝑒, 𝑗 = 𝑏𝑒, 𝑗Ψ𝑒, 𝑗 . (45c)

They may be calculated as quotients, 𝑏𝑒, 𝑗 = 𝜈𝑒, 𝑗/𝜅𝑒, 𝑗 , where

𝜈𝑒, 𝑗 = lim
𝜖→0

⟨𝜙𝑒+𝜖 , 𝑗 |𝐴†
𝑒, 𝑗
𝐴𝑒, 𝑗 |𝜙𝑒+𝜖 , 𝑗⟩
𝜖

and (46a)

𝜅𝑒, 𝑗 = lim
𝜖→0

ℎ𝑒+𝜖 , 𝑗 + 𝑒 𝑗 − ℎ𝑒−𝜖 ,− 𝑗
𝜖

=
𝑒(𝑥 + 1)

𝑥
. (46b)

For the special cases (𝑒, 𝑗) = (1, 1) and (1, 2), routine calculation [2], [3] gives

𝑏1,1 =
1

𝑥 + 1
and (47a)

𝑏1,2 =
4

𝑥 + 1
− 2
𝑥2 . (47b)

Much of the remainder of this paper will be devoted to observing these Jordan blocks and measuring these 𝑏 values directly
on the lattice model.

3 The study of 𝐿0 and 𝐿0 Jordan blocks and the measurement of 𝑏

3.1 Identification of emerging Jordan blocks
The general issue we are facing is how to identify the formation of a Jordan block in the limit 𝐿 → ∞ in a set-up where,
presumably, there is never such a block for 𝐿 finite. We are not aware of any theory about scenarios for the emergence
of Jordan blocks as limits of diagonalizable matrices. In the case of blocks of rank two at least, it is easy to build such a
scenario. Consider the matrix

𝑀 (𝑥) =
(
0 1
0 𝑥

)
(48)
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which is generically diagonalizable with eigenvalues 0 and 𝑥 and (unnormalized) eigenvectors 𝑢 = (1, 0) and 𝑣 = (1, 𝑥).
As 𝑥 → 0, these two eigenvectors converge towards each other, while 𝑀 (𝑥 = 0) is then a rank two Jordan block.

To see whether two eigenvectors approach each other as 𝐿 → ∞, we must use a scalar product that is positive definite.
Any such product will do of course, and in our case we will use the native loop scalar product defined earlier. Once
we have identified (more on this below) a pair of eigenvalues and hence a rank two sub-matrix in the Hamiltonian 𝐻 for
which we expect a Jordan block will appear in the continuum limit, we can, calling the corresponding eigenvectors {𝑢, 𝑣},
consider the quotient

𝐽 (𝑢, 𝑣) = (𝑢 |𝑣)√︁
(𝑢 |𝑢) (𝑣 |𝑣)

. (49)

By the Cauchy–Schwarz inequality, | (𝑢 |𝑣) |2 ≤ (𝑢 |𝑢) (𝑣 |𝑣) implies |𝐽 (𝑢, 𝑣) | ≤ 1 (equality holds if and only if the two
vectors are parallel).

Let us discuss this on the simple example of the test matrix (48). If 𝑢 and 𝑣 are the two eigenvectors (1, 0) and (1, 𝑥)
we find

𝐽 (𝑢, 𝑣) = (𝑢 |𝑣)√︁
(𝑢 |𝑢) (𝑣 |𝑣)

=
1

√
1 + 𝑥2

, (50)

which is clearly less than 1 for 𝑥 ≠ 0 and 𝐽 → 1 when 𝑥 → 0.
Let us now discuss the generalized eigenvector at 𝑥 = 0, which can be anything of the form (𝑦, 1)—we can choose (0, 1)

so that it is orthogonal to 𝑢 = (1, 0). If we take the pair (𝑢, 𝑣) at generic 𝑥 and perform Gram–Schmidt orthogonalization,
we obtain �̂� = 𝑢 = (1, 0) and 𝑣′ = (0, 1), which is exactly what we are looking for—a basis of the Jordan form of the
limiting matrix 𝑀 (0). We may formally denote this process using the following notation:

GS[𝑢, 𝑣] = (�̂�, 𝑣′) ≡ ((1, 0), (0, 1)) (51)

[the dependence of 𝑣 on 𝑥 has been suppressed]. Of course, for generic 𝑥, 𝑣′ is no longer an eigenvector.
If we were to apply the Gram–Schmidt procedure to (𝑣, 𝑢) instead we would find

GS[𝑣, 𝑢] = (�̂�, 𝑢′) ≡
(( 1
√
𝑥2 + 1

,
𝑥

√
𝑥2 + 1

)
,

( |𝑥 |
√
𝑥2 + 1

,− sgn 𝑥
√
𝑥2 + 1

))
, (52)

and then

lim
𝑥→0

(�̂�, 𝑢′) = ((1, 0), (0,∓1)) (53)

(depending on whether the limit is approached from above or below), recovering again the true and generalized eigenvector.
The observations above that a pair of eigenvectors have a 𝐽 measure that converges to 1 and that the Gram–Schmidt

procedure yields the generalized eigenvector are not specific to our carefully chosen example. They are general features of
nondiagonalizable operators that are obtained as limits of sequences of diagonalizable operators, and that these observations
indeed signal nondiagonalizability of the limit [26].

Thus, whenever a pair of vectors {𝑢, 𝑣} satisfies 𝐽 (𝑢, 𝑣) → 1 in some limit, we will call the second vector obtained
from performing the Gram–Schmidt procedure an emerging Jordan vector. The submatrix of the Hamiltonian in the basis
of the orthogonalized vectors will be called an emerging Jordan block.

For 𝑐 generic, the rank two Jordan blocks that are expected in the continuum limit appear, on the lattice, as rank two
diagonalizable matrices with slightly different eigenvalues. The critical exponents we can extract from these eigenvalues
also differ slightly in finite size. As 𝐿 → ∞ these exponents converge to each other, and, if a rank two Jordan block is
to appear in this limit, so should the eigenvectors—just like in the toy example above. In Appendix A.2 we consider the
𝑐 → 0 limit for various lattice sizes 𝐿 and use the technique described to compute properties of the well-studied Jordan
block that arises between the stress–energy tensor 𝑇 and its logarithmic partner 𝑡.

It should be emphasized that an isolated measurement of 𝐽, even if the value is near 1, is not particularly meaningful
per se. Nor will a 𝐽 value of 1 ever be observed, at least between two distinct eigenvectors, since a measurement of 1
contradicts the linear independence of distinct eigenvectors. What is, in fact, meaningful is the observation of a limiting
value of 1. In effect, we are looking to infer the existence of a nontrivial Jordan block without resorting to a computation
of the basis giving rise to the Jordan form itself. In principle, it is analytically possible to determine that there is a
Jordan block by showing that the minimal polynomial has a repeated root, although this quickly becomes intractable with
increasing dimension. Furthermore, numerical determination of the Jordan canonical form is notoriously unstable, and
cannot be applied to our limiting situation where the underlying vector space is infinite-dimensional. We will see shortly
that the emerging Jordan block technique can be applied numerically as well, bypassing all of these problems.

The fact that the continuum limit Jordan blocks sometimes already appear in finite size and some times not is not fully
understood. Corrections to the continuum limit Hamiltonian due to irrelevant operators [27] (such as the square of the
stress-energy tensor : 𝑇2 :) are enough in general to split 𝐿0 Jordan blocks by shifting in an 𝐿 dependent way the two
coinciding (pseudo)eigenvalues. But this is not always the case, since some of the (quantum group) symmetries of the
CFT are already present in the lattice model. How to fully reconcile symmetries and corrections to scaling remains an
open problem.
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3.2 The measurement of 𝑏
Although this paper (except the appendix) is devoted to the generic case, let us, to fix ideas, first recall what happens at
𝑐 = 0 [6]. The indecomposability in the continuum limit manifests as non-diagonalizability of 𝐿0 and 𝐿0:

𝐿0𝑇 = 2𝑇, (54a)
𝐿0𝑡 = 2𝑡 + 𝑇, (54b)

𝐿0𝑇 = 0, and (54c)

𝐿0𝑡 = 𝑇. (54d)

For the two-point functions involving 𝑇 and 𝑡, we have (at 𝑐 = 0)

⟨𝑇 (𝑧)𝑇 (0)⟩ = 0, (55a)

⟨𝑇 (𝑧)𝑡 (0)⟩ = 𝑏

𝑧4 , and (55b)

⟨𝑡 (𝑧)𝑡 (0)⟩ = −2𝑏 log 𝑧 + 𝜃
𝑧4 , (55c)

where 𝜃 is an arbitrary constant that can be adjusted using the freedom 𝑡 → 𝑡 + 𝜆𝑇 , with 𝜆 an arbitrary scalar. Recalling
the Virasoro inner product (for holomorphic fields) [28]

⟨Φ|Ψ⟩ = 𝑧2ℎΦ lim
𝑧→∞

⟨Φ(𝑧)Ψ(0)⟩, (56)

we have, in the CFT, ⟨𝑇 |𝑇⟩ = 0, ⟨𝑡 |𝑡⟩ = ∞, and ⟨𝑇 |𝑡⟩ = 𝑏.
Since in this case the lattice model exhibits, in finite size, a Jordan block for the states corresponding to 𝑇 and 𝑡 as well,

the measurement of 𝑏 would thus seem straightforward—identify 𝑇 and 𝑡, and evaluate their conformal scalar product.
The difficulty with this approach is the otherwise-mundane matter of normalization. Because ⟨𝑇 |𝑇⟩ = 0 in the CFT, also
observed in finite size on the lattice, the value of ⟨𝑇 |𝑡⟩ on the lattice is completely dependent on the way one normalizes
𝑇 (note that we will in general use the same symbol to denote states in the continuum limit and on the lattice: the context
should make the distinction clear). The solution is to write an expression for 𝑏 that is independent of the normalization
of 𝑇 . In the CFT, 𝑇 = 𝐿−2𝐼, with 𝐼 the identity field. Being primary, we may normalize its lattice analogue to unity:
⟨𝐼 |𝐼⟩ = 1. Then

𝑏 =
𝑏2

𝑏
=

|⟨𝑡 |𝐿−2 |𝐼⟩|2
⟨𝑡 |𝑇⟩ (57)

is independent of the normalization of 𝑇 , since the normalization of 𝑡 is linked to that of 𝑇 via the coefficients in (54).
Calculating the lattice equivalent of Eq. (57) is well known to give results converging to the expected value of 𝑏 as 𝐿
increases.

The method of measuring 𝑏 between 𝑇 and 𝑡 generalizes to any logarithmic pair, especially regarding the fact that 𝑇
is a null state. In general, whenever a Jordan block forms, there is a top and a bottom state. If this Jordan block comes
from a Hamiltonian describing a logarithmic CFT, from general arguments involving the action of the Virasoro algebra, it
is expected that the bottom state in such a Jordan block has zero conformal norm square. In the CFT, calling Ψ̃ the top
state and Ψ the bottom state, the result follows from the fact that we have

𝐿0Ψ̃ = ℎΨ̃ + Ψ and (58a)
𝐿0Ψ = ℎΨ. (58b)

Hence we have

⟨Ψ|Ψ⟩ = ⟨Ψ| (𝐿0 − ℎ)Ψ̃⟩ = ⟨(𝐿0 − ℎ)Ψ|Ψ̃⟩ = 0 (59)

where in the last equation we used the fact that 𝐿†𝑛 = 𝐿−𝑛 (i.e. 𝐿𝑛 and 𝐿−𝑛 are conjugate for the Virasoro norm).
For the problem at hand, we only observe pairs of singlets on the lattice: they have close eigenvalues in finite size that

approach each other in the limit 𝐿 → ∞. Nevertheless, both singlets are still proper eigenvectors, and we expect that they
both converge to the bottom state Ψ of an emerging Jordan block. They should thus have a loop norm going to zero in the
limit 𝐿 → ∞. This will be checked in cases where we find emerging Jordan blocks using the 𝐽 measure.

The method for calculating 𝑏 in this case—generalizing the procedure described around Eq. (57) when there is a Jordan
block is finite size—will be as follows:

1. Identify an emerging Jordan block by finding pairs of vectors Ψ, Ψ′ on the lattice corresponding to given conformal
fields such that lim 𝐽 (Ψ,Ψ′) = 1.
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2. Construct the emerging Jordan vector Ψ̃ by orthogonalizing Ψ′ against Ψ with respect to the standard inner product
(·|·). Normalize Ψ̃ so that (Ψ|𝐻 (𝐿)

0 |Ψ̃) = 2 (recall generally that 𝐻 (𝐿)
𝑛 = 𝐿

(𝐿)
𝑛 + 𝐿 (𝐿)

−𝑛 ).

3. Using the CFT, express Ψ = 𝐴Φ as a descendant of a primary field Φ, with 𝐴 the corresponding null vector operator.
Identify the lattice analogue of Φ, and normalize it to ⟨Φ|Φ⟩ = 1.

4. Finally,

𝑏(𝐿) = |⟨Ψ̃|𝐴(𝐿) |Φ⟩|2

⟨Ψ̃|Ψ⟩
, (60)

where we note that convergence as 𝐿 → ∞ may be improved by using 𝐻 (𝐿)
−𝑛 instead of 𝐿 (𝐿)

−𝑛 in the expression for
𝐴(𝐿) (of course this would not change anything in the continuum limit).

There are many possibilities for the unspecified limit in step 1. In this paper we focus on the Jordan blocks that form as
𝐿 → ∞ by studying the emerging Jordan blocks at finite 𝐿; we will also use the emerging Jordan blocks formalism to
determine (in the appendix) the 𝑏 number in the well-studied case of the Jordan block between 𝑇 and 𝑡 as an illustrative,
analytically tractable example that validates the formalism and other observations to be made.

Additionally, the procedure gives two possible measurements of 𝑏. Since Ψ and Ψ′ both converge to the same vector,
they should be treated on an equal footing, and by switching the roles of Ψ and Ψ′ we obtain a second value for 𝑏. Because
the value of 𝑏 should reflect an intrinsic property of the module, it should be insensitive to the method of calculation.
The outcome of the procedure is thus only meaningful when the two calculations agree. We will return to this remark
once we arrive at concrete results, but we note first that in each instance where we carry out these measurements, the two
𝑏 numbers agree (within a margin where only numerical computations are possible) precisely where Jordan blocks are
known or suspected to appear, and differ otherwise.

4 Measurements of indecomposability parameters

4.1 Emerging Jordan blocks in 𝒲1,1 at generic 𝑐

In 𝒲1,1 there are two eigenstates at zero momentum2 whose conformal weights go to ℎ + ℎ = 2 as 𝐿 → ∞. For generic
𝑐 and finite 𝐿, these eigenstates are non-degenerate, and we refer to them by the labels 𝛼 and 𝛽. In practice, 𝛼 is the first
excitation (above the ground state) in the zero-momentum sector of 𝒲1,1. 𝛽 is the second or third excitation, depending
on the values of 𝐿 and 𝑐: at values of 𝑐 close to 1 and small values of 𝐿, it is the third excitation, but crosses over to the
second excitation at large values of 𝐿.3

The emerging Jordan block involving 𝛼 and 𝛽, based on the measure 𝐽 (𝛼, 𝛽), can be seen in Figure 1. The plot4
suggests that there is a Jordan block at finite size for 𝑐 = −2, and this is indeed the case [30].

Following our procedure, we calculate the parameter 𝑏1,1 that describes this Jordan block at finite size. Both 𝛼 and 𝛽
converge to the same vector as 𝐿 → ∞, the primary field Ψ1,1 = 𝐿−1Φ1,1 = 𝐿−1Φ1,1 of Eq. (42) (again, the equality holds
in the continuum limit). Take, for the lattice approximation of Φ1,1, the lowest field5 of momentum 1 and normalize it to
⟨Φ1,1 |Φ1,1⟩ = 1. Then, orthogonalize 𝛼 and 𝛽 by subtracting from 𝛽 its component along 𝛼, resulting in 𝛽, and normalize
it such that (𝛼 |𝐻0 |𝛽) = 2. Then, we obtain a lattice measurement of the logarithmic coupling by calculating

𝑏
(1)
1,1 (𝐿, 𝑐) =

|⟨𝛽 |𝐻 (𝐿)
−1 |Φ1,1⟩|2

⟨𝛽 |𝛼⟩
. (61)

As 𝛼 and 𝛽 should be treated on an equal footing, we similarly define 𝑏 (2)1,1 by exchanging the roles of 𝛼 and 𝛽 in this
procedure. 𝑏 (2)1,1 will generically be different from 𝑏

(1)
1,1 , but when a genuine Jordan block forms, they should be equal, as

we see in the analytic examples. These two measurements of 𝑏1,1 are given graphically in Figures 2 and 3.
We predicted in Eq. (47a) that

𝑏1,1 =
1

𝑥 + 1
. (62)

The comparison of this value with the extrapolations is given in Figure 4.

2In fact, some states exhibit a finite macroscopic momentum equal to 𝜋 added to their conformal part (which scales like 1/𝐿)—we do not make the
distinction, and only refer in what follows to the conformal part [29].

3In Table 13 of [2], they are lines 𝑖13 = 5 and 6. Cf. end of Section 2.3.
4All data is collected by subdividing the interval (−2, 1) representing the range of 𝑐 considered in this paper into even divisions of width 𝜋/1000, so

that measurements are carried out for 𝑐 ∈ {−636𝜋/1000, −635𝜋/1000, . . . , 318𝜋/1000}. The point 𝑐 = 0 is omitted where consequences of it being
non-generic are manifest—i.e., in the glued module 𝒩2.

5This field is line 𝑖13 = 2 in Table 13 of [2].
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Figure 1: The formation of a Jordan block between two singlets in 𝒲1,1. The legend indicates the value of 𝑁 = 2𝐿. It is
expected that the curves extrapolate to the dashed line in the limit 𝐿 → ∞.
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Figure 2: The measurement of 𝑏 (1)1,1 between 𝛼 and 𝛽, together with a polynomial extrapolation.
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Figure 3: The measurement of 𝑏 (2)1,1 between 𝛼 and 𝛽, together with a polynomial extrapolation.
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Figure 4: The extrapolations of 𝑏1,1 compared with the expected value.
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Figure 5: The formation of a Jordan block between two singlets in 𝒲2,1. The legend indicates the value of 𝑁 = 2𝐿.

4.2 Emerging Jordan blocks in 𝒲2,1 at generic 𝑐

In 𝒲2,1 there are four fields that have ℎ + ℎ = 2ℎ1,−2. For generic 𝑐 and finite 𝐿, these fields correspond to two non-
degenerate eigenvalues (singlets), which we denote by 𝜇 and 𝜈, and one doubly degenerate eigenvalue. These four fields
tend to have weights higher than Φ0,2 and 𝐿−1𝐿−1Φ0,2.6 At generic 𝑐, the two singlets are expected to form a Jordan block
in the 𝐿 → ∞ limit. The doublet occurs because of a left–right (chiral–antichiral) symmetry [2], and is not expected to be
involved in the Jordan-block structure.

Using the 𝐽 measure, we can directly observe the emerging Jordan block involving 𝜇 and 𝜈 (Figure 5). As with the
fields 𝛼 and 𝛽 in 𝒲1,1, the plot correctly suggests that there is a Jordan block at finite size for 𝑐 = −2.

We again obtain estimates for the parameter 𝑏1,2 that characterizes the Jordan block involving 𝜇 and 𝜈. Both 𝜇 and 𝜈
converge to the same vector as 𝐿 → ∞, the field Ψ1,2 in Eq. (42). The field Φ1,2 is realized on the lattice as the lowest field7

of momentum 2, which we normalize to ⟨Φ1,2 |Φ1,2⟩ = 1. Orthogonalize 𝜇 and 𝜈 by subtracting from 𝜈 its component
along 𝜇, resulting in �̃�, and normalize it so that (𝜇 |𝐻0 |�̃�) = 2. Then we have

𝑏
(1)
1,2 (𝐿, 𝑐) =

|⟨�̃� |𝐴(𝐿) |Φ1,2⟩|2
⟨�̃� |𝜇⟩ , (63)

where

𝐴(𝐿) = 𝐻 (𝐿)
−2 − 3

2(2ℎ1,2 + 1) (𝐻
(𝐿)
−1 )2, (64)

as in the continuum version (1b). We similarly define 𝑏 (2)1,2 by exchanging the roles of 𝜇 and 𝜈 in this procedure. The two
measurements of 𝑏1,2 are given graphically in Figures 6 and 7.

From Eq. (47b) we have

𝑏1,2 =
4

𝑥 + 1
− 2
𝑥2 . (65)

The comparison of this value with the two extrapolated measurements is shown in Figure 8.

***

Particularly with the measured values of 𝑏 (1)1,1 and 𝑏 (1)1,2 , we see excellent agreement with the theoretical 𝑏 values in
Eqs. (47a) and (47b). As these values of 𝑏 were derived from the diamond structure of Eq. (42), these measurements
almost certainly establish the correctness of Conjecture 2. Admittedly, the measurement is not as compelling near 𝑐 = 1,

6In Table 14 of [2], we identify the singlets as lines 𝑖13 = 24 and 35, and the doublet as line 𝑖13 = 25.
7This field is line 𝑖13 = 3 in Table 14 of [2].
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Figure 6: The measurement of 𝑏 (1)1,2 between 𝜇 and 𝜈.
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Figure 7: The measurement of 𝑏 (2)1,2 between 𝜇 and 𝜈.
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Figure 8: The two extrapolations of 𝑏1,2 compared with the expected value.
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and the values of 𝑏 (1)1,1 and 𝑏 (1)1,2 differ significantly from 𝑏
(2)
1,1 and 𝑏 (2)1,2 , even though they should give the same values in

the limit. We remarked previously that the 𝑏 number should be a characteristic of the module, insensitive to the method
of calculation. In the analytical examples we are able to take limits exactly, and we see an agreement precisely where
the two 𝑏 values are equal with the existence of a Jordan block. We believe the discrepancies in the pairs of numerical
measurements are a result of the limited amount of accessible data and the necessity of extrapolation, which certainly
introduces some errors. With further data and improved extrapolations, we would expect the discrepancies to shrink and
the two extrapolated 𝑏 values to overlap with the theoretical curve, thereby establishing the existence of the Jordan block
only in the continuum limit. We note additionally that the emergence of the Jordan block is much slower near 𝑐 = 1, as
seen in Figures 1 and 5, and this may be remedied too once we have access to larger lattice sizes.

We note that it is possible to carry out the procedures of the preceding two subsections in the glued modules 𝒩1 or 𝒩2
instead of the standard modules as described above. The numerical results—in particular, the 𝐽 measure and 𝑏 values—in
finite size are slightly different, as the eigenvectors of the Hamiltonian contain components with various numbers of
through-lines and the inner product is modified, but they are compatible with the same expected limit as 𝐿 → ∞.

5 Conclusion
We have shown in this paper how to study indecomposable Virasoro modules starting from a lattice model with diago-
nalizable Hamiltonian using the concept of emerging Jordan blocks. This allowed us to confirm the expected logarithmic
properties of the CFTs for the 𝑄-state Potts model (as well as the low-temperature 𝑂 (𝔪) model). The next step in this
analysis would be to investigate systematically the case 𝑐 = 0, and confirm in particular the existence of a rank-3 Jordan
block for fields with conformal weights (ℎ, ℎ̄) = (2, 2) as conjectured in [31]. We will leave this (highly technical) exercise
for a subsequent work.

Acknowledgments: we thank L. Grans-Samuelsson, Y. He, R. Nivesvivat, and S. Ribault for discussions and related
collaborations. This work was supported in part by the French Agence Nationale de la Recherche (ANR) under grant
ANR-21-CE40-0003 (project CONFICA). Parts of the paper build upon work contained in a thesis submitted by L.L. in
partial fulfillment of the requirements for a doctoral degree at University of Southern California [26].

A Other results obtained with the emerging Jordan blocks method
The results of this paper rely on the new technique of studying conjectured Jordan blocks via a sequence of operators
that have only trivial Jordan blocks—i.e., what we have called the emerging Jordan blocks method. Our indirect method
of measuring 𝑏1,1 and 𝑏1,2 can therefore be better justified if we can use this technique to replicate results obtained in
situations where Jordan blocks have actually been observed.

The most well-studied of these is the Jordan block between the stress–energy tensor 𝑇 and its logarithmic partner 𝑡
at 𝑐 = 0. In Section A.1, we describe how this Jordan block can be observed in a finite-dimensional model. In Section
A.2, we use the emerging Jordan blocks technique to compute the 𝑏 number characterizing this Jordan block, with the
additional findings of some closed-form expressions for finite-size 𝑏 measurements. In short, we find with the emerging
Jordan blocks technique the same values present in the literature computed with Jordan blocks, thus giving credence to
the method.

A.1 Absence and restoration of Jordan blocks
A.1.1 The contraction parameter 𝑦

The modules we study in this paper are 𝒲1,1, 𝒲2,1, and 𝒩2 = 𝒲0,𝔮±2 +𝒲1,1 +𝒲2,1. As mentioned, in finite size Jordan
blocks are not observed in 𝒲1,1 and 𝒲2,1. Technically, this situation occurs because the fields expected to form such a
Jordan block are found with slightly different eigenvalues, precluding that possibility. The Jordan blocks emerge as the
pairs of eigenvalues converge in the continuum limit, and, as will be seen, this situation can be studied successfully with
the ideas in Section 3.

Strictly at 𝑐 = 0 (𝔪 = 1), it so happens that there are no Jordan blocks on the lattice for the dense loop model
Hamiltonian, even in the glued module 𝒩2. This is a somewhat surprising fact since we know from representation theory
that the JTL algebra is not semisimple at that point, and that the modules 𝒲0,𝔮±2 and 𝒲2,1 are glued by the action of
generic elements of the algebra. Furthermore, other representations, such as the 𝑠ℓ(2|1) spin chain, do exhibit the expected
Jordan blocks. Nonetheless, the fact remains that the Hamiltonian itself is fully diagonalizable, and that, for instance, the
eigenvalues corresponding to the conformal states 𝑇 and its logarithmic partner 𝑡 are degenerate without being part of a
Jordan block. This fact was observed previously by [7] for the case of open boundary conditions, though it was not clear
at the time whether this was a bizarre effect due to the small sizes studied. However, the situation does not seem to change
when exploring larger sizes and with periodic boundary conditions, and it seems to be a definite feature of the model.
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In the preceding work as well as in subsequent studies, this problem was circumvented by introducing a parameter
𝑦 ∈ R that did not change the (generalized) eigenvalues of the Hamiltonian but allowed the Jordan blocks at 𝑐 = 0 to
“reappear” somewhat miraculously. Whenever certain parity conditions to be specified were met, the result would be
multiplied by a factor 𝑦. The parity conditions are as follows: whenever two through-lines become contracted, and the
“left” one is on an odd8 site, then the factor 𝑦 is applied. For example, consider the action of the diagram

𝑎 = (66)

on the state 𝜆 = (1) (2) (3) (4) (56). When 𝑎 is stacked on top of 𝜆, the curves in the lower row of 𝑎 contract two pairs of
through-lines in the link state 𝜆: the pair 1–4 and the pair 2–3. The left sites of each pair are 1 and 2. The factor 𝑦 is thus
applied once, since only 1 is odd. The result of the computation is thus 𝑎𝜆 = 𝑦(12) (34) (56). The same contracted pair
can give a factor of 𝑦 or not depending on which one sits on the left: for 𝑁 = 2, 𝑒1 (1) (2) = 𝑦(12) but 𝑒2 (1) (2) = (21),
since in the latter case site 2 sits on the “left,” connected to 1 through the periodic boundary (note that any contracted pair
of through-lines will be on sites of opposite parity). The base model is thus recovered when 𝑦 = 1. The meaning of this
parameter was not very clear, except for the fact that it broke the symmetry of translation by one site—a somewhat pleasant
feature, since the dense loop model is naturally described using an underlying oriented lattice that is only compatible with
translation invariance by two sites. With 𝑦 ≠ 1 for open boundary conditions (𝑦 ≠ ±1 for periodic boundary conditions)
the measured values of the logarithmic couplings known at the time of those studies for 𝑐 = 0 were found to be independent
of 𝑦 and in excellent agreement with theoretical expectations.

The parameter 𝑦 only affects matrix elements between different modules. As long as one restricts to a single standard
module (e.g., 𝒲1,1 or 𝒲2,1), no calculations can be affected by the value of 𝑦—and this is true even at 𝑐 = 0. However,
it turns out that, if we measure the quantities 𝐽, 𝑏1,1, and 𝑏1,2 by carrying out corresponding calculations in the glued
module, their values depend on 𝑦 in a nontrivial, most unsatisfactory way: they encounter seemingly-random divergences
and sign changes when considered as functions of 𝑐, and these divergences and sign flips change positions as 𝑦 varies.
This occurs despite the fact that the JTL algebra is simple for 𝑐 ≠ 0, so a change of basis provides modules isomorphic to
𝒲1,1 or 𝒲2,1. The only strategy to recover results which are compatible with conformal invariance seems to be to consider
the limit 𝑦 → 1 at finite 𝐿, and then extrapolate to the thermodynamic limit, if it can be done. It is fair to ask why one
would have to go through these gymnastics, and what they mean.

A.1.2 Symmetry of the JTL algebra

We now observe that the JTL algebra has a symmetry under 𝑒 𝑗 → −𝑒 𝑗 and 𝔪 → −𝔪: more precisely, if we set 𝑒′
𝑗
≡ −𝑒 𝑗 ,

the 𝑒′
𝑗

satisfy the JTL relations with 𝔪′ = −𝔪. Note that because of the relation

𝜏2𝑒𝑁−1 = 𝑒1 · · · 𝑒𝑁−1 (67)

this is only true for 𝑁 even. Note also that, using the XXZ representation of the Temperley–Lieb algebra

𝑒 𝑗 = −𝜎−
𝑗 𝜎

+
𝑗+1 − 𝜎

+
𝑗 𝜎

−
𝑗+1 −

cos 𝛾
2

𝜎𝑧
𝑗
𝜎𝑧
𝑗+1 −

i sin 𝛾
2

(𝜎𝑧
𝑗
− 𝜎𝑧

𝑗+1) +
cos 𝛾

2
(68)

this mapping corresponds to 𝜎𝑥,𝑦
𝑗

→ (−1) 𝑗𝜎𝑥,𝑦
𝑗

and 𝛾 → 𝛾 − 𝜋, which leads, in particular, to the famous mapping
between the XXZ Hamiltonian 𝐻𝑋𝑋𝑍 (Δ) and −𝐻𝑋𝑋𝑍 (−Δ) for an even number of sites9, where

𝐻𝑋𝑋𝑍 =

𝑁∑︁
𝑗=1

(𝜎𝑥𝑗 𝜎𝑥𝑗+1 + 𝜎
𝑦

𝑗
𝜎
𝑦

𝑗+1 + Δ𝜎𝑧
𝑗
𝜎𝑧
𝑗+1). (69)

We can therefore study the loop model with opposite Hamiltonian and opposite value of the loop fugacity. While it is
widely expected that these two descriptions are equivalent, they do differ right at 𝔪 = 1. To see this consider the simple
example of 2𝐿 = 4. Using the basis {(12) (34), (23) (14), (2) (3) (41), (3) (4) (12), (1) (4) (23), (1) (2) (34), (1) (2) (3) (4)},
we have

𝐻4 (𝔪, 𝑒∞) =

©«

4𝑒∞ − 2𝔪 −2 0 −1 0 −1 0
−2 4𝑒∞ − 2𝔪 −1 0 −1 0 0
0 0 4𝑒∞ −𝔪 −1 0 −1 −1
0 0 −1 4𝑒∞ −𝔪 −1 0 −1
0 0 0 −1 4𝑒∞ −𝔪 −1 −1
0 0 −1 0 −1 4𝑒∞ −𝔪 −1
0 0 0 0 0 0 4𝑒∞

ª®®®®®®®®®¬
. (70)

8Whether the “special” sites are chosen to be odd or even makes no difference in the results.
9We note that the situation would be more complicated for an odd number of sites. This case is not relevant for the present paper—see [32] for other

features particular to odd 𝑁 .
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Both

𝐻4 (1, 1) =

©«

2 −2 0 −1 0 −1 0
−2 2 −1 0 −1 0 0
0 0 3 −1 0 −1 −1
0 0 −1 3 −1 0 −1
0 0 0 −1 3 −1 −1
0 0 −1 0 −1 3 −1
0 0 0 0 0 0 4

ª®®®®®®®®®¬
(71)

and

−𝐻4 (−1,−1) =

©«

2 2 0 1 0 1 0
2 2 1 0 1 0 0
0 0 3 1 0 1 1
0 0 1 3 1 0 1
0 0 0 1 3 1 1
0 0 1 0 1 3 1
0 0 0 0 0 0 4

ª®®®®®®®®®¬
(72)

have eigenvalues {𝜆1, . . . , 𝜆7} = {0, 1, 3, 3, 4, 4, 5}. It turns out however that 𝐻4 (1, 1) is diagonalizable with the 7
corresponding geometric eigenvectors

𝑣1 = (1, 1, 0, 0, 0, 0, 0), (73a)
𝑣2 = (2, 2,−1,−1,−1,−1, 0), (73b)
𝑣3 = (0, 0, 1, 0,−1, 0, 0), (73c)
𝑣4 = (0, 0, 0, 1, 0,−1, 0), (73d)
𝑣5 = (1,−1, 0, 0, 0, 0, 0), (73e)
𝑣6 = (1, 0,−1,−1,−1,−1, 3), (73f)
𝑣7 = (2,−2, 1,−1, 1,−1, 0), (73g)

but −𝐻4 (−1,−1) is not. Its generalized eigenbasis is

𝑣1 = (1,−1, 0, 0, 0, 0, 0), (74a)
𝑣2 = (2,−2,−1, 1,−1, 1, 0), (74b)
𝑣3 = (0, 0, 0, 1, 0,−1, 0), (74c)
𝑣4 = (0, 0, 1, 0,−1, 0, 0), (74d)
𝑣5 = (1, 1, 0, 0, 0, 0, 0), (74e)

�̃�6 =

(
0, 0,

1
2
,

1
2
,

1
2
,

1
2
,−1

2

)
, (74f)

𝑣7 = (2, 2, 1, 1, 1, 1, 0), (74g)

where the tilde on �̃�6 indicates it is not a proper eigenvector.
We have now recovered nontrivial Jordan blocks without invoking the parameter 𝑦. Let us reinforce this observation

using the formalism of emerging Jordan blocks. With 𝔪 remaining arbitrary, we have more generally the corresponding
eigenvectors (of 𝐻 (𝔪, 𝑒∞) and −𝐻 (−𝔪,−𝑒∞), where 𝔪 > 0)

𝑢5 = (1,−1, 0, 0, 0, 0, 0), (75a)
𝑢6 = (1, 1,−(𝔪 + 1),−(𝔪 + 1),−(𝔪 + 1),−(𝔪 + 1), (𝔪 + 1) (𝔪 + 2)), (75b)
𝑣5 = (1, 1, 0, 0, 0, 0, 0), (75c)
𝑣6 = (1, 1,𝔪 − 1,𝔪 − 1,𝔪 − 1,𝔪 − 1, (𝔪 − 1) (𝔪 − 2)). (75d)

One can immediately see that 𝐽 (𝑢5, 𝑢6) = 0, while lim𝔪→1 𝐽 (𝑣5, 𝑣6) = 1. More generally,

𝐽 (𝑣5, 𝑣6) =

√︄
2

2 + 4(𝔪 − 1)2 + (𝔪 − 1)2 (𝔪 − 2)2 . (76)

Furthermore, �̃�6 is obtained by orthogonalizing 𝑣6 against 𝑣5, then rescaling the result in the limit 𝔪 → 1. We conclude
the presentation of our method on this example with the measurement of 𝑏 in the next section.
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Because the modified model with 𝔪 → −𝔪 and 𝑒 𝑗 → −𝑒 𝑗 shows the expected structure at 𝔪 = 1, in agreement with
other representations, we will consider it to be the “correct” loop model. Hereafter, we continue to use the parametrization
𝑥 ∈ (0,∞), but now with

𝔪 = −2 cos
( 𝜋

𝑥 + 1

)
, (77a)

𝑒 𝑗 = (−1) ×

1

· · ·

𝑗 𝑗 + 1

· · ·

𝑁

(77b)

The expressions for the Hamiltonian and Koo–Saleur generators remain the same, evaluated using the new values of 𝔪
and 𝑒 𝑗 . The spectra of the two Hamiltonians are identical, so that the identification of fields is not affected.

A.2 The parameter 𝑏 between 𝑇 and 𝑡
Although we now have real, rather than emerging, Jordan blocks, it is useful to consider the measurement of 𝑏 using
emerging Jordan blocks anyway, because we already have measurements of 𝑏 itself using the Jordan blocks [9], and we
would like to see agreement between the two methods. The procedure of Section 3.2 reads as follows. For fixed 𝐿

and generic 𝑐 close to 0, identify an eigenvector of 𝐻 in the representation 𝒲0,𝔮±2 + 𝒲1,1 + 𝒲2,1 corresponding to the
stress–energy tensor 𝑇 . (Actually, it is known that 𝑇 lives in 𝒲0,𝔮±2 , and since the action of JTL can only decrease the
first index 𝑗 , it suffices to find 𝑇 in 𝒲0,𝔮±2 and embed it in the full glued module.) Find an eigenvector 𝑇 ′ that becomes
degenerate and parallel with 𝑇 at 𝑐 = 0, but is otherwise distinct—it has nonzero components in 𝒲2,1. Define 𝑡 via the
Gram–Schmidt process and normalize it as specified. Then

𝑏(𝐿) = lim
𝑐→0

|⟨𝑡 |𝐻−2 |𝐼⟩|2
⟨𝑡 |𝑇⟩⟨𝐼 |𝐼⟩ , (78)

where 𝐼 is the ground state (fully contained in 𝒲0,𝔮±2 ) and we have taken 𝐴 = 𝐿−2 as 𝑇 = 𝐿−2𝐼.
The last expression requires some explanation. The modifications 𝑒 𝑗 → −𝑒 𝑗 and 𝔪 → −𝔪 must be propagated

throughout the entire process. This includes not only the Hamiltonian but also the inner product and Koo–Saleur
generators. When we do this, it is found that ⟨𝐼 |𝐼⟩ = (−1)𝐿 upon normalization—i.e., it is negative for odd 𝐿. The sign
of the norm square is invariant and cannot be changed by rescaling, even by a complex constant. However, because CFT
demands that primary fields have unit norm square, particularly the ground state, in these cases we must enforce this by
manually adding in the sign, and declaring this to be the correct inner product. This is the meaning of the appearance of
⟨𝐼 |𝐼⟩ in the denominator.

The results of this process are shown in Table 1.

𝑁 = 2𝐿 𝑏

4 −1.96028
6 −3.24046
8 −3.94952

10 −4.33295
12 −4.55079
14 −4.68234
16 −4.76633
18 −4.82253

conjectured −5

Table 1: Different measurements for 𝑏 = ⟨𝑡 |𝑇⟩ in 𝒲0,𝔮±2 +𝒲1,1 +𝒲2,1.

In this case, when the roles of 𝑇 and 𝑇 ′ are exchanged, the same value of 𝑏(𝐿) is obtained, unlike what is observed in
Section 3.2. The two measurements match here because the limit 𝑐 → 0 is actually reached, rather than extrapolated as
must be the case for the limit 𝐿 → ∞. Furthermore, the measurements match those reported in [9]. The crucial difference
is that we were able to compute the same quantities without ever calculating a Jordan form, a demanding task. We
needed only to diagonalize the Hamiltonian and take limits; the emerging Jordan block took care of the indecomposability
parameter.

Because exact diagonalization is also algebraically much less daunting a task than finding a Jordan canonical form,
we are able to calculate closed form expressions for 𝑏(𝐿) for sufficiently small 𝐿. For 𝐿 = 2, 𝑇 and 𝑇 ′ are 𝑣5 and 𝑣6 of
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Eq. (75), and 𝐼 is 𝑣1/2 of Eq. (74), so that it is normalized to ⟨𝐼 |𝐼⟩ = 1. This leads to two measurements of 𝑏:

𝑏 (1) = −8(1 −𝔪)
𝜋𝑣F

, and (79a)

𝑏 (2) =
4𝔪(1 −𝔪) (𝔪4 − 2𝔪3 +𝔪2 + 12𝔪 + 10)2

𝜋𝑣F (𝔪3 − 7𝔪2 + 6𝔪 + 16)
. (79b)

When 𝔪 → −1, 𝑣F → 3
√

3/2, and 𝑏 (1) , 𝑏 (2) → −32
√

3/9𝜋 ≈ −1.96028, precisely the measured value. An analogous
calculation is possible for 𝐿 = 3. One value of 𝑏 is

𝑏 (1) =
3
𝜋𝑣F

4𝔪2 + 2𝔪 (2𝔪2−9)√
𝔪2+48

− 6

1 +𝔪
. (80)

The expression for 𝑏 (2) is much too complicated to be worth showing, and is not particularly illuminating. However,
for 𝔪 → −1 both tend to 𝑏 = −288

√
3/49𝜋 ≈ −3.24046, again the measured value. (Despite the denominator in the

expression for 𝑏 (1) , it is a removable singularity, and yields a finite value as 𝔪 → −1.) Finally, it turns out that at 𝐿 = 4,
one may repeat the same exercise to find at 𝑐 = 0

𝑏 = −
8
√︃

2105222 + 1531774
√

17/3
1323𝜋

≈ −3.94952. (81)

References
[1] V. Gorbenko and B. Zan, “Two-dimensional 𝑂 (𝑛) models and logarithmic CFTs,” Journal of High Energy Physics,

vol. 2020, no. 10, p. 99, 2020. doi: 10.1007/JHEP10(2020)099. [Online]. Available: https://doi.org/10.
1007/JHEP10(2020)099.

[2] L. Grans-Samuelsson, L. Liu, Y. He, J. L. Jacobsen, and H. Saleur, “The action of the Virasoro algebra in the
two-dimensional Potts and loop models at generic 𝑄,” Journal of High Energy Physics, vol. 2020, no. 10, p. 109,
Oct. 2020, issn: 1029-8479. doi: 10.1007/JHEP10(2020)109. [Online]. Available: https://link.springer.
com/content/pdf/10.1007/JHEP10(2020)109.pdf.

[3] R. Nivesvivat and S. Ribault, “Logarithmic CFT at generic central charge: from Liouville theory to the 𝑄-state
Potts model,” SciPost Phys., vol. 10, p. 021, 2021. doi: 10.21468/SciPostPhys.10.1.021. [Online]. Available:
https://scipost.org/10.21468/SciPostPhys.10.1.021.

[4] A. Gainutdinov, D. Ridout, and I. Runkel, “Logarithmic conformal field theory,” Journal of Physics A: Mathematical
and Theoretical, vol. 46, no. 49, p. 490 301, 2013. doi: 10.1088/1751-8113/46/49/490301. [Online]. Available:
https://dx.doi.org/10.1088/1751-8113/46/49/490301.

[5] V. Gurarie, “Logarithmic operators in conformal field theory,” Nuclear Physics B, vol. 410, no. 3, pp. 535–
549, 1993. doi: https : / / doi . org / 10 . 1016 / 0550 - 3213(93 ) 90528 - W. [Online]. Available: https :
//www.sciencedirect.com/science/article/pii/055032139390528W.

[6] V. Gurarie and A. W. W. Ludwig, “Conformal algebras of two-dimensional disordered systems,” Journal of Physics
A: Mathematical and General, vol. 35, no. 27, p. L377, Jun. 2002. doi: 10.1088/0305-4470/35/27/101.
[Online]. Available: https://dx.doi.org/10.1088/0305-4470/35/27/101.

[7] J. Dubail, J. L. Jacobsen, and H. Saleur, “Conformal field theory at central charge 𝑐 = 0: A measure of the
indecomposability (b) parameters,” Nuclear Physics B, vol. 834, no. 3, pp. 399–422, 2010, issn: 0550-3213.
doi: https://doi.org/10.1016/j.nuclphysb.2010.02.016. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0550321310001021.

[8] R. Vasseur, J. L. Jacobsen, and H. Saleur, “Indecomposability parameters in chiral logarithmic conformal field
theory,” Nuclear Physics B, vol. 851, no. 2, pp. 314–345, 2011, issn: 0550-3213. doi: https://doi.org/10.
1016/j.nuclphysb.2011.05.018. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0550321311002963.

[9] R. Vasseur, A. Gainutdinov, J. L. Jacobsen, and H. Saleur, “Puzzle of bulk conformal field theories at central charge
𝑐 = 0,” Phys. Rev. Lett., vol. 108, p. 161 602, 16 Apr. 2012. doi: 10.1103/PhysRevLett.108.161602. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevLett.108.161602.

[10] N. Read and H. Saleur, “Enlarged symmetry algebras of spin chains, loop models, and s-matrices,” Nuclear Physics B,
vol. 777, no. 3, pp. 263–315, 2007, issn: 0550-3213. doi: https://doi.org/10.1016/j.nuclphysb.2007.03.
007. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0550321307001745.

23

https://doi.org/10.1007/JHEP10(2020)099
https://doi.org/10.1007/JHEP10(2020)099
https://doi.org/10.1007/JHEP10(2020)099
https://doi.org/10.1007/JHEP10(2020)109
https://link.springer.com/content/pdf/10.1007/JHEP10(2020)109.pdf
https://link.springer.com/content/pdf/10.1007/JHEP10(2020)109.pdf
https://doi.org/10.21468/SciPostPhys.10.1.021
https://scipost.org/10.21468/SciPostPhys.10.1.021
https://doi.org/10.1088/1751-8113/46/49/490301
https://dx.doi.org/10.1088/1751-8113/46/49/490301
https://doi.org/https://doi.org/10.1016/0550-3213(93)90528-W
https://www.sciencedirect.com/science/article/pii/055032139390528W
https://www.sciencedirect.com/science/article/pii/055032139390528W
https://doi.org/10.1088/0305-4470/35/27/101
https://dx.doi.org/10.1088/0305-4470/35/27/101
https://doi.org/https://doi.org/10.1016/j.nuclphysb.2010.02.016
https://www.sciencedirect.com/science/article/pii/S0550321310001021
https://www.sciencedirect.com/science/article/pii/S0550321310001021
https://doi.org/https://doi.org/10.1016/j.nuclphysb.2011.05.018
https://doi.org/https://doi.org/10.1016/j.nuclphysb.2011.05.018
https://www.sciencedirect.com/science/article/pii/S0550321311002963
https://www.sciencedirect.com/science/article/pii/S0550321311002963
https://doi.org/10.1103/PhysRevLett.108.161602
https://link.aps.org/doi/10.1103/PhysRevLett.108.161602
https://doi.org/https://doi.org/10.1016/j.nuclphysb.2007.03.007
https://doi.org/https://doi.org/10.1016/j.nuclphysb.2007.03.007
https://www.sciencedirect.com/science/article/pii/S0550321307001745


[11] J. L. Jacobsen, S. Ribault, and H. Saleur, “Spaces of states of the two-dimensional 𝑂 (𝑛) and Potts models,” Aug.
2022. arXiv: 2208.14298 [math-ph].

[12] L. Grans-Samuelsson, J. L. Jacobsen, and H. Saleur, “The action of the Virasoro algebra in quantum spin chains.
Part I. The non-rational case,” Journal of High Energy Physics, vol. 2021, no. 2, p. 130, 2021. doi: 10.1007/
JHEP02(2021)130. [Online]. Available: https://doi.org/10.1007/JHEP02(2021)130.

[13] A. M. Gainutdinov, J. L. Jacobsen, and H. Saleur, “A fusion for the periodic Temperley-Lieb algebra and its
continuum limit,” Journal of High Energy Physics, vol. 2018, no. 11, p. 117, 2018. doi: 10.1007/JHEP11(2018)
117. [Online]. Available: https://doi.org/10.1007/JHEP11(2018)117.

[14] D. Ridout and Y. Saint-Aubin, “Standard modules, induction and the structure of the Temperley-Lieb algebra,” Adv.
Theor. Math. Phys., vol. 18, no. 5, pp. 957–1041, 2014. doi: 10.4310/ATMP.2014.v18.n5.a1. arXiv: 1204.4505
[math-ph].

[15] P. Martin and H. Saleur, “On an algebraic approach to higher-dimensional statistical mechanics,” Communications
in Mathematical Physics, vol. 158, no. 1, pp. 155–190, 1993.

[16] J. J. Graham and G. I. Lehrer, “The representation theory of affine Temperley-Lieb algebras,” Enseign. Math.,
vol. 44, no. 3-4, pp. 173–218, 1998, issn: 0013-8584.

[17] A. M. Gainutdinov, N. Read, H. Saleur, and R. Vasseur, “The periodic 𝑠ℓ(2|1) alternating spin chain and its
continuum limit as a bulk logarithmic conformal field theory at c = 0,” Journal of High Energy Physics, vol. 2015,
no. 5, p. 114, 2015. doi: 10.1007/JHEP05(2015)114. [Online]. Available: https://doi.org/10.1007/
JHEP05(2015)114.

[18] A. Gainutdinov, N. Read, and H. Saleur, “Bimodule structure in the periodic 𝑔ℓ(1|1) spin chain,” Nuclear Physics B,
vol. 871, no. 2, pp. 289–329, 2013, issn: 0550-3213. doi: https://doi.org/10.1016/j.nuclphysb.2013.02.
017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0550321313001168.

[19] V. F. R. Jones, “A quotient of the affine Hecke algebra in the Brauer algebra,” English, L’Enseignement Mathématique.
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[28] P. Di Francesco, P. Mathieu, and D. Sénéchal, Conformal Field Theory. Springer New York, 1997. doi: 10.1007/
978-1-4612-2256-9. [Online]. Available: https://doi.org/10.1007%2F978-1-4612-2256-9.
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