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The development of powerful numerical techniques has drastically improved our understanding of
quantum matter out of equilibrium. Inspired by recent progress in the area of noisy intermediate-
scale quantum devices, this paper highlights hybrid Schrödinger-Feynman techniques as an innova-
tive approach to efficiently simulate certain aspects of many-body quantum dynamics on classical
computers. To this end, we explore the nonequilibrium dynamics of two large subsystems, which
interact sporadically in time, but otherwise evolve independently from each other. We consider sub-
systems with tunable disorder strength, relevant in the context of many-body localization, where
one subsystem can act as a bath for the other. Importantly, studying the full interacting system,
we observe that signatures of thermalization are enhanced compared to the reference case of having
two independent subsystems. Notably, with the here proposed Schrödinger-Feynman method, we
are able to simulate the pure-state survival probability in systems significantly larger than accessible
by standard sparse-matrix techniques.

Introduction.– Studying the dynamics of many-body
quantum systems out of equilibrium is highly challeng-
ing. This is not least due to the exponentially growing
Hilbert space with system size and the build-up of en-
tanglement during the unitary time evolution. While
analytical solutions are typically rare, a variety of so-
phisticated numerical methods have been developed to
counteract these challenges. These include, for instance,
Krylov subspace techniques [1, 2], dynamical mean field
theory [3], quantum Monte-Carlo [4], classical phase-
space representations [5], neural network approaches [6–
8], numerical-linked cluster expansions [9–12] and, last
but not least, tensor-network methods such as the time-
dependent density-matrix renormalization group [13–16].
Notwithstanding the immense progress that has been
achieved, various questions still remain difficult to ad-
dress, e.g., distinguishing thermalization and localization
in disordered systems [17–24], obtaining quantitative val-
ues of diffusion constants [25–28], or simulating the dy-
namics of long-range or higher-dimensional systems [29–
37].

Progress in condensed-matter and quantum many-
body physics has been influenced substantially by con-
cepts from quantum information. Most notably, the no-
tion of entanglement has revolutionized our understand-
ing of phases of matter and the complexity of quan-
tum states [38–40]. With the recent advent of noisy
intermediate-scale quantum (NISQ) devices [41], we can
witness another example of such mutual influence be-
tween different subfields. On one hand, the natural lan-
guage of quantum computers is given in terms of quan-
tum circuits, consisting of layers of local gates [42]. Ap-
plied to questions in quantum dynamics, this framework
of quantum circuits has lead to new insights into thermal-
ization, quantum chaos, information spreading, and the
discovery of exotic out-of-equilibrium phases of matter

[43–55]. On the other hand, with NISQ devices now fea-
turing a nontrivial number of qubits [55–58], tailored nu-
merical methods are being developed in order to bench-
mark the quantum simulations [59–70].

One such NISQ-inspired simulation method is given
by the Schrödinger-Feynman approach [71–74], which
combines Schrödinger-style evolution of the wave func-
tion with Feynman-style path summation in a memory-
efficient way, allowing the simulation of systems out
of reach for established sparse-matrix techniques. In
a nutshell, the system of interest is split into smaller
patches (subsystems) which are simulated independently
from each other, thereby reducing the overall memory
requirements of the simulation. However, with each
gate that connects two different subsystems, an exponen-
tially growing number of trajectories needs to be simu-
lated to recover the dynamics of the full system. Thus,
Schrödinger-Feynman simulations entail favorable mem-
ory performance at the cost of an increased overall run
time, where the latter can be mitigated by using large-
scale parallelization of different trajectories.

While Schrödinger-Feynman simulations have been
employed to benchmark Google’s famous “quantum
supremacy” experiment [56], they have not attracted in-
terest yet for questions in many-body dynamics. Here,
we demonstrate their usefulness by studying the nonequi-
librium dynamics of two large subsystems, which inter-
act sporadically in time, but otherwise evolve indepen-
dently from each other. While this setup is interesting in
general, one particular motivation for us stems from the
question of many-body localization (MBL) in disordered
systems coupled to a bath [75–81]. To this end, we fo-
cus on the pure-state survival probability which we show
to be an especially amenable quantity in Schrödinger-
Feynman simulations. Using only fairly standard com-
putational resources, we are able to study the dynamics
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of rather large systems with up to 48 spin-1/2 degrees of
freedom. In particular, for these large interacting sys-
tem, we observe that signatures of thermalization are
enhanced compared to the reference case of having two
smaller independent subsystems.

Schrödinger-Feynman simulations.– On one hand, in
the Schrödinger (or state-vector) approach [82, 83],
the pure state of the system is evolved in time, i.e.,
|ψ(t)⟩ = e−iHt |ψ⟩ in case of Hamiltonian dynamics
or, more generally, |ψ(t)⟩ = V (t) |ψ⟩ with some uni-
tary V (t), e.g., resulting from a quantum circuit. This
requires to keep the full state |ψ(t)⟩, i.e., exponen-
tially many complex coefficients, in memory. On the
other hand, in the Feynman approach [84], the final
state (or one of its amplitudes) is obtained by sum-
ming up the contributions of different histories, e.g.,
|⟨0|V |0⟩|2 = |∑x⟨0|Vm|xm−1⟩ · · · ⟨x2|V2|x1⟩⟨x1|V1|0⟩|2,
where we have written V = Vm · · ·V2V1 as a product of
elementary (e.g., two-qubit) gates and the sum is over all
combinations of intermediate computational basis states.
In contrast to the state-vector approach, the Feynman
technique is memory efficient as we only need to track
the transitions between different basis states under the
action of the two-qubit gates Vi. However, the simula-
tion time (i.e., the number of possible histories) grows
exponentially with depth m. The goal of the here em-
ployed Schrödinger-Feynman method is to combine these
two paradigms to achieve both favorable time and mem-
ory requirements [71–74].

The central idea is to perform “circuit-cutting” (cf.
[85–89]), i.e., dividing the whole system into smaller
patches whose time evolutions are simulated indepen-
dently of each other by a full Schrödinger approach. The
individual patches should be chosen as large as possible
in order to efficiently utilize the available memory. Antic-
ipating our numerical example below, let us consider for
concreteness a system with a total of L spin-1/2 degrees
of freedom (i.e., qubits). The memory requirements to
store the full state |ψ(t)⟩ would scale as ∼ 2L. On the
other hand, splitting the system in two halves and sim-
ulating the subsystems individually, memory would only
scale as ∼ 2 × 2L/2 = 2L/2+1.

The splitting of the system into patches naturally
comes at a price. In particular, for each gate that
connects different patches, the number of independent
“trajectories” grows exponentially. (This is reminiscent
of Clifford+T gate simulators, where the computational
costs grow exponentially with the number of non-Clifford
gates [90].) Specifically, consider a system split in two
halves, which interact via a two-qubit gate where one
qubit is chosen from the first subsystem and the other
qubit is chosen from the second subsystem. In general,
such a two-qubit gate is a 4 × 4 matrix which can be

(a)
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U1 U2

UuUd

UuUd
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t = 0

t = 1

t = 2

t = 3

(b)
t = 1 t = 2 t = 3

FIG. 1. Sketch of the setup studied in this paper. (a) Two
subsystems evolve independently from each other with respect
to unitaries U1(2), obtained from an elementary Floquet uni-

tary with tunable disorder strength [80], e.g., U2 = (UuUd)
Np ,

appliedNp times (see text for more details). Then a two-qubit
gate, for instance a CZ gate, is applied to connect the sub-
systems. This completes one time step. The two positions
used in different time steps for the connecting two-qubit gate
vary randomly over the whole size of the subsystems. (b)
We consider one-dimensional subsystems for simplicity. The
dashed lines indicate examplary positions used for the con-
necting gate in different time steps. Our numerical results are
obtained by averaging over random realizations of the initial
product state, the unitaries U (independent for each subsys-
tem), and the position of the connecting two-qubit gate.

decomposed as [73],(
A00 A01

A10 A11

)
= P0 ⊗A00 + P1 ⊗A11

+ |0⟩ ⟨1| ⊗A01 + |1⟩ ⟨0| ⊗A10 , (1)

where P0 = |0⟩ ⟨0| and P1 = |1⟩ ⟨1| are projections on
the local basis states of the first qubit, and the A are
2 × 2 matrices (i.e., general one-qubit gates) acting on
the qubit in the second subsystem. Note that we could
have also switched the roles of subsystem one and two in
this decomposition. For a given trajectory, a single term
from the right hand side of Eq. (1) is applied, and the
full action of the gate recovered by suitably combining all
possible trajectories (see below). Thus, in the most gen-
eral case, the number of trajectories to be simulated is 4t

where t is the number of connecting two-qubit gates (we
choose t as the unit of time in our numerical examples,
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see also Fig. 1).
In this paper, we will consider two specific examples of

two-qubit gates connecting different patches, which are
relevant to NISQ applications. The first example is a
controlled-Z gate,

CZ = diag(1, 1, 1,−1) = P0 ⊗ 1 + P1 ⊗ Z , (2)

where Z is a Pauli matrix. The decomposition on the
right hand side of Eq. (2) indicates that the simulation
of subsystems interacting via CZ gates is less complex
than the general case in Eq. (1). In particular, the num-
ber of trajectories to be simulated is only given by 2#CZ.
In practice, we will use parallelization to simulate trajec-
tories on multiple processors. A processor is given one of
2#CZ bitstrings, which encodes a particular trajectory.

As a more challenging example, we will also consider
subsystems connected by iSWAP gates,

iSWAP = P0 ⊗ P0 + P1 ⊗ P1

+ i |0⟩ ⟨1| ⊗ |1⟩ ⟨0| + i |1⟩ ⟨0| ⊗ |0⟩ ⟨1| , (3)

for which the number of trajectories is 4#iSWAP.
The total state is obtained by combining the contribu-

tions in a Feynman-like fashion,

|ψ⟩ =
∑
k,l

ψkl |k⟩ |l⟩ =
∑
k,l

∑
j

ψ
(j)
k ψ

(j)
l |kj⟩ |lj⟩ , (4)

where the j-sum runs over all independent trajectories,
and the k, l-sums run over the 2L/2 basis states in the
two subsystems respectively. As the states of the subsys-
tems are evolved in time à la Schrödinger, the coefficients

ψ
(j)
k and ψ

(j)
l are generally kept in memory, whereas the

2L coefficients of the full state |ψ⟩ typically entail pro-
hibitive memory requirements. Therefore, it might be

necessary to additionally store the ψ
(j)
k and ψ

(j)
l to hard

drive, and construct the coefficients of |ψ⟩ required to
evaluate observables after the simulation.

Generalizing Eq. (4) to more than two patches is
straightforward. Moreover, if a nonperfect accuracy is
acceptable, computational resources can be saved by sim-
ulating only a smaller (randomly chosen) fraction of tra-
jectories in Eq. (4). For more details on Schrödinger-
Feynman simulations and state-of-the-art implementa-
tions, see [72, 73].

While impressive quantum-circuit simulations have
been performed [56, 72, 73], it might be fair to say that
the Schrödinger-Feynman method is less known in the
qunatum many-body physics community. Bridging this
gap is a goal of the present work.

Model and Observables.– A natural application of the
Schrödinger-Feynman technique is a situation, where two
relatively large (sub-)systems interact weakly with each
other. For instance, one could think of a system that
interacts with a bath or reservoir (although, here, the
bath will not be infinite or even bigger than the system),

but the system-bath interaction only occurs sporactically
in time. While this setup might seem somewhat artifi-
cial, a similar model was recently considered in Ref. [81],
where a strongly and a weakly disordered subsystem were
brought into contact to study the effect of a thermal in-
clusion on the putative many-body localization transis-
tion. Our model studied below is partially inspired by
Ref. [81], although we stress that we here do not aim to
quantitatively address the stability of MBL.

Our setup is sketched in Fig. 1. Specifically, we con-
sider a system split into two subsystems. Each subsystem
is chosen as a linear chain of length L1, L2 such that the
total size of the system is L = L1 + L2 (we actually
consider L1 = L2 = L/2). The chain geometry is cho-
sen for simplicity, but does not represent a conceptual
limitation of the Schrödinger-Feynman technique. Each
subsystem evolves individually in time with respect to a
unitary that can be tuned between a weak and a strong
disorder regime. At discrete points in time, both subsys-
tems interact with each other via a CZ or iSWAP gate,
where the two qubits in the two subsystems are chosen
randomly at each point in time.

For the unitary evolution, we study a variant of the
Floquet random-circuit model introduced in Ref. [80] in
the context of many-body localization. One Floquet pe-
riod is given by a unitary U = UuUd, where Ud is build
from one-qubit gates, Ud = d1 ⊗ d2 ⊗ · · · × dL. Each dℓ
is a diagonal matrix, obtained by drawing a 2 × 2 ran-
dom matrix (different for each subsystem and site ℓ) from
the circular unitary ensemble and diagonalizing it. The
computational Z basis thus corresponds to the eigenbasis
of the dℓ. Further, Uu consists of nearest-neighbor two-
qubit gates uℓ = exp(iMℓ/α), which are applied in a ran-
domly chosen sequence, Uu = Πℓuπ(ℓ), where π denotes a
permutation and Mℓ ∈ C4×4 is drawn from the Gaussian
unitary ensemble. The disorder strength is controlled by
the choice of α, where a large α corresponds to strong
disorder (one-qubit gates dominate), and a small α cor-
responds to weak disorder (two-qubit gates dominate).
For more details on the MBL random-circuit model, see
Refs. [80, 91].

In practice, we will generate random unitaries U1 and
U2 (different for each subsystem), with potentially dif-
ferent disorder strength α1 and α2 and differerent orders
of the two-qubit gates in Uu. The subsystems evolve
individually for a number of Floquet periods before in-
teracting via a CZ or iSWAP gate. That is, we will define
one time step below as, e.g., |ψ(t+ 1)⟩ = CZU1U2 |ψ(t)⟩,
where U1 = (Uu,1Ud,1)Np . The number of Floquet peri-
ods within the unitaries U1 and U2 are fixed toNp = 10 to
mimic that the subsystems are strongly interacting and
building up entanglement internally, while only weakly
interacting with each other.

Our results are averaged over multiple random-circuit
realizations with independently chosen Ud and Uu in
each run, as well as randomly chosen positions of the
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qubits involved in the interactions between subsystems
[Fig. 1 (b)], i.e., interpreting our setup again as a system
and bath, the interactions with the bath can occur glob-
ally, but only sporadically in time. Let us also empha-
size that the Schrödinger-Feynman approach is agnostic
to the specific type of unitary time evolution. Instead
of the random-circuit model, we could have equally well
considered Hamiltonian time evolution of the two sub-
systems.

As an obervable, we consider the survival probability
of some out-of-equilibrium initial state |ψ(0)⟩ [92],

L(t) = |⟨ψ(0)|ψ(t)⟩|2 . (5)

The initial state is chosen as a product state from the
Z basis, i.e., |ψ(0)⟩ = |k⟩ |l⟩ [in the notation of Eq. (4)]
with randomly chosen product states |k⟩ and |l⟩. Then,
crucially, in order to evaluate L(t) in Eq. (5), only this
single amplitude of the full time-evolved state |ψ(t)⟩ is re-

quired, i.e., L(t) = |∑j ψ
(j)
k (t)ψ

(j)
l (t)|2 with k, l fixed by

the initial state. The subsystem-state coefficients ψ
(j)
k (t)

and ψ
(j)
l (t), distributed over multiple processors which

each handle a particular trajectory j, are collected at
each time step and L(t) is calculated during runtime.
Thus, saving the states of the subsystems to hard drive
is not required, which makes L(t) particularly suitable
for the Schrödinger-Feynman technique. In our simula-
tions, we average L(t), as mentioned above, over different
random-circuit realizations, as well as random choices of
the initial product state |ψ(0)⟩.
Results.– We now present our numerical results. In

Fig. 2, the decay of L(t) is shown for two subsystems of
size L/2 connected by sporadic CZ gates up to t ≤ 8 (cf.
Fig. 1 for the definition of one time step). We consider
two different cases: (i) the dynamics of the first patch is
strongly disordered with α1 = 5, while the second patch
is only weakly disordered with α2 = 1 [Fig. 2 (a) and
(b)]; (ii) both subsystems are strongly disordered with
α1,2 = 5 [Fig. 2 (c) and (d)]. Moreover, in both cases, we
compare L(t) in the fully interacting system, cf. Fig. 2 (b)
and (d), to the reference case of having two independent
subsystems, i.e., by removing the connecting CZ gates,
cf. Fig. 2 (a) and (c).

Starting from L(0) = 1, we observe that most of
the decay of L(t) happens during the first time step
t ≤ 1. Moreoever, comparing different system sizes up to
L ≤ 48, we find that especially for the weakly disordered
case with α2 = 1, L(t) decreases approximately exponen-
tially with L as expected given the exponentially growing
Hilbert space.

While most of the dynamics of L(t) is thus caused by
the internal dynamics within the subsystems, we find
that the sporadic interaction between the subsystems
leads to a further slow decay of L(t) at t > 1. This
can be seen especially for α1 = α2 = 5, where L(t) is
essentially time-independent in the case of two discon-

10−9

10−5

10−1 (a) α1 = 5, α2 = 1

independent patches

(b) α1 = 5, α2 = 1

CZ connected patches

10−4

10−1

0 2 4 6 8

(c) α1 = 5, α2 = 5

0 2 4 6 8

(d) α1 = 5, α2 = 5

L(
t)

L = 32

L = 36

L = 40

L = 44

L = 48

L(
t)

time t time t

FIG. 2. L(t) in circuits of size L = L/2+L/2. [(a),(b)] The
first subsystem is strongly disordered with α1 = 5 while the
second subsystem is weakly disordered with α2 = 1. [(c),(d)]
Both subsystems are strongly disordered with α1,2 = 5. Pan-
els (a) and (c), i.e., left column, show L(t) for the reference
case of two independent subsystems (no connecting gates),
while panels (b) and (d), i.e., right column show dynamics in
the full interacting system with sporadic CZ gates connecting
the two patches. The data for larger L shows stronger fluctu-
ations as it is averaged over fewer random-circuit realizations.

nected patches [Fig. 2 (c)], while a monotonous decay
of L(t) persists if the patches are connected to form a
larger system [Fig. 2 (d)]. The coupling of the two sub-
systems mediated by the CZ gates thus allows |ψ(t)⟩ to
explore a larger Hilbert space even though the disorder
strength is the same in both patches. This is consistent
with the fact that signatures of thermalization (or po-
tential localization) in disordered systems are subject to
pronounced finite-size effects and require the simulation
of large systems [17–24].
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10−1 (a) α1 = 5, α2 = 1

independent patches

(b) α1 = 5, α2 = 1

iSWAP connected patches
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t)

L = 32

L = 36

L = 40

L(
t)

time t time t

FIG. 3. Analogous data as in Fig. 2, but now the two subsys-
tems are connected by sporadic iSWAP gates.
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Eventually, Fig. 3 presents analogous data, but now
for subsystems connected by iSWAP gates. Due to their
higher complexity, cf. Eq. (3), we only simulate dynamics
in systems with L ≤ 40 and up to a depth of t ≤ 6, which
corresponds to 46 = 212 distinct trajectories, Comparing
Fig. 2 and Fig. 3, it appears that using iSWAP gates
leads to stronger “interactions” between the two subsys-
tems as the monotonous decay of L(t) for t ≥ 1 in Figs.
3 (b) and (d) is now even more pronunced. This can be
understood from a physical point of view. In particular,
CZ and iSWAP gates qualitatively differ from each in the
sense that iSWAP gates can change the expectation val-
ues ⟨Z⟩1 and ⟨Z⟩2 of the total magnetization in the two
subsystems, whereas ⟨Z⟩1,2 is conserved under the appli-
cation of a CZ gate. Note that in our numerical example,
the unitaries U1,2 in the Floquet circuit do not conserve
⟨Z⟩1,2. However, one could imagine a similar random
circuit with individual U(1) symmetries in the two sub-
systems, cf. Ref. [93], or generate the dynamics instead
by e−iHt with H the standard MBL XXZ chain which
is also U(1)-symmetric. For such cases, we expect that
the thermalization-benefiting effect of the iSWAP gates
would become even more pronounced (in comparison to
the subsystem-particle-number-conserving CZ gates).

Figures 2 and 3 exemplify that the Schrödinger-
Feynman technique allows us to study L(t) in systems
with L ≤ 48 with a Hilbert-space dimension of ∼ 1014,
where we used parallelization with up to 256 processes
in an MPI architecture on a readily available central uni-
versity computer cluster. In principle, from a memory
and CPU number point of view, even larger systems and
longer times would have been accessible for us. Note,
however, that the here performed averaging over disorder
realizations and initial states added another layer of com-
putational complexity. Moreover, with comparable com-
putational resources, standard sparse-matrix techniques
would be restricted to systems of roughly half the size
reached here.

Conclusions.– We have demonstrated the applicabil-
ity of Schrödinger-Feynman simulations for questions in
many-body quantum dynamics. Specifically, we have ex-
plored the decay of the pure-state survival probability in
a disordered model (here in the form of a Floquet ran-
dom circuit), where the strength of disorder is tunable
such that one subsystems can act as a thermal bath for
the other, cf. Ref. [81]. Studying large subsystems that
interact sporadically in time, we have observed that sig-
natures of thermalization become enhanced compared to
the reference case of having two independent patches.

The system sizes of L ≤ 48 reported here by no
means represent the upper limit that can be managed
by Schrödinger-Feynman techniques, see e.g., Ref. [72].
With the ever increasing availability of memory and pro-
cessors, it should be possible in the future to push these
methods to even larger subsystems with more connecting
gates.

While our work is supposed to be a proof-of-principle
demonstration, we hope that it will motivate the us-
age of Schrödinger-Feynman techniques in the quantum-
dynamics community. Promising settings, as hinted at
in this paper, are subsystems that are highly entangled
internally, yet only interact weakly with each other, e.g.,
systems embedded in a bath, where the weak system-
bath coupling can effectively be modelled by interac-
tions that occur sparsely in time, which might also in-
clude certain impurity problems [94]. Moreover, while we
here considered one-dimensional subsystems, more com-
plicated geometries, for which no other efficient numeri-
cal methods may exist, can readily be treated within the
same framework.
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zon Europe research and innovation programme, Marie
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