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We determine the arrangement of spins in the ground state of the XY model with quenched,
random fields, on a fully connected graph. Two types of disordered fields are considered, namely
randomly oriented magnetic fields, and randomly oriented crystal fields. Orientations are chosen
from a uniformly isotropic distribution, but disorder fluctuations in each realization of a finite system
lead to a breaking of rotational symmetry. The result is an interesting pattern of spin orientations,
found by solving a system of coupled, nonlinear equations within perturbation theory and also by
exact numerical continuation. All spins lie within a cone for small enough ratio of field to coupling
strength, with an interesting distribution of spin orientations, with peaks at the cone edges. The
orientation of the cone depends strongly on the realization of disorder, but the opening angle does
not. In the case of random magnetic fields, the cone angle widens as the ratio increases till a critical
value at which there is a first order phase transition and the cone disappears. With random crystal
fields, there is no phase transition and the cone angle approaches 180◦ for large values of the ratio.
At finite low temperatures, Monte-Carlo simulations show that the formation of a cone and its
subsequent alignment along the equilibrium direction occur on two different time scales.

I. INTRODUCTION

Frozen-in or quenched disorder is known to have strong
effects on the thermodynamic properties of statistical sys-
tems. In particular, the interplay of frozen-in randomness
with cooperative interactions can have a profound influ-
ence on the nature of ordered states of spin systems, and
lead to new types of patterning. Customarily, theoretical
studies are carried out by averaging over different real-
izations of disorder in the thermodynamic limit of the
number of spins N → ∞. However, this procedure can
mask interesting macroscopic patterns that emerge from
the competition between quenched randomness and co-
operativity in a system with large but finite N . We show
this by explicitly determining the exact ground state of
an XY model in the presence of randomly oriented fields.
In each realization of disorder, we demonstrate that there
is an interesting fan-like arrangement of spins with a ro-
bust cone angle, and an interesting distribution of spins
within the cone.

The question of magnetic ordering in the presence of
random fields has a long history, and remains a question
of current interest. In this paper we study XY ferromag-
nets with long- range interactions, subject to two distinct
types of locally quenched fields: random magnetic fields
which promote order in different directions (the RFXY
model), and random crystal fields which define a random
set of easy axes for spins (the RCXY model). The RFXY
model has been used to study disordered superconductors
[1–3] and crystal surfaces with quenched disorder [4]. On
the other hand, the RCXY model was proposed [5] to
explain the magnetic properties of amorphous materials,
exemplified by rare earth compounds such as DyCu and
TbAg [6, 7]. The randomness of anisotropy axis orienta-
tion competes with ferromagnetic exchange and reduces
the magnetization [8, 9]. The model has been used to
understand the magnetic properties of many amorphous
binary alloys [10–13], as well as nanocrystalline [14, 15]
and molecular [16] magnets.

The occurrence and nature of order in these systems
is a central question. A general argument was given by
Imry and Ma to show that a ferromagnetically ordered
state cannot be sustained in less than two (four) dimen-
sions for discrete (vector) spins [17]. While a spin-glass
phase is ruled out in the random-field Ising model [18],
there is no analogous result which rules out a spin-glass
phase in models with continuous spins. In fact there is ev-
idence supporting the existence of such a phase in RFXY
models with short-range interaction [19, 20]. The RCXY
model with short-range interaction is expected to exhibit
a spin glass phase below six dimensions [21–23]. A spin
glass phase is also found in a Monte Carlo study of the
3D RCXY in infinitely strong crystal fields, in which limit
it reduces to a quenched random-bond Ising model with
correlated random couplings of either sign [24]. How-
ever, in higher dimensions, we expect ferromagnetism to
prevail at low temperatures.

The problem for either sort of random field has been
studied earlier on fully connected graphs. Infinite-range
connectivity has the advantage that the free energy can
be calculated exactly in the thermodynamic limit. For
the RFXY model this was done recently using large de-
viations [25], belief propagation [26] and replicas [27].
The nature of the critical locus which separates the dis-
ordered phase from an ordered phase with finite magneti-
zation depends on the distribution of random fields: with
a Gaussian distribution, it is second-order throughout
[27], while with randomly oriented fields of fixed magni-
tude (the case of interest to us), the transition becomes
first order for strong fields and low temperature [25]. For
the RCXY model, there is a similar phase transition to
an ordered state, but the transition locus remains second
order throughout [28, 29].

Although bulk thermodynamic quantities were calcu-
lated in these treatments, the nature of spin ordering in
the ferromagnetic state remained unknown even in the
ground state. This is the central question we address in
this paper. With randomly-pointing fields of constant
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magnitude drawn from an isotropic distribution, in a
typical configuration, an effective field of order 1/

√
N

breaks the isotropic symmetry of the ground state. Min-
imization of the energy yields N coupled nonlinear equa-
tions for the spin orientations. We develop a perturba-
tive method to solve for the spin angles for small values
of the ratio of field strength to the exchange, and find
that they lie within a well-defined cone whose orientation
varies from sample to sample, but whose opening angle is
robust. Interestingly, the distribution of spins within the
cone is found to be largest near the cone edges. An exact
numerical treatment of the nonlinear equations confirms
the perturbative results and further shows that with in-
creasing field, there is a first order phase transition to
a disordered state, as predicted in [25]. The cone angle
increases continuously until the transition, beyond which
the cone disappears. On the other hand, in the random
crystal field problem, the cone angle increases continu-
ously to 180 degrees as the strength of the crystal field
goes to ∞.
We also performed Monte Carlo simulations for both

RFXY and RCXY models at low temperatures, and
found that cone formation is robust. An interesting dy-
namics governs cone formation and settling: Formation
of a well-defined cone is quick and happens on a time scale
determined by the exchange coupling, while its orienta-
tion relaxes on a slower time scale set by the strength of
the random field. We develop a phenomenological equa-
tion which describes this dynamics.

II. THE MODEL

The RFXY model is defined by the Hamiltonian

HRF = − J

2N

(
N∑
i=1

Si

)2

− h

N∑
i=1

ni · Si, (1)

where the spin Si is a two dimensional unit vector asso-
ciated with the ith site of a fully connected graph with
N sites. The spin at site i is coupled to that at site
j with an energy − J

NSi · Sj . At every site there is a
random field with site-independent strength h and site-
dependent direction determined by the unit vector ni.
The unit vectors {ni} are independent and identically
distributed random vectors that can lie anywhere on a
unit circle with equal likelihood. The spin at site i is
coupled to the random field at that site with an energy
−hni · Si.
The RCXY model is obtained by replacing the last

term in the Hamiltonian (1):

HRC = − J

2N

(
N∑
i=1

Si

)2

−D

N∑
i=1

(ni · Si)
2
, (2)

where D represents the strength of the random crys-
tal field in the direction ni at site i. The unit vectors

{ni} are distributed uniformly as in the RFXY model.
The RCXY model has an underlying Ising symmetry:
the Hamiltonian is invariant under the transformation
{Si | i = 1, 2, ...N} → {−Si | i = 1, 2, ...N}.
As mentioned earlier, the RFXY model exhibits a lo-

cus of order-disorder phase transitions in the (T/J, h/J)
plane, where T is the temperature. The transitions are
of first order in the portion of the locus lying in the low
temperature regime, which is separated from the por-
tion lying in high temperature regime, where the tran-
sitions are continuous, by a tricritical point. For the
RCXY model the transitions are of second order every-
where and the critical temperature is independent of the
ratio D/J [28, 29]. Further, there is no phase transition
to a disordered state when the ratio of field to coupling
strength is varied at T = 0, in contrast to the RFXY
model.

In the following sections we will be interested in the na-
ture of the ordered state in both these models at T = 0
and at temperatures close to zero. In particular, we
will explore the arrangement of spins in a finite system
with a given configuration of fields. Though the field-
orientations are chosen from an isotropic distribution,
rotational symmetry is broken for any finite N .

III. RFXY: CONES AT ZERO-TEMPERATURE

In this section, we explore the T = 0 arrangement of
spins for the RFXY model.

A. Perturbation theory: h/J << 1

An insight into the distribution of spins can be ob-
tained by analyzing the ground state of the Hamilto-
nian (1) using perturbation theory. To this end, Eq. (1)
is first recast in terms of the angles {θi} and {αi} that the
spins {Si} and the fields {ni}, respectively, make with
the x-axis. The ensuing equation is then extremized with
respect to θi, yielding the following set of N equations
for the ground state.

1

N

N∑
j=1

sin(θi − θj) +
h

J
sin(θi − αi) = 0. (3)

To solve these, we expand θi in powers of h/J as

θi = θ(0) +
h

J
θ
(1)
i +

h2

J2
θ
(2)
i + ... (4)

Note that the 0’th order term θ(0) is independent of i,
since all spins point in same direction in the limit h/J →
0. On substituting Eq. (4) in Eq. (3) and then expanding
in powers of h/J , we obtain the following equations at
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O(h/J) and O(h2/J2), respectively:

N∑
j=1

(
θ
(1)
i − θ

(1)
j

)
+N sin(θ(0) − αi) = 0, (5)

N∑
j=1

(
θ
(2)
i − θ

(2)
j

)
+Nθ

(1)
i cos(θ(0) − αi) = 0. (6)

Note there are N equations at each order. On summing
the ‘first-order’ equations (5) we obtain the 0’th order
contribution to θi as

N∑
i=1

sin(θ(0) − αi) = 0 (7)

=⇒ tan(θ(0)) =

∑N
i=1 sin(αi)∑N
i=1 cos(αi)

. (8)

This implies θ(0) = α0 or α0 + π, where α0 is the angle
made by

n0 ≡
N∑
i=1

ni (9)

with the x-axis. The latter solution has a higher energy
and is therefore discarded. We conclude that at T = 0,
h = 0 all the spins Si point in the direction of the vector
sum of the fields. Note that for any finite system size

N , the sum of disordered fields h
∑N

i=1 ni is of the order√
N , which results in singling out a preferred direction

θ(0) = α0, breaking rotational symmetry.

We now focus on the N first order corrections {θ(1)i },
which satisfy the N equations (5). However, only N−1 of
these equations are linearly independent since the equa-
tions (5) add to give 0. The ‘missing’ equation which,

together with Eq. (5), uniquely determines θ
(1)
i is ob-

tained from the ‘second-order’ equations (6), which on

summing over i yield
∑N

i=1 θ
(1)
i cos(θ(0) − αi) = 0. Solv-

ing this simultaneously with Eqs. (5) yields

θ
(1)
i = sin(αi − α0) + η (10)

where we have replaced θ(0) by α0 and

η =
1

2

∑N
j=1 sin [2 (α0 − αj)]∑N
j=1 cos (α0 − αj)

. (11)

Replacing θ
(1)
i in Eq. (4) by Eq. (5) we get

θi ≃ α0 +
h

J
(sin(αi − α0) + η) (12)

to first order in h/J .

To find the orientation of the magnetization M and
the distribution of spins around it to first order we write

M ≡ 1

N

N∑
i=1

Si =
1

N

N∑
i=1

[cos(θi)x̂+ sin(θi)ŷ]

≃ M (0) − h

NJ
(sin(α0)x̂− cos(α0)ŷ)×

N∑
i=1

θ
(1)
i ,

(13)

where M (0) = cos(α0)x̂+ sin(α0)ŷ is the magnetization
in the limit h/J → 0. To obtain the last line, we used
Eq. (12) and expanded the resulting expression to first
order in h/J . The factor in the second term of Eq. (13)
can be evaluated using Eqs. (10), (11), and (7) to obtain∑N

i=1 θ
(1)
i = Nη. The orientation θ0 of the magnetization

M is thus

θ0 ≃ α0 +
h

J
η (14)

to first order in h/J . The angle ∆θi that the ith spin
makes with M is

∆θi ≡ θi − θ0 ≃ h

J
sin(αi − θ0), (15)

where we have used Eqs. (4), (10), and (14). For ran-
dom fields that are uniformly distributed over a circle,
we obtain the probability distribution for ∆θi as

p(∆θi) =
1

π
√
(h/J)2 −∆θ2i

. (16)

A plot of the distribution p(∆θi) for h/J = 0.2 is shown
by the black line in Fig. 1e. Note that all the spins lie
within a cone whose edges are given by ∆θi = ±h/J ,
at which points the distribution diverges. Within the
cone, the distribution is minimum at the center. The
arrangement of spins in the perturbative regime, for a
particular sample of size N = 100, is depicted using the
green arrows confined within the circle in Fig. 1b. The
red dashed arrow shows the direction of n0 and the blue
continuous arrow shows the direction of M . The spin
configuration shown therein corresponds to the particular
field configuration shown in Fig. 1a.

Thus we see that spins are distributed within a cone
whose orientation is given by Eq. (14), while the cone an-
gle, defined as the angular separation between the spins
at the two farthest edges of the cone, is given by

ϕ =
2h

J
, (17)

which is evident from Eq. (16). The cone orientation
depends on the configuration of fields, while the cone
angle does not.
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FIG. 1. The RFXY model: The sub-figures (a) and (b) show, respectively, the directions of {ni} and {Si} for h/J = 0.2.
(c): {Si} for h/J = 0.63. All the three sub-figures are for a typical sample with N = 100. The protruding red dashed

(blue straight) arrow shows the direction of n0 =
∑N

i=1 ni (M). (d): Cone angle ϕ versus h/J for 10 different samples of
N = 400. The black dashed line shows cone angle ϕ(h/J) according to perturbation theory (17). (e): Distributions of spins at
h/J = 0.2 and 0.59. The angles are in degrees. The black line shows the probability distribution function (16) for h/J = 0.2.
(f): Magnetization vs h/J for 10 different samples of N = 400. The black dashed line shows exact |M | obtained from the
large deviation theory [25]. (g): Energy versus h/J for solutions that minimize the Hamiltonian (1). Notice the occurrence of

metastability. These results are obtained using the numerical techniques discussed in Sec. III B.

B. Numerically continuing to higher h/J

We now investigate how the conical arrangement of
spins changes as h/J increases. We will show that the
cone angle increases continuously until a critical value
hc/J , at which point there is a first order transition
to a disordered state. As N → ∞ the critical value
hc/J → 0.597, the value obtained from the large devi-
ation calculation [25].

The T = 0 distribution of spins is obtained by solv-
ing the equation for extremum (3) using the method of
numerical continuation [30]. The equation is indepen-
dently solved for several configurations of quenched ran-
dom fields and for different values of N . In particular,
we choose N = 100, 200, 300, 400, 600, and 800. The
procedure is briefly explained below.

First, N angles {αi} are chosen independently from
the interval (0, 2π] with uniform likelihood. This fixes
the directions of the quenched random fields {ni}. Now,
the formula derived using the perturbation theory (12)
is used to obtain an approximate solution to Eq (3) for
a small value of h/J (say, 0.001). This solution is used

as an initial guess using which we numerically continue
to higher values of h/J . (See Appendix A for further
details.)

For small enough h/J , we find that the distribution
of spins is consistent with the perturbative results. The
spins are confined within a cone centered along the direc-
tion of magnetization as shown in Fig. 1b. The number
of spins is largest at the edges, where there is a sharp
cut-off, and smallest at the center of the cone. This is
demonstrated using the case of h/J = 0.2 in Fig. 1e (blue
circles), where the probability density p(∆θ) is plotted
against ∆θ = θ − θ0. The probability density p(∆θ)
was obtained by sampling over 500 configurations with
N = 100.

We find that the cone angle ϕ widens until the critical
value hc/J is reached. Figure 1d shows the variation of ϕ
for N = 400. The values of the cone angles at the phase
transition are found to be ϕc = 111±14, 103±8, 101±6,
97± 4, 95± 4, and 94± 4 degrees for N = 100, 200, 300,
400, 600, and 800, respectively, on averaging over 50 sam-
ples for each N . The results are consistent with ϕc → 90◦

as N → ∞. The distribution of spins within the cone just
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before the phase transition (at h/J = 0.59) is found to be
flat around the center of the cone, unlike for small h/J
(see Fig. 1e). The value of hc/J shows sample to sam-
ple fluctuation and a systematic fall as N increases. We
find hc/J = 0.662± 0.024, 0.645± 0.020, 0.638± 0.019,
0.628 ± 0.013, 0.623 ± 0.013, and 0.619 ± 0.013 for N =
100, 200, 300, 400, 600, and 800, respectively. Note that
the results are consistent with hc/J ≃ 0.597 for N → ∞.
The numerical continuation scheme fails at a value of

h/J slightly greater than hc/J as there is no ordered state
solution to Eq. (3) at this point. The solutions that min-
imize the energy (1) at points beyond hc/J are the dis-
ordered ones. To access these, we numerically continue
backwards in h/J from the state in the limit J/h << 1.
The starting guess solution to Eq. (3), obtained pertur-

batively, is θi ≃ αi +
J
Nh

∑N
j=1 sin(αj − αi).

There is an abrupt change in the arrangement of spins
as h/J is increased past the transition point: from being
confined to a cone, for h/J < hc/J , they spread over a
circle. The distribution of spins in the disordered phase
for a typical configuration of fields is shown in Fig. 1c
(at h/J = 0.65). We note here that for this sample the
phase transition occurs between h/J = 0.64 and 0.65.

There is also a sudden jump in the magnetization at
the phase transition for each sample, which is clear from
the plot in Fig. 1f, indicating clearly that the system is
undergoing a first order phase transition. The dashed
black line therein shows the exact modulus of magneti-
zation |M | in the thermodynamic limit, calculated using
large deviation theory in [25].

The energies of the minima obtained for a typical con-
figuration of fields using the scheme described above are
plotted against h/J in Fig. 1g. The cones and circles used
as markers therein indicate that the solutions in these re-
gions correspond to conical and disordered arrangements
of spins, respectively. Note that the conical (disordered)
states continue to the right (left) of the transition point,
where they are no longer the global minima but are still
metastable local minima of the Hamiltonian.

IV. RCXY: CONES AT ZERO-TEMPERATURE

We turn to a study of the T = 0 spin arrangements
for the RCXY model as a function of the crystal field
strength D, using perturbation theory followed by nu-
merical continuation in the non-perturbative regime.

When D/J << 1, the arrangement of spins for the
RCXY model is identical to that for the RFXY model.
A typical field configuration with N = 100 is shown in
Fig. 2a, which is exactly the same as the configuration
in Fig. 1a for the RFXY model. Figures 2b and 2c show
the corresponding spin configurations at D/J = 0.2 and
5, respectively. The red dashed (blue continuous) line
shows the direction of vector sum of fields (spins).

There is a striking difference between the two models
for higher values of D/J . For instance, the distribution
of spins within the cone changes and has a maximum at

the center of the cone when D/J ∼ 1, for the RCXY
model. Further, unlike the RFXY model, there is no
phase transition, and the cone is preserved for all values
of D/J . Moreover, the cone does not align along n0 in
the limit D/J → 0, in contrast to the RFXY model.
The calculation proceeds along the lines spelled out

in Sec. III. To first order, the perturbative solution for
{θi} that minimize the RCXY Hamiltonian (2) for small
values of D/J is

θi = θ(0) +
D

J

[
sin(2(αi − θ(0)))− ζ

]
, (18)

where θ(0) is given by

tan(2θ(0)) =

∑N
i=1 sin(2αi)∑N
i=1 cos(2αi)

(19)

and

ζ =
1

2

∑N
i=1 sin

{
4(θ(0) − αi)

}∑N
i=1 cos

{
2(θ(0) − αi)

} . (20)

Equation (19) yields four solutions for θ(0), namely
α̂, α̂ + π, α̂ + π/2, and α̂ − π/2, where α̂ is defined as

half of the angle that the vector d =
(∑N

i=1 cos(2αi)
)
x̂+(∑N

i=1 sin(2αi)
)
ŷ makes with the x-axis. The first two

and the last two solutions are degenerate. However, the
latter pair has higher energy and is therefore discarded.
Note that in the case of RCXY, the solutions

for extrema are always two-fold degenerate as the
Hamiltonian is invariant under the transformation
{Si | i = 1, 2, ...N} → {−Si | i = 1, 2, ...N}. This im-
plies that there are at least two global minima, and our
calculations indicate that there are only two for finite
values of D/J . In the following, we focus on one of the
two minima.
The perturbative solution leads to a magnetization

M ≡ 1

N

N∑
i=1

Si

≃ M (0) − Dζ

J
(sin(α̂)x̂− cos(α̂)ŷ) (21)

to first order in D/J . It is straightforward to see that
M orients along θ0 ≃ α̂ + D

J ζ, leading to the following
probability distribution for the deviation of a spin ∆θi
from M .

p(∆θi) =
1

π
√

(D/J)2 −∆θ2i
. (22)

Thus, as for the RFXY model, spins are confined within
a cone, at whose center the distribution is minimum and
at whose edges the distribution diverges. The cone angle
is given by ϕ = 2D/J .
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(a) (b) (c) (d)

(pert.)

(e)
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FIG. 2. The RCXY model: The sub-figures (a) and (b) show, respectively, the directions of {ni} and {Si} for D/J = 0.2.
(c): {Si} for D/J = 5. All the three sub-figures are for a typical sample with N = 100. The protruding red dashed (blue

straight) arrow shows the direction of n0 =
∑N

i=1 ni (M). (d): Cone angle ϕ vs D/J for 10 different samples with N = 400.
Dashed line depicts ϕ(D/J) obtained from the perturbation theory. (e): Probability distribution of deviation of spins ∆θ from
the direction of magnetization θ0. The black line shows the distribution (22) at D/J = 0.2. (f): Modulus of magnetization vs

D/J for 10 different samples with N = 400. All the angles are in degrees.

Beyond the perturbative regime, our numerical studies
show that the spins remain confined to a cone, but the
distribution becomes flat within the cone at D/J ∼ 0.7.
As D/J is increased further, the distribution develops a
maximum at the center of the cone. Asymptotically, as
D/J → ∞, we expect the distribution to become flat
again. Fig. 2e shows the probability density p(∆θ) at
various values of D/J .

The cone angle ϕ widens withD/J as shown in Fig. 2d,
initially linearly but the widening slows down when
D/J ∼ 1. As D/J → ∞, the cone angle ϕ → 180◦ when
N is infinite. This can be conceptualized as follows. In
the limit N → ∞ the fields will be distributed uniformly
everywhere over the circle, and as D/J → ∞ the second
term in the Hamiltonian (2) will dominate forcing each
spin Si to lie on the easy axes pointing either along the
direction of the respective field ni or opposite to it. Thus
we have an Ising degree of freedom at each site. However,
the J term would prefer the spins to be parallel to each
other resulting in the spins spanning a hemisphere. We

note here that the hemispherical distribution of spins in
the D/J → ∞ limit has been pointed out in [8].

Figure 2f shows the behavior of magnetization as a
function of D/J . The magnetization decreases smoothly
and there is no phase transition. As D/J → ∞ magne-
tization M → 2/π in the thermodynamic limit [29].

V. CONES AND DYNAMICS AT T > 0

Here, we use Monte-Carlo simulations to address the
question of robustness of the cone and the spin distribu-
tion at equilibrium for the RFXY model at T > 0. The
RCXY model shows similar equilibrium features, and is
therefore not discussed separately. We show that the spin
distribution remains similar to that at T = 0 and has a
two-peaked structure below a characteristic temperature
determined by the field.

We also perform Monte-Carlo simulations below this
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FIG. 3. Distribution of spins within the cone for various
temperatures, obtained by sampling over 100 field configura-
tions with J = 1, h = 0.2, and N = 100. The angles are
in radians. The distribution for T = 0.05 is a Gaussian with
0 mean and standard deviation 0.27. The black line shows
the T = 0, h/J = 0.2 distribution of spins (16), obtained
from the perturbation theory. Note that the double-peaked
distribution goes to the single-peaked Gaussian distribution

when T > Tdis.

temperature to study the dynamics of the approach to
the ordered spin state starting from a typical random
initial configuration of spins. We restrict ourselves to
the RFXY model in this case.

A. Equilibrium cones

To first order in h/J , the energy per spin in the ground
state is given by

E/N = −J/2− h

N

N∑
i=1

cos(α0 − αi) = −J/2− h

N
|n0|,

(23)

which is obtained by using Eqs. (1) and (12). The con-
tribution coming from the randomly disordered fields is
Edis = h|n0|/N . Since ni’s are independent random vec-
tors distributed uniformly over a unit circle, we have

|n0| ≡

∣∣∣∣∣
N∑
i=1

ni

∣∣∣∣∣ ∼ √
N, (24)

implying, Edis ∼ h/
√
N . Thus disorder brings into play a

characteristic temperature Tdis ∼ h/
√
N . We performed

Monte-Carlo simulations at T < Tdis and T > Tdis ac-
cording to the following procedure.

First, a random field configuration is realized by choos-
ing N field-angles {αi} independently and uniformly
from the interval (0, 2π ]. An initial spin configura-
tion is chosen by assigning a set of N angles {θi} in
the same fashion. The angles {θi} are now evolved in
steps using the Metropolis algorithm. Each step con-
sists of N micro-steps, at each of which a particular

θi is chosen at random and varied by an angle ∆θi
that is chosen randomly and uniformly from the inter-
val (−π/500, π/500). This changes the spin angles, say,
from {θi} to {θ′i}. At the end of a step, if the new spin
configuration lowers the energy (1), it is accepted. Oth-
erwise it is accepted with a probability exp(−∆HRF /T ),
where ∆HRF = HRF ({θ′i})−HRF ({θi}). Each such step
corresponds to one unit time.
From the simulations, we find that the equilibrium dis-

tributions of spins within the cone have different charac-
teristics for T < Tdis and T > Tdis, as shown in Fig. 3.
For T < Tdis, the distribution is similar to that at T = 0,
with maxima towards the edges of the cone and minimum
at the center, whereas for T > Tdis, the distribution is a
Gaussian peaked at the center of the cone. The equilib-
rium distributions of spins exhibit the same features for
the RCXY model also, with the characteristic tempera-
ture Tdis ∼ D/

√
N .

B. Low temperature dynamics

We now study the dynamics of spins in the ordered
state using analytical and Monte-Carlo methods, restrict-
ing ourselves to T < Tdis.
We find that the evolution of spins from a typical ran-

dom initial configuration to the equilibrium state is char-
acterized by two time scales. In the initial, shorter time
scale τf , the randomly oriented spins come together and
form a cone, while on the second longer time scale τo,
the cone rotates and orients along the equilibrium direc-
tion. Figure 4 shows illustrations of evolution of the spin
configuration, and plots depicting the evolution of the
magnitude and the orientation of magnetization and the
evolution of energy for a typical field configuration and
initial spin configuration.
We find that the cone formation time τf depends pri-

marily on J , while the cone-orientation time τ0 is set by

h. Further, τ0 depends on |n0| ≡
∣∣∣∑N

i=1 ni

∣∣∣. The larger

the value of |n0|, the shorter is the orientation time. This
is evident from Fig. 5, which shows the cone orientation
time τo for different field configurations, each with a dif-
ferent value of |n0|. Note that in practice, we calculate
τf as the time at which the value of |M | first reaches
0.98 and τf + τo as the time at which M orients at an
angle α0 + (h/J)η, which is the T = 0 orientation of M
according to the perturbation theory (14).
We write a phenomenological dynamical equation to

describe the evolution of the orientation of M once the
cone has formed:

∂θ0
∂t

= −γ
∂HRF

∂θ0
, (25)

where the effects of thermal fluctuations are neglected.
Since we are interested primarily in the orientation of
the cone, we neglect the spread of spins within the cone
and write Si = S for all i. This simplification is justified
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(a) (b) (c)

(d) (e) (f)

FIG. 4. Time evolution (RFXY): Sub-figures (a), (b), and (c) show the spin configurations at t = 0, t = τf = 4.5× 104, and
t = τf + τo = 4.35× 105, respectively. The protruding red dashed and blue straight arrows show the directions of n0 and M ,
respectively. (d): Energy per spin versus time. The inset shows variation of E/N from time τf to τf + τo. (e): Magnitude
of magnetization M versus time. (f): Orientation of magnetization θ0 versus time. The dot-dashed line indicates the T = 0
orientation of M according to perturbation theory (14). All plots refer to a single typical field configuration and initial spin

configuration with N = 400, J = 1, h = 0.2, and T = 0.005.

for small enough h/J when the spins point more or less
along the same direction once the cone has formed. Thus,
Eq (1) becomes

HRF = − J

2N
(NS)

2 − h

N∑
i=1

S · ni (26)

= −JN

2
− h

N∑
i=1

cos(θ0 − αi), (27)

where θ0 denotes the orientation of S. Defining ∆θ0 =
θ0 − α0, the sum in the second term in Eq. (27) can be
rewritten as

N∑
i=1

cos(θ0 − αi) =

N∑
i=1

cos(α0 − αi +∆θ0)

= cos(∆θ0)|n0|, (28)

where we used the results
∑N

i=1 cos(α0 − αi) = |n0| and∑N
i=1 sin(α0 − αi) = 0. Solving for θ0 using Eqs. (25),

(27), and (28), we obtain

tan

(
θ0(t)− α0

2

)
= tan

(
θ0(0)− α0

2

)
exp (−γh|n0|t) .

(29)
From the above we see that the relaxation time τo ∝
1/|n0| which is corroborated by the numerical results (see
Fig. 5).

VI. CONCLUSION

The ordered states in the RFXY and the RCXY mod-
els show interesting arrangements of spins, which break
rotational symmetry for any finite N . In the ground
state, the spins are confined within a two-dimensional
cone, whose angle and orientation are determined by the
ratio of disorder to coupling strength. The distribution
of spins within the cone is sensitive to temperature, and
shows very different features for T < Tdis and T > Tdis.
The dynamics of spins relaxing to equilibrium is charac-
terized by two time scales, namely, the cone formation
time and the cone orientation time.
Note that rotational symmetry is restored only if N is
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n| |

n| |

FIG. 5. The cone orientation time τo for different field con-
figurations, each with a different value of |n0|. For each field
configuration, τo is calculated by averaging over 100 different
initial spin configurations. The height of the error bar shows
the standard deviation of τ0 with initial spin configurations.
The inset shows τ0 versus |n0| in log scale. The blue line

therein has slope −1. Note that N = 100 here.

strictly infinite: the ground state energy per spin E/N
becomes insensitive to the orientation of M in that limit.
Further, our preliminary analysis of the dynamics sug-
gests that γ ∼ N−α, where α > 0, implying that the
cone orientation time τo diverges as N → ∞. The cone
formation time is also sensitive to N . It would be inter-
esting to track the N -dependence of these times.
Another physically relevant question is: what is the

effect of a uniform external field on the cones and ar-
rangement of spins, as well as on the phase diagram?
A preliminary study, based on the extension of our nu-
merical continuation techniques to this problem, suggests
that at T = 0, the external field reorients the cone, with
a possible first order phase transition — from an ordered
state to a different ordered state.

We expect many of the qualitative features of the
RFXY and RCXY models, like the existence of a cone,
to remain valid for the case of Heisenberg spins Si that
can lie anywhere on a unit sphere.
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Appendix A: Numerical continuation

Here, we explicitly lay down the procedure for solving
the nonlinear Eqs. (3) numerically.

The left hand side of Eq. (3) Gi ≡ ∂HRF /∂θi, for i =
1, 2, ...N , constitute a set of continuously differentiable
functions of the variables θ = {θ1, θ2, ...θN} and the
parameter λ ≡ h/J , for a fixed N and field angles {αi}.
It is useful to write down Eq. (3) in terms of Gi here:

Gi = 0. (A1)

If for a set of values (θ, λ), Gi(θ, λ) = 0 for every i, then
that set is called a solution-point.

If there exists a solution-point (θ0, λ0) for which

det


∂G1

∂θ1
... ∂G1

∂θN
...

∂GN

∂θ1
... ∂GN

∂θN


0

̸= 0, (A2)

where the subscript 0 indicates that the derivatives are
to be taken at (θ, λ) = (θ0, λ0), then there also exists
a unique set of solution-points (θ(λ), λ) for values of λ
in the neighborhood of λ0, by implicit function theorem.
Such a solution point is referred to as regular.

If we know a regular solution-point (θ0, λ0), we can
find a nearby solution-point (θ1, λ1) approximately by
incrementing the parameter λ by a small number ∆λ to
obtain λ1 = λ0+∆λ and then finding θ1 = θ0+∆θ that
solves the linearized version of Eq. (A1), which is

N∑
j=1

∂Gi(θ0, λ0)

∂θj
∆θj +

∂Gi(θ0, λ0)

∂λ
∆λ = 0. (A3)

The above equation can be solved easily to obtain ∆θ,
and hence θ1. The accuracy of the approximate solution
θ1 can be improved by using any of the familiar itera-
tive schemes, such as the Newton-Raphson or the Secant
method. In this paper we have used the inbuilt FindRoot
function in Mathematica.

If the new solution point (θ1, λ1) is also regular, we
can repeat the above scheme to find the next solution
point (θ2, λ2), and so forth. Alternate methods have
to be used if a solution-point is not regular. For solv-
ing Eq. (3), we start from the perturbative solution (12)
and not from the solution θ(0) at h/J = 0 because the
latter is not a regular solution-point. However, the sub-
sequent solution points that correspond to the minima
of the Hamiltonian (1) are regular, and therefore no al-
ternate schemes had to be used. Further, the absence
of non-regular solution-points implies that there are no
bifurcations or folds at any of these points.
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[16] M. A. Gı̂rţu, C. M. Wynn, J. Zhang, J. S. Miller, and

A. J. Epstein, Phys. Rev. B 61, 492 (2000).
[17] Y. Imry and S.-k. Ma, Phys. Rev. Lett. 35, 1399 (1975).
[18] F. Krzakala, F. Ricci-Tersenghi, and L. Zdeborová, Phys.
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