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We discuss and compare the statistical properties of two stochastic three-sphere micromachines, i.e., odd
micromachine and thermal micromachine. We calculate the steady state time-correlation functions for these
micromachines and decompose them into the symmetric and antisymmetric parts. In both cases, the cross-
correlation between the two spring extensions has an antisymmetric part, which is a direct consequence of the
broken time-reversal symmetry. For the odd micromachine, the antisymmetric part of the correlation function is
proportional to the odd elasticity, whereas it is proportional to the temperature difference between the two edge
spheres for the thermal micromachine. The entropy production rate and the Green-Kubo relations for the two
micromachines are also obtained. Comparing the results of the two models, we argue an effective odd elastic
constant of the thermal micromachine. The effective odd elasticity of the thermal micromachine is proportional
to the temperature difference among the spheres, which causes an internal heat flow and leads to directional

locomotion in the presence of hydrodynamic interactions.

I. INTRODUCTION

Microswimmers are tiny objects moving in fluids, such as
sperm cells or motile bacteria, that swim in a fluid and are
expected to be relevant to microfluidics and microsystems [[1-
3. By transforming chemical energy into mechanical work,
microswimmers change their shapes and can move in vis-
cous environments. According to Purcell’s scallop theorem,
reciprocal body motion cannot be used for locomotion in a
Newtonian fluid [4} [5]. As one of the simplest models ex-
hibiting nonreciprocal body motion, Najafi and Golestanian
proposed a model of a three-sphere microswimmer [6}, [7], in
which three in-line spheres are linked by two arms of vary-
ing lengths. Later, such a three-sphere microswimmer has
been experimentally realized [8H10]]. Various extensions of
the original three-sphere microswimmer model were consid-

* Corresponding author: linlihe @wzu.edu.cn
ICorresponding author: komura@wiucas.ac.cn

ered and summarized in Ref. [11]. Among them, we focus on
the two stochastic microswimmers, i.e., thermal microswim-
mer in which the spheres have different temperatures [12H14]
and odd microswimmer in which the two springs (rather than
arms) have odd elasticity [[15} [16].

The concept of odd elasticity was proposed by Scheib-
ner et al. to account for nonreciprocal interactions in active
systems [17) [18]]. They showed that the odd component of
the elastic constant matrix quantifies the amount of work ex-
tracted along quasistatic deformation cycles. Generalized odd
elasticity exists not only in elastic materials but also in generic
micromachines, such as molecular motors and catalytic en-
zymes that exhibit nonequilibrium steady state dynamics [[19-
24]). Since the thermal microswimmer model was proposed
before the work by Scheibner et al., it is necessary to under-
stand how it can be quantitatively characterized in terms of
effective odd elasticity and further compare it with the odd
microswimmer.

For this purpose, we discuss various quantities obtained
from the two stochastic microswimmer models and particu-
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larly focus on their time-correlation functions. This is be-
cause the antisymmetric part of the cross-correlation function
can exist for nonequilibrium micromachines when the time-
reversal symmetry is broken [2122]]. In order to have a proper
comparison between the two models, we generalize the odd
microswimmer model to have different even elastic constants.
On the other hand, we mostly neglect hydrodynamic interac-
tions between the different spheres except when we calculate
the average velocity. In the absence of hydrodynamic interac-
tions, the considered models do not exhibit directed locomo-
tion but undergo Brownian motion [13}14]]. Hence, we use the
word “micromachine” instead of “microswimmer” through-
out this paper.

After explaining the thermal three-sphere micromachine
and the odd three-sphere micromachine, we show the av-
erage velocity, entropy production rate, extension-extension
and velocity-velocity time correlation functions, and the cor-
responding Green-Kubo relations. The antisymmetric parts
of the cross-correlation functions are explicitly obtained for
the two micromachines, reflecting the degree of broken time-
reversal symmetry. For the odd micromachines, the time-
correlation functions exhibit oscillatory behaviors when the
odd elasticity is large enough. We shown that the effective
odd elasticity of the thermal microswimmer is essentially pro-
portional to the temperature difference between the two edge
spheres. Such a temperature difference causes a heat flow in-
side the micromachine, which can be quantified by the entropy
production rate.

In Sec.[l] we describe the model of the odd three-sphere
micromachine and show its statistical properties as mentioned
above. In Sec. [l we perform a similar analysis for the
thermal three-sphere micromachine. In Sec. we com-
pare the two stochastic micromachines and discuss the effec-
tive odd elasticity of the thermal micromachine. A summary
and some further discussion are given in Sec.[V] The two Ap-
pendices list the velocity-velocity correlation functions for the
two models.

II. ODD THREE-SPHERE MICROMACHINE
A. Model

We first describe the model of the odd micromachine that
is slightly extended from our previous model [13, [T6]. As
schematically shown in Fig.[T(a), this model consists of three
spheres of radius a positioned along a one-dimensional co-
ordinate system, denoted by x; (i = 1,2,3). These three
spheres are connected by two springs that exhibit both even
and odd elasticities. We denote the two spring extensions by
ua = xp —x; — ¢ and ug = x3 — x, — £, where ¢ is the constant
natural length. Then the forces F'a and Fg conjugate to us and
ug, respectively, are given by Fy = —K,pug (@, = A, B). For
an odd elastic spring, the elastic constant matrix K,z is given

by
K¢ K°
K=| * ) (1)
~K° K¢

FIG. 1. Two stochastic three-sphere micromachines consisting of
three spheres with a radius a and two springs with a natural length
£. These micromachines are immersed in a fluid with viscosity 7.
The positions of the spheres are denoted by x; (i = 1,2,3) in a one-
dimensional coordinate, and the spring extensions with respect to
¢ are denoted by u, (@ = A,B). (a) Odd three-sphere microma-
chine in which the two springs have the odd elastic constant K° in
addition to the even elastic constants K§ and Kj. The temperature
of all the spheres is T. The ratios are defined by x = K} /K3 and
A = K°/K5. (b) Thermal three-sphere micromachine in which the
two springs have only the two elastic constants K§ and K. How-
ever, the three spheres are in equilibrium with independent heat baths
at different temperatures 7; (i = 1,2, 3).

In the two-dimensional configuration space, K and Kj are
positive even elastic constants, while K° is an odd elastic con-
stant that can take both positive and negative values. In our
previous study, we only studied the case of K§ = K [13,[16]].
Then, the forces f; acting on each sphere are given by f; =
—Fa, o = Fao — Fpg, and f3 = Fg. Notice that these forces au-
tomatically satisfy the force-free condition, i.e., f1 + >+ f3 =
0 [23].

The above odd micromachine is immersed in a fluid of
shear viscosity 17 and temperature 7. The Langevin equation
of each sphere is given by [26]

X =M;fj + &, )

where %; = dx;/dt and M;; is hydrodynamic mobility coeffi-
cient matrix [6) [7]

1/(6mma) (i =)
{ T 3)

L/(4mlxi = x;1) - G # ).

In Eq. (]Z[), the Gaussian white-noise sources & have zero
mean (&;(¢)) = 0, and their correlations satisfy the fluctuation-
dissipation theorem [26]]

(&DE;() = 2kgTM;;0(t — 1), “4)

where kg is the Boltzmann constant. This condition assures
that the surrounding fluid is in thermal equilibrium. Since the
noise amplitudes depend on the particle positions, we use the
It6 interpretation in Eq. (2) [16]).



B. Average velocity

It is convenient to introduce the characteristic time scale
T = 6nna/K; describing the spring relaxation time. We de-
fine the ratios between the elastic constants by « = K3 /K and
A = K°/K3. In the following analysis, we assume u, < ¢ and
a < {, and focus on the leading-order contribution. The in-
stantaneous total velocity of the micromachine is simply given
by V = (&) + X, + X3)/3. Using Eqs. (I)-(3) and taking the sta-
tistical average, we obtain [[15, [16]

(V) = oo (=1 + 30 + (e + 30)uh)
+ [3(1 = K) = 2 uaup)|, (5)

where we have used (u,) = 0.

The equal-time correlation functions (uqug) appearing in
Eq. (B) can be obtained from the reduced Langevin equations

J

[Qk = ) +iwt] 1(w) — [k + D) + iwT] (W) = (K = 2D)85(w)

fOI‘I;tA =X — X anduB = X3 — Xp as
iy = Faﬁuﬁ + =2, (6)

where the friction matrix I, and the noise vector Z, are given
by

I'=

[

:(fz—fl ) 7

Tl -1-21 2«-2 &E-&6

1( 240 —«+22 )
Here, under the assumption u, < ¢, we have neglected the
hydrodynamic interactions acting between different spheres,
ie., Mjj ~ 0 when i # jin Eq. (3). It should be noted that
the friction matrix I, is nonreciprocal, i.e., [ap # I'ga when
A # 0 even if k = 1. Such a nonreciprocal interaction between
(uay and (up) results from the odd elasticity K°.

To deal with the above Langevin equations, we intro-
duce the bilateral Fourier transform of a function f(¢) as
flw) = f_o; dt f(H)e " and its inverse transform as f(f) =
J= (dw/27) f(w)e". Solving Eq. (@) in the frequency do-
main, we obtain

up(w) =

=3(k + 22) = 2(1 + KiwT + (wT)?
(I +20&1(w) + [(1 - ) +iwt] H(w) — [(2 + ) + iwT] fs(w)T

) ®)

ug(w) =

Using Egs. (8) and (9), one can calculate the correlation func-
tions (u,(w)ug(w’)). Then, the equal-time correlation func-
tions are obtained as

“dw [ do ,
i) = / 3 / e (ua(w)ua(w))
_ kgT(k + K2 — kA +22%)

KL+ R+ A2) (19)
oo kgT(1+k+1+22%)
W) = e T+ o B) b
_ 2
= B TI0 =01+ ] 1)

K+ 0+ 42)

Here, we have neglected the cross-correlations of the noise,
(&) with i # j, because they only contribute to the higher
order terms in a/f. When A = 0, the above expressions re-
duce to (u3) = kgT/KS, (ug) = kgT/KS, and (upug) = 0,
reproducing the well-known thermal equilibrium case.

Substituting the equal-time correlations in Egs. (I0)-(12)
into Eq. (5), we obtain the steady state average velocity of the
odd micromachine as

TkgT A

V)= e v

13)

which reduces to the previous result when « = 1 [15} [16].
Recalling 4 = K°/K$, we see that (V) is proportional to the

=3k + A2) = 2(1 + K)iwT + (wT)?

)

(

odd elastic constant K° whose sign determines the swimming
direction. Since (V) is also proportional to kg7, thermal fluc-
tuations are responsible for the locomotion of the odd micro-
machine.

C. Entropy production rate

Next, we calculate the steady state average entropy produc-
tion rate (d) of the odd three-sphere micromachine, which is
given by

3 .
(6 = —Z% (14)

i=1

According to the framework of stochastic energetics estab-
lished by Sekimoto [27], the time-derivative of the heat gained
by the i-th sphere is

Q; = 6mna(—x; + &) o X;, (15)

where %; and & are given by Eq. and o indicates the
Stratonovich product (the summation over i is not taken in
this expression). Then, the lowest-order average heat flows



become
o ksTA(1 -22)
<Q1>——T(1+K) , (16)
.« kgTA(=1+«k—-21)
(O = 0+ 0 , (17)
. __kBT/l(K+2/l)
(Q3) = T (18)

which all vanish when A = 0. Substituting Eqs. (I6)-(I8) into
Eq. (T4), we obtain the average entropy production rate of the
odd micromachine as

2
(o) = nd (19)

T (1 +x)]

which is obviously non-negative, (") > 0, and vanishes only
when A = 0. This result is consistent with the second law for
nonequilibrium steady states [28]].

In our previous work with « = 1 [15], we obtained the en-
tropy production rate by using the combination of the friction
matrix and the covariant matrix of the Gaussian distribution
function [29} 130]. We also showed that the entropy produc-
tion rate coincides with the power (work per unit time) of the
odd micromachine. Hence, all the extracted work due to odd
elasticity is converted into entropy production in the steady
state.

D. Time-correlation functions

Next, we calculate the time-correlation functions of the odd
micromachine in the steady state. Using Egs. (8) and (9), we
perform inverse Fourier transform and obtain the extension-
extension time-correlation function matrix ¢.z(¢) defined by

kgT
(4 (1)up(0)) = %m(r), (20)
A

where ¢4 is dimensionless. Generally, one can decompose
the time-correlation functions into the symmetric and anti-
symmetric parts as [21} 22]

Bap(t) = B5(1) + 1500, 1)

where ¢;ﬂ(t) = ¢Za(t) and ¢Zﬁ(t) = —¢20(t). When o = 8
(auto-correlation), only the symmetric part is allowed due to
the time-translational invariance of the steady state and hence
the antisymmetric parts should vanish, i.e., ¢Z N ¢%B =
0. When a@ # B (cross-correlation) and if the system is
in thermal equilibrium, the antisymmetric part of the cross-
correlation ¢, should also vanish due to the time-reversal
symmetry [26]. In nonequilibrium situations, however, ¢3,
can exist because the time-reversal symmetry is generally bro-
ken [21} 22]. In other words, ¢, quantifies the degree of
nonequilibrium in stochastic micromachines.

The inverse Fourier transform of the correlation func-
tion can be straightforwardly performed by employing the

residue theorem. After some calculation, we obtain the time-
dependent extension-extension correlation functions as

&A1) = K+ K — kA +222
AT + 0k + 2)
l—k+2
- % sin (uld/r) T (22)
K u
l+k+A+222
(1 + Kk + 122)
l-k+1 . (40l
+ TGy sin (ult] /1) e~ (1+M/T (23)
C(1=0a+ A2
(1 +x)(k + 22)
k—(1-x)Aa
(K + A

cos (ut/t) e~ 1+0li/T

Prpt) = cos (ut/7) e~ 0MIT

Pp(t) = cos (ut/t) eI+l

sin (ult|/7) e+, (24)

Pop(t) = - sin (ut/7) "1+, (25)

34
(I +u
where we have used the notation u = +/342 — (1 — k + k2).

When A2 < (1 — «k + k?)/3, p is purely imaginary so that
“cos” and “sin” functions should be regarded as “cosh” and
“sinh” functions, respectively. The equal-time correlations in
Egs. (I0)-(I2) can be recovered by setting ¢ = 0 in the above
equations.

As mentioned before, the auto-correlations have only the
symmetric parts ¢} , and ¢}, whereas the cross-correlation
contains both the symmetric part ¢}, and the antisymmetric
part ¢} ,. However, ¢ exists only for nonzero A and mea-
sures the degree of the broken time-reversal symmetry. Obvi-
ously, the symmetric parts are even functions in time, and the
antisymmetric part is an odd function in time. In Fig.[2] we
plot (a) ¢} »» (b) Py, (€) 5. and (d) ¢7; as a function of 7/7
when k = 1 and 4 = 0,0.25,0.5 (when g is imaginary). In
Fig.[3] we plot the same functions when x = 1 and A = 1,2,3
(when  is real). In Figs. Pfa) and (b), the auto-correlation
functions decay monotonically, whereas the symmetric part of
the cross-correlation function exhibits maximum values and
even takes negative values in Figs. 2Jc). As we increase the
odd elasticity A in Fig.[3] the oscillatory behaviors of the time-
correlation functions become pronounced.

The velocity-velocity correlation function matrix ,s(f)
can be obtained by taking the second time derivative of the
extension-extension correlation functions as [26]]

o? D
(1o (Dip(0)) = _ﬁ<ua(t)uﬁ(0)> = ;waﬁ(t), (26)

where we have introduced the diffusion coefficient of a sphere
D = kgT/(6mna). Alternatively, one can also use Eq. (6) to
calculate (i, ()iz(0)) directly, as shown in Appendix Sim-
ilar to Eq. @) Wap(t) can be decomposed into the symmetric
and antisymmetric parts as op(f) = ¢Zﬁ(f)+l//f,ﬁ(f)- Following
the same argument as before, we have 4, , = yi, = 0 for the
auto-correlation functions. However, the antisymmetric part
of the cross-correlation y/} , exists when A is nonzero.

The explicit expressions of the velocity-velocity correla-
tion functions and their plots are given in Appendix [A] We



259N
®pB

Pip

— A=05

~ . . i . . ~ . . i . ,
0.2 0 1 2 3 0'2*3 -2 -1 0 1 2 3
t/T

FIG. 2. Plots of the scaled extension-extension correlation functions (a) ¢} ,, (b) ¢}, (¢) @5, and (d) ¢, as a function of #/7 for k = 1. The

dimensionless odd elasticity is chosen as A = 0 (black), 0.25 (red), and 5 (green). For these parameters, u = /342 — (1 — k + «?) is purely
imaginary, and the correlation functions do not exhibit any oscillatory behaviors.
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FIG. 3. Plots of the scaled extension-extension correlation functions (a) ¢} ,, (b) ¢}y, (¢) @5, and (d) ¢}, as a function of #/7 for k = 1. The
dimensionless odd elasticity is chosen as A = 1 (black), 2 (red), and 3 (green). For these parameters, u = /342 — (1 — « + 2) is real and the

correlation functions exhibit oscillatory behaviors.

note that the symmetric part of the velocity-velocity correla-
tion functions has a sharp peak at ¢+ = 0, which arises from
the noise term in the Langevin equation. For very short time,
t < 1, the velocity-velocity correlation functions are approxi-
mated as [26]

(ua(up(0)) = i (Nis(0)) = 4D6(7),
(ua(®ug(0)) = (i (Dia(0)) = =2D6(1).

27)
(28)

E. Green-Kubo relations

At equilibrium, the time integral of the velocity-velocity
correlation function for a free particle gives the diffusion co-
efficient, known as one of the Green-Kubo relations [31]]. Re-
cently, Han et al. argued that an equilibrium-like Green-Kubo
relation holds near the steady state of an isotropic active fluid
if the activated and fluctuating degrees of freedom are sta-
tistically decoupled [32]]. Epstein and Mandadapu obtained
the Green-Kubo relation for the odd viscosity [33]], which ex-
plicitly violates the time-reversal symmetry at the level of the
steady state stress fluctuations [34} 35].

For the odd micromachine, we perform the time integral
of the velocity-velocity correlation functions given in Ap-
pendix [A] From the auto-correlation functions in Eqgs. (A2)

and (A3)), we obtain
/ di ia(Dia(0)) = / di g (Nig(0)) = 0. (29)
0 0

Here, the time integral of Eq. gives 2D which is canceled
by the rest of the terms in Eqs. (AZ) and (A3). The result
that the integrals in Eq. vanish is reasonable because the
particles are connected by the springs [26]].

For the cross-correlation functions in Eqs. (A4)-(A35), on
the other hand, one obtains

61D

/ di [ita (1) (0)) = (itp (D)t (O] = — 7.
0 + K

In this calculation, only the antisymmetric part of the corre-
lation function i/} ; remains. Equation explicitly demon-
strates that the broken time-reversal symmetry is caused by
the finite odd elasticity A. The above result also suggests that
one can estimate the odd elasticity of a micromachine by mea-
suring the cross-correlation function [22].

(30)

III. THERMAL THREE-SPHERE MICROMACHINE
A. Model

In this section, we discuss another type of stochastic micro-
machine that is also purely driven by thermal fluctuation but



without any explicit odd elasticity. Here, the key assumption
is that the three spheres are in equilibrium with independent
heat baths having different temperatures [[12H14]]. In this mi-
cromachine, the heat transfer occurs from a hotter sphere to a
colder one, driving the whole system out of equilibrium.

As shown in Fig. b), we consider a three-sphere mi-
cromachine in which the three spheres are in equilibrium
with independent heat baths having different temperatures 7;
(i =1,2,3) [12H14]]. On the other hand, the two springs have
only even elasticity characterized by K and Kj, whereas an
explicit odd elastic constant does not exist. The equation of
motion of each sphere is the same as in Eq. (2), although the
thermal noise &; has different statistical properties. For the
thermal micromachine, we assume that Gaussian white-noise
sources & have zero mean (&;(¢)), = 0, and their correlations
satisfy

EOE ) =
Here, D;; is the mutual diffusion coeflicient matrix given by
b {kB T:/(6mna) (=5,
ij = .
kg®(T;, Tj)/(4rnlxi — x;1) - (0 # J),

2D;i5(t —1'). (31

(32)

where (T}, Tj) is a function of T; and T';. The effective tem-
perature ® can be the mobility-weighted average [36], which
in the present case is simply given by O(T;,T;) = (T; + T;)/2
because all the spheres have the same size. However, its ex-
plicit functional form is not needed here, and we only require
that ® should satisfy an appropriate fluctuation-dissipation
theorem in thermal equilibrium. Such a simplification is jus-
tified because we only consider the limit of a <« ¢£.

B. Average velocity

The average velocity of the thermal micromachine can be
obtained similarly as before by using Eq. (8) with 1 = 0 be-
cause odd elasticity does not exist in this model. In our previ-
ous paper, the average velocity was obtained as [12]

kgT> [(2 - 5x)0; — 7(1 — k) + (5 = 2x)65]
1447n02(1 + 1) ’

(V= (33)
where k = K, /K} as before and we have defined the temper-
ature ratios by 6; = T1/T, and 63 = T3/T>. When the three
temperatures are identical, 71 = T, = T3 or 6, = 63 = 1, the
velocity vanishes identically, (V), = 0. This means that the
temperature difference among the spheres causes the locomo-
tion of the thermal three-sphere micromachine.

When the two springs are equivalent and « = 1, (V) does
not depend on T, and is proportional to the temperature differ-
ence T3 — T. In this case, the average velocity vanishes when
T, = T5 even though T and T35 are different from 7.

C. Entropy production rate

The average entropy production rate can also be calculated
similarly to the previous section. For the thermal micro-

machine, the lowest-order average heat flows were obtained
as [12]

kgT>[(3 + 2k)8; — (3 + k) — k65]

(Qi) = 60 , (34)
(O = ksTa[-(3 + k)0 + (3 + 2k + 3&%) — (k + 3/<2)9;]
Q)= 61(1 + K)
(35)
. kg Ta[—k6) — (k + 3k%) + 2k + 3«%)65]
(O3 = ) , (36)

which all vanish when Ty = T, = T3 0or 6, = 63 = 1. Itis
worth to note that the above heat flows satisfy (Q;); + (Q>) +
(03); = 0 so that the total heat is conserved.

Using these results and keeping in mind the different tem-
peratures of the spheres, the steady state average entropy pro-
duction rate is given by

3 .
<(j->t - _ Z <%1->l
i=1 !

1
kg 3+ K)(01+—)+K(ﬂ+9—3)
0, 0; 6,

“6r(1 + 1)
+ (1 +3K)(93+9i)—6(1+K+K2).
3

(37

One can easily confirm the second law, (d); > 0, by using
the inequality A + B > 2 VAB for A, B > 0 and (o) vanishes
when 8; = 65 = 1. The above entropy production rate reduces
to that in Ref. [14]] when « = 1.

D. Time-correlation functions

Next, we calculate the extension-extension time-correlation
function matrix ®.s for the thermal micromachine and de-
compose it into the symmetric and antisymmetric parts as

BT2 kB 2

(U (Dup(0)) =~ Dyp(r) = [cb Lp(0) + Qi) (38)
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FIG. 4. Plots of the scaled extension-extension correlation functions (a) @3, ,, (b) @, (¢) @5, and (d) O3y as a function of #/7 for k = 1. The
dimensionless temperature ratios between the spheres are chosen as (6y, 6;) = (1, 1) (black), (2, 3) (red), and (3, 5) (green).

The time-translational invariance requiers @3 , = ®%, = 0 as
before. After repeating similar calculations, we obtain

(B +4K)6; + 3+ k) + kb5

ONOE ey cosh (ot/7) o (1+0ll/T
K
N (=3 + 406, ; (3—k) + kb5 sinh (ol /1) e~ (",
0
(39)
s 61 + (1 +3k) + (4 + 3x)0 e
N WET) * cosh (pt/7) e M/
# D UZ30L G300 Go ol e 0,
Kp
(40)
0 —2+0; (4ol
D50 = Siv0 cosh (pt/7) e~ 1M/
O+1+86
+ %};3 sinh (plt]/7) e+ @)
-0 1- 0
Do 5(t) = 1 +2((1 . I/:))p+ K03 ioh (ot/7) e~ O+0MIT, (42)

where we have used the notation p = V1 — k + 2. Since 1 —
k+k> > 0, pis real for any «, and all the above time-correlation
functions do not oscillate in time. In Eq. @#2)), we see that
@3 5 (1) vanishes when 6; = 65 = 1.

Next, we calculate the velocity-velocity correlation func-
tion matrix ¥,z(#) for the thermal micromachine as

D D
(it (D)), = —Wap(t) = — [¥o5(0) + ¥ig(0)] 43)

where Dy, = kgT,/(67na) is the diffusion coefficient defined
by using the temperature T, [see Eq. (32)]. The explicit ex-
pressions of the velocity-velocity correlation functions and
their plots are given in Appendix [B] Similar to the odd mi-
cromachine, the symmetric parts of the velocity-velocity cor-
relation functions have a sharp peak at + = 0. In the short
time limit, r < 7, the velocity-velocity correlation functions
become

(a@®iea(0)) = 2(61 + 1)D126(7), (44)
(ig(Ditg(0))e = 2(1 + 63)D126(1), (45)
(ua®ug(0)) = Cip(Nita(0)) = =2D56(r).  (46)

These results coincide with Egs. and (28) when 6, = 6; =
1 and if Dy, can be identified with D.

E. Green-Kubo relations

Having obtained the velocity-velocity correlation functions
for the thermal micromachine, we now calculate the Green-
Kubo relations as in the previous section. From the auto-
correlation functions in Egs. and (B2)), we have

/0 dt G (Niea(0)) = /0 dr (g (Dug(0)) =0, (47)

similar to Eq. (29). From the cross-correlation functions in
Egs. (B3) and (B4), however, we obtain
/ dr [Cia®)ig(0)); — (g (1)ita(0))(]
0

_ _[60 = — k) — k631D
1+« '

(48)

This result implies that the time-reversal symmetry is broken
for the thermal microswimmer when the temperatures are dif-
ferent.

IV. EFFECTIVE ODD ELASTICITY OF THE THERMAL
MICROMACHINE

So far, we have discussed the statistical properties of the
odd and thermal micromachines, and obtained their time-
correlation functions to discuss the Green-Kubo relations. Al-
though these two stochastic models are different, it is worth-
while to consider the effective odd elasticity of the thermal
micromachine. As we mentioned earlier, odd elasticity gives
a quantitative measure of the work that can be extracted from
active systems [17} [18]], and nonequilibrium cyclic dynamics
of micromachines can be quantified by effective odd elastic-
ity [19L 20]]. Such an approach is possible for stochastic mi-
cromachines by looking at the violation of the time-reversal
symmetry of the cross-correlation functions [21} 22].

For this purpose, we compare the Green-Kubo relations in
Egs. (30) and (@8), and define an effective odd elasticity A



ratio of the thermal micromachine as

D
A= 6—12)2[91 — (1 =) — xb3]. (49)

If we further assume Dy, = D and k = 1, we obtain

T, -Ts
A = T (50)
This result clearly demonstrates that the effective odd elastic-
ity of the thermal micromachine is purely determined by the
temperature difference between the edge spheres. The above
relations further indicate that A; is inversely proportional to
the middle sphere temperature 75.

It should be mentioned, however, that the above argument
is not the only way to obtain the effective odd elasticity of the
thermal micromachine. For example, one can also compare
the average velocities of the two micromachines as given in
Egs. (I3) and (33) or the entropy production rates in Eqs. (I9)
and (37). Although the comparison of different quantities
leads to a slightly modified numerical factor, the effective odd
elasticity is always proportional to the temperature difference
among the spheres, as shown in Eq. (50). This is because both
the odd elasticity and the temperature difference lead to the vi-
olation of the time-reversal symmetry. One of the advantages
of using the Green-Kubo relations to define 4, is that they con-
tain information on the cross-correlation functions over the
whole time.

V.  SUMMARY AND DISCUSSION

In this paper, we have calculated the time-correlation func-
tions of the two different stochastic three-sphere microma-
chines, i,e., the odd micromachine and the thermal microma-
chine. For both models, the cross-correlation functions of the
two springs contain the antisymmetric part, which is a direct
consequence of the broken time-reversal symmetry of the mi-
cromachines. For the odd micromachine, the antisymmetric
part of the correlation function is proportional to the odd elas-
tic constant [see Eq. (23)], whereas it is proportional to the
temperature difference among the spheres [see Eq. (42))]. We
have also obtained the entropy production rate and the Green-
Kubo relations for the two micromachines. A comparison
of these results allows us to discuss the effective odd elastic-
ity of the thermal micromachine [see Eq. (d9)], even though
the odd elasticity is not explicitly included in the model. For
the thermal micromachine, the effective odd elasticity is pro-
portional to the temperature difference between the spheres,
which causes an internal heat flow and leads to directional lo-
comotion.

Evaluation of effective odd elasticity was previously dis-
cussed for a model micromachine driven by catalytic chem-
ical reactions [22]]. We calculated the time-correlation func-
tions of the structural variables and analyzed them in terms
of Langevin dynamics with effective odd elasticity [21]. It
was also shown that the odd elasticity is directly related to
the quantity called nonreciprocality of a micromachine. For

a deterministic micromachine undergoing cyclic motions, the
nonreciprocality R is defined by [[15]

1
R= 3 ygdl(MAitB — liaUB), (51)

where the integral is taken over one cycle, and R represents the
area enclosed by the trajectory in the configuration space [37]].
For stochastic micromachines, the average nonreciprocality
(R) is essentially given by the time derivative of the anti-
symmetric part of the extension-extension correlation func-
tion, such as given by Eq. that is proportional to the odd
elasticity. Hence, the effective odd elasticity introduced in
Eq. (50) directly characterizes the nonreciprocality of the ther-
mal micromachines.

Recently, Hargus er al. discussed odd diffusivity in two-
dimensional chiral active matter and derived the Green-Kubo
relation for the odd diffusion coefficient [38]]. A similar rela-
tion was also obtained for the odd mobility of a passive tracer
in a chiral active fluid [39]]. In their results, both odd diffu-
sivity and odd mobility result from the broken time-reversal
symmetry in active systems and are related to the antisym-
metric part of the cross-correlation functions, which is similar
to our result. In our stochastic micromachines, the integrals of
the auto-correlations vanish as in Egs. (29) and because
the spheres are connected by the springs. Although the mo-
tions of the micromachines are one-dimensional in our mod-
els, the configurational space spanned by ua and ug are two-
dimensional. It is useful to consider an effective odd elasticity
in such a configurational space, and the obtained Green-Kubo
relations for the cross-correlation functions in Egs. (30) and
(@8) are directly proportional to the odd elasticity. We also
note that the oscillatory trajectory seen in the chiral random
walk [38]] is analogous to the oscillatory behaviors of the time-
correlation functions in this paper due to the odd elasticity.

In this work, the elastic constant matrix for the odd micro-
machine was given by Eq. (1) in which we took into account
the difference between KZ and KE. However, the most general
form of the elastic constant matrix can take the form

KS  KSy+K°
K:( . A ) ABe ), (52)
Kig—K Ky

where we have introduced another even elastic constant K3,
in the off-diagonal components [22]. Such an even elas-
ticity can induce amplitude asymmetry between the two
springs [40]. Although the time-correlation functions can be
easily calculated in the presence of K, Eq. is sufficient
to compare with the thermal micromachine.

To calculate the time-correlation functions, we have
neglected hydrodynamic interactions acting between the
spheres. This is justified because hydrodynamic interactions
are higher-order contributions for the correlation functions,
which will be calculated in our future work. It should be
mentioned again, however, that hydrodynamic interactions are
necessary for the locomotion of the three-sphere microma-
chines.
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Appendix A: Velocity-velocity correlation functions of the odd three-sphere micromachine

As mentioned in the text, the velocity-velocity correlation functions can be calculated by using Eq. (6) as

(ita(N1tp(0)) = ([Tayty (1) + Eo (D][Tgs15(0) + E(0)])-

(AL)

The correlations between the displacement and noise, (u,(#)Z3(0)), can also be calculated straightforwardly.

For the odd micromachine, the expressions of the velocity-velocity correlation functions defined in Eq. are given as

follows:

6% — 3k — (4 + Sk + &%)

1222 =3kl — (4 -k + &%) .

YAA(D) = 478(1) + e cos (ut/7) "M/ — p sin (ulrl/7) ™M, (A2)
(1) = 4T5(8) + 64% + 34 _1(i : SK+4kh) (ut ) e+ _ 122 + 31 - ;1 —K+ A WD e (A3
Yap(®) = —276(1)
32 +30 - K)1/1+—K2(1 + 2k + &%) cos (ut/7) ¢~ 4 6% +3(1 - K)/L— (2 +Kk+26%) sin Gt/ T (Ad)
6 cos (ut/) e-tnie — SABL ; - e 2N Gin Gy e (1> 0),
a AS
Yas(®) 6.1cos (ur/ 2 14417 32032% (_1(_3 :); +269)] sin (ut /7) e+ (1 <0), (AS5)

where = /342 — (1 — k + K2).
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Appendix B: Velocity-velocity correlation functions of the thermal three-sphere micromachine

For the thermal micromachine, the expressions of the velocity-velocity correlation functions defined in Eq. (43)) are given as

follows:

WA =206 + 1)T6(r)
B (4 +5K)0; + (4 + 5k + 3k%) — k%63
2(1 +«)

Wi = 2(1 + 63)76(2)
-0 + (3 + Sk + 4k%) + k(5 + 4K)63
2(1 + %)

k0; + 2(1 + &k + K2) + kb5

WS () = =275(F) +
(D T0(1) o x

cosh (pt/7) e”OI/T —

cosh (pt/7) e~ 1+OM/T _

(k=40 — (4 — k + 36%) + 263
2p

sinh (plt|/7) e~ HM/T,

(BI)

2
01 — 3 —k+4%) + k(1 — 4x)0; sinh (plt]/7) e~ (+OMIT,

—[6) — (1 = k) — k03] cosh (pt/7) e=1+1/7 4
Yis(®) =

[0; — (1 — k) — k03] cosh (pt/T) e1+HT 4

where p = V1 — k + 2.

2p
(B2)
01 + (2 — k + 2K%) + K6
cosh (pt/7) e-1omie - KO QT KA IO T Kby G ey e (B3
P
2 260[0; — (1 — k) —
2+, 4216, = (1 = 1) ~ k3] sinh (pt/7) e~ 19T (¢ > 0),
2(1 + x)p B4)
2 2696, — (1 — &) — kb
(2wt 206 = (1 =6 = k63] sinh (pt /1) 197 (t<0),

2(1 + x)p
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