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Abstract

The selection of best variables is a challenging problem in supervised and unsupervised
learning, especially in high dimensional contexts where the number of variables is usually
much larger than the number of observations. In this paper, we focus on two multivariate
statistical methods: principal components analysis and partial least squares. Both approaches
are popular linear dimension-reduction methods with numerous applications in several fields
including in genomics, biology, environmental science, and engineering. In particular, these
approaches build principal components, new variables that are combinations of all the orig-
inal variables. A main drawback of principal components is the difficulty to interpret them
when the number of variables is large. To define principal components from the most relevant
variables, we propose to cast the best subset solution path method into principal component
analysis and partial least square frameworks. We offer a new alternative by exploiting a contin-
uous optimization algorithm for best subset solution path. Empirical studies show the efficacy
of our approach for providing the best subset solution path. The usage of our algorithm is
further exposed through the analysis of two real datasets. The first dataset is analyzed using
the principle component analysis while the analysis of the second dataset is based on partial
least square framework.

1 Introduction

The selection of best variables is a challenging task, particularly in a high dimensional context
where the number of variables p is usually much larger than the number of observations n.
Analysing each variable separately is time consuming, while describing the results using graphs
and numerical measures may not sufficiently aid in drawing conclusions as either too many fea-
tures are visualized or the summary information may be inconclusive. A solution to circum-
vent this problem is to use multivariate statistical methods such as principal components analy-
sis (PCA) and partial least squares (PLS), which are well established linear dimension-reduction
methods for analysing data resulting from observations with a large number of variables. In PCA
and PLS, a few number of new variables are constructed, which are linear combinations of the
original variables. These linear combinations are called components, scores. The relation between
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these new variables and the original ones is characterized by the weights involved in the linear
combinations. In PCA, the weights are defined in such a way that the variance of each component
is maximal, under the constraint that the score variables are orthogonal (see, e.g. [16]). As a result,
PCA offers a low-dimensional representation of the variables that attempts to capture the most
important information from the data. In many applications, only a few components are required
to recover a large proportion of the overall multidimensional variability present in the original
dataset, thereby performing a dimension-reduction while most of the information is preserved.

While PCA tackles the analysis of a single dataset, Projection to Latent Structures models focus
on multiple sets of data, each comprising a large number of variables measured on the same sta-
tistical units. Projection to Latent Structures was first introduced by [44] under the name Partial
Least Squares (PLS) in the context of regression models to deal with high collinearity of the pre-
dictors where the number of variables is larger than the number of observations. PLS methods
offer a wide range of multivariate supervised and unsupervised statistical techniques on multiple
blocks of data. In PLS, algorithms also construct new variables that are linear combinations of the
original variables. Here, these new components are obtained by maximizing a covariance crite-
rion for capturing the relationships between the sets of data. A recent review of PLS modelling
for two blocks of data is provided by [19] where both asymmetric and symmetric situations are
presented. The asymmetric situation deals with the case where one block of predictors is used
to explain the other block while the symmetric situation corresponds to the case where the two
blocks are interchangeable.

PCA and PLS are now extremely popular linear dimension-reduction techniques with numer-
ous applications; see, for example, [28]) in genomics, [15] and [41] in neuroimaging, [39] in biology,
[18] in environment science, and [5] in engineering.

However, in the case of large number of variables, the main drawback of these algorithms
remains the difficulty to interpret the new linear combinations obtained from the large number of
original variables. This difficulty has been addressed by proposing sparse modelling techniques
for constructing new components using a small number of the original variables [33, 6]. The
sparsity into the new components can be achieved via lasso penalization [33, 43, 21, 6, 40]. These
lasso penalization based techniques have the potential to improve interpretability and to get better
estimators, especially for the analysis of large datasets [23, 20, 26, 3].

In this paper, we present a new and more suitable approach for identifying components based
on the most relevant variables. In particular, we present the challenge of defining sparse compo-
nents that appear on the so-called best subset solution path, which contains for a given size k that
model that is a best subset of k variables for constructing the components. This terminology of
best subset solution (BSS) path follows the terminology in [30] and [14]. The BSS path approach
aims to collect p models of varying subset size k that solve the PCA model and, respectively, the
PLS model. That is the goal in finding the BSS path is to attempt to recover for each subset size
k = 1, . . . , p, the best subset of size k that is obtained through an exhaustive search approach. Note
that the best subset selection problem in the traditional sense is a different problem, as it aims to
find a single best model from as many as 2p possible models with a desirable optimality property,
such as having highest accuracy.

The problem of finding a single best subset has been intensively studied in the case of linear
regression [13, 2], which is often one of the subsets that appear on the best subset solution path.
Recently proposed methods [10, 35, 11] offer a solution beyond the exhaustive search using the
Furnival Wilson algorithm [9, 36]. An exhaustive search using the Furnival Wilson algorithm is not
practical when the number of variables p is larger than 30 to 40 (depending on the computational
power available). Our approach for BSS for PCA and PLS models is based on the continuous
optimization algorithm recently developed by [29] for BSS in linear regression. More specifically,
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we frame the BSS for PCA and PLS models as continuous optimization algorithms which can take
advantage of standard continuous optimization methods, such as gradient descent, to visit a large
set of subsets. We refer to the proposed method as “best” subset solution path approaches because
this is what is often achieved numerically where approaches first reduce the vast model space to
p subsets on the best subset solution path.

The rest of the paper is organized as follows: Section 2 briefly reviews PCA and PLS mod-
els, and their sparse versions. In Section 3, we cast BSS into PCA and PLS models. Section 4
presents the main algorithm and gives more details on its implementation. A simulation study
is presented in Section 5 where we highlight the ability of our algorithms to recover best sub-
sets in PCA and PLS models. Section 6 presents applications of our algorithm for two different
real datasets. Finally, Section 7 completes the paper with some concluding remarks. We present
additional empirical research and additional theoretical results in the supplementary material.
All numerical results of our simulation study are reproducible, R code that is made available at
https://github.com/benoit-liquet/BSS-PCA-PLS.

2 Sparse PCA and PLS

In this section, we briefly review sparse PCA (sPCA) as presented in [33] and sparse PLS (sPLS)
as proposed in [21]. The approaches are based on singular value decomposition (SVD), where
sparsity is achieved using lasso type-penalties. Further, these are iterative algorithms based on
deflation in each iteration, where deflation removes the information contained in the previous
components. We adopt the standard deflation used by [43] and [21]. We first detail the procedures
to define the first component for the PCA framework and the first pair of components for the PLS
framework. Subsequent components for PCA or subsequent pair of components for PLS repeat
the same procedure on the deflated data matrices. We remark that the type of deflation procedure
used determines the mode of PLS.

2.1 Notation

Let X ∈ mat(n, p) and Y ∈ mat(n, q) be two data matrices, both consisting of n observations
of p and q variables, respectively. Without any loss of generality, we assume these matrices are
column centered. When q = 1, the observed centered response vector of size n is denoted by
y. We use ⟨ · , · ⟩ to denote the inner product between two vectors of the same dimension. The
Frobenius norm of an n × p matrix A is ∥A∥F =

√
trace(A⊤A). The soft thresholding function is

gsoft (x, τ) = sign(x)(|x| − τ)+,where (a)+ = max(a, 0).

2.2 PCA and sPCA

The first PCA component of X is obtained by solving,

max
u∈Rp, ∥u∥=1

var(Xu) = max
u∈Rp, ∥u∥=1

1

n
u⊤X⊤Xu, (1)

where var(·) is the sampling variance operator. Application of Lagrange multiplier techniques
shows that an optimal solution u1 ∈ Rp, called the loading vector (also called weight vector), is
the eigenvector associated with the largest eigenvalue of the sample covariance of the data S =
1
nX

⊤X . In practice, this loading vector u1 ∈ Rp is usually obtained by computing the truncated
SVD of X which gives the best rank-one approximation matrix X̃ = δ1v1u

⊤
1 with respect to the
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Frobenious norm. The vectors v1 ∈ Rn and u1 ∈ Rp are respectively the first left singular vector
and the first right singular vector of X , associated with the largest singular value δ1.

In order to introduce some sparsity into the loading vector u, [33] proposed to solve the prob-
lem

min
v∈Rn∥v∥=1,u∈Rp

∥X − vu⊤∥2F + Pτ (u), (2)

where Pτ (u) =
∑p

j=1 pτ (|uj |) is a penalty function and pτ (·) is a non-negative function param-
eterized by τ ≥ 0. Let (u∗,v∗) be the solution of (2). The sparse loading of unit length is then
ũ = u∗/∥u∗∥. A soft thresholding penalty pτ (|θ|) = 2τ |θ| has been implemented in the R package
mixOmics [32]. Note that without any penalty term, this procedure matches with the non-sparse
PCA where ũ = u1. The subsequent sparse components are defined sequentially using (2) on
residual matrices obtained through the deflation step presented in Table 1 in the supplementary
information.

2.3 PLS and sPLS

The first component pair for the PLS model for the data matrices X and Y is obtained by solving,

max
u∈Rp, ∥u∥=1,v∈Rq , ∥v∥=1

cov(Xu, Y v) = max
u∈Rp, ∥u∥=1,v∈Rq , ∥v∥=1

⟨Xu, Y v⟩
n

. (3)

where cov(·, ·) is the sampling covariance operator. An efficient way to solve this optimization
problem is to exploit the SVD of the matrix M = (X⊤Y )/n of rank r ≤ min(p, q):

M = U∆V =
r∑

k=1

δkukv
⊤
k , (4)

where uk and vk are the k-th left and right singular vector of M associated with the k-th singular
value. The first left singular vector u1 and the first right singular vector v1 are the solution of
(3). The subsequent component pairs are obtained in a similar manner using deflated versions of
X and Y to ensure the appropriate orthogonal constraint depending the mode of the PLS used.
Some of the popular deflation techniques are presented in Table 1 in the supplementary material.

Sparsity in the weight vectors u and v can be introduced by solving [?, see,]]de2019pls

maximize u⊤Mv − Pτ1(u)− Pτ2(v) subject to ∥u∥2 ≤ 1, ∥v∥2 ≤ 1, (5)

where Pτ1(·) and Pτ2(·) are convex penalty functions parameterized by tuning parameters τ1 and
τ2. The first pair of sparse weight vectors (u,v) can be found by iteratively calculating

ũ← argmin
ũ∈Rp

{∥∥∥M − ũv⊤
∥∥∥
2

F
+ Pτ1(ũ)

}
,

ṽ← argmin
ṽ∈Rq

{∥∥∥M⊤ − ṽu⊤
∥∥∥
2

F
+ Pτ2(ṽ)

}
,

(6)

and then use scaling u = ũ/ ∥ũ∥2 and v = ṽ/ ∥ṽ∥2.
An ℓ1-norm penalty has been adopted by [21] and [7]:

Pτ1(ũ) =

p∑

i=1

2τ1 |ũi| and Pτ2(ṽ) =

q∑

j=1

2τ2 |ṽj | .
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These ℓ1-norm penalties have the advantage to provide a closed form solution of (6) given by ũ =
gsoft (Mv, τ1) , ṽ = gsoft (M⊤u, τ2

)
, where gsoft (·, τ) is the soft thresholding function applied

element-wise. Similar to the non-sparse PLS, the subsequent component pairs are obtained using
the procedure above using the deflated versions of X and Y (see Table 1 in the supplementary
material).

3 Best Subset Solution Path for PCA and PLS models

In this paper, we refer to the ‘best subset solution’ (BSS) path. The BSS path contains p models of
varying subset size k that solve the PCA model (as defined by equation (1)) and, respectively, the
PLS model (as defined by equation (3)). That is the goal in finding the BSS path is to attempt to
recover for each subset size, the subset obtained through an exhaustive search approach.

We first present the problem of the BSS path for the PLS model with univariate response, which
is the simpler optimization problem to solve. This particular PLS model is known as PLS1. Then,
we move on to present the BSS path for the multivariate case of PLS, called PLS2. We further show
that the BSS path for PCA can be easily derived from the BSS path for PLS2.

3.1 Best Subset Solution Path for PLS with Univariate Response

We now consider the BSS path framework for constructing the first component score. When q = 1,
finding the optimal solution u∗ ∈ Rp of (3) is given by

u∗ =
X⊤y
∥X⊤y∥ . (7)

Now suppose we want to introduce sparsity, in the sense that the new optimization problem is

max
u[s]∈Rk, ∥u[s]∥=1

⟨X[s]u[s], y⟩
n

, subject to s ∈ {0, 1}p,
p∑

j=1

sj ≤ k, (8)

where X[s] is the matrix constructed from X by removing all its columns with indices j where
sj = 0, k is the sparsity parameter that represents the subset size, and |s| denotes the number of
ones in the binary vector s. Observe that for any fixed binary vector s, the optimal solution of (8)
is u∗

[s] = X⊤
[s]y/

(
∥X⊤

[s]y∥
)
.

Thus, the optimization problem (8) can be expressed as

max
s∈{0,1}p

⟨X[s]u
∗
[s], y⟩
n

, subject to |s| ≤ k,

Since, ⟨X[s]u
∗
[s], y⟩ =

(
u∗
[s]

)⊤
X⊤

[s]y =
∥X⊤

[s]
y∥2

∥X⊤
[s]

y∥ = ∥X⊤
[s]y∥, we can express (8) as

min
s∈{0,1}p

[
−
∥X⊤

[s]y∥
n

]
, subject to

p∑

j=1

sj ≤ k. (9)

This problem defines the best subset solution path for PLS1. However, solving this problem is NP-
hard, and hence, we consider, by exploiting the idea of [29], a Boolean relaxation of (9) is given
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by

min
t∈[0,1]p

[
−∥X

⊤
t y∥
n

]
, subject to

p∑

j=1

tj ≤ k, (10)

where t = (t1, . . . , tp)
⊤, with each tj ∈ [0, 1], and Xt is obtained from X by multiplying its j-th

column with tj for every j = 1, . . . , p. Since minimizing −∥X⊤
t y∥ is equivalent to minimizing

−∥X⊤
t y∥2, to simplify the gradient expression later, we rewrite (10) as

min
t∈[0,1]p

[
−∥X

⊤
t y∥2
n2

]
, subject to

p∑

j=1

tj ≤ k. (11)

From Theorem 1 (i), it turns out the solution of the Boolean relaxation (11) is indeed the exact
solution obtained by (9).

Note that the optimization problem in (9) is defined using X[s] constructed by removing columns
from the design matrix X (and hence X[s] and X are of different sizes) while Xt in optimization
problem in (10) is constructed by multiplying the j-th column of X by tj for every j. Thus, both
Xt and X are of the same size. This construction allows us to define our new estimator of the
weight vector ut for all t ∈ [0, 1]p while guaranteeing that

∥X⊤
t y∥ = ∥X⊤

[s]y∥, for t = s,

at the corner points s of the hypercube [0, 1]p. This construction also guarantees that the new

objective function −∥X⊤
t y∥2
n2 is smooth over the hypercube as illustrated in Figure 1.

Finally, instead of solving (11), we consider

fPLS1
λ (t) = −∥X

⊤
t y∥2
n2

+ λ

p∑

j=1

tj , (12)

and solve
min

t∈[0,1]p
fPLS1
λ (t), (13)

using a continuous optimization method, such as basic gradient descent or Adam (as shown in
the example of Figure 1). Theorem 1 shows that for each k there exists a value of λ such that an
optimal solution of the box constrained optimization (11) provides an exact solution of the best
subset solution path problem (13). A proof of the theorem is presented in Appendix A in the
supplementary material.

Theorem 1. We have the following equivalence between the optimization problems (9), (11), and (13).

(i) The optimal solutions of the minimization problems defined by (9) and (11) are identical.

(ii) For every k = 1, . . . , p, there exists λ such that an optimal solution of (11) is an optimal solution
of (13).

To execute a gradient descent algorithm to solve (13), we use the gradient expression given by

∇fPLS1
λ (t) = λ1− 2

n2

(
t⊙X⊤y ⊙X⊤y

)
, (14)

where 1 is is a vector of all ones and ⊙ is the element-wise product operator.
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Figure 1: Illustration of the workings of our continuous optimization method using basic gradient
descent for an example data with p = 2. Plot (a) shows the objective function of the PLS model
with univariate response at binary points s ∈ {0, 1}2. Observe that the best subsets correspond
to k = 0, k = 1, and k = 2 are (1, 1)⊤, (0, 1)⊤, and (0, 0)⊤, respectively. Plots (b) - (d) show the
objective function of our optimization method (13) for different values of the parameter λ. In each
of these three plots, the curve (in yellow) shows the execution of basic gradient descent algorithm
that, starting at the initial point tinit = (0.5, 0.5)⊤, converges towards the best subsets of sizes 0, 1,
and 2.

Remark 3.2 From Theorem (1), we note that our target continuous optimization problem (13)
provides a solution to the exact best subset solution path problem (9). However, we encounter
few challenges in solving (13) using a gradient descent algorithm. Lemma A1 in the supplemen-
tary material shows that our objective function fPLS1

λ (t) is concave on the hypercube [0, 1]p. Thus,
depending on the initial point, the converging point of the continuous optimization can be sub-
optimal. This can be particularly an issue if the maximum point tmax of fPLS1

λ (t), as a function on
Rp
+, lies within the hypercube. Note that tmax is obtained by equating the gradient (14) to zero.

That is, with z = (X⊤y)/n (which is independent of t),

tmax =
λ1

2(z⊙ z)
,

where the division is element-wise. Notice that tmax can be inside or outside the hypercube [0, 1]p

depending on λ. The larger the λ value, the farther away is tmax from the hypercube. In particular,
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tmax ∈ [0, 1]p if and only if,

λ ≤ 2 min
j=1,...,p

z2j . (15)

Since we are interested in sparse solutions, which are achieved when λ is larger, the tmax usually
stays outside the hypercube, allowing our algorithm to depend less on the initial point. In fact, in
our simulations, we select a grid of λ values over [0, λmax], where λmax =

∑p
j=1 z

2
j which can be

much larger than the upper bound in (15) and corresponds to the empty model. Desired sparse
models are achieved for large values of λ on the grid.

Remark 3.3 Exploiting the continuity of the new objective function enables gradient descent
algorithms to explore a huge space of models while converging in a few iterations towards iden-
tifying the best subset. By increasing the value of λ, we can increase the sparity of the solution
of the optimization problem (10), because the penalty λ

∑p
j=1 tj encourages sparsity in t (see Fig-

ure 1). Note that even though there is a mapping between the sparsity of the solution and the
value of λ, since in practice we obtain solutions over a grid of λ, there is a chance of not seeing
models corresponds to some values of k. To overcome this issue and to reduce the reliance on the
λ parameter, in Section 4, we provide an improved version of the algorithm so that a single run
of the algorithm provides a list of subsets of desired sizes k. In this case, λ can be viewed as an
exploration parameter rather than a sparsity parameter.

3.2 Best Subset Solution Path for PLS with Multivariate Response

Recall that, for a design matrix X ∈ Rn×p and a multivariate response matrix Y ∈ Rn×q, the
solution of (3) is given by the pair (u1,v1) being the first left and right singular vector of M =
(X⊤Y )/n associated with the largest singular value δ1. Further, it is well known that

max
u∈Rp, v∈Rq∥u∥=1,∥v∥=1

⟨Xu, Y v⟩
n

= δ1. (16)

Note that the square of this largest singular value is the largest eigenvalue of the symmetric ma-
trices M⊤M and MM⊤. Indeed, M⊤M =

∑r
k=1 δ

2
kvkv

⊤
k , and MM⊤ =

∑r
k=1 δ

2
kuku

⊤
k .

Consequently, δ21 = v⊤
1 M

⊤Mv1 = u⊤
1 MM⊤u1. Note that the largest eigenvalue η∗ of any

symmetric matrix A (of size p×p) can be attained by exploiting the power method which is described
by the recurrence relation, ω(ℓ+1) = Aω(ℓ)/

(∥∥Aω(ℓ)
∥∥) , with ω(0) ∈ ℜp a random unit vector. The

sequence of eigenvalues η(ℓ+1) = (ω(ℓ+1))⊤Aω(ℓ+1) converges to the largest eigenvalue of A. That
is, η(ℓ+1) −→ η∗ as ℓ → ∞. By choosing A = MM⊤ or A = M⊤M the power method enables us
to get δ21 . Similar to the BSS path for PLS1, we introduce sparsity into the X matrix through the
matrix Xt as described earlier (see Section 3.1). According to (16), we get

δt = max
u∈Rp, v∈Rq∥u∥=1,∥v∥=1

⟨Xtu, Y v⟩
n

=
√

v⊤
t M

⊤
t Mtvt =

√
u⊤
t MtM⊤

t ut, (17)

where Mt = (X⊤
t Y )/n, and vt and ut are respectively the first left and the first right singular

vectors of Mt associated to the largest singular value δt. In other words, vt is the eigenvector
associated with the highest eigenvalue, δ2t , of M⊤

t Mt and ut is the eigenvector associated with the
highest eigenvalue, again δ2t , of MtM

⊤
t .

Define,

fPLS2
λ (t) = −δ2t + λ

p∑

j=1

tj . (18)
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Then, our aim is to solve the following relaxation optimization problem:

max
t∈[0,1]p


δ2t − λ

p∑

j=1

tj


 or, equivalently, min

t∈[0,1]p
fPLS2
λ (t) (19)

Towards this, we need the gradient ∇δ2t =
(
∂δ2t/∂t1, . . . , ∂δ

2
t/∂tp

)
. Each term of this gradient can

be expressed as either

∂δ2t
∂tj

=
∂v⊤

t M
⊤
t Mtvt

∂tj
, (20)

or,

∂δ2t
∂tj

=
∂u⊤

t MtM
⊤
t ut

∂tj
. (21)

Due to computational reasons, whether we use (20) or (21) depends on whether q < p or q > p,
respectively. Suppose, we consider (20). Then,

∂δ2t
∂tj

=
∂v⊤

t M
⊤
t Mtvt

∂tj
= v⊤

t

∂M⊤
t Mt

∂tj
vt + 2

(
∂vt

∂tj

)⊤
M⊤

t Mtvt. (22)

Recall that δ2t is an eigenvalue of M⊤
t Mt with the corresponding unit length eigenvector being vt.

Thus, M⊤
t Mtvt = δ2tvt.

Also, since v⊤
t vt = ∥vt∥2 = 1, for every j, we get 0 =

∂v⊤
t vt

∂tj
= 2

(
∂vt
∂tj

)⊤
vt. Thus, the second

term on the right hand side of (22) is equal to 0 because
(
∂vt
∂tj

)⊤
M⊤

t Mtvt = δ2t

(
∂vt
∂tj

)⊤
vt = 0.

Therefore, ∂δ2t
∂tj

= v⊤
t

∂M⊤
t Mt

∂tj
vt. Now note that

∂M⊤
t Mt

∂tj
=

∂M⊤T 2
t M

∂tj
= M⊤∂T 2

t

∂tj
M = 2tjM

⊤EjM,

where Ej is a p × p-dimensional matrix with the jth diagonal element being 1 while every other
element is 0. Thus, we get,

∂δ2t
∂tj

= 2tj(Mvt)
⊤Ej(Mvt).

Hence,

∇δ2t = 2 (t⊙ (Mvt)⊙ (Mvt)) . (23)

Similarly, we can also show that

∇δ2t = 2
(
ut ⊙

(
MM⊤(t⊙ ut)

))
. (24)

Remark 3.4 Note that vt or ut are obtained using the power method, which has computational
complexity for finding the eigenvector of square matrix A depending on the dimension of A. In
particular, the smaller the dimension of A, the faster the power method. Since vt is obtained using
A = M⊤

t Mt and ut is obtained using A = MtM
⊤
t , it is reasonable to use (23) when q < p and to

use (24) when q ≥ p.
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3.3 Best Subset Solution Path for PCA

Recall that in PCA, the optimal solution u∗ ∈ Rp of (1) is given by the eigenvector associated to
the largest eigenvalue of the sample covariance of the data S = (X⊤X)/n. Hence, the sampling
variance of the first component score is equal to the largest eigenvalue δ∗ = var(Xu∗).

Similar to the BSS path for PLS1 and PLS2, we introduce sparsity in PCA by defining the
optimization problem given by

max
u∈Rp, ∥u∥=1

1

n
u⊤X⊤

s Xsu, subject to s ∈ {0, 1}p, |s| ≤ k. (25)

Observe that for any fixed binary vector s, the optimal solution of (25) is the eigenvector associ-
ated with the largest eigenvalue of the sample covariance of the data Ss = (X⊤

s Xs)/n. Thus, the
optimization problem (25) can be expressed as

min
s∈{0,1}p

− 1

n
u⊤X⊤

s Xsu, subject to |s| ≤ k.

This problem defines the best subset solution path for PCA.
We again use Xt to write a continuous relaxation of (25). In particular, we consider

δt = max
u∈Rp, ∥u∥=1

var(Xtu) =
1

n
u⊤
t X

⊤
t Xtut, (26)

where ut is the eigenvector associated to the largest eigenvalue δt of the matrix St = X⊤
t Xt/n.

Thus, by taking fPCA
λ (t) = −δt + λ

∑p
j=1 tj , our goal is to solve

min
t∈[0,1]p

fPCA
λ (t). (27)

Towards this, we use the gradient expression given by ∇fPCA
λ (t) = λ1p − ∇δt. By observing the

similarity with the PLS2 framework, especially (17) and (26), the gradient vector ∇δt is obtained
using (24) by substituting MM⊤ with X⊤X/n.

4 Implementation

Building on [29], we reformulate the box constrained problems (13), (19) and (27) into an equiva-
lent unconstrained problem by considering t = t(r) given by

tj(rj) = 1− exp(−r2j ), j = 1, . . . , p. (28)

Then we rewrite (13), (19), or (27) as,

min
r∈Rp

fλ (t(r)) , (29)

where fλ is either fPLS1
λ , fPLS2

λ , or fPCA
λ depending on whether the model is PLS1, PLS2, or PCA,

respectively. The unconstrained optimization problem (29) is equivalent to the box constrained
problem ((13), (19), or (27)), because for any a, b ∈ R, 1− exp(−a2) < 1− exp(−b2) if and only if
a2 < b2. Thus, by defining, gλ(r) = fλ (t(r)) , we solve,

min
r∈Rp

gλ(r), (30)

10



via a continuous optimization method. Note that the gradient expression of the objective function
of linear regression in [29] is complicated and requires linear equation solvers like conjugate gra-
dient descent in its implementation of the algorithm. On the other hand, the objective functions
fλ(t) in this paper have simpler gradient expressions, making the algorithm faster and easy to
implement.

4.1 Algorithm for the first component score

Algorithm 1 presents pseudo-code of our continuous optimization method. Step 1 of Algorithm 1
calls a gradient descent method of choice to minimize the unconstrained objective function gλ(r)
using the gradient∇gλ(r) with r(0) as the initial point. The gradient descent algorithm terminates
when a predefined termination condition is satisfied to return rpath = (r(0), r(1), . . . ), the sequence
of all the points r visited during its execution. A most common robust termination condition is to
stop when the change in r is significantly small over a fixed number of consecutive iterations. In
Step 2, each r(l) is mapped to a point t(l) on the hypercube [0, 1]p via the map (28) to obtain the
sequence tpath = (t(0), t(1), . . . ).

Steps 3 to 8 collect several subsets for each size k = 1, . . . ,K using the points in tpath. In
particular, we start with an empty setMk for each k. We then take each point t in tpath and sort
the elements of t in descending order. Suppose j1, . . . , jK are the indices of the first K largest
elements of t in descending order. Then, we take sk ∈ {0, 1}p to be a binary vector with ones only
at positions j1, . . . , jk and add sk toMk. Finally, at Step 10, for each k, we select a best subset s∗k
among all the subsets in the setMk.

Algorithm 1: Best Subset Solution Path
Input: Data: X for PCA; (X,Y ) for PLS

Tuning parameter λ
The initial point r(0)

Largest subset size K
Output: A list of K subsets of sizes from 1 to K

1 rpath ← GradientDescent
(
r(0), gλ,∇gλ

)

2 Obtain tpath from rpath using the map t← 1− exp(−r⊙ r)
3 Mk ← {} for each k ≤ K

4 for each t = (t1, . . . , tp)
⊤ in tpath do

5 Let tj1 , tj2 , . . . , tjK be the K largest elements of t in the descending order
6 for k = 1 to K do
7 Take sk ∈ {0, 1}p with non-zero elements only at j1, . . . , jk
8 Mk ←Mk ∪ {sk}

9 for k = 1 to k = K do
10 s∗k ← argmins∈Mk

f0(s) where f0(s) is the objective function with zero penalty

11 returnM = {s∗1, . . . , s∗K}

In practice, we call the algorithm for several values of λ and each value of λ provides one
subset for every k = 1, . . . ,K. For instance, if we use 100 values of λ, we get 100 subsets of size k,
for every k. At the end, for each k, we select the best subset among all the 100 options. Therefore,
the final solution for each k depends on the values we select for λ. One simple approach is to
preselect a grid of values for λ before using the algorithm. However, since the surface of the
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objective function fλ(t) is data dependent, it is more meaningful to select the values for λ in a
data dependent manner so that the surface of fλ(t) is explored well by the algorithm. Below we
describe one such data dependent approach for selecting a grid of values for λ.

4.2 Dynamic grid of λ values

Suppose we want to call Algorithm 1 for a grid of at most L values for λ. For each λ, the algorithm
converges to a point t ∈ [0, 1]p where some of the tj ’s are very close to 0 indicating that the
corresponding columns of X are insignificant for that λ. We can create a subset from this terminal
t by mapping all the insignificantly small values to 0 and others to 1 using a threshold parameter
ρ ∈ (0, 1). That is, we have a subset, say s ∈ {0, 1}p, obtained by sj = I(tj > ρ), j = 1, . . . , p. Let
kλ = |s|, the size of the terminal subset.

Now to create a dynamic grid of at most L values, we take λmax to be the largest eigenvalue of
M⊤M for the PLS model and take it to be the largest eigenvalue of X⊤X/n for the PCA model. In
either case, the terminal subset obtained for λmax is empty, that is, s is an all zero vector. Then the
dynamic grid is constructed as follows:

Step 1: For ℓ = 1, 2, . . . , call Algorithm 1 with λ = λmax/2
ℓ until either ℓ = L or kλ ≥ K. Let ℓ′

be the final value of ℓ, that is, ℓ′ is the number of times Algorithm 1 is called so far. Also, let
Λ = {λmax/2

ℓ : ℓ = 0, 1, . . . , ℓ′}. If ℓ′ < L, go to Step 2; otherwise, terminate the procedure.

Step 2: Suppose that the sequence λ1 < · · · < λ|Λ| are the elements of Λ in the ascending or-
der, |Λ| denotes the number of elements in Λ. Moving from left to the right on the sequence,
if kλℓ

> kλℓ+1
+ 1 for some ℓ = 1, . . . , |Λ|, call Algorithm 1 with λ = (λℓ + λℓ+1)/2 and add

this λ to Λ. Terminate the procedure either if the number of times Algorithm 1 is called in
this step is L− ℓ′ or there is no ℓ such that kλℓ

> kλℓ+1
+ 1; otherwise, repeat Step 2.

4.3 Subsequent component score

The output of the BSS path algorithm is K subsets (one for each subset size k = 1, . . . ,K) and so
K different sparse scores which are linear combinations of the variables included in the potential
subset. The subsequent score (for PCA) and the pair of scores (for PLS) are obtained using the
same algorithm on the respective deflated matrices (with the same dimension as the original ma-
trices), i.e., after removing the information contained in the previous component or pairs of scores.
Then, the subsequent sparse component is more likely to be constructed using variables that are
different from the variables used for constructing the previous components. The construction of
the deflated matrices are provided in Table 1 in the supplementary material. One can think of
exploring all the K potential deflation matrices by using the BSS path algorithm on each of them
to get a best subset for the second component for PCA (or, the second pair of components for
PLS), and repeat this for the further subsequent components. However, this strategy can be com-
putationally expensive. To reduce the complexity, we suggest in practice to pick only one subset
from all the K best subsets to create the first sparse component before each deflation step using a
specific strategy. Some useful strategies are described at the end of this section.

For the PCA model, we propose two ad-hoc approaches based on the percentage of variance
explained (PEV). One can choose the size of the best subset for the first component by monitoring
the percentage decrease in the PEV compared to a non-sparse PCA. This strategy is used in [45].
The second strategy corresponds to the ad-hoc approach proposed in [33] which is based on the
cumulative PEV (CPEV). In particular, we select the smallest best subset whose CPEV is within,
say, 10% of the CPEV of the largest best subset. Note that the definition of CPEV from [33] is
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adjusted to take into account the non-orthogonality between sparse components. This strategy is
illustrated with an application in Section 6.1.

For the PLS model in a regression mode, one can select the best subset before deflation (num-
ber of variables to keep for constructing the score) using the best prediction accuracy such as
Mean Absolute Error (MAE), Mean Squared Error (MSE), or R2 (square of the correlation between
prediction and observed outcome). In Appendix C in the supplementary material, we provide ex-
plicit formulae to express the PLS model in terms of the original variables in a regression setting.
For the PLS model in the canonical mode, the best subset before deflation can be chosen using
the absolute correlation between the pair of scores. Typically, these measurements are obtained
using v-fold cross-validation. Note that all these proposed ad-hoc approaches are guidelines for
selecting a best subset before each deflation step. However, selection of an appropriate approach
is based on the domain knowledge of the study.

Finally, we want to stress a possible side effect of working with deflated matrices. The first
score ξ1 = Xu1 is built as a sparse linear combination (with weights in u1) of the original vari-
ables. The second score ξ2 = X1u2 is built as a sparse linear combination (with weights in u2)
of the original variables that have not been already explained by the first score variables. More
generally, the h-th score variable, ξh = Xh−1uh, is built as a sparse linear combination of the
original variables, from which we extract (by projection) the information not already brought by
the previous score variables. However, it is possible to calculate the adjusted weights wh such
that ξh = Xwh.These weights allow for direct interpretation of the selected variables in the PLS
model. Note that although wh and zh allow for direct interpretation of the selected variables, the
sparsity is enforced on uh. So if uh is sparse, this does not necessarily mean that the adjusted
weightswh will be sparse. We provide in Appendix C in the supplementary material information
on how to estimate the adjusted weights and we refer to [19] for more details.

5 Simulation Study

In this section, we first focus on the efficacy of the proposed approach in retrieving potential best
subsets of given sizes in constructing the first component for the PLS model. More precisely, we
focus on the capacity of our method for providing the optimal subset for the first component
(i.e., solution of (8)) for any subset size k. We also provide out-of-sample prediction measures
such as the mean square error in prediction (MSEP) and subset selection accuracy through the
evaluation of sensitivity, specificity and F1-score for retrieving the support recovery of the true
simulated signal. Then, we present a simulation for a model with two components. Prediction
power and variable selection is investigated in the univariate response case and compared to a
lasso model [38]. Finally, we present an experiment for the PCA model where we show the ability
of constructing sparse components without a loss of variance explained.

We compare our approach to the sparse PLS and sparse PCA methods (denoted respectively
as sPLS and sPCA) as offered in the package mixOmics. For the PCA, we also compare our method
to the sparse PCA method presented in [45] as available in elasticnet and denoted SPCA. All
numerical results of our simulation study are reproducible using R code that is made available at
https://github.com/benoit-liquet/BSS-PCA-PLS.
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5.1 Simulation design

We use a model similar to the model used in [34]. In particular, we consider the latent PLS under-
lying model with multivariate responses given by

X = TC⊤ + EX , Y = SD⊤ + EY , (31)

where T = (ξ1, . . . , ξH) ∈ Rn×H collects the latent variables whose elements are independently
generated from the uniform distribution U(−1, 3). The rows of the residual matrix EX (respec-
tively, EY ) are generated from a mean-zero multivariate normal distribution with covariance
matrix ΣX = σIp (respectively, ΣY = σIq ). The regression coefficients in C ∈ Rp×H enable us
to specify the ‘true’ (i.e., active) X-variables linked to the response Y-variables. In the regression
setting, we use the inner relationship S = TB, and so the X-score variables are simulated and used
to construct S (see Appendix C in the supplementary material for more details). The response Y
is simulated with q = 10 variables. We arbitrarily set the elements of the matrix BD⊤ ∈ RH×Q

with elements independently generated from the uniform distribution U(0.5, 10).
We first consider the case of a single component, that is, H = 1. Then, C = (c1, . . . , cp)

⊤ is
a p-dimensional vector with cj ̸= 0 if the corresponding variables Xj (jth column of X) are true
variables (i.e., associated to one of the latent variable ξ1) and cj = 0 otherwise.

In this simulation study, we investigate the effect of the noise (through σ parameter), the effect
of the sample size (n), effect of the true signal (through sparsity parameter γ) and the effect of the
dimension p of the data matrix X on the efficacy of our algorithm. For a small dataset X , we use
an exhaustive method to find the exact (“optimal”) solution of the best subset for any subset size
ranging from 1 to p. Here, by “optimal” solution we mean a solution of the problem as stated in
(8). We assess our method in retrieving the exact (“optimal”) best subset for each subset size.

5.2 Effect of the noise

Here, we investigate the effect of the noise level on the performance of our approach in find-
ing the best subsets. We take p = 15, q = 10, n = 100 and the sparsity of the model γ = 5,
meaning that only p − γ = 10 variables from the X data matrix are associated to the multivariate
response Y . We set C = (0, 0, 0, 0, 0, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1)⊤. We use 4 standard deviation
values σ ∈ {1.5, 3, 6, 8} for the noise and this corresponds to an estimated signal-to-noise of 2.6,
0.8, 0.3 and 0.2. For each level of noise, the BSS path for PLS (BSS-PLS) consists most of the time of
the “optimal” best subset for every subset size, while sparse PLS selects the “optimal” best subset
relatively less frequent (see Table 1) which is expected as sparse PLS is not designed/optimized to
find the “optimal subset”.

Table 2 in the supplementary material presents out-of-sample prediction trough the MSEP for
each subset size using a new test set of size n/2 to mimic the situation 2/3 of the data for training
and 1/3 of the data for testing. In this case, our BSS path method is slightly better than the sparse
PLS method. In terms of support recovery, both methods perform similarly in terms of specificity,
sensitivity and F1 score (see Table 3 and 4 in the supplementary material).

5.3 Effect of the sample size

We investigate the performance of our method when the sample size n is increasing, by varying
n over {100, 200, 500}. This simulation corresponds to the situation where p = 15, q = 10, σ = 6,
and the sparsity of the model is set to be 5, similar as in the previous simulation setting. Results
are presented in Table 5 in the supplementary material. We observe that for every n, BSS-PLS
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Table 1: Number of times BSS-PLS and sparse PLS retrieve the true best subset for different subset
sizes over 100 runs for varying noise levels. Here, p = 15, q = 10, n = 100, and γ = 5.

BSS-PLS Sparse PLS

Subset size σ = 1.5 σ = 3 σ = 6 σ = 8 σ = 1.5 σ = 3 σ = 6 σ = 8

1 100 100 100 100 100 97 95 85
2 99 96 96 98 99 95 92 82
3 100 100 97 96 100 97 89 81
4 99 98 98 95 97 96 85 81
5 99 100 95 93 98 98 83 87
6 100 98 96 96 100 97 89 75
7 99 99 95 99 99 99 89 82
8 100 100 98 98 100 99 90 79
9 100 99 97 97 99 99 93 75
10 100 100 99 99 100 100 96 80
11 100 100 100 100 100 100 94 86
12 100 100 100 100 100 98 95 95
13 100 100 100 100 100 99 94 95
14 100 100 100 100 100 100 99 94

retrieves most of the time the “optimal” best subset for every subset size. The sparse PLS selects
the “optimal” best subset relatively less frequent. However, the performance of the sparse PLS
seems to improve as the sample size increases.

Table 6 in the supplementary material presents out-of-sample prediction trough the MSEP for
each subset size. Our BSS path method is again slightly better than the sparse PLS method. In
terms of the support recovery, the two methods have similar performance in terms of specificity,
sensitivity and F1-score (see Table 7 and 8 in the supplementary material).

5.4 Effect of the sparsity

We investigate the performance of our method when the sparsity of the generated model is varied.
In particular, we take the sparsity γ ∈ {3, 7, 9, 11}. This simulation corresponds to the situation
when p = 15, q = 10, σ = 5, and n = 100. Results are presented in Table 9 in the supplementary
material. For every sparsity level γ of the true generated model, BSS-PLS enables us to retrieve
most of the time the “optimal” best subset of any subset size. In this simulation setting, sparse
PLS selects the exact best subset less frequently.

Table 10 in the supplementary material presents out-of-sample prediction trough the MSEP for
each subset size. Our BSS path method exhibits slightly better performance than the sparse PLS
method. In terms of the support recovery, both methods perform similarly in terms of specificity,
sensitivity and F1-score (see Tables 11 and 12 in the supplementary material).

5.5 Effect of the dimension p

We investigate the performance of our method by varying the dimension p over {50, 100, 200, 500}.
In this simulation, we take q = 10, σ = 5, γ = p − 10, and n = 100. Note that the exact best
subsets for this set-up are unknown as p ≥ 50, since it is computationally impractical to conduct
an exhaustive search over all the subsets of sizes 1 to p. Thus, to assess the performance of our
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Figure 2: Ability of BSS-PLS to propose a better subset than the one used to generate the model
(over 50 replications and different values of p). Each dot represents the value of δ1 defined in (16)
obtained from the subset of size 10 corresponds to BSS-PLS and the true generated subset.

method in retrieving a competing best subset, since the generated true (active) subset size is 10, we
compare the “best” subset obtained from BSS-PLS for subset size 10 to the true generated subset.
For this comparison, we use the PLS optimization criterion defined in (16). Figure 2 plots these
results with 100 replications for every dimension p of X mentioned above.

For every p ∈ {50, 100, 200, 500}, the value of the criterion (16) is higher for the subset given by
the BSS-PLS than the corresponding criterion value for the true generated subset. This indicates
that the BSS-PLS provides a better subset than the true generated subset. Indeed, empirically,
the “best” subset selection solves maxs∈{0,1}p⟨X[s]u

∗
[s], Y v⟩ subject to |s| ≤ k and this is the data

driven optimal subset. This is different to the data generating subset, that is the empirically best
subset is not optimized for support recovery but for giving the highest values of ⟨X[s]u

∗
[s], Y v⟩.

Thus, even if the data has been simulated, say with k = 10 active variables, empirically it is not
guaranteed that this subset of true active variables will reach the highest values of ⟨X[s]u

∗
[s], Y v⟩,

and depending on the signal-to-noise ratio and other factors, either overfitting or underfitting can
occur. In this simulation setting, we also compare to the sparse PLS in terms of MSEP on a test
set and on the support recovery (see Table 13 in the supplementary materiel). MSEP is slightly
better for BSS-PLS but gives similar performance in terms of sensitivity, specificity and F1-score.
Regarding the running time, on average over the 100 runs, BSS-PLS is obtained respectively in 2,
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3.3, 5.8, 12.7 seconds for p = 50, 100, 200 and 500. The sPLS method implemented in mixOmics is
faster and takes respectively 0.1, 0.3, 0.5 and 2 seconds for p = 50, 100, 200 and 500.

5.6 PLS model with 2 components

In this simulation setting, we simulate the data from model (31) with H = 2 components, p = 30,
and q = 10. The two columns of the matrix C ∈ Rp×2 are set to C1 = (1,−1, 1,−1, 1,−1, 1,−1, 1,−1,0⊤20)⊤
and C2 = (0⊤10, 1,−1.5, 1,−1.5, 1,−1.5, 1,−1.5, 1,−1.5,0⊤10)⊤, where 0r denotes the r-vector with
all entries equal to zero. We use three standard deviation values σ ∈ {1.5, 3, 6}. We first run BSS-
PLS with one component. As a result we end up with a list of possible subsets, one for each size,
for constructing the first component. We pick the one which gives the smallest MSEP on a test set.
Then, we run the BSS-PLS on the deflated matrices (see section 4.3) and then end up with a list
of subsets for constructing the second component. We pick the one corresponding to the small-
est MSEP. Note that the sPLS model from mixOmics package is also implemented using deflated
matrices. Results for the cases σ = 1.5 and σ = 3 are presented in Figure 3.
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Figure 3: MSEP, sensitivity and specificity results for a PLS model with 1 and 2 components and
two different noise level.
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As expected, a model with H = 2 components is performing better in terms of prediction
(MSEP) than a one component model. BSS-PLS is slightly better than sPLS in term of MSEP.
Regarding the support recovery, we stress that a model with two components includes a subset of
variables selected to construct the first component and a subset of variables to construct the second
component. However, the subset of variables selected for constructing the second X-component is
a subset from the deflated X matrix (i.e., after removing the information contained in the previous
score) and not from the original matrix. In this simulation setting, the second component has a
better sensitivity but inferior specificity. Overall, BSS-PLS has better performance in terms of
support recovery than the sPLS model.

5.7 PLS model with univariate response

We present here the case with a univariate response variable. We use the same setting as in [6]. We
consider the case when n > p (n = 400 and p = 40) and the case when p > n (n = 40 and p = 80).
We vary the sparsity of the model by varying the number of spurious variables: γ = 10 and 30
when n > p and γ = 20 and 40 when n < p. Hidden variables H1, H2 and H3 are from N(0, 25In)
and the columns of the matrix X are generated by Xi = Hi + ϵi for nj−1 + 1 ≤ i ≤ nj , where
j = 1, 2, 3, (n0, n1, n2, n3) = (0, (p − q)/2, p − q, p) and ϵ1, . . . , ϵp are drawn independently from
N(0, In). The response Y is generated by 3H1 − 4H2 + f , where f is normallly distributed with
mean 0 and variance to match a signal-to-noise ratio that is around 3 and 6. In this simulation,
we use a one component model for BSS-PLS and sparse PLS. We compare their performances to
a lasso model as implemented in the glmnet R package. From the list of “best” subsets from BSS-
PLS we pick the one which has the smallest MSEP on a test set for constructing the PLS model. The
same strategy is applied for sPLS and we choose the tuning parameter of the lasso model using
the MSEP criterion over a grid of 50 tuning parameter values. Results are presented in Table 14
in the supplementary material. The three models give similar results in terms of MSEP. However,
for the model selection accuracy, BSS-PLS and sPLS show good performance, whereas the lasso
exhibits poor performance by missing relevant variables. Overall BSS-PLS performs better than
the other methods considered. When n < p, the lasso fails to identify important variables, whereas
BSS-PLS and sPLS regression succeeds. This is because the actual number of variables that makes
up a component score can exceed n.

5.8 Numerical experiment on PCA

For this synthetic example we use the same data generating process and setting used in [33]. In
this situation, the ability of sparse PCA procedures is applied to data whose covariance matrix ac-
tually has sparse eigenvectors. We consider a covariance matrix with two specified leading sparse
eigenvectors. We consider a data matrix X ∈ Rn×p with p = 10 and each row of X generated as
X ∼ N (0,Σ1). Let

ũ1 = (1, 1, 1, 1, 0, 0, 0, 0, 0.9, 0.9)T , ũ2 = (0, 0, 0, 0, 1, 1, 1, 1,−0.3, 0.3)T .
The first two eigenvectors of Σ1 are then chosen to be

u1 = ũ1/ ∥ũ1∥ = (0.422, 0.422, 0.422, 0.422, 0, 0, 0, 0, 0.380, 0.380)T ,

u2 = ũ2/ ∥ũ2∥ = (0, 0, 0, 0, 0.489, 0.489, 0.489, 0.489,−0.147, 0.147)T ,
both of which have a degree of sparsity of 4 . The 10 eigenvalues of Σ1 are, respectively, 200, 100,
50, 50, 6, 5, 4, 3, 2 and 1 (see [33] for more details of the data generation). The first two eigenvectors
explain about 70% of the total variance.
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We simulate 100 data sets of size n = 30, 100 and 300, respectively, with the covariance matrix
Σ1. For each simulated data set, the first two sparse loading vectors are obtained from BSS-PCA,
sPCA and SPCA (proposed in [45]).

To facilitate comparison we use the true degree of sparsity for each model, meaning that
the first two components are based on 6 variables each. Table 2 reports the percentages of cor-
rectly/incorrectly identified zero loadings for the loading vectors. All considered methods appear
to perform reasonably well and give comparable results even though SPCA is less powerful for
the second loading vector. We also report the percentage of variance explained using sparse com-
ponents compared to a non-sparse PCA (noted PCA). Results show the ability to construct sparse
components by keeping most of the information of the data.

Table 2: Comparison of PCA and sparse PCA methods: percentage of variance explained, percent-
ages of correctly/incorrectly identified zero loadings

u1 u2

% variance Correct Incorrect % variance correct Incorrect
Method explained (%) (%) explained (%) (%)

n = 50
PCA 0.48 0.72
BSS-PCA 0.47 1.00 0.00 0.71 0.90 0.10
sPCA 0.47 0.99 0.01 0.71 0.88 0.12
SPCA 0.46 0.95 0.05 0.69 0.85 0.15

n = 100
PCA 0.48 0.72
BSS-PCA 0.48 1.00 0.00 0.71 0.93 0.07
sPCA 0.48 1.00 0.00 0.71 0.93 0.07
SPCA 0.47 0.98 0.02 0.70 0.89 0.11

n = 300
PCA 0.48 0.71
BSS-PCA 0.47 1.00 0.00 0.71 0.98 0.02
sPCA 0.47 1.00 0.00 0.71 0.98 0.02
SPCA 0.47 1.00 0.00 0.71 0.95 0.05

6 Case Studies

In this section, we illustrate the usage of our method on two datasets: multidrug and Hopx. The
multidrug dataset is analyzed through a PCA model while the Hopx dataset is analyzed through
a PLS model. Two vignettes for running the case studies using BSS path for PCA and PLS models
are detailed in https://github.com/benoit-liquet/BSS-PCA-PLS.

6.1 Illustration of Best Subset Solution Path for PCA

The dataset multidrug contains the expression of 48 known human ABC transporters with pat-
terns of drug activity in 60 diverse cancer cell lines (the NCI-60) used by the National Cancer
Institute to screen for anticancer activity. This dataset is available from the mixOmics package.
We desire to provide a best subset of variables which reproduces the general characteristics of the
observations in a best possible way.
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We first run a full PCA to decide the number of components to retain in the model. According
to the scree plot (see Figure 1 in the supplementary material), we choose to investigate a model
with 3 components which explained 29.9% of the total variation of the data.

Next, we run our algorithm with a budget of 50 different values of λ to explore best subsets
for the first component. The results of best subset solution obtained for each subset size from 1 to
48 are presented in Table 15 in the supplementary material. We use a drop of 10% of the CPEV
to select a best subset among all the 48 best subsets given by BSS-PCA. Figure 4 shows the CPEV
as a function of the sparsity (p− size of the subset) and the blue vertical line indicates the largest
value of the sparsity where the CPEV does not exceed a drop of 10%. The best subset of size 20 is
selected for the deflation step.

Then, we again use BSS-PCA to perform best subset solution path for the second component.
Results are presented in Table 16 in the supplementary material and the CPEV plot for selecting
the size of the best subset for the second component is given in Figure 4 in the supplementary
material.

0

5

10

0 10 20 30 40
Sparsity

C
P

E
V

Drop of CPEV = 10 %

Threshold 

Figure 4: CPEV as a function of the sparsity (p - size of the subset) for the first component. Blue
vertical line indicates the largest value of the sparsity such CPEV does not exceed a drop of 10%

In a similar manner, we obtain a best subset for component 3 as well (see results in Table 17
and Figure 5 in the supplementary material).

We observe that the BSS-PCA provides components 1, 2, and 3 with 20, 12 and 4 variables,
respectively, with a CPEV equal to 23.5%. In this example we remark that the number of variables
for constructing the components decreases with the number of components. The first two sparse
components capture most of the information (CPEV of 19.12%) compared to a CPEV of 22% for a
non-sparse PCA with two components. Then, the third component according to the CPEV strategy
requires only 4 variables and adds little information compared to the first two components (CPEV
23.5%).

Note that one can increase the CPEV by choosing a larger subset in each component. For ex-
ample, a subset of 18 variables for constructing component 3 will reach a CPEV to 25.8%. The
left panel of Figure 5 displays the samples projected onto the first two components using 20 and
12 variables, respectively, while the right panel displays the samples projected onto the first two
components of the non-sparse PCA. The samples are colored according to their cancer type. The
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Figure 5: Sample projected onto the first two components of the BSS-PCA (left panel) and onto the
ones from the full-PCA (right panel)

sample plot from BSS-PCA is similar to that of the non-sparse PCA, meaning that only a little
information is lost. In both representations, component 2 shows a separation of the melanoma
samples. The correlation plot of the BSS-PCA, presented in Figure 2 in the supplementary mate-
rial, identifies a group of transporters (ABCA9, ABCB5, ABCC5, and ABCD1) which are highly
positively correlated to component 2 and thus contributes to the explanation of the variation in
the melanoma samples. Similar results have been shown in [22] using the sparse PCA method.

6.2 Illustration of Best Subset Solution Path for the PLS2 model

We illustrate the usage of our approach in the context of genetic regulation. In expression Quan-
titative Trait Loci (eQTL) analysis, in order to discover the genetic causes of variation in the ex-
pression (i.e., transcription) of genes, gene expression data are treated as a quantitative phenotype
while genotype data (SNPs) are used as predictors. Here, we use a dataset from a larger study
([12]) from which we selected the Hopx genes, as in [31]. This dataset has been also analyzed by
[24], who used a Bayesian model to identify a parsimonious set of predictors that explains the
joint variability of gene expression in four tissues (adrenal gland, fat, heart, and kidney) and by
[27] using sparse group Bayesian multivariate regression model for a similar purpose.

The Hopx dataset consists of 770 SNPs from 29 inbred rats as a predictor matrix (n = 29, p =
770), and the 29 measured expression levels in the four tissues as the outcome (q = 4). A full
description of the dataset is provided in [31] and it is available from the R package R2GUESS [25].

We decide to explore BSS-PLS2 for only one component as the Q2 criterion proposed by [37],
which measures the predictive power of the components, is not improved by increasing the num-
ber of components (see Figure 6 and 7 in the supplementary material).

We perform BSS-PLS2 using a dynamic grid of 50 λ values with initial tinit = 0.5 × 1p. The
results of the best subset solution for PLS2 with subset size ranging from 1 to 15 are given in
figure 6. The full list of best subsets for every subset size from 1 to 770 are given in the vignette for
BSS-PLS available at https://github.com/benoit-liquet/BSS-PCA-PLS/.

The SNP D14Mit3 is included in all the best subsets. This SNP has been previously identified
by [24], as the most associated with the four levels of expression, and has also been selected by

21



S
ub

se
t S

iz
e

D
4R

at
15

2

D
4R

at
16

D
4U

tr
1

D
4U

tr
3

Le
p

D
10

R
at

26
7

D
14

U
tr

8

D
14

R
at

8

D
14

R
at

36

D
14

C
eb

rp
31

2s
2

D
14

M
it3

D
14

R
at

52

D
14

M
it9

D
14

U
tr

2

D
14

M
it8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Chromosome

4 4 4 4 4 10 14 14 14 14 14 14 14 14 14

Figure 6: Best Subset Solution Path for PLS2 for subset size ranging from 1 to 15

the sparse group Bayesian model proposed by [27]. Also, all the SNPs correspond to the subset of
size 4 obtained by BSS-PLS2 (which are D14Mit3, D14Rat36, D14Cebrp312s2, D14Rat52) have been
selected by the sparse group Bayesian model of [27]. A clustered image map is provided in Fig-
ure 8 in the supplementary material for presenting the similarity values between the SNPs from
the subset of size 15 obtained by BSS-PLS2 and the four tissues. From this clustered image maps,
we identify a cluster of 10 SNPs that are highly positively correlated to the 4 tissues and 5 SNPs
that are highly negatively correlated. Note that nine of the ten highly correlated SNPs belong to
chromosome 14 and the remaining one belongs to chromosome 10. All the highly negatively cor-
related SNPs belong to the chromosome 4. In our modeling, the group structure of the predictors
(i.e., grouping of SNPs across chromosomes) is not taken into account.

7 Concluding Remarks

In conclusion, our work in this paper develops a simple unconstrained continuous optimization
approach for addressing the best subset solution path problem within the framework of the PLS
and PCA models, naming these methods BSS-PLS and BSS-PCA respectively. The effectiveness
of our method is demonstrated through a series of carefully designed simulation experiments.
Notably, in the context of PLS1 model, our theoretical result shows that solving the proposed con-
tinuous optimization problem provides an exact solution to the best subset solution path problem.
This noteworthy result has the potential for further generalization to both PLS2 and PCA models.
As part of our ongoing research efforts, we plan to delve deeper into the theoretical underpinnings
of our approach and explore its optimally in these broader contexts.

While the theoretical result shows the optimality of our method, and, the experimental results
are promising, solutions obtained may not be guaranteed to be optimal because of the use of the
gradient descent algorithm, which can converge to a suboptimal point depending on the initial
point, learning rate, and the value of the penalty parameter λ. We believe future research on
improving the gradient based method for this task or application of other alternative continuous
optimization methods will overcome these challenges.

We note that the methods proposed by [1] (for sparse PCA), [8] (for sparse PCA) and [42]
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(for sparse canonical correlation analysis) are closely related to our work. However, unlike our
continuous optimization, they rely on either integer programming or mixed-integer optimization
techniques. Similar to these alternative approaches, our unified approach, without any integer
constraints, opens the door for future research to explore a wide array of readily available continu-
ous optimization methods, offering opportunities to enhance the already impressive performance
of our methodology.

Our framework can be extended in several ways. Utilizing information about the data’s struc-
ture, such as a group structure (e.g., genes within the same gene pathway sharing similar biolog-
ical functions), one can aim to construct components based on relevant groups. By enforcing that
the variables tj are equal for the variables j belonging to the same group, one can design BSS-PLS
or BSS-PCA to achieve group selection. Additionally, we can consider avoiding the deflation step
by employing a block approach, similar to the approach in [17, 4]. Finally, in our current PLS
framework, we focus on subset selection for the X part, corresponding to a regression setting. One
may be interested in obtaining sparse components for both the X and Y parts in the case of a PLS
model in a canonical mode, which is closely related to CCA models [42].
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Appendix A: Proof of Theorem 3.1

For the reader’s convenience, we recall both the discrete and continuous constrained optimization
problems for the PLS1 model. In particular, the exact best subset selection problem is stated as

min
s∈{0,1}p

[
−
∥X⊤

[s]y∥
n

]
, subject to

p∑

j=1

sj ≤ k, (A1)

which is equivalent to

min
s∈{0,1}p

[
−
∥X⊤

[s]y∥2

n2

]
, subject to

p∑

j=1

sj ≤ k. (A2)

Also, recall the Boolean relaxation of (A2) which is

min
t∈[0,1]p

[
−∥X

⊤
t y∥2
n2

]
, subject to

p∑

j=1

tj ≤ k. (A3)

In our method, instead of solving (A3), we solve

min
t∈[0,1]p

fPLS1
λ (t), (A4)

where fPLS1
λ (t) = −∥X⊤

t y∥2
n2 +λ

∑p
j=1 tj . Now recall Theorem 3.1 using the above equation numbers.

Theorem 3.1. We have the following equivalence between the optimization problems (A1), (A3),
and (A4).

(i) The optimal solutions of the minimization problems defined by (A1) and (A3) are identical.

(ii) For every k = 1, . . . , p, there exists λ such that an optimal solution of (A3) is an optimal
solution of (A4).

A key result for proving the theorem is the following lemma which establishes the concavity of
the objective function fPLS1

λ (t).

Lemma A1. For every λ, the function fPLS1
λ (t) defined by (A1) is a concave function on Rp

+.

Proof. We can compute the Hessian of fPLS1
λ (t) easily by differentiating the gradient of fPLS1

0 (t)
which is given by

∇fPLS1
0 (t) = − 2

n2

(
t⊙X⊤y ⊙X⊤y

)
.

In particular, we can obtain that the Hessian of fPLS1
λ (t) at a point t is a diagonal matrix with the

diagonal being − 2
n2

(
X⊤y ⊙X⊤y

)
, which indicates that the Hessian is negative definite. Thus,

fPLS1
λ (t) is a concave function over [0, 1]p for all λ.

A consequence of Lemma A1 is that fPLS1
λ (t) is concave on the hypercube [0, 1]p.
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Proof of Theorem 3.1 (i). Concavity of fPLS1
0 (t) on the hypercube implies that the solution of (A3)

is achieved at a corner point of the hypercube. Specifically, observe from the Boolean relaxation

that the objective function fPLS1
0 (t) = −∥X⊤

t y∥2
n2 in (A3) is equal to the objective function of the

exact optimization (A2) at the corner points t = s ∈ {0, 1}p. Thus, we complete the proof if we
show that a solution point of (A3) lies at a corner on the hypercube [0, 1]p. Towards this, we recall
from Lemma A1 that f0(t) is a concave function. This implies, for any two points t, t′ ∈ [0, 1]p and
a ∈ [0, 1],

fPLS1
0 (at+ (1− a)t′) ≥ afPLS1

0 (t) + (1− a)fPLS1
0 (t′) ≥ min{fPLS1

0 (t), fPLS1
0 (t′)}.

This indicates that on a line segment joining t and t′, the function f0(t) achieves its minimum at
an end point, i.e. either at t or at t′. This holds true even when t and t′ are corner points on the
hypercube. Thus, we conclude that both the problems (A2) and (A3) have the same solutions.

Proof of Theorem 3.1 (ii). Due to the formulation of the exact optimization, we know that without
loss of generality the inequality in the constraint

∑p
j=1 sj ≤ k of (A2) can be replaced with equality.

Similarly, the inequality in the constraint
∑p

j=1 tj ≤ k of (A3) can be replaced with an equality. To

see this, we observe from the gradient expression of fPLS1
0 (t) that the jth element of the gradient

of ∇fPLS1
0 (t) is −cjtj for some non-negative constant cj . That means, fPLS1

0 (t) is decreasing in
each coordinate. As a consequence, for every t′ ∈ [0, 1]p such that

∑p
j=1 t

′
j < k, there exists a point

t′′ ∈ [0, 1]p on the hyperplane
∑p

j=1 tj = k such that fPLS1
0 (t′) ≥ fPLS1

0 (t′′), and thus, the inequality
in the constraint of (A3) can be replaced with an equality. In a specific case where

∑p
j=1 t

′
j = k− 1

and
∑p

j=1 t
′′
j = k, we get

fPLS1
0 (t′) ≥ fPLS1

0 (t′′).

Furthermore, we can conclude that there exists a sequence of corner points s(0), s(1), . . . , s(p) such
that s(k) is an optimal solution of (A3) and

fPLS1
0 (s(0)) ≥ fPLS1

0 (s(1)) ≥ · · · ≥ fPLS1
0 (s(p)). (A5)

An interesting property of this decreasing sequence is that the increments are also decreasing, that
is,

fPLS1
0 (s(k−1))− fPLS1

0 (s(k)) ≥ fPLS1
0 (s(k))− fPLS1

0 (s(k+1)). (A6)

To see this, note that the number of ones in s(k) is exactly equal to k. Furthermore, we can find an

index i ∈ {1, . . . , p} such that s
(k−1)
i = 0 and s

(k+1)
i = 1. By defining z = (X⊤y)/n, for this index

i, we can write

fPLS1
0 (s(k−1) + ei) = −

∑

j=1

s
(k−1)
j z2j − z2i = fPLS1

0 (s(k−1))− z2i ,

and similarly,

fPLS1
0 (s(k+1) − ei) = −

∑

j=1

s
(k+1)
j z2j + z2i = fPLS1

0 (s(k+1)) + z2i .

Together,

fPLS1
0 (s(k−1)) + fPLS1

0 (s(k+1)) = fPLS1
0 (s(k−1) + ei) + fPLS1

0 (s(k+1) − ei)

≥ 2fPLS1
0 (s(k)),
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where the inequality holds because both s(k−1) + ei and s(k+1) − ei have exactly k ones and s(k) is
an optimal point of (A3). By reordering the above inequality, we see (A6).

From using (A5) and (A6), we can create a univariate function h : R+ → R such that h is
convex non-decreasing and h(k) = fPLS1

0 (s(k)). One such function is a piecewise linear function
that simply connects the points (k, fPLS1

0 (s(k))).
Given such a convex function, the optimization problem (A3) can be restated as the following

convex optimization

min
r∈R+

h(r) subject to r = k,

which satisfies the strong duality condition. Therefore, there exists a constant λ(k) ≥ 0 such that
h(k)+λ(k)k is the minimum of the Lagrangian function L(r, λ) = h(r)+λr. We complete the proof
by noting that the minimum value

L(k, λ(k)) = f0(s
(k)) + λ(k)

p∑

j=1

s
(k)
j = min

t∈[0,1]p,λ≥0
fPLS1
0 (t) + λ

p∑

j=1

tj = min
t∈[0,1]p,λ≥0

fPLS1
λ (t),

where the second equality follows from the fact that fPLS1
λ (t) is concave on the hypercube and

hence achieving minimum at a corner point.

Appendix B: Deflation step for sPCA and sPLS

In this paper, for all the PCA and PLS models (including sparse versions), we use iterative ap-
proaches which start by constructing the first component (resp., the first pair of components) for
the PCA framework (resp., for the PLS framework) using the original dataset X (resp., datasets X
and Y ). The first component or the first pair of components is a linear combination of the original
data. The next components or the next pairs of components are obtained using successively deflated
versions of X and Y (i.e., after removing the information contained in the previous component or
pairs of scores). We present in Table 1 the deflation step to the most popular version of PCA and
PLS. We refer the reader to [1] for other PLS models.

Table 1: Deflation details for sparse PCA and sparse PLS

Method initialise Deflation Component score ch ξh

sPCA X0 = X Xh = Xh−1 − ξhc⊤h Xuh ch =
X⊤

h−1ξh

ξ⊤h ξh
ξh = Xh−1uh

sPLS X0 = X Xh = Xh−1 − ξhc⊤h ξh = Xh−1uh ch =
X⊤

h−1ξh

ξ⊤h ξh

regression mode Y0 = Y Yh = Yh−1 − ξhd⊤h ψh = Yh−1vh dh =
Y ⊤
h−1ξh

ξ⊤h ξh

canonical mode Y0 = Y Yh = Yh−1 −ψhe
⊤
h ψh = Yh−1vh eh =

Y ⊤
h−1ξh

ψ⊤
h ξh

Here, uh and vh being the left and right singular vectors of the largest singular value of Mh−1 = X⊤
h−1Yh−1 for PLS

and Mh−1 = X⊤X for PCA.
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Appendix C: Prediction and Adjusted Weights

The construction of the components using the deflation step approach (presented in Table 1) leads
to decompositions of the original matrices

X = TC⊤ + EX ,

Y = SD⊤ + EY ,

where T = (ξ1, · · · , ξH) ∈ Rn×H and S = (ψ1, · · · ,ψH) ∈ Rn×H are matrices of estimated la-
tent features called X-scores and Y-scores, C = (c1, · · · , cH) ∈ Rp×H and D = (d1, · · · ,dH) ∈
Rq×H are matrices of X-loadings and Y-loadings, and EX = (e1X , · · · , epX) ∈ Rn×p and EY =
(e1Y , · · · , eqY ) ∈ Rn×q are the residual matrices. The elements of matrices T , S, C and D are
presented in Table 1.

In a regression setting, we have a so-called “inner relationship”, which provides a link between
the latent variables S and T through the relationship S = TB (see [3]), where B = diag (b1, · · · ,
bH). We can use the inner relationship and the relationship T = XU

(
C⊤U

)−1
, where U =

(u1, · · · ,uH) ∈ Rp×H is the matrix of X-weights, to reparameterize the PLS model in terms of the
original variables

Y = Xβ̂PLS + EY ,

where β̂PLS = U
(
C⊤U

)−1
BD⊤ = U

(
C⊤U

)−1
T⊤Y (see page 40 of [2]).

For PLS-regression, the matrix of adjusted weights is W = [w1, . . . ,wH ] with w1 = u1 and

wh =
h−1∏

j=1

(
I − ujc

⊤
j

)
uh =

h−1∏

j=1

(
I − uj

(
ξ⊤j ξj

)−1
ξ⊤j X

)
uh.

Then, we have Xwh = Xh−1uh and T = XW . We can also write W = U
(
C⊤U

)−1
.
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Appendix D: Additional results from the simulation study

Table 2: Mean square error in prediction on a test set over 100 runs according to different noise
levels where p = 15, q = 10, n = 100, and γ = 5.

BSS-PLS Sparse PLS

Subset size σ = 1.5 σ = 3 σ = 6 σ = 8 σ = 1.5 σ = 3 σ = 6 σ = 8

1 149.24 167.04 202.11 232.78 149.24 167.07 202.15 232.80
2 137.70 155.36 195.48 228.29 141.36 160.43 197.65 229.92
3 131.14 147.45 189.76 225.03 135.76 153.25 193.96 227.56
4 126.67 141.07 185.13 222.10 131.33 147.73 190.54 225.05
5 123.64 136.33 182.53 220.25 128.04 143.02 187.34 223.05
6 121.26 132.48 180.60 218.93 125.42 138.90 184.78 221.60
7 119.12 129.49 178.52 217.80 123.30 135.42 182.48 220.18
8 117.34 126.21 177.03 216.91 120.49 131.41 180.66 218.97
9 115.62 123.84 175.68 215.85 118.46 127.70 179.02 218.10
10 114.21 122.26 175.04 215.52 114.46 124.76 177.55 217.16
11 114.63 121.99 174.52 214.91 114.52 123.26 176.39 216.28
12 114.79 122.05 174.22 214.65 114.59 122.64 175.44 215.60
13 114.88 122.17 173.95 214.53 114.68 122.38 174.70 215.03
14 114.93 122.25 173.69 214.37 114.81 122.25 174.12 214.66
15 114.94 122.28 173.69 214.34 114.94 122.28 173.69 214.34

Table 3: Sensitivity (sens) and Specificity (spe) over 100 runs according to different noise levels
where p = 15, q = 10, n = 100, and γ = 5.

BSS-PLS Sparse PLS

Subset σ = 1.5 σ = 3 σ = 6 σ = 8 σ = 1.5 σ = 3 σ = 6 σ = 8

size sens spe sens spe sens spe sens spe sens spe sens spe sens spe sens spe

1 0.10 1.00 0.10 1.00 0.10 1.00 0.09 0.99 0.10 1.00 0.10 1.00 0.10 1.00 0.09 0.99
2 0.20 1.00 0.20 1.00 0.19 0.98 0.17 0.94 0.20 1.00 0.20 1.00 0.19 0.97 0.17 0.95
3 0.30 1.00 0.30 1.00 0.28 0.96 0.25 0.90 0.30 1.00 0.30 1.00 0.28 0.96 0.25 0.89
4 0.40 1.00 0.40 1.00 0.37 0.94 0.33 0.86 0.40 1.00 0.40 1.00 0.37 0.94 0.33 0.86
5 0.50 1.00 0.50 1.00 0.45 0.91 0.41 0.82 0.50 1.00 0.50 1.00 0.45 0.90 0.41 0.81
6 0.60 1.00 0.60 0.99 0.53 0.86 0.48 0.77 0.60 1.00 0.60 0.99 0.53 0.86 0.48 0.76
7 0.70 1.00 0.69 0.99 0.61 0.82 0.55 0.69 0.70 1.00 0.69 0.99 0.61 0.82 0.55 0.70
8 0.80 1.00 0.79 0.98 0.68 0.76 0.61 0.63 0.80 1.00 0.79 0.98 0.68 0.76 0.61 0.62
9 0.90 1.00 0.88 0.96 0.74 0.69 0.67 0.54 0.90 1.00 0.88 0.96 0.74 0.68 0.67 0.54
10 1.00 1.00 0.96 0.91 0.79 0.59 0.72 0.44 1.00 1.00 0.96 0.91 0.79 0.59 0.73 0.45
11 1.00 0.80 0.99 0.77 0.83 0.47 0.78 0.35 1.00 0.80 0.99 0.77 0.83 0.47 0.78 0.36
12 1.00 0.60 0.99 0.59 0.88 0.35 0.84 0.27 1.00 0.60 0.99 0.59 0.88 0.36 0.84 0.27
13 1.00 0.40 1.00 0.39 0.92 0.24 0.90 0.19 1.00 0.40 1.00 0.39 0.92 0.24 0.89 0.19
14 1.00 0.20 1.00 0.20 0.96 0.13 0.95 0.09 1.00 0.20 1.00 0.20 0.97 0.13 0.95 0.10
15 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
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Table 4: F1-score for BSS-PLS and sparse PLS for different subset sizes over 100 runs for varying
noise levels. Here, p = 15, q = 10, n = 100, and γ = 5.

BSS-PLS Sparse PLS

Subset size σ = 1.5 σ = 3 σ = 6 σ = 8 σ = 1.5 σ = 3 σ = 6 σ = 8

1 0.18 0.18 0.18 0.17 0.18 0.18 0.18 0.17
2 0.33 0.33 0.31 0.29 0.33 0.33 0.31 0.29
3 0.46 0.46 0.43 0.38 0.46 0.46 0.43 0.38
4 0.57 0.57 0.53 0.47 0.57 0.57 0.53 0.47
5 0.67 0.66 0.61 0.54 0.67 0.66 0.60 0.54
6 0.75 0.75 0.66 0.60 0.75 0.75 0.66 0.60
7 0.82 0.82 0.72 0.64 0.82 0.82 0.72 0.65
8 0.89 0.88 0.76 0.68 0.89 0.88 0.76 0.68
9 0.95 0.93 0.78 0.71 0.95 0.93 0.78 0.71
10 1.00 0.96 0.79 0.72 1.00 0.96 0.79 0.73
11 0.95 0.94 0.79 0.74 0.95 0.94 0.79 0.74
12 0.91 0.90 0.80 0.76 0.91 0.90 0.80 0.76
13 0.87 0.87 0.80 0.78 0.87 0.87 0.80 0.78
14 0.83 0.83 0.80 0.79 0.83 0.83 0.80 0.79
15 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80

Table 5: Number of times BSS-PLS and sparse PLS retrieve the exact (“optimal”) best subset of
different sizes over 100 runs for different sample sizes where p = 15, q = 10, γ = 5, and σ = 6.

BSS-PLS Sparse PLS

Subset size n = 100 n = 200 n = 500 n = 100 n = 200 n = 500

1 100 100 100 95 95 98
2 96 96 96 92 91 93
3 97 99 99 89 93 94
4 98 97 98 85 96 95
5 95 97 100 83 93 91
6 96 98 99 89 95 97
7 95 99 98 89 95 98
8 98 99 100 90 92 98
9 97 98 100 93 94 98
10 99 100 100 96 100 97
11 100 100 100 94 96 100
12 100 100 100 95 99 99
13 100 100 100 94 100 99
14 100 100 100 99 100 100
15 100 100 100 100 100 100
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Table 6: Mean square error in prediction estimated on a test set over 100 runs for different sample
sizes where p = 15, q = 10, γ = 5, and σ = 6.

BSS-PLS Sparse PLS

Subset size n = 100 n = 200 n = 500 n = 100 n = 200 n = 500

1 202.11 208.36 201.69 202.15 208.29 201.65
2 195.48 201.51 195.32 197.65 203.65 197.33
3 189.76 195.75 189.77 193.96 199.50 193.25
4 185.13 191.59 185.16 190.54 195.58 189.87
5 182.53 187.50 181.18 187.34 191.98 186.36
6 180.60 184.26 177.45 184.78 189.28 183.16
7 178.52 181.74 174.23 182.48 186.45 180.07
8 177.03 179.66 171.51 180.66 183.88 176.40
9 175.68 178.13 169.37 179.02 181.79 173.29
10 175.04 176.93 167.70 177.55 179.87 169.82
11 174.52 176.52 167.42 176.39 178.29 168.52
12 174.22 176.16 167.53 175.44 177.41 168.04
13 173.95 175.91 167.52 174.70 176.64 167.67
14 173.69 175.89 167.52 174.12 176.11 167.54
15 173.69 175.89 167.52 173.69 175.89 167.52

Table 7: Sensitivity (sens) and specificity (spe) over 100 runs for different sample sizes where p = 15,
q = 10, n = 100, and γ = 5.

BSS-PLS Sparse PLS

Subset n = 100 n = 200 n = 500 n = 100 n = 200 n = 500

size sens spe sens spe sens spe sens spe sens spe sens spe

1 0.10 1.00 0.10 1.00 0.10 1.00 0.10 1.00 0.10 1.00 0.10 1.00
2 0.19 0.98 0.20 1.00 0.20 1.00 0.19 0.97 0.20 1.00 0.20 1.00
3 0.28 0.96 0.30 0.99 0.30 1.00 0.28 0.96 0.30 0.99 0.30 1.00
4 0.37 0.94 0.39 0.98 0.40 1.00 0.37 0.94 0.39 0.99 0.40 1.00
5 0.45 0.91 0.49 0.97 0.50 1.00 0.45 0.90 0.48 0.97 0.50 1.00
6 0.53 0.86 0.58 0.95 0.60 1.00 0.53 0.86 0.57 0.95 0.60 1.00
7 0.61 0.82 0.66 0.92 0.70 1.00 0.61 0.82 0.66 0.92 0.70 1.00
8 0.68 0.76 0.74 0.87 0.79 0.99 0.68 0.76 0.74 0.87 0.79 0.99
9 0.74 0.69 0.80 0.81 0.89 0.98 0.74 0.68 0.81 0.81 0.89 0.98
10 0.79 0.59 0.86 0.73 0.96 0.93 0.79 0.59 0.86 0.73 0.96 0.93
11 0.83 0.47 0.91 0.61 0.99 0.78 0.83 0.47 0.91 0.62 0.99 0.78
12 0.88 0.35 0.94 0.48 0.99 0.59 0.88 0.36 0.94 0.48 0.99 0.59
13 0.92 0.24 0.97 0.34 1.00 0.40 0.92 0.24 0.97 0.34 1.00 0.40
14 0.96 0.13 0.99 0.18 1.00 0.20 0.97 0.13 0.99 0.18 1.00 0.20
15 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
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Table 8: F1-score for different subset sizes over 100 runs for different sample sizes where p = 15,
q = 10, γ = 5, and σ = 6.

BSS-PLS Sparse PLS

Subset size n = 100 n = 200 n = 500 n = 100 n = 200 n = 500

1 0.18 0.18 0.18 0.18 0.18 0.18
2 0.31 0.33 0.33 0.31 0.33 0.33
3 0.43 0.46 0.46 0.43 0.46 0.46
4 0.53 0.56 0.57 0.53 0.56 0.57
5 0.61 0.65 0.67 0.60 0.65 0.67
6 0.66 0.72 0.75 0.66 0.72 0.75
7 0.72 0.78 0.82 0.72 0.78 0.82
8 0.76 0.82 0.88 0.76 0.82 0.88
9 0.78 0.85 0.93 0.78 0.85 0.94
10 0.79 0.86 0.96 0.79 0.86 0.96
11 0.79 0.86 0.94 0.79 0.86 0.94
12 0.80 0.86 0.90 0.80 0.86 0.90
13 0.80 0.84 0.87 0.80 0.84 0.87
14 0.80 0.82 0.83 0.80 0.82 0.83
15 0.80 0.80 0.80 0.80 0.80 0.80

Table 9: Number of times BSS-PLS and sparse PLS retrieve the exact (“optimal”) best subset
for different subset sizes over 100 runs according to the sparsity of the true signal. Here, p = 15,
q = 10, n = 100, and σ = 5.

BSS-PLS Sparse PLS

Subset size γ = 3 γ = 7 γ = 11 γ = 13 γ = 3 γ = 7 γ = 11 γ = 13

1 100 100 100 99 93 95 92 91
2 97 98 93 96 85 89 90 90
3 92 96 92 96 88 90 91 86
4 95 97 90 96 93 86 86 79
5 91 91 91 98 88 84 79 85
6 91 94 98 95 87 85 83 87
7 96 98 98 94 89 84 87 87
8 96 97 100 97 94 87 86 74
9 99 99 99 97 95 91 86 85
10 98 100 99 98 90 89 85 86
11 100 100 100 100 92 92 87 87
12 100 100 100 99 94 89 90 89
13 100 100 100 100 99 95 97 94
14 100 100 100 100 99 95 98 98
15 100 100 100 100 100 100 100 100
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Table 10: Mean square error in prediction on a test set over 100 runs for varying sparsity levels.
Here, p = 15, q = 10, n = 100, and σ = 5.

BSS-PLS Sparse PLS

Subset size γ = 3 γ = 7 γ = 9 γ = 11 γ = 3 γ = 7 γ = 9 γ = 11

1 201.88 202.83 203.61 205.31 201.93 203.03 203.61 204.91
2 194.93 196.62 198.16 201.92 197.36 198.83 199.99 202.55
3 189.18 192.36 195.01 199.87 193.05 195.39 197.03 200.72
4 183.86 189.40 192.83 198.44 189.29 192.72 194.83 199.42
5 180.12 186.87 191.71 197.65 186.11 190.33 193.52 198.26
6 177.01 185.29 190.05 196.90 182.65 188.37 191.93 197.68
7 174.82 183.94 189.54 196.35 180.26 186.62 190.88 197.03
8 173.18 182.81 188.79 196.29 178.18 185.35 190.01 196.60
9 171.54 182.06 188.36 195.96 175.88 184.14 189.34 196.24
10 170.06 181.20 188.26 195.72 173.67 183.04 189.03 196.00
11 168.93 181.00 188.02 195.59 171.99 182.07 188.52 195.77
12 168.43 180.72 187.88 195.61 170.58 181.57 188.18 195.60
13 168.14 180.52 187.69 195.57 169.43 181.04 187.86 195.46
14 167.75 180.36 187.68 195.54 168.39 180.63 187.67 195.46
15 167.64 180.33 187.65 195.52 167.64 180.33 187.65 195.52

Table 11: Sensitivity (sens) and specificity (spe) over 100 runs for varying sparsity levels. Here,
p = 15, q = 10, n = 100, and σ = 5.

BSS-PLS Sparse PLS

Subset γ = 3 γ = 7 γ = 9 γ = 11 γ = 3 γ = 7 γ = 9 γ = 11

size sens spe sens spe sens spe sens spe sens spe sens spe sens spe sens spe

1 0.08 1.00 0.12 0.99 0.15 0.99 0.15 0.99 0.08 1.00 0.12 0.99 0.15 0.99 0.18 0.98
2 0.16 0.99 0.22 0.97 0.27 0.96 0.27 0.96 0.16 0.98 0.22 0.97 0.27 0.96 0.33 0.94
3 0.24 0.97 0.32 0.94 0.38 0.92 0.38 0.92 0.24 0.97 0.32 0.94 0.39 0.92 0.44 0.89
4 0.32 0.96 0.42 0.91 0.49 0.88 0.49 0.88 0.32 0.96 0.42 0.91 0.50 0.89 0.53 0.83
5 0.40 0.93 0.51 0.87 0.57 0.82 0.57 0.82 0.40 0.94 0.51 0.86 0.57 0.83 0.62 0.77
6 0.48 0.90 0.59 0.82 0.66 0.77 0.66 0.77 0.47 0.90 0.59 0.81 0.65 0.77 0.69 0.71
7 0.55 0.86 0.66 0.75 0.71 0.70 0.71 0.70 0.55 0.86 0.66 0.75 0.70 0.69 0.74 0.63
8 0.62 0.80 0.72 0.68 0.78 0.63 0.78 0.63 0.62 0.80 0.72 0.68 0.76 0.62 0.78 0.56
9 0.69 0.74 0.77 0.60 0.81 0.54 0.81 0.54 0.68 0.74 0.77 0.60 0.81 0.54 0.82 0.48
10 0.75 0.67 0.83 0.52 0.85 0.46 0.85 0.46 0.75 0.66 0.83 0.52 0.84 0.45 0.86 0.40
11 0.80 0.55 0.86 0.41 0.88 0.37 0.88 0.37 0.81 0.56 0.86 0.41 0.88 0.37 0.90 0.33
12 0.86 0.44 0.90 0.31 0.92 0.28 0.92 0.28 0.86 0.44 0.90 0.31 0.92 0.28 0.93 0.25
13 0.91 0.29 0.94 0.22 0.95 0.19 0.95 0.19 0.91 0.30 0.94 0.21 0.95 0.19 0.95 0.17
14 0.96 0.16 0.97 0.11 0.97 0.09 0.97 0.09 0.96 0.16 0.97 0.11 0.97 0.09 0.97 0.08
15 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
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Table 12: F1-score for different subset sizes over 100 runs according to the sparsity of the true
signal. Here, p = 15, q = 10, n = 100, and σ = 5.

BSS-PLS Sparse PLS

Subset size γ = 3 γ = 7 γ = 9 γ = 11 γ = 3 γ = 7 γ = 9 γ = 11

1 0.15 0.21 0.25 0.29 0.15 0.21 0.25 0.30
2 0.28 0.36 0.41 0.44 0.28 0.35 0.40 0.44
3 0.39 0.47 0.51 0.50 0.39 0.47 0.52 0.51
4 0.48 0.56 0.59 0.54 0.48 0.56 0.59 0.53
5 0.56 0.63 0.62 0.56 0.57 0.62 0.63 0.56
6 0.63 0.67 0.66 0.56 0.63 0.67 0.65 0.55
7 0.69 0.70 0.66 0.54 0.69 0.70 0.65 0.54
8 0.74 0.72 0.67 0.53 0.74 0.72 0.66 0.52
9 0.78 0.73 0.65 0.51 0.78 0.73 0.65 0.50
10 0.82 0.74 0.64 0.50 0.82 0.74 0.63 0.49
11 0.84 0.72 0.62 0.48 0.84 0.72 0.62 0.48
12 0.86 0.72 0.62 0.47 0.86 0.72 0.61 0.47
13 0.87 0.72 0.60 0.45 0.87 0.71 0.60 0.45
14 0.88 0.71 0.58 0.43 0.88 0.70 0.58 0.43
15 0.89 0.70 0.57 0.42 0.89 0.70 0.57 0.42

Table 13: Result over 100 runs of MSEP, Sensitivity, Specificity and F1-score for BSS-PLS and
Sparse PLS obtained from the subset of size 10 with q = 10, n = 100, and σ = 5.

BSS-PLS Sparse PLS

p MSEP Sensitivity Specificity F1-score MSEP Sensitivity Specificity F1-score

50 168.147 0.591 0.898 0.591 170.440 0.586 0.896 0.586
100 171.452 0.499 0.944 0.499 174.006 0.487 0.943 0.487
200 179.016 0.397 0.968 0.397 180.329 0.393 0.968 0.393
500 186.232 0.275 0.985 0.275 186.542 0.269 0.985 0.269

Table 14: Model accuracy over 100 runs for the univariate response case.

Setting BSS-PLS Sparse PLS Lasso

n p sparsity SNR MSEP sens spe F1 MSEP sens spe F1 MSEP sens spe F1

400 40 10 10 510.22 0.99 0.82 0.97 510.46 1.00 0.48 0.92 510.63 0.81 0.28 0.78
400 40 10 15 651.88 0.98 0.78 0.96 652.15 1.00 0.42 0.92 652.44 0.73 0.32 0.73
400 40 30 10 511.48 0.99 0.97 0.96 511.75 1.00 0.81 0.83 511.88 0.96 0.29 0.51
400 40 30 15 652.99 0.99 0.94 0.94 653.30 1.00 0.75 0.79 653.63 0.93 0.32 0.51
40 80 20 10 941.55 0.88 0.74 0.87 943.26 0.97 0.49 0.90 935.17 0.22 0.77 0.33
40 80 20 15 1975.67 0.70 0.68 0.69 1977.20 0.75 0.53 0.70 1961.89 0.22 0.77 0.31
40 80 40 10 940.82 0.87 0.83 0.84 943.64 0.93 0.58 0.79 937.08 0.24 0.78 0.31
40 80 40 20 1976.26 0.73 0.75 0.68 1979.84 0.79 0.55 0.66 1965.83 0.22 0.78 0.28
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Appendix E: Illustration of Best Subset Selection for PCA
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Figure 1: Scree plot for the PCA model on the multidrug dataset.
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Figure 2: Correlation circle plot from BSS-PCA performed on the multidrug dataset.
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Table 15: Best Subset results for component 1.

Dimension −λ1/n PEV(sparse) CPEV cor(sPC, PC)

1 -0.01639 2.08 2.08 -0.03
2 -0.03031 3.85 3.85 0.41
3 -0.03593 4.57 4.57 0.82
4 -0.04360 5.54 5.54 0.84
5 -0.04979 6.33 6.33 0.86
6 -0.05462 6.94 6.94 0.87
7 -0.05906 7.51 7.51 0.88
8 -0.06488 8.25 8.25 0.88
9 -0.07025 8.93 8.93 0.85
10 -0.07418 9.43 9.43 0.87
11 -0.07690 9.78 9.78 0.86
12 -0.07903 10.05 10.05 0.87
13 -0.08096 10.29 10.29 0.86
14 -0.08274 10.52 10.52 0.86
15 -0.08356 10.62 10.62 0.85
16 -0.08473 10.77 10.77 0.88
17 -0.08515 10.82 10.82 0.90
18 -0.08662 11.01 11.01 0.94
19 -0.08803 11.19 11.19 0.95
20 -0.08910 11.33 11.33 0.94
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Figure 3: CPEV as a function of the sparsity (p - size of the subset) for the first component. Here,
the blue vertical line indicates the largest value of the sparsity such that CPEV does not exceed a
drop of 10%.
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Table 16: Best Subset results for component 2.

Dimension −λ1/n PEV(sparse) CPEV cor(sPC,PC)

1 -0.01631 2.08 12.91 0.46
2 -0.02641 3.42 14.24 -0.14
3 -0.03285 4.33 15.05 0.65
4 -0.03840 4.90 15.71 0.74
5 -0.04436 5.67 16.47 0.78
6 -0.04732 6.02 16.86 0.85
7 -0.05068 6.57 17.40 0.89
8 -0.05368 6.97 17.78 0.90
9 -0.05685 7.37 18.21 0.91
10 -0.05945 7.63 18.55 0.90
11 -0.06169 7.88 18.87 0.90
12 -0.06372 8.16 19.12 0.90
13 -0.06554 8.37 19.36 0.90
14 -0.06697 8.61 19.62 -0.91
15 -0.06834 8.71 19.67 -0.89
16 -0.06964 8.87 19.84 -0.89
17 -0.07065 8.99 19.98 -0.89
18 -0.07148 9.10 20.08 -0.89
19 -0.07232 9.20 20.19 -0.90
20 -0.07343 9.35 20.32 -0.91
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Figure 4: CPEV as a function of the sparsity (p - size of the subset) for the second component.
Here, the blue vertical line indicates the largest value of the sparsity such that CPEV does not
exceed a drop of 10%.
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Table 17: Best Subset results for component 3.

Dimension −λ1/n PEV(sparse) CPEV cor(sPC,PC)

1 -0.01617 2.08 21.20 -0.01
2 -0.02622 3.42 22.53 -0.60
3 -0.03016 3.92 23.04 0.67
4 -0.03355 4.35 23.47 -0.72
5 -0.03572 4.68 23.79 -0.76
6 -0.03814 5.01 24.13 -0.75
7 -0.03961 5.17 24.28 -0.79
8 -0.04163 5.45 24.57 -0.81
9 -0.04302 5.72 24.74 -0.81
10 -0.04391 5.77 24.82 -0.84
11 -0.04501 5.75 24.87 -0.94
12 -0.04641 5.95 25.06 -0.95
13 -0.04751 6.13 25.21 0.96
14 -0.04875 6.26 25.36 0.96
15 -0.04999 6.43 25.51 0.96
16 -0.05088 6.57 25.65 -0.96
17 -0.05138 6.58 25.70 -0.97
18 -0.05184 6.62 25.75 -0.97
19 -0.05221 6.67 25.81 -0.97
20 -0.05264 6.71 25.86 -0.98
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Figure 5: CPEV as a function of the sparsity (p - size of the subset) for the third component. Here,
the blue vertical line indicates the largest value of the sparsity such that CPEV does not exceed a
drop of 10%.
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Appendix F: Illustration of Best Subset for PLS2 model
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Figure 6: Marginal contribution of components using the Q2 criterion per response variable.
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Figure 7: Aggregation of the performance across all responses variables using the total Q2.
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Figure 8: Clustered image maps from BSS-PLS2 results.
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