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Abstract. Impedance boundary condition are of great interest in linear elasticity as a method to
model several non-standard problems. Recently, in the frame of surface wave propagation in an
elastic isotropic half-space, Godoy et al. [Wave Motion 49 (2012), 585-594] proposed a general class
of impedance boundary conditions that generalize the standard stress-free boundary condition in
the non-dispersive regime. A natural question that arises in this context is whether the property of
existence and uniqueness of a surface wave, observed in the stress-free case (called Rayleigh wave),
holds for full Godoy’s impedance boundary conditions. Godoy et al. addressed this question for
the tangential case (the tangential stress is proportional to the horizontal displacement times the
frequency and the normal stress vanishes). Recently, Giang and Vinh [J Eng Math 130, 13 (2021)]
studied the normal case (the tangential stress vanishes and the normal stress is proportional to
the normal displacement times the frequency). In this work, we consider an uniparametric family
of Godoy’s impedance boundary conditions defined by proportional ratios of the same magnitude
but opposite sign. We demonstrate the existence and uniqueness of the Rayleigh surface wave for
each value of the impedance parameter, showing for the first time that full Godoy’s impedance
boundary conditions are also capable of explaining surface wave propagation. Numerical examples
are presented to illustrate the effect of the impedance parameter in the speed of the surface wave.
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1. Introduction

Rayleigh surface waves, originally described by Rayleigh [22] in 1885, have consistently drawn
the interest of researchers due to their extensive applications across a wide range of scientific fields.
Notably in seismology, where they have the potential to explain most of the damage and destruction
during an earthquake. A lot of investigations on Rayleigh wave propagation on general anisotropic
elastic half-space have been conducted, where the stress-free boundary condition constitutes the
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(Mexico).

E-mail address: fabioval@ciencias.unam.mx.
2020 Mathematics Subject Classification. 35Q74, 74B05, 74J20, 74J40, 35L05.
Key words and phrases. Rayleigh waves, impedance boundary conditions, secular equation, hyperbolic systems.

1

ar
X

iv
:2

40
3.

20
04

2v
1 

 [
ph

ys
ic

s.
cl

as
s-

ph
] 

 2
9 

M
ar

 2
02

4



main paradigm (see, e.g., [22, 1, 17, 3, 33, 28]). However recently, there has been an increasing
interest on surface wave propagation under impedance boundary conditions, which are usually de-
fined by linear relations between the unknown function and its derivatives at the surface. The
usual stress-free boundary condition arises as a particular case. Although commonly used in elec-
tromagnetism [24, 26, 6, 16] and acoustics [2, 37, 36, 19], impedance boundary conditions also have
proven to be effective in modeling specific problems in linear elasticity. Recently, it has emerged an
extensive research on surface waves on metamaterials as an efficient way to lower the local resonant
frequency (a relevant topic for seismic waves), they are called locally resonant metamaterials. A
simple kind of this materials are coated or uncoated hard sphere-filled elastic metacomposites. In
this fashion, C.Q. Ru [23] studied Rayleigh surface waves of an elastic half-space covered by a thin
metasurface layer filled with randomly distributed coated or uncoated hard spheres. In his analy-
sis, the author arrived to impedance boundary condition of Tiersten type to simulate the effects of
the metasurface over the half-space. Tiersten [27] obtained this kind of boundary condition in his
studies about surface wave propagation in a half-space coated by a tiny layer of different material
on the surface (see [27, 4, 31, 32, 5]).

In seismology, Malischewsky showed the potential of Tiersten’s impedance boundary conditions
to model seismic wave propagation along discontinuities [13]. In this work, Malischewsky wrote
them in terms of impedance parameters depending on the thickness of the layer, the elastic pa-
rameters and the frequency. This allowed him to derive the speed-frequency relation associated
to Tiersten’s boundary conditions in a compact form. In order to obtain general results about
the existence of surface waves, Godoy et al. [7] study the two-dimensional case and assume that
the impedance parameters defined by Malischewsky are proportional to the frequency with real
proportional ratios. This makes the speed-frequency relation or secular equation independent of
the frequency (see Equation (3.4)), leading to a family of boundary conditions that generalizes the
stress-free boundary condition in the non-dispersive regime. In this scenario, the existence and
uniqueness of a surface wave is given by the existence of a unique real root of the secular equation
in the subsonic range [7, 35, 18]. However, this is a tough task due to the transcendental nature
of the secular equation, even for the stress-free boundary condition (the most simple case). For an
abridged list of references on this topic, see [7, 8, 20, 14, 15, 34, 21, 10].

The existence and uniqueness of a non-dispersive Rayleigh wave for general anisotropic elastic
solids is non-trivial to deal with and has only been stablished under the usual stress-free boundary
condition (see [11, 12, 29, 3] and in the references therein). Several methods have been implemented
for this purpose that unfortunately result hard or impossible to extend to impedance boundary
conditions [18]. For Godoy’s impedance boundary conditions, the existence and uniqueness of a
surface Rayleigh wave have been proven only for two particular cases. Godoy et al. [7] studied
the tangential impedance case (see Equation (2.4) with Z1 ∈ R, Z2 = 0) and prove that a surface
Rayleigh wave is always possible for all real values of the tangential impedance parameter (Z1).
The strategy relies on obtaining, from the secular equation, the impedance as a function of the
slowness and showing that it is monotone. In a further work, via generalized Cauchy integrals from
complex analysis, Vinh and Nguyen [35] derived an exact analytical formula for the speed of the
Rayleigh waves described by Godoy et al. Following this approach, Giang and Vinh [18] addressed
the case of normal impedance boundary conditions (see Equation (2.4) with Z1 = 0, Z2 ∈ R). An
exact analytical formula for the velocity of the surface wave is also derived. Strangely enough,
the authors found that there exist values of the normal impedance parameter (Z2) for which the
existence property of a surface wave is lost. As pointed out in [18], the case of normal impedance
boundary condition demanded more technical details compared to its tangential counterpart when
applying the complex function method. In a very recent paper [30], the first author proved that
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the secular equation does not vanish outside the real axis in the complex plane for arbitrary real
impedance parameters (Z1, Z2 ∈ R). This is not just a simplification of the problem but also a
fundamental property for the well-posedness of the boundary value problem of PDEs. As far as we
know, the existence and uniqueness of a surface wave in the general case remains unsolved. The
main difficulty of this problem lies in a term of the secular equation that appears only when both
impedance parameters are non-zero.

The contribution of the present work is to prove the existence and uniqueness of a surface wave
for an uniparametric family of Godoy’s impedance boundary conditions, where both impedance
parameters are non-zero. In Section §2 we state the isotropic equations of motion and define the
impedance boundary conditions to study. In Section §3, we derive the associated secular equation.
In Section §4 we prove the existence and uniqueness of the surface wave for each value of the
impedance parameter by following a similar strategy used in the tangential case [7]. In contrast to
the latter, an additional term in the associated secular equation, which is quadratic in the impedance
parameter, makes impossible to obtain the impedance as a function of the velocity or the slowness.
So, we try to prove directly that the function defining the secular equation is monotone. The
method here presented might be considered as a generalization of that implemented by Godoy et
al. [7] in the tangential impedance case. In Section §5 the effect of the impedance parameter on
the speed of the surface wave is discussed and some particular cases are also illustrated.

2. The secular equation

2.1. Equation of motion. Let us consider an isotropic elastic half-space with constant mass
density ρ occupying the domain {x2 ≥ 0}. We shall study planar motion in the (x1, x2)-plane, such
that the components of the displacement satisfy

uj = uj(x1, x2, t), for j = 1, 2, and u3 ≡ 0.

The constitutive isotropic equations characterized by the symmetric stress tensor σ has four
relevant components related to the displacement gradients by

σ11 = (λ+ 2µ)u1,1 + λu2,2,

σ12 = σ21 = µ
(
u1,2 + u2,1

)
,

σ22 = (λ+ 2µ)u2,2 + λu1,1,

(2.1)

where commas denotes differentiation with respect to spatial variables xi and µ, λ are the standard
Lamé constants satisfying

µ > 0, λ+ µ > 0. (2.2)

It is not hard, using the Young’s modulus E and the Poisson’s ratio ν (see [1]), to prove that E > 0
and −1 < ν < 0.5 implies (2.2). In absence of source terms, the equations of motion are given by:

σ11,1 + σ12,2 = ρü1,

σ12,1 + σ22,2 = ρü2.
(2.3)

2.2. Impedance boundary condition. Assume that the components of the displacement vector
depend harmonically on time through e−iωt, that is uj = e−iωtû(x1, x2), j = 1, 2, where ω is the
angular frequency (cf. [7]). Under such condition, suppose that the surface is subjected to an
impedance boundary condition of the form (see [7]){

σ̂12 + ωZ1û1 = 0,
σ̂22 + ωZ2û2 = 0,

x2 = 0, (2.4)

where the hat in σ̂kj denotes the dependence on the Fourier components of the displacement ûj
(j = 1, 2). Z1, Z2 are the impedance parameters having dimension of stress/velocity [7, 13]. It is
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clear that setting Z1 = Z2 = 0 leads to the classical stress-free boundary condition. When Z2 = 0,
we retrieve the tangential boundary condition investigated in [7, 35] and when Z1 = 0 we obtain
the normal impedance boundary condition studied in [18]. In this paper we adress the case Z1 = Z,
Z2 = −Z, Z ∈ R and prove the existence and uniqueness of the Rayleigh wave for each value of
the impedance parameter Z ∈ R.

3. Secular equation

To derive the secular equation, we consider a surface wave propagating in the x1 direction with
velocity c, wave number k > 0 and angular frequency ω = kc. We also assume that its displacement
components satisfy the decay condition

uj = 0, as x2 → +∞, j = 1, 2. (3.1)

This type of wave is referred to as a surface wave of Rayleigh type or simply a surface wave. It can
be show that the displacement components uj , j = 1, 2 of a surface wave of Rayleigh type satisfying
the equation of motion (2.3) and the decay condition (3.1) are of the form (see, [1, 18])

uj = e−iωtûj , j = 1, 2,

where

û1 =
(
A1e−kb1x2 +A2e−kb2x2

)ekix1 ,

û2 =
(
− b1

i
A1e−kb1x2 +

i

b2
A2e−kb2x2

)
ekix1

(3.2)

and Aj (j = 1, 2) are constants to be determined. b1, b2 are given by

b1 =

√
1− c2

c21
, b2 =

√
1− c2

c22
,

where c1 :=
√
(λ+ 2µ)/ρ, c2 :=

√
µ/ρ are the speed of the pressure and shear wave, respectively.

It is easy to check that Assumption (2.2) amounts to c2 < c1. The square root is chosen to be the
principal branch, so that Re bj ≥ 0 (j = 1, 2) as c varies on the complex plane. This in turns ensures
the fulfillment of the decay condition (3.1). The surface wave solution (3.2) must also satisfy the
impedance boundary condition, so we substitute (3.2) into (2.4) (by the usage of (2.1)) to find that
A1, A2 must satisfy the following linear algebraic system of equations(

− 2µkb1 + ωZ1

)
A1 −

(
µk(b2 +

1

b2
)− ωZ1

)
A2 = 0,(1

i
(−λk + (λ+ 2µ)kb21) + ωZ2b1i

)
A1 +

(
− 2µki +

ωZ2i

b2

)
A2 = 0.

(3.3)

Since we are looking for non-trivial surface waves (A1, A2 ̸= (0, 0)), the determinant of the system
hereabove must vanish. Simplifying and taking into account that c22ρ(1+b22)k = −λk+(λ+2µ)kb21,
lead to the secular equation in the variable c

R(c;Z1, Z2) : =

(
2− c2

c22

)2

− 4

√
1− c2

c22

√
1− c2

c21
+

c3

µc22

(
Z1

√
1− c2

c22
+ Z2

√
1− c2

c21

)

+ c2
Z1Z2

µ2

(√
1− c2

c22

√
1− c2

c21
− 1

)
= 0.

(3.4)

Recently, by means of elements from linear algebra, the author proves in [30] that the equation
above does not have roots outside the real axis for all Z1, Z2 ∈ R, which constitutes a necessary
condition for the well-posedness of the boundary value problem of PDEs (2.3)-(2.4), and thus also
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a necessary condition for the model to explain surface wave propagation. It is worth noting that
in terms of the slowness s = 1/c, sL = 1/c1 and sT = 1/c2, the secular equation (3.4) becomes
Equation (16) in [7]

(2s2 − s2T )
2 − 4s2

√
s2 − s2L

√
s2 − s2T +

s2T
µω

(
ε1

√
s2 − s2T + ε2

√
s2 − s2L

)
− ε1ε2

ω2µ2

(
s2 −

√
s2 − s2L

√
s2 − s2T

)
= 0,

(3.5)

where ε1 = Z1ω, ε2 = Z2ω.
In this fashion, the existence and uniqueness of the surface wave is established by the existence

of a unique root of (3.4) on the interval (0, c2) (subsonic range); this root is precisely the speed of
the surface wave of Rayleigh type. For the sake of simplicity, we write the secular equation (3.4)
in term of the new dimensionless variables

x = c2/c22, δj = Zj/
√
µρ and γ = c22/c

2
1, (3.6)

which as was shown in [18, 35], reduces Equation (3.4) to (see, Equation 12 in [18])

f1(γ, δ1, δ2, x) := (2− x)2 − 4
√
1− x

√
1− γx+ x

√
x
(
δ1
√
1− x+ δ2

√
1− γx

)
+ δ1δ2x

(√
1− x

√
1− γx− 1

)
= 0,

(3.7)

where δ1, δ2 ∈ R are the dimensionless impedance parameters. Thus, we have the following criterion
for the surface wave analysis to be carried out (see, Remark 1 in [18]).

Remark 3.1. A surface wave solution of Rayleigh type for the PDE (2.3) with full impedance
boundary condition (2.4) exists if and only if (3.7) has a unique root xR ∈ (0, 1).

In the case of stress-free boundary condition δ1 = δ2 = 0 the existence and uniqueness of the
surface wave called Rayleigh wave it is well known; Achenbach [1] verified this by means of the
argument principle from complex analysis. This implies in particular that the secular equation does
not have complex roots outside the real axis. For the case of normal impedance boundary condition
δ1 = 0, δ2 ∈ R, Giang and Vinh [18] implemented a complex function method based on Cauchy
integrals to prove the existence and uniqueness of the surface wave through an explicit formula for
its velocity in terms of both material and boundary parameters. It is worth mentioning that in
this case, there are values of the parameters for which a surface wave is not possible (for details,
see [18]). For the case of tangential impedance boundary conditions (δ1 ∈ R, δ2 = 0), the secular
equation (3.7) becomes a linear polynomial as a function of the impedance parameter δ1:

(2− x)2 − 4
√
1− x

√
1− γx+ δ1x

√
x
√
1− x = 0.

Thanks to this fact, Godoy et al. [7] showed the existence and uniqueness of the surface for each
real value of the impedance parameter δ1. In a follow-up paper, Vinh and Nguyen [35] gave an
explicit formula for the velocity of the surface wave by means of the complex function method
mentioned above. The case under consideration, namely Z1 = Z, Z2 = −Z, Z ∈ R amounts to
setting the new variables as δ1 = δ, δ2 = −δ, δ ∈ R. The secular equation (3.7) becomes

g(γ, δ, x) := (2− x)2 − 4
√
1− x

√
1− γx+ δx

√
x
(√

1− x−
√
1− γx

)
+ δ2x

(
1−

√
1− x

√
1− γx

)
= 0,

(3.8)

Unlike the previous cases of normal and tangential impedance boundary conditions, in this case
we have to deal with the additional third term in the secular equation hereabove, which makes the
analysis harder. Note that the secular equation is now a second-degree polynomial in the variable
δ, so x → δ(x, γ) is not a function. However, in the next section we shall use elements of quadratic
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equations to demonstrate the existence and uniqueness of the surface wave for each value of the
impedance parameter δ ∈ R.

4. Surface Rayleigh wave analysis

In this section we are going to prove the existence and uniqueness of the surface wave for the
case in consideration by proving the existence of a unique root x = xR of the secular equation (3.8)
in the interval (0, 1). The existence is trivial. Indeed, observe that g in (3.8) becomes a real-valued
function of x on the interval [0, 1] with x = 0 a spurious root of g = 0 with multiplicity 1. Thus,
f := (1/x)g and g have the same non-trivial roots on the interval (0, 1). So, our analysis is focused
on the function f rather than g. This is given by

f(x, γ, δ) :=
1

x

(
(2− x)2 − 4

√
1− x

√
1− γx

)
+ δ

√
x
(√

1− x−
√

1− γx
)

+ δ2
(
1−

√
1− x

√
1− γx

)
= 0.

(4.1)

Note that f can be defined continuously at x = 0 inasmuch as

lim
x→0

f(x, γ, δ) = −2(1− γ).

After defining f properly, it results continuous on [0, 1] with f(0, γ, δ) < 0, and

f(1, γ, δ) =
(
δ − 1

2

√
1− γ

)2
+ 1

4(γ + 3) > 0

for all γ ∈ (0, 1) and δ ∈ R. The Intermediate value theorem ensures the existence of at least one
root xR of f on (0, 1) and thus a non trivial root of the secular equation (3.8) (g = 0) on (0, 1). We
can summarize as follows.

Lemma 4.1 (Existence). For 0 < γ < 1 and the impedance parameter δ ∈ R, the secular equation
(4.1) (or (3.8)) has at least one real solution xR within the range (0, 1).

The uniqueness of the Rayleigh is given by the uniqueness of the root in the lemma above. To
prove this, we show that the first derivative f ′ of x → f(x; γ, δ) is positive along (0, 1). This implies
the monotonicity of f and then the uniqueness of the root. However, the positiveness of f ′ on (0, 1)
shall be proved just for 0 < γ < 11/12. When γ ≥ 11/12, the positive sign of the derivative holds
along a sub-interval of the form x ∈ (0, x0), with 0 < x0 < 1. In this case, the uniqueness of the
root follows from the fact that f is strictly positive along the rest of the interval, namely [x0, 1).
Thus, we shall consider the two cases separately. We use the following auxiliar lemma for the proof.

Lemma 4.2. For all 11/12 < γ < 1, it holds that

4
√
1− γ√
1 + 3γ

<
1

2γ

(
1− 6γ +

√
(1− 6γ)2 + γ(7 + 16γ)

)
Proof. It is easy to verify that

√
1 + 3γ > 2γ for all γ ∈ [−1/3, 1). So, in particular

1√
1 + 3γ

<
1

2γ
, for all γ ∈ [11/12, 1). (4.2)

If additionally, we prove for γ ∈ [11/12, 1) that

a := 4
√

1− γ < 1− 6γ +
√
(1− 6γ)2 + γ(7 + 16γ) =: b, (4.3)

then the result can be obtained by multiplying (4.2) by a (defined hereabove) and using the in-
equality (4.3). Indeed,

a/
√
1 + 3γ < a/2γ < b/2γ,
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which is the desired inequality. Let us prove (4.3). Define

h(γ) := 1− 6γ +
√
(1− 6γ)2 + γ(7 + 16γ)− 4

√
1− γ.

A straightforward calculation gives

h′(γ) = −6 +
2√
1− γ

+
7 + 32γ + 12(6γ − 1)√
(1− 6γ)2 + γ(7 + 16γ)

Since γ ∈ [11/12, 1), it easy to verify that 6γ − 1 > 0 and also that (by removing the square root)

−6 +
2√
1− γ

> 0.

Thus h′ is positive on [11/12, 1). That is, h is a strictly increasing function and since h(11/12) =
11
12 − 2√

3
> 0, we conclude h > 0 for all 11/12 < γ < 1. This implies (4.3) and the result. □

Theorem 4.3 (Uniqueness). The root of lemma 4.1 is unique.

Proof. Let us define

Θ :=

√
1− γx√
1− x

.

Note that Θ > 1, provided that x, γ ∈ (0, 1). It is not hard to verify from (4.1) that the derivative
of x → f(x, γ, δ) is given by:

f ′(x, γ, δ) = A(x, γ)δ2 +B(x, γ)δ + C(x, γ), (4.4)

where the prime mark denotes the derivative with respect to x and the coefficients are given by

A(x, γ) := (Θ +
γ

Θ
),

B(x, γ) := − 1

2
√
x

(
1− 1

Θ

)(
2Θ

√
1− x+

1√
1− x

)
,

C(x, γ) :=
2Θ

x2

(
1− 1

Θ

)2

+ 1.

There are two cases to consider.

Case 1: 0 < γ ≤ 11/12. We shall prove that f ′ is positive along (0, 1) for all δ ∈ R. We exploit
the form of f ′ as a second-degree polynomial in δ. Note that the coefficient of δ2 in (4.7) is always
positive. So, it is enough to prove that there are no real roots of f ′ in δ for each x ∈ (0, 1). That
is, its algebraic discriminant has negative sign for x ∈ (0, 1) and 0 < γ ≤ 11/12. For the sake of
simplicity, we prove the property for the polynomial f ′ − 1, which by monotony also implies the
property for f ′ − 1 + 1 = f ′. Since the coefficients of f ′ − 1 are A,B and C − 1, it is not hard to
verify that the associated algebraic discriminant ∆ is given by:

∆(x, γ) :=
1

4x

(
1− 1

Θ

)2(
4(1− γx) +

1

1− x
+ 4Θ

)
− 4

x2

(
1− 1

Θ

)2

(Θ2 + γ). (4.5)

Since x ∈ (0, 1) and Θ > 1, then 1/x < 1/x2 and 4Θ < 4Θ2 (in the first term hereabove). Thus,
we have

∆(x, γ) <
1

4x2

(
1− 1

Θ

)2(
4(1− γx) +

1

1− x
+ 4Θ2 − 16Θ2 − 16γ

)
=

1

4x2

(
1− 1

Θ

)2 1

1− x

(
4γx2 + 4(6γ − 1)x− (7 + 16γ)

)
. (4.6)
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Since the remaining factors are positive, the sign of the last expression hereabove, and therefore
the sign of ∆, depends on the sign of the polynomial

Pγ(x) := 4γx2 + 4(6γ − 1)x− (7 + 16γ).

By the assumption 0 < γ < 11/12, it is easy to verify that Pγ takes negative values at the end-
points of the interval [0, 1]. Indeed, Pγ(0) = −(16γ + 7) and Pγ(1) = 12γ − 11 ≤ 0. Therefore, we
claim Pγ(x) ≤ 0 for all x ∈ (0, 1). Otherwise, it would contradict the convexity of the quadratic
function x → Pγ(x), provided the coefficient of x2 is positive. Thus, the algebraic discriminant
∆(x, γ) has negative sign for all x ∈ (0, 1). This implies that f ′−1, and thus also f ′, does not have
real roots in δ. Since the coefficient A of δ2 is always positive, then f ′ (as a quadratic real-valued
function of δ) is positive on R for each x ∈ (0, 1) and 0 < γ < 11/19. That is, x → f(x, γ, δ) is
strictly monotone on (0,1) for all δ ∈ R, implying the uniqueness of the root from lemma 4.1.

Case 2: 11/12 < γ < 1. In this case, we can also use (4.6). However, although Pγ(0) < 0 still
remains valid, now Pγ(1) = 12γ − 11 > 0. Thus, in contrast to the latter case, there is a root
x = r+ of Pγ on (0, 1). This root is

r+(γ) :=
1

2γ

(
1− 6γ +

√
(1− 6γ)2 + γ(7 + 16γ)

)
.

The another root is clearly negative. Therefore, in this case we have

Pγ(x) ≤ 0, for all x ∈ (0, r+)

and then, (4.6) implies that ∆ < 0 as long as x ∈ (0, r+). By the same argument as in the first
case, x → f(x, γ, δ) is monotone along x ∈ (0, r+) for all δ ∈ R and 11/12 < γ < 1. We claim that
the root from lemma 4.1 lies within (0, r+) and therefore is unique, because as we shall see, f is
positive for all x ∈ [r+, 1). Indeed, consider f in (4.1) as a second-degree polynomial in δ

f(x, γ) = C0(x, γ) +B0(x, γ)δ +A0(x, γ)δ
2, (4.7)

where

A0(x, γ) := 1−
√
1− x

√
1− γx,

B0(x, γ) :=
√
x
(√

1− x−
√

1− γx
)
,

C0(x, γ) := x− 4 +
4

x

(
1−

√
1− x

√
1− γx

)
.

We proceed as in the last case. Since A0 is positive, it is enough to prove that there are no real
roots of f in δ for each x ∈ [r+, 1). That is, the algebraic discriminant ∆0 has negative sign. A
straightforward calculation gives

∆0(x, γ) :=
4− x

x

(
x2 + 6x− 8 + (8− 2x)

√
1− x

√
1− γx

)
− γ(x2 + 16x− 16). (4.8)

Since x, γ ∈ (0, 1), 8− 2x > 0 and
√
1− x <

√
1− γx. Thus, it follows that

∆0(x, γ) <
4− x

x

(
x2 + 6x− 8 + (8− 2x)(

√
1− γx)2

)
− γ(x2 + 16x− 16)

= (1 + 3γ)

(
4
√
1− γ√

1 + 3γ
+ x

)(
4
√
1− γ√

1 + 3γ
− x

)
. (4.9)

Note that the sign of the last expression depends on the third factor, as the remaining ones are

positive. It is not hard to verify that 0 < 4
√
1−γ√

1+3γ
< 1 for all γ > 15/19 and therefore, also for

the range of γ under consideration. Since x ∈ (0, 1), the second-degree polynomial in the right
8



Material ν (Poisson’s ratio) γ

Gold 0.44 0.107
Diabase 0.2 0.375

Polymer Foam -0.7 0.705

Table 1. Poisson’s ratio and the dimensionless parameter γ of the considered materials.

hand side of (4.9), and thus ∆0, has negative sign for all x ∈ (4
√
1−γ√

1+3γ
, 1). Lemma 4.2 ensures

4
√
1−γ√

1+3γ
< r+ < 1. Therefore, in particular we have

∆0(x, γ) < 0, for all x ∈ [r+, 1)

This implies f as a second-degree polynomial in δ does not have roots. Thus, given that the
coefficient A0 of δ2 is positive, then f has positive sign for all δ ∈ R and x ∈ [r+, 1). This ends the
proof. □

Theorem 4.3 states that there is a unique root xR ∈ (0, 1) of the secular equation (4.1) for each
real value of the impedance δ. This implies the existence and uniqueness of a surface wave with
speed cR = c2

√
xR (see, (3.6)). Note that xR is the square of the dimensionless surface wave speed

cR/c2, with both exhibiting similar behavior as they take values in the interval (0, 1) for all δ ∈ R.
Thus, for the sake of simplicity, we call xR the dimensionless surface wave speed.

5. Numerical results

In this section, we describe how the dimensionless Rayleigh wave speed xR (when δ = 0) is
affected if the impedance δ starts to vary on R. Observe that for large values of the impedance δ,
the relevant term in the secular equation (4.1) is A0δ

2 = 0, which vanishes in x ∈ [0, 1] iff x = 0.
This indicates that the dimensionless surface wave speed xR approaches asymptotically to zero as
the impedance goes to ±∞. To determine the behavior around δ = 0, we can compute from (4.1)
the implicit derivative of the impedance-dependent speed xR for fixed material parameter γ. This
is given by

d xR
dδ

=
−B0 − 2δA0

f ′(xR, γ, δ)
. (5.1)

Recall that f ′ is positive along x ∈ (0, 1) for all δ ∈ R, γ ∈ (0, 11/12). Thus, the sign of d xR
dδ

depends upon the numerator in (5.1). Since B0 < 0 and A0 > 0 for all x, γ ∈ (0, 1), it is easy

to verify the positiveness of d xR
dδ along δ ∈ (−∞, 0), including δ = 0. That is, δ → xR(δ) is an

increasing function along (−∞, 0) and locally around a vicinity of δ = 0. Given the vanishing
behavior at infinity, xR attains at least a maximum for some positive value of the impedance.

Now, we proceed as in [7] and illustrate the behavior stated above for three elastic materials,
namely Gold (metal), Diabase (volcanic rock) and a polymer foam structure (auxetic material). A
detailed description of these materials and their characteristics can be found in the handbook by
Stacey and Page [25] (for Gold and Diabase) and in [9] (for the foam structure). The role of the
elastic properties of a particular material in the secular equation is given through the dimensionless
parameter γ, which depends on the Lame’s constants. However, for the sake of simplicity, we find

9
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Figure 1. Plot of the dimensionless surface wave speed xR vs the dimensionless
impedance δ, for the three elastic material under consideration. Table 1 shows the
relevant elastic properties of each material. (Color online.)

γ in terms of the Young’s modulus E and the Poisson’s ratio ν through the usual relations (see [1])

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
.

Straightforward calculations gives

γ =
1− 2ν

2(1− ν)
.

Thus, in order to illustrate the relation of the surface wave speed xR and the impedance δ for each
considered material, we just need to fix the Poisson’s ratio ν. Table 1 shows this elastic property for
each considered material. To present the results, consider an impedance δ varying from a minimum
value δmin = −10 to a maximum value δmax = 10. The dimensionless speed xR is calculated by
solving iteratively the secular equation (4.1), using for this the Newton-Raphson algorithm with a
starting point for the iterations located at the region 0 < x < 1. The results are presented in Fig.
1. In general, the behavior can be stated as: The surface wave velocity xR decreases to zero as the
impedance goes to ±∞ and attains a maximum value at some positive impedance value δ = δ0 > 0.

6. Discussion

In this work we investigated the existence of surface waves in an isotropic elastic half-space
endowed with a uniparametric family of impedance boundary conditions with both non-zero tan-
gential and normal impedance. The existence and uniqueness of the surface wave for each value of

10



the impedance parameter was demonstrated by means of the mathematical analysis of the secular
equation. This has the form of the stress-free secular equation plus two additional terms regarding
the impedance. The speed of the surface wave decreases asymptotically to zero for large nega-
tive and positive values of the impedance, with a maximum value for some positive value of the
impedance. The theoretical findings are verified by presenting numerical results for three elastic
media.
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