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The question of whether or not passive sub-wavelength cavities can alter the properties of quan-
tum materials is currently attracting a great deal of attention. In this Letter we show that the
Fermi liquid parameters of a two-dimensional metal are modified by cavity polariton modes, and
that these changes can be monitored by measuring a paradigmatic magneto-transport phenomenon,
Shubnikov–de Haas oscillations in a weak perpendicular magnetic field. This effect is intrinsic, and
totally unrelated to disorder. As an illustrative example, we carry out explicit calculations of the
Fermi liquid parameters of graphene in a planar van der Waals cavity formed by natural hyperbolic
crystals and metal gates.

Introduction. Magnetic oscillation phenomena [1, 2]
like the de Haas–van Alphen effect, oscillations of the
magnetization of a metal, are a powerful probe of the
physics of itinerant electron systems. The frequencies
of de Haas–van Alphen oscillations, for example, are
an historically important probe of the Fermi surfaces of
metals [1]. In metallic two-dimensional electron systems
(2DESs) strong magnetic oscillations appear in the longi-
tudinal resistivity ρxx [3] (Shubnikov–de Haas (SdH) os-
cillations) at magnetic fields weaker than those at which
the quantum Hall effect occurs. Importantly, these can
be used to access the Landau Fermi liquid parameters [4–
7] of 2DESs such as the quasiparticle effective mass m∗

(or, equivalently, quasiparticle velocity v∗F) and the in-
teraction enhanced g-factor g∗. Measurements in ultra-
clean systems, including 2DESs confined to silicon inver-
sion layers [8–10], AlAs/AlGaAs quantum wells [11–14],
GaAs/AlGaAs quantum wells [15–17], LaAlO3/SrTiO3

interfaces [18, 19], SiGe/Si/SiGe quantum wells [20], and
atomically-thin materials [21–25], report large deviations
of m∗ and g∗ from the non-interacting values me and g.

The aim of this Letter is to investigate whether SdH
oscillations are affected by the fluctuations of an elec-
tromagnetic field confined to a small volume of space by
a sub-wavelength [26–28] optical cavity. The possibility
of tailoring the ground state and transport properties of
an electron system solely by altering the fluctuations of
a passive cavity (i.e. a cavity in the absence of optical
pumping) is clearly potentially exciting and has recently
captured a great deal of attention [29–33].

In 2DESs, transport is a particularly convenient probe
to monitor passive cavity tuning of many-electron prop-
erties. The pioneering theoretical work on cavity-induced
modifications of magneto-transport has been performed
by Ciuti and co-workers [34–36]. Recent experiments [37–
43] have shown that the magneto-transport properties of
a 2DES in a GaAs/AlGaAs quantum well can be mod-
ified by coupling the electronic degrees of freedom to
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FIG. 1. A side view of the planar sub-wavelength cavity an-
alyzed in this work. A 2D crystal which hosts a Fermi liq-
uid (thick line) of areal density n0 located at z = 0 is en-
capsulated between two hyperbolic dielectrics (light grey) de-
scribed by frequency-dependent uniaxial permittivity tensors
ϵ̂(ω) = diag(ϵx(ω), ϵx(ω), ϵz(ω)). The bottom (top) slab has
thickness d (d′). Metal gates (hatched grey) fill the two half-
spaces z > d′ and z < −d. We assume that the dielectrics are
identical.

sub-wavelegth cavities in the Terahertz (THz) spectral
range. In the case of split-ring THz resonators, for ex-
ample, Ref. [42] reports a suppression of the amplitude
of SdH traces, but no changes in the frequency BF, in
the passive regime [44].

Here we focus on the temperature (T ) dependence of
the SdH oscillations. According to the Lifshitz–Kosevich
(LK) formula [45–49], the oscillatory component of the
magneto-resistance is given by [50]

δρxx(B)

ρ0
= R(B, T ) cos

(
2π

(
BF

B
+

1

2
+ γ

))
, (1)

where ρ0 is the resistance at B = 0, BF = ϕ0n0/Nf is
the frequency of the oscillations in 1/B, ϕ0 = hc/e is
the magnetic flux quantum (c is the speed of light in
vacuum and e the elementary charge), n0 is the carrier
density, Nf is a degeneracy factor, and γ ∈ [0, 1) is a
Berry phase [51]. The amplitude R(B, T ) of the SdH
oscillations is proportional to (and fully controlled by)

ar
X

iv
:2

40
3.

20
06

7v
1 

 [
co

nd
-m

at
.s

tr
-e

l]
  2

9 
M

ar
 2

02
4



2

0.0 0.1 0.2 0.3 0.4

q (nm−1)

0

50

100

150

200

250

300
ω

(m
eV

)

10−10

10−8

10−6

10−4

10−2

100

102(a)

0.00 0.01 0.02 0.03 0.04

q (nm−1)

0

5

10

15

20

25

30

ω
(m

eV
)

10−10

10−8

10−6

10−4

10−2

100

102(b)

FIG. 2. (Color online) Dynamical structure factor S(q, ω)
(in units of kF/vF) as a function of the wave vector q and
frequency ω. Results for graphene encapsulated by hBN—
Panel (a)—and Bi2Se3—Panel (b). In both panels, n0 =
3 × 1012 cm−2 and d = d′ = 50nm (parameters described in
Fig. 1). The white solid line is the 2DES plasmon frequency
calculated by artificially substituting F (q, 0) for F (q, ω) in
Eq. 5, thereby neglecting cavity dynamics. Notice that the
plasmon dispersion is linear at small q because of the pres-
ence of metal gates (see Fig. 1).

the dimensionless quantity

A(B, T ) =
2π2kBT/ℏωc

sinh(2π2kBT/ℏωc)
e−π/ωcτ . (2)

Here, τ is the momentum relaxation time, mc the cy-
clotron mass, and ωc ≡ eB/mcc is the cyclotron fre-
quency. The LK formula is derived under the assump-
tions of weak fields, i.e. ℏωc ≪ µ, where µ is the chem-
ical potential. The τ -dependent Dingle factor [1] cap-
tures the reduction of the amplitude of the SdH oscil-
lations due to electron-impurity scattering. Note that
inelastic processes (such as electron-electron collisions)
affect only R(B, T ) and not the SdH oscillation frequency

Σλ(k, iωn) =

q, iΩm

k − q, iωn − iΩm

W
=

V
+

χ0

V W

FIG. 3. Feynman diagrams considered in this work. Top:
the irreducible self-energy Σλ(k, iωm) in the G0W approxi-
mation, Eq. (8). Bottom: the dynamically screened potential
W in the random-phase approximation, as in Eq. (9). Here,
V represents the Coulomb interaction dressed by the cavity
environment, and χ0 the polarization function of the 2DES.

BF [1]. Eq. (2) is routinely used to fit the measured T -
dependence of the amplitude of the SdH oscillations at a
fixed value of B to extract an experimental value of mc.
We now explain why and how SdH oscillations are

modified by a sub-wavelength cavity. According to the
LK formula (1), a passive cavity can act via both extrin-
sic and intrinsic microscopic mechanisms. The extrinsic
mechanism is active if the cavity environment alters the
momentum relaxation time τ with respect to the case
where no cavity is present, and is clearly irrelevant in
clean 2DES (i.e. for ωcτ ≫ 1). The intrinsic mecha-
nism, which is the focus of this Letter, is a cavity-induced
change in the interaction-induced modification of the cy-
clotron mass mc, which we evaluate as mc = ℏkF/v∗F,
where kF is the Fermi wave number and v∗F is the quasi-
particle velocity [7]. We show by explicit calculation that
a sub-wavelength cavity—such as the van der Waals cav-
ity like in Fig. 1—changes mc and all Landau parame-
ters of the normal Fermi liquid relative to their values
in vacuum. The reason is as follows: in the absence of
the cavity, the spectrum or dynamical structure factor
S(q, ω) of a clean 2DES displays a sharp plasmon mode,
which carries a large fraction of the total f-sum rule spec-
tral weight [5–7], and a continuum of particle-hole excita-
tions. When coupling between the 2DES and the cavity
is allowed, spectral weight flows from the electronic de-
grees of freedom to the polariton modes of the cavity,
Fig. 2. This leads ultimately to changes in the Landau
parameters of the 2DES.
Below, we first introduce a general theoretical frame-

work, summarized in Fig. 3, that captures this physics
and then present detailed calculations for the case of
graphene embedded in the van der Waals cavity sketched
in Fig. 1 containing metal gates and natural hyper-
bolic crystals [52–55], such as hexagonal Boron Nitride
(hBN) [56–59] and Bi2S3 [60, 61]. A specific illustration
of the above mentioned spectral weight transfer is illus-
trated in Fig. 2, where we plot S(q, ω) [5–7] for graphene
in the cavity shown in Fig. 1.
Polariton-mediated effective electron-electron interac-

tions. We consider an interacting many-electron system



3

embedded in a passive cavity, containing (hyperbolic)
dielectric media and metal gates. Because condensed
matter is only weakly relativistic, the coupling between
matter and electromagnetic degrees of freedom can be
separated [62] into non-radiative and radiative contri-
butions. Non-radiative photons mediate density-density
electron-electron interactions, while radiative ones me-
diate current-current interactions [63] that are weaker
by (vF/c)

2, where vF is the bare Fermi velocity. For
DC transport properties, the effects of photon-mediated
density-density interactions is dominant with respect to
the one of current-current interactions. (Current-current
interactions can yield large modifications of response
functions at finite frequency [64, 65], but have negli-
gible effects on static properties. In the static limit,
current-current interactions reduce to classical magneto-
statics [66–69].)

After integrating out cavity degrees of freedom, the
effective density-density interaction between electrons
in a sub-wavelength cavity is given by V (r, r′, ω) =
e2g(s)(r, r′, ω), where g(s)(r, r′, ω) [63, 70] is the scalar
Green’s function for the frequency-dependent Poisson
equation [2]:

−∂α[ϵαβ(r, ω)∂βϕ(r, ω)] = 4πρext(r, ω). (3)

Here, ϕ(r, ω) is the electrical potential, ρext(r, ω) is the
external charge density, and ϵαβ(r, ω) is the frequency-
dependent complex permittivity tensor of the dielectric
environment, which is assumed to be local in space [71].
Losses enter the problem via the imaginary part of the
permittivity tensor. Metal gates can be included by im-
posing [72] that, at metal-dielectric interfaces, the tan-
gential component of the electric field vanishes and the
normal component of the displacement field is 4πσ, where
σ is the surface charge density. Eq. (3) can be rigorously
derived [63] in the generalized Coulomb gauge [73].

V (r, r′, ω) describes the interaction between two
charges at positions r and r′. In free space, it reduces
to the ordinary, instantaneous Coulomb interaction [72],
i.e. v(|r − r′|) = e2/|r − r′|. In a sub-wavelength cav-
ity, however, it can be vastly different from v(|r − r′|).
In particular, phonon polaritons in the metallo-dielectric
cavity environment yield a retarded frequency-dependent
interaction. In the ω = 0 limit, V (r, r′, 0) physically de-
scribes static screening due to polarization charges in the
metallo-dielectric environment. At finite ω, V (r, r′, ω)
encodes the polariton modes of the latter (including
losses), which appear as poles of V (r, r′, z) viewed as
a function of the complex frequency z.
Given V (r, r′, ω), one can understand how the proper-

ties of the interacting many-electron system change due
to the presence of the passive cavity by simply replac-
ing the bare Coulomb interaction v(|r − r′|) with the
retarded interaction V (r, r′, ω) in the framework of di-
agrammatic many-body perturbation theory [6, 7, 74].
This leads to generalized Hedin equations, from which

one can calculate, for example, the one-body electron
Green’s function G(r, r′, ω), the irreducible self-energy
Σ(r, r′, ω) [6, 7, 74], and the density-density response
function χnn(r, r

′, ω) [6, 7]. Poles in the latter quan-
tity occur at the collective excitation energies of the
2DES/cavity hybrid system.

Illustrative example: a planar vdW cavity. In order to
illustrate the power of the approach we just described—
while keeping the treatment of the cavity at a fully an-
alytical level—we focus in what follows on a planar sub-
wavelength cavity based on a vdW heterostructure [75],
which is sketched in Fig. 1. The active material, where
one measures magneto-transport, is a 2D crystalline ma-
terial located at z = 0. This is encapsulated between
two homogeneous and uniaxial dielectric slabs of differ-
ent thicknesses, the slab on top (bottom) having thick-
ness d′ (d). The electrical permittivity tensor of these di-
electrics is ϵ̂(ω) = diag(ϵx(ω), ϵx(ω), ϵz(ω)). Note, finally,
the presence of top and bottom metal gates. Without
uniaxial dielectrics we would be dealing with an ordinary
Fabry-Pérot cavity [63].

Setups like the one in Fig. 1 are routinely fabricated
in laboratories throughout the world. The most studied
case [75] is the one in which the 2D material is single-
layer or Bernal-stacked bilayer graphene and the dielec-
tric material is hBN [56–59]. Infinite possibilities are
clearly possible: many other 2D conducting materials
can be chosen (including twisted 2D materials) as well as
low-loss dielectrics. For illustration purposes, below we
will focus on single-layer graphene (SLG) encapsulated
between two natural hyperbolic dielectrics [52–55].

In order to find V (r, r′, ω) analytically, we follow an
approach first proposed by Keldysh [76] and recently
used in Ref. [77] in the context of vdW heterostruc-
tures. Since the setup in Fig. 1 is translationally in-
variant in the x̂–ŷ plane, the scalar Green’s function
g(s)(z, z′, |r∥ − r′∥|, ω) depends only on |r∥ − r′∥|. Here,

r∥ and r′∥ denote 2D positions in the x̂–ŷ plane. The

effective electron-electron interaction (EEEI) that is rel-
evant for the many-body physics of the 2DES located at
z = 0 is V (0, 0, |r∥ − r′∥|, ω) = e2g(s)(0, 0, |r∥ − r′∥|, ω).
We therefore introduce its 2D Fourier transform [7] with
respect to r = |r∥ − r′∥|:

V (q, ω) ≡ 2πe2
∫ +∞

0

rg(s)(0, 0, r, ω)J0(qr) dr, (4)

where J0(x) is a Bessel function of the first kind. Once
again, the frequency dependence of V (q, ω) encodes
all the information about polaritons while its ω → 0
limit [63] encodes the physics of static screening due to
the presence of metal gates and polarization charges.

The polariton-mediated propagator of the planar vdW
cavity sketched in Fig. 1 is given by the following ex-
pression: V (q, ω) = vqF (q, ω), where vq ≡ 2πe2/q is the
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non-retarded 2D Coulomb propagator [7] and

F (q, ω) ≡
2 sinh

[
q
√

ϵx(ω)
ϵz(ω)d

]
sinh

[
q
√

ϵx(ω)
ϵz(ω)d

′
]

ϵz(ω)
√

ϵx(ω)
ϵz(ω) sinh

[
q
√

ϵx(ω)
ϵz(ω) (d+ d′)

] (5)

is a form factor [77–81] entirely due to the presence of
the dielectrics. Optical phonons in the latter are re-
sponsible for the frequency dependence of F (q, ω). The
components of the uniaxial dielectric tensor are usually
parametrized via a Lorentz oscillator model. In the case
of a single mode, one has

ϵℓ(ω) = ϵℓ(∞) +
ϵℓ(0)− ϵℓ(∞)

1− (ω/ωT
ℓ )

2 − iγℓω/(ωT
ℓ )

2
, (6)

with ℓ = x or z. Here, ϵℓ(0) and ϵℓ(∞) are the static and
high-frequency dielectric constants, respectively, while
ωT
ℓ is the transverse optical phonon frequency in the di-

rection ℓ. The longitudinal optical phonon frequency
ωL
ℓ satisfies the Lyddane–Sachs–Teller relation ωL

ℓ =

ωT
ℓ

√
ϵℓ(0)/ϵℓ(∞). The quantity γℓ parametrizes losses.

Eq. (6) describes hBN accurately and realistic values of
the parameters can be found e.g. in Ref. [78]. Multi-
mode parametrizations of ϵℓ(ω) for Bi2S3 can be found
in Ref. [60].

An inspection of Eq. (6) in the limit γℓ → 0 shows
that a dielectric described by this frequency-dependent
permittivity tensor is hyperbolic: in the lower (up-
per) reststrahlen band, which is defined by the inequal-
ity ωT

z < ω < ωL
z (ωT

x < ω < ωL
x ), the quantity

ϵx(ω)/ϵz(ω) takes negative values. Inside the reststrahlen
bands, the dressed propagator V (q, ω) therefore displays
poles, which physically correspond to standing hyper-
bolic phonon polaritons (SHPPs). In the case of negligi-
ble losses (i.e. for γℓ = 0), they can be found by looking
at the zeroes of the denominator in Eq. (5):

qn(ω) = n
π

(d+ d′)
√

|ϵx(ω)/ϵz(ω)|
, (7)

with n = 1, 2, . . . [82]. Note that the polariton wave-
length λp = π/qn(ω) ≪ λ0, where λ0 = π(c/ω) is
the free-space wavelength. This is a distinctive feature
of sub-wavelength cavities. We now proceed to quan-
tify how the Landau parameters of single-layer graphene
(SLG) are modified by these modes.

Fermi liquid theory in a graphene cQED setup. The
Landau parameters of a normal Fermi liquid are con-
trolled by the one-body electron Green’s function [6, 7,
74]. In a (massless Dirac fermion) continuum-model of
SLG [83], the physical (i.e. retarded) electron Green’s
function Gret

λ (k, ω) is a function of a conserved wave vec-
tor k and depends on a band index λ = ±. It satis-
fies the Dyson equation (setting ℏ = 1), Gret

λ (k, ω) =
[ω−ξk,λ−Σret

λ (k, ω)]−1, where ξk,λ = λvFk−µ are single-
particle band energies measured from the chemical po-
tential µ and Σret

λ (k, ω) is the retarded self-energy [6, 7].

The latter quantity needs to be approximated. In a nor-
mal Fermi liquid, a good approximation is the so-called
G0W approximation [6, 7, 74, 84–86] in which the elec-
tron self-energy is expanded to first order in the dynami-
cally screened Coulomb interaction W (q, iΩ). The latter
is approximated at the level of the random phase ap-
proximation (RPA) [6, 7]. The corresponding Feynman
diagrams are displayed in Fig. 3. (The same approxima-
tion can be used when translational invariance is not at
play [74] and G, Σ, and W depend on r, r′, and ω.)
In the case of SLG, the continuum-model G0W self-

energy [87, 88]

Σλ(k, iωn) = −kBT
∑
λ′

∫
d2q

(2π)2

+∞∑
m=−∞

W (q, iΩm)

× Fλλ′(θk,k−q)G
(0)
λ′ (k − q, iωn − iΩm), (8)

where ωn = (2n + 1)πkBT is a fermionic Matsubara
frequency, the sum runs over all the bosonic Matsub-
ara frequencies Ωm = 2mπkBT , Fλλ′(θk,k−q) = [1 +
λλ′ cos (θk,k−q)]/2 is the SLG chirality factor, θk,k−q is

the angle between k and k − q, G
(0)
λ (k, iωn) = 1/(iωn −

ξk,λ) is the non-interacting temperature Green’s func-
tion, and

W (q, iΩ) =
V (q, iΩ)

1− V (q, iΩ)χ0(q, iΩ)
(9)

is the dynamically screened interaction on the imagi-
nary frequency axis. Here, χ0(q, iΩ) is the SLG non-
interacting density-density response function, evaluated
on the imaginary-frequency axis [89].
We emphasize that the G0W theoretical framework

presented in Eqs. (8, 9) is valid also in the presence of
losses in the cavity. In this case, however, care needs to
be exercised in defining the quantities that enter Eq. (9).
Indeed, any thermal Green’s function O(iΩ) satisfies [2]

O(iΩ) =

{
Oret(iΩ), for Ω > 0,

Oadv(iΩ), for Ω < 0,
(10)

where Oret(ω) and Oadv(ω) are the corresponding re-
tarded and advanced Green’s functions, respectively.
Note that, Oadv(z) = [Oret(z∗)]∗.
We also introduce the retarded density-density re-

sponse function in the RPA approximation

χnn(q, ω) =
χ0(q, ω)

1− V (q, ω)χ0(q, ω)
, (11)

where χ0(q, ω) is the non-interacting (retarded) po-
larization function on the real-frequency axis [90–92]
and the polariton-mediated EEEI V (q, ω) has been
introduced above. The dynamical structure factor
S(q, ω) plotted in Fig. 2 is related to χnn(q, ω) by
the fluctuation-dissipation theorem [5–7], i.e. S(q, ω) =
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FIG. 4. Plot of the quasiparticle Fermi velocity v∗F/vF defined
in Eqs. (14, 17a, 17b, 17c) as a function of the electron density
n0 for (a) hBN and (b) Bi2Se3. In both cases, d′ = d and the
values of d have been indicated in the legend.

−(ℏ/π)Θ(ω) Imχnn(q, ω), where Θ(ω) is the Heaviside
step function.

Note that we can express W (q, iΩ) in Eq. (9) as:

W (q, iΩ) = V (q, iΩ) + V 2(q, iΩ)χnn(q, iΩ). (12)

The first term in the previous equation is responsible for
the exchange interaction between a quasiparticle at the
Fermi energy and the occupied Fermi sea. The second
term, instead, represents the interaction with particle-
hole and collective virtual fluctuations. Both terms are
dressed by SHPPs.

Landau Fermi liquid parameters are controlled by the
physical (i.e. retarded) self-energy Σret

+ (k, ω), which can
be obtained from the analytical continuation iωn →
ω+ i0+ from imaginary to real frequencies. For definite-
ness, we consider the case of electron-doped SLG with
positive chemical potential µ (results for µ < 0 are iden-
tical because of particle-hole symmetry). The quasipar-

ticle weight factor Z and the renormalized Fermi veloc-
ity v∗F (in units of the bare value vF) can be expressed
in terms of the wave-vector and frequency derivatives
of the retarted self-energy Σret

+ (k, ω) evaluated at the
Fermi surface (k = kF) and at the quasiparticle pole
ω = ξ+(k) [6, 7]:

Z =
1

1− ∂ω ReΣret
+ (k, ω)

∣∣
k=kF,ω=0

, (13)

v∗F
vF

=
1 + (vF)

−1 ∂k ReΣ
ret
+ (k, ω)

∣∣
k=kF,ω=0

1− ∂ω ReΣret
+ (k, ω)

∣∣
k=kF,ω=0

. (14)

Following some standard manipulations [7, 84], the re-
tarded self-energy can be expressed in a form conve-
nient for numerical evaluation, as the sum Σret

λ (k, ω) =
Σres

λ (k, ω) + Σline
λ (k, ω) of a contribution from the inter-

action of quasiparticles at the Fermi energy, the residue
contribution Σres

λ (k, ω), and a contribution from interac-
tions with quasiparticles far from the Fermi energy and
via both exchange and virtual fluctuations, the line con-
tribution Σline

λ (k, ω). In the zero-temperature limit

Σres
λ (k, ω) =

∑
λ′=±

∫
d2q

(2π)2
W (q, ω − ξλ′(k − q))

× Fλλ′(θk,k−q)

× [Θ(ξλ′(k − q))−Θ(ξλ′(k − q)− ω)] (15)

and

Σline
λ (k, ω) = −

∑
λ′=±

∫
d2q

(2π)2
Fλλ′(θk,k−q)

×
∫ +∞

−∞

dΩ

2π

W (q, iΩ)

ω − iΩ− ξλ′(k − q)
. (16)

In what follows we will calculate the following three quan-
tities:

v∗F
vF

∣∣∣∣
free space

≡ v∗F
vF

∣∣∣∣
F (q,ω)→1

, (17a)

v∗F
vF

∣∣∣∣
non-hyperbolic

≡ v∗F
vF

∣∣∣∣
F (q,ω)→F (q,0)

, (17b)

v∗F
vF

∣∣∣∣
hyperbolic

≡ v∗F
vF

∣∣∣∣
F (q,ω)

. (17c)

The quantity in Eq. (17a) physically represents the
quasiparticle Fermi velocity (measured in units of the
bare Fermi velocity vF) in graphene, in the total ab-
sence of screening stemming from nearby dielectrics and
metal gates. It is mathematically calculated by forc-
ing the full dynamical propagator V (q, ω) to coincide
with the instantaneous Coulomb free-space propagator,
i.e. V (q, ω) → vq. The quantity v∗F|free space is clearly
measurable [23].
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FIG. 5. (Color online) Cavity QED effect on the quasipar-
ticle Fermi velocity v∗F. Color plots of ∆QED—as defined in
Eq. (18)—as a function of the electron density n0 and dielec-
tric thickness d = d′. Panel (a): the case of hBN. Panel (b):
the case of Bi2Se3.

The quantity in Eq. (17b) physically represents the
quasiparticle Fermi velocity (in units of vF) in a graphene
sheet embedded in the cavity sketched in Fig. 1. How-
ever, it is calculated by forcing V (q, ω) to attain its static
value, i.e. V (q, ω) → V (q, 0) = vqF (q, 0). The quantity
in Eq. (17b) therefore includes static screening from the
dielectrics and top/bottom metal gates. Notice that: i) in
the V (q, ω) → V (q, 0) limit, top and bottom dielectrics
are not hyperbolic and ii) v∗F|non-hyperbolic is not mea-
surable but it is an important theoretical construct, as
emphasized below.

Finally, the quantity in Eq. (17c) is the quasiparticle
Fermi velocity (in units of vF) in a graphene sheet embed-
ded in the cavity sketched in Fig. 1 and calculated with
the full retarded propagator V (q, ω). This last quantity
includes the role of SHPPs.

Numerical results and discussion. We now present
our main numerical results. In Fig. 4 we show the depen-
dence of the quasiparticle Fermi velocity v∗F (in units of
vF = 106 m/s) on carrier density n0, for d = d′ = 50 nm.
Panel (a) in this figure refers to SLG encapsulated in
hBN. In this case and at high electron densities, the
value of v∗F calculated with the retarded EEEI V (q, ω)
differs little from the result v∗F|free space obtained with the
instantaneous Coulomb interaction vq. At low electron
densities, however, we notice two things: i) v∗F|hyperbolic >
v∗F|free space, which is surprising since one would expect
the opposite inequality, due to the role played by screen-
ing from metal gates and polarization charges in hBN
and ii) the density dependence of v∗F|hyperbolic is different
from that of v∗F|free space. While the latter grows loga-
rithmically near the charge neutrality point [23, 83], the
former saturates to a constant value. This is a quali-
tative effect, which may be verified experimentally. In
Fig. 4 we also present results for the asymptotic regime
d = d′ → ∞ (distance between the metal gates is sent
to infinity). The fact that the effect of SHPPs persists
also in this limit is peculiar to the case of density-density
interactions. In the case of current-current interactions
mediated by radiative photons [93], fingerprints of SH-
PPs disappear in the limit d = d′ → ∞ (see Fig. 3 of
Ref. [93]).
An important figure of merit to quantify the role of

virtual polaritonic excitations (i.e. the role of genuine
QED effects) on the quasiparticle Fermi velocity is the
following:

∆QED =
v∗F|hyperbolic − v∗F|non-hyperbolic

v∗F|non-hyperbolic
. (18)

The larger ∆QED the larger the role of virtual SHPPs.
The smaller ∆QED the larger is the (trivial) role of static
screening from polarization charges in the dielectric and
metal gates. In other words, large values of ∆QED certify
that changes in the quasiparticle Fermi velocity in a given
cavity are not a trivial consequence of static screening.
The quantity ∆QED is plotted in Fig. 5(a) for the case

of SLG encapsulated in hBN. We clearly see that ∆QED

is small, on the order of 1.5% at best, and weakly depen-
dent on n0 and dielectric thickness d. We believe that the
reason is that hBN reststrahlen bands occur at very high
energies, the lower one starting at ω = ωT

z ≃ 97 meV.
On the contrary, the SLG plasmon carries a large spec-
tral weight (in fact, the total spectral weight) at small
values of q and ω > vFq. This “mismatch” in the (q, ω)
plane between the SLG plasmon and the hBN (lower)
reststrahlen band suppresses spectral flow from the mat-
ter degrees of freedom to the phonon polariton ones.
To show that this is indeed the case, we have also

calculated the quasiparticle Fermi velocity v∗F for SLG
encapsulated in Bi2Se3. Results for this case are re-
ported in Fig. 4(b). We immediately see that the cav-
ity plays a much stronger role, both at the static and



7

polaritonic levels. The fact that v∗F|non-hyperbolic is much
smaller than v∗F|free space stems from the fact that Bi2Se3
has a much smaller band gap than hBN, and therefore
much larger values of the static in-plane and out-of-plane
permittivities. The fact that v∗F|hyperbolic is larger than
v∗F|non-hyperbolic is due to the fact that Bi2Se3 has rest-
strahlen bands at much lower energies, the lower one oc-
curring at energies on the order of 8 meV. Fig. 5 shows
the quantity ∆QED as a function of system parameters.
Without fine tuning, the QED effect on the quasiparticle
Fermi velocity is much larger in this cavity rather than
in the case of hBN.

A systematic quest of hyperbolic dielectrics with rest-
strahlen bands at ultra-low energies in order to maximize
∆QED is beyond the scope of the present Letter. Nev-
ertheless, our work shows that measurable QED effects
emerge in DC magneto-transport in planar van der Waals
cavities. We expect that these effects can be greatly en-
hanced in cavities where SHPPs and matter degrees of
freedom are subject to lateral (and not only vertical) con-
finement, as in the case of Ref. [94]. From a theoretical
point of view, it will be very interesting to extend the the-
ory presented in this work to (a) real and moiré crystals
and (b) strongly correlated materials [95].
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S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W.
Wegscheider, M. Beck, and J. Faist, Ultrastrong coupling
of the cyclotron transition of a 2D electron gas to a THz
metamaterial, Science 335, 1323 (2012).

[38] V. M. Muravev, P. A. Gusikhin, I. V. Andreev, and I. V.
Kukushkin, Ultrastrong coupling of high-frequency two-
dimensional cyclotron plasma mode with a cavity photon,
Phys. Rev. B 87, 045307 (2013).

[39] C. Maissen, G. Scalari, F. Valmorra, M. Beck, J. Faist,
S. Cibella, R. Leoni, C. Reichl, C. Charpentier, and W.
Wegscheider, Ultrastrong coupling in the near field of

complementary split-ring resonators, Phys. Rev. B 90,
205309 (2014).

[40] S. Smolka, W. Wuester, F. Haupt, S. Faelt, W. Wegschei-
der, and A. Imamoglu, Cavity quantum electrodynamics
with many-body states of a two-dimensional electron gas,
Science 346, 332 (2014).

[41] J. Keller, G. Scalari, S. Cibella, C. Maissen, F. Ap-
pugliese, E. Giovine, R. Leoni, M. Beck, and J.
Faist, Few-electron ultrastrong light-matter coupling at
300 GHz with nanogap hybrid LC microcavities, Nano
Lett. 17, 7410 (2017).

[42] G. L. Paravicini-Bagliani, F. Appugliese, E. Richter, F.
Valmorra, J. Keller, M. Beck, N. Bartolo, C. Rössler,
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[49] C. Küppersbusch and L. Fritz, Modifications of the
Lifshitz-Kosevich formula in two-dimensional Dirac sys-
tems, Phys. Rev. B 96, 205410 (2017).

[50] In writing Eq. (1), we have limited ourselves to the lowest
harmonic.

[51] G. P. Mikitik and Yu. V. Sharlai, Manifestation of Berry’s
phase in metal physics, Phys. Rev. Lett. 82, 2147 (1999).

[52] J. Sun, N. M. Litchinitser, and J. Zhou, Indefinite by
nature: From ultraviolet to terahertz, ACS Photon. 1,
293 (2014).

[53] D. N. Basov, M. M. Fogler, and F. J. G. de Abajo, Po-
laritons in van der Waals materials, Science 354, aag1992
(2016).

[54] T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X.
Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-
Moreno, and F. Koppens, Polaritons in layered two-
dimensional materials, Nat. Mater. 16, 182 (2017).

[55] Q. Zhang, G. Hu, W. Ma, P. Li, A. Krasnok, R. Hil-
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