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In this Letter, we report the onset of periodic oscillations of coherences in an interacting bosonic gas cou-
pled to a resonator after a quantum quench. This dynamics extends the collapse and revival features of atomic
correlations in optical lattices to a dissipative scenario and exhibits hallmarks of synchronization. The behavior
emerges from the interplay of the quantum dissipative nature of the cavity field and the presence of a (approxi-
mate) strong symmetry in the dissipative system, providing a general recipe to engineer intriguing quantum dy-
namics. Additionally, we show that the approximate symmetry can arise dynamically during self-organization
and can be employed to obtain long-lived coherences.

Open system control and measurement control have at-
tracted an enormous interest in the last decade for the engi-
neering of many body quantum systems [1–5]. Most propos-
als target the creation of interesting steady states, e.g. topolog-
ical states of fermionic matter [6], non-trivial transport proper-
ties [7], quantum phases stemming from long-range spin inter-
actions [8–12], or exhibiting dynamical synthetic gauge fields
[13–18]. Much less attention has been devoted to the design
of environments affecting the dynamical properties of a quan-
tum system. In Ref. [19] we pointed out that it is extremely
important for state engineering to consider the dynamics of
correlations. For example, even though the BCS supercon-
ducting state itself can be targeted as a steady state by dissi-
pation [20], the desired superconducting current-current cor-
relations are not present as long as the dissipative coupling is
applied [19].

In contrast, for isolated many body systems the dynami-
cal features were in the spotlight in the last years. In this
regard, an often employed scenario in ultracold atoms experi-
ments is the quantum quench [21–25], e.g. in the observation
of the collapse and revival of the matter wave field of a Bose-
Einstein condensate [26]. In this experiment, a quench of
the optical lattice potential was performed on a Bose-Einstein
condensate and despite the presence of an extremely strong
interactions a series of collapses and revivals of the coherence
has been observed. The origin of the persistent oscillations
of long-lived coherences could be associated with the inter-
action present between atoms and is therefore a many-body
dynamical effect. Another proposed scenario in which persis-
tent oscillations are present is due to a periodic Floquet driving
[27, 28]. In such a situation, the so-called time crystal behav-
ior has been observed [29–32], in which oscillations with a
frequency different from the driving frequency arise.

In this work, we present a general recipe on how the in-
terplay of dissipation and symmetries can be used in order to
engineer intriguing dynamical phenomena in open quantum
systems. We exemplify this by designing long lived synchro-
nized coherences with a spatial structure for a system of inter-
acting bosonic atoms coupled to an optical cavity. The real-
ization of the long lived coherences relies on an intricate in-
terplay between the dissipative state engineering and the pro-

tection of the dynamics by a strong symmetry, and it is related
to purely imaginary eigenvalues of the Liouvillian operator,
called rotating coherences [33]. The coupling between atoms
and cavity determines which atomic correlations exhibit long-
lived oscillations, and thus can become synchronized [34, 35],
and which instead are damped rapidly by the dissipative cou-
pling. In particular, for the chosen coupling, the coherences
between sites at even distances exhibit long-lived oscillatory
dynamics, while the coherences at odd distances are strongly
suppressed (as sketched in Fig. 1(a)). We show that the quan-
tum nature of the cavity field is essential in determining this
dynamics and that the self-organization of the approximate
symmetry can lead to a similar behavior.

One important element for understanding the dynamics of
a dissipative system is the spectrum of the Liouvillian. For
large dissipation rates Γ, the eigenvalues of the Liouvillian
are clustered in bands, with gaps between the real parts pro-
portional to Γ. An exemplary spectrum of the Bose-Hubbard
model coupled to a dissipative cavity is shown in Fig. 1(b), de-
termined using exact diagonalization (ED). Due to the direct
dissipative coupling to the photon losses, most eigenstates of
the Liouvillian have an eigenvalue whose real part is ∝ Γ,
e.g. in the subspaces marked with P1 and P2, signaling an
exponential decay of their contribution to the time evolution
of the density matrix. However, in many-body and hybrid sys-
tems, the situation can be much more complex and eigenstates
can exist with decay rates smaller than Γ, i.e. the states lying
in the lowest subspace P0. The dynamics which takes place
in P0 is protected from the fast decay, since a direct coupling
to dissipation is absent. Previous open system engineering [3]
used often the decoherence free subspace Λ0 (subspace of P0),
i.e. corresponding to vanishing real parts of the eigenvalues.

In the following, we show that in the considered sce-
nario exciting possibilities arise to engineer dynamical fea-
tures within the meta-stable subspace P0. By designing the
dissipative coupling, here via the coupling to a lossy cav-
ity, we can choose which dynamical features are rapidly sup-
pressed (e.g., in Fig. 1(b) correlations probing the excited sub-
spaces Λ1 within P0, or Pn>0) and which are protected up to
long times (with dynamics dominated by the lowest subspace
Λ0 within P0). For example, in Fig. 1(b)-(c), the expectation
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FIG. 1: (a) Sketch of ultracold atoms in an optical lattice poten-
tial. The operator Oe probes the coherence between sites at even
distance and Oo at odd distance. (b)-(d) Eigenvalues spectra of the
Liouvillian modeling the Bose-Hubbard model coupled to a dissipa-
tive cavity mode, Eqs. (1)-(2), obtained with ED for L = 4 sites,
N = 2 particles, ℏΩ

√
N/J = 1323, ℏδ/J = 5000, ℏΓ/J = 750,

U/J = 10. We show the lowest (b) 1000 (c) 50 (d) 34 eigenvalues,
where panels (c) and (d) are zoom ins of (b) and (c) at the right of
the vertical dashed gray lines (as depicted by the gray arrows). We
mark with Pn the subspaces containing n photonic excitations, with
Λ0 and Λ1 the states corresponding to the decoherence free subspace
and first excited subspace in the limit of vanishing J , respectively.
The operator Oe couples mainly to states in Λ0 and Oo to states in
Λ1. (e) The dependence on the on-site interaction U of the imag-
inary part of the lowest eigenvalue whose imaginary part is in the
range [0.75U, 1.25U ].

value of the operator Oo will experience fast oscillations and
a rapid decay to its steady state value, compared to Oe, as it
couples to an eigenstate with much larger magnitude of the
real and imaginary parts, while still within the space P0.

Combining the dissipative nature with (approximate) strong
symmetries gives another handle on the engineering of dy-
namical features. In the presence of a strong symmetry
[33, 36], for which the generator commutes with both the
Hamiltonian and the jump operators, the dynamics decouples
in distinct symmetry sectors, each with its own steady or ro-
tating states. In case one slightly breaks the strong symmetry
[37], this generally reduces the number of steady states and
gives rise to many slowly decaying states forming the sub-
space Λ0 within P0. The decay timescale of this symmetry
protected metastable states depends on the magnitude of the
symmetry breaking term and can potentially be much smaller
than the dissipative gaps of the Liouvillian in the presence
of the strong symmetry. For example, the states shown in
Fig. 1(e) would have zero real part in the limit J = 0, how-
ever, even at finite J their real parts are still much smaller than
the ones corresponding to the states in Λ1.

We consider a one-dimensional lattice of interacting ultra-
cold bosonic atoms inside a high finesse cavity. The dynamics
of the system is given by a Lindblad equation for the density
operator [38–42]

∂

∂t
ρ = Lρ = − i

ℏ
[H, ρ] +

Γ

2

(
2aρa† − a†aρ− ρa†a

)
. (1)

where a and a† are the annihilation and creation operators for
the photon mode and the dissipation of the photons due to the
imperfections of the mirror has strength Γ. The Hamiltonian
H contains the terms

Hint =
U

2

L∑
j=1

nj(nj − 1), Hkin = −J
L−1∑
j=1

(b†jbj+1 + H.c.),

Hc = ℏδa†a, Hac = −ℏΩ(a+ a†)

L∑
j=1

(−1)jnj . (2)

Hint is the repulsive on-site interaction term of strength U ,
and Hkin the kinetic tunneling processes of the atoms with
the amplitude J . The system is transversely pumped with a
standing-wave laser beam, with δ the detuning of the cavity
with respect to the pump beam. The period of the lattice is
chosen to be twice the period of the cavity mode, such that
the cavity mode effectively couples to the even odd density
imbalance of the atoms, ∆ =

∑
j(−1)jnj , with the effective

coupling strength Ω. Interacting bosonic models on a lattice
coupled to an optical cavity have been realized experimentally
in [43–45], while theoretical studies focused mostly on steady
state properties [37, 41, 42, 46–58].

We analyze the quench scenario in which initially the
atoms are in the Bose-Hubbard ground state and the atoms-
cavity coupling is suddenly turned on. We perform the ex-
act time evolution of the master equation Eq. (1)-(2) using a
recently developed method based on time-dependent matrix
product states (tMPS) techniques (see Supplemental [59] and
Ref. [60]). We further complement our understanding with an-
alytical results in the limit of vanishing hopping J [59, 60] and
ED for small systems. These approaches go beyond the often
employed mean-field treatment of the cavity-atoms coupling
[42]. In order to underline the effect of the cavity field, we
contrast our results for the exact time-evolution of the atom-
cavity system with the dynamics of a Bose-Hubbard model
in the presence of a classical light field, i.e. a superlattice po-
tential. The superlattice potential V (t) can be obtained as a
mean-field description of the coupled cavity-atoms dynamics,
Eqs. (1)-(2), when the cavity is assumed to be a classical co-
herent state. The Hamiltonian in this situation is given by
HMF = Hint +Hkin −V (t)∆. For V (t) we use a potential that
corresponds at a mean-field level to the exact cavity dynam-
ics (see Supplemental [59]), and we refer to it as the classical
field approach.

Results in the presence of the approximate strong symme-
try: We begin our analysis in the regime of vanishing atomic
tunneling J = 0, where analytical results can be obtained,
[59]. This is motivated by the fact that at J = 0 a strong
symmetry arises in the model, as the local densities are con-
served quantities, commuting with both the Hamiltonian and
the jump operator [33, 36]. These results provide crucial in-
formation to our understanding also at small finite J , where
the sectors of the symmetry are still a good approximate de-
scription. We show the ED spectra of L in Fig. 1(b)-(d) for a
small system. We note that the parameters used correspond to
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a regime similar to the experiment performed in [44].

One can attribute the subspaces Pn, Fig. 1(b), to excitations
on top of the photonic coherent state, for which the main con-
tribution to the real part is given by nℏΓ/2 and by ℏδ to the
imaginary part. The subspaces with n > 0 show a fast de-
cay and, thus, are important only for the short time dynamics.
Therefore, we focus the analysis on P0, and in particular on
the lowest two subspaces Λ1 and Λ0, Fig. 1(c). In these sub-
spaces the photon state is in a coherent state determined by the
atomic density distribution. Λ1 contains excited states captur-
ing the coherence between different atomic distribution char-
acterized by imbalances ∆ and ∆±2. These coherences decay
with a rate which depends, at large dissipation strength, in-
versely on Γ [59], as known from the Zeno effect. In contrast,
Λ0 is the decoherence free subspace, consisting of eigenstates
with vanishing real part, which are protected by the strong
symmetry for J = 0. As we detail in the Supplemental mate-
rial [59], there are several types of states in Λ0, steady states
of the form ρ0,st = |α(∆); {nj}⟩ ⟨α(∆); {nj}|, or traceless
coherences ρ0 = |α(∆); {nj}⟩

〈
α(∆); {n′j}

∣∣ between states
with different density distribution and the same odd-even im-
balance. In the case in which the latter describes a coherence
between states with different interaction energies, the corre-
sponding eigenvalue has a finite imaginary part (marked by
the orange line in Fig. 1(d)). Such states are called rotating
coherences and can lead to persistent synchronized oscilla-
tions in the long-time limit [33–35]. We checked the depen-
dence of the imaginary part on U for the ED results for small
J in Fig. 1(e), recovering the linear dependence expected for
J = 0.

We observe that a finite J , smaller than the J = 0 gap
between Λ1 and Λ0, induces a finite real part to all eigen-
values, except one, lying in Λ0 (see Fig. 1(d)). This marks
the transition from multiple steady states due the strong sym-
metry to a single steady state in absence of the symmetry.
The slight breaking of the symmetry creates a subspace of
long-lived metastable states only weakly coupled to dissipa-
tion, which dominate the long-time dynamics, as we see in
the time-evolution of the atomic correlations, Fig. 2(a)-(b)
(same parameters as in Fig. 1(b)-(e)). Here we depict the time-
evolution of the single particle correlations, Re

〈
b†4b4+d

〉
, ob-

tained with the tMPS based approach of simulating Eqs. (1)-
(2), for a larger system (see Supplemental [59]). For odd dis-
tances d the single particle correlations probe the evolution
of the states contained in Λ1, while for even distances d the
states in the subspace Λ0 are probed. We observe extremely
different timescales for odd and even correlations, which re-
produce very well the dynamics we aimed to engineer and
characterized in terms of the approximate strong symmetry.
At even distances the single particle correlations show oscil-
lations (Fig. 2(a)), whose frequencies are determined by the
value of U (red points and line in Fig. 2(e)). The oscillations
are only weakly damped on the timescale of atomic hopping
J . In contrast, for odd distances both the frequencies of the
oscillations and their exponential decay to a small value occur

(a) (b)

(d)

(f)

(c)

(e)

FIG. 2: Time evolution of the single particle correlations
Re

〈
b†4b4+d

〉
, for the (a)-(b) dissipative quantum description of

the cavity (Eqs. (1)-(2)) and (c)-(d) classical field approach, for
ℏΩ

√
N/J = 1323, ℏδ/J = 5000, ℏΓ/J = 750, U/J = 10,

N = 7, L = 14. The dashed black curve in (a) and (b) represents
an exponential fit of the decay of the maxima for Re

〈
b†4b5

〉
. The

dashed black curve in (c) and (d) represents the interpolated behavior
of the maxima of Re

〈
b†4b5

〉
for the classical field case. (e) Inverse

timescales for dissipative quantum dynamics, the points correspond
to data extracted from the tMPS evolution and lines to the J = 0
eigenvalues [59], with red | Imλ0| = U , brown |Reλ1| = 2ℏΩ2Γ

δ2+Γ2/4
,

and | Imλ1| = 4ℏΩ2δ
δ2+Γ2/4

(1−∆) in green (∆ = 7), purple (∆ = 5)
and orange (∆ = 3). (f) Inverse timescales for classical field dynam-
ics, extracted from the numerical simulations with circles and the late
time value of the potential V0 = V (t ≈ 5) and V0 ±U with squares.

on much faster timescales (Fig. 2(a)-(b)). We extract these
timescales and we see very good agreement with the analyti-
cally computed eigenvalues corresponding to Λ1 in Fig. 2(e)
(brown for the decay rate and green, purple and orange for the
frequencies of the oscillations). We note that at J = 0 the syn-
chronized oscillations are related to the fact that the operators
b†i bi+d, for d even, can be used to construct the eigenstates
with purely imaginary eigenvalues [34, 35, 59].

Furthermore, the importance of the dissipative quantum na-
ture of the cavity field is highlighted by the comparison with
the case of a classical field realizing a superlattice potential
HMF, (Fig. 2(a)-(b) in contrast to Fig. 2(c)-(d)). For the sin-
gle particle correlations at even distances the oscillation fre-
quency is the same for both the quantum and classical case,
given by U , but in the case of the classical potential the os-
cillations do not show an attenuation up to the times shown
(Fig. 2(c)). For odd distances the difference in behavior is
even more striking, for the classical field the frequencies of
the oscillations are given by the height of the potential and
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(a) (b)

FIG. 3: (a) Time evolution of the photon number (Eqs. (1)-(2)).
Dashed orange line corresponds to an exponential fit of the decay of
the short time oscillations, with a decay rate τ−1/J = 261 ± 12 ≈
ℏΓ/2J . (b) The frequency (magenta) and decay rate (gray) of the
short time oscillations of the photon number versus ℏΓ/J , the points
are extracted from the tMPS simulations and the lines are given by
|ReλP1 | = ℏΓ/2 and | ImλP1 | = ℏδ. Parameters used are L = 14,
N = 7, ℏδ/J = 5000, U/J = 10, (a) ℏΩ

√
N/J = 6614, ℏΓ/J =

500, (b) ℏΩ
√
N/J = 1323.

on-site interactions (as shown in Fig. 2(d)-(e)), and the oscil-
lations do not decay up to long times (dashed black line in
Fig. 2(c)). Thus, the suppression of the correlations at odd
distances is due to the open quantum nature of the cavity field
and cannot be explained at a mean-field level by a classical
superlattice potential.

Photon number dynamics: An interesting question is what
timescales are reflected in the relaxation behavior of the pho-
ton number. We observe in Fig. 3(a) that after an initial fast
increase the photon number exhibits damped oscillations and
afterwards maintains a fairly constant value. The frequency of
the oscillations is consistent with the value of the detuning δ
and the observed fast decay with the inverse timescale of Γ/2
(see Fig. 3(b) and [59]), corresponding to the subspace P1 in
Fig. 1(b). We note that the photon number has not reached the
steady state for the latest time shown in Fig. 3(a), the long time
dynamics corresponds to timescales set by the subspace Λ0.
Additional information can be obtained by investigating the
single quantum trajectories sampled in our numerical method.
The photon number indicates that the trajectories are projected
quickly to subspaces spanned by states with the same imbal-
ance ∆ (shown in the Supplemental [59]). These results can
be interpreted in connection with the phenomenon of dissipa-
tive freezing for the case of an approximate strong symmetry
[37, 61, 62].

Cavity-induced self-organized synchronization: Up to this
point we made the connection between the timescales ob-
served in the single particle correlations and the eigenvalues of
the Liouvillian for small J in the regime of large detuning and
dissipation. Next, we show that even in regimes initially far
from the strong symmetry, due to the self-organization of the
cavity-atom system, an approximate symmetry arises which
again protects synchronized long lived coherences. This can
be understood since up to zero order, the effect of the cav-
ity field is to create a deep superlattice for the atoms which
suppresses tunneling and restores effectively the symmetry.
In order to show this, we take the very challenging regime
in which all the parameters are comparable, e.g ℏΓ/J = 1,

(d)

(a)

(c)

(b)

FIG. 4: (a)-(b) Time evolution of the single particle correlations
Re

〈
b†4b4+d

〉
(a) for a strong coupling ℏΩ

√
N/J = 3.35, (b) for

weak ℏΩ
√
N/J = 1.72 and U/J = 2, L = 14, N = 7, ℏΓ/J = 1,

ℏδ/J = 2 (c)-(d) Frequencies extracted from the dynamics of single
particle correlations as a function of U and Ω. The lines at ω = U
(brown) and ω = V0 (dark red) represent the expectation for the
collapse and revival dynamics for a deep superlattice, where V0 =
V (t ≈ 75).

ℏδ/J = 2, U/J = 2. In this situation, it is much harder to
obtain analytical insights or track individual eigenvalues in the
ED spectrum, however the numerical tMPS methods allow for
simulations up to long times, Fig. 4.

The results show that at strong atoms-cavity coupling, deep
in the self-organized phase [55, 56], we observe very sim-
ilar synchronized oscillations in the single particle correla-
tions at even distances as before, surviving up to very long
times, Fig. 4(a). In contrast, for a coupling close to the self-
organization threshold the oscillations are absent, Fig. 4(b).
In order to verify that the synchronized oscillations occur-
ring in this regime are induced by coherences between states
with different interaction energies, we look at the scaling of
their frequency with U , Fig. 4(b). We obtain the expected
linear scaling with U as for the ED results in Fig. 1(e) in the
regime of small J . Furthermore, as we go deeper into the self-
organized phase by increasing ℏΩ

√
N/J , the higher value of

the two frequencies approaches the value of the interaction U ,
as shown in Fig. 4(d). This implies that the states with coher-
ences between configurations with the same imbalance, but
different interaction energies, are long lived metastable states
and produce the oscillations observed. For large Ω the atoms
feel a strong self-organized potential, which by suppressing
the atomic kinetic energy gives rise to an emergent approx-
imate strong symmetry, similar to the one we discussed for
small J . In contrast to the small J case, in this situation a
similar synchronized oscillatory behavior and dependence of
the frequencies is recovered from the simulations in a classical
potential (Fig. 4(a),(c),(d)) and the single particle correlations
at odd distances are not suppressed to such a small value as
before, Fig. 4(a). After an initial decay the correlations satu-
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rate to a finite value comparable to the value obtained in the
classical potential. However, in the classical potential the cor-
relations at odd distances exhibits the oscillations induced by
the height of the potential (upper part of Fig. 4(d)), not present
for the coupling to the cavity.

Conclusions: We investigated how the dynamical proper-
ties of interacting atoms confined to a one-dimensional chain
can be controlled by the coupling to the quantum field of a
dissipative optical cavity. We show that by engineering the
coupling to the cavity the dynamics of atomic correlations
strongly depends on the distance between the sites they probe.
In particular, for the single particle correlations at even dis-
tances we recover a dissipative analog of the collapse and re-
vival coherence behavior, exhibiting metastable synchroniza-
tion, i.e. an oscillatory evolution up to long times, with the
frequency set by the atomic interactions. In contrast, the co-
herences at odd distances are strongly suppressed on short
times, with the timescales set by the cavity parameters and
atoms-cavity coupling strength. Important insights are obtain
by considering the approximate strong symmetries of the open
coupled atoms-cavity system. The suppression of the odd cor-
relations stems from the fact that they probe subspaces of the
Liovillian with large decay rates, while the dynamics of even
correlations is contained close to the decoherence free sub-
space protected by the symmetry. This offers the opportunity
to induce non-trivial dynamical behavior in other many-body
dissipative quantum systems. We further show that the ap-
proximate symmetry can arise dynamically in self-organized
regime. Experimentally, the synchronized collapse and re-
vival dynamics of the coherences would be visible in the mo-
mentum distribution obtained in time-of-flight measurements
[26]. However, the momentum occupations have contribu-
tions from both the even and odd single particle correlations,
thus, to probe their very different time-evolution in-situ coher-
ence measurements would be needed.

Data availability: The supporting data for this article are
openly available at Zenodo [63].
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amarchi, S. Jäger, H. Ritsch, L. Tolle, and C. Waechtler for
fruitful discussions. We acknowledge support by the Swiss
National Science Foundation under Division II grants 200020-
188687 and 200020-219400 and by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) under
project number 277625399 - TRR 185 (B4), project number
277146847 - CRC 1238 (C05), project number 429529648
- CRC-TRR 306 ”QuCoLiMa”, and under Germany’s Ex-
cellence Strategy – Cluster of Excellence Matter and Light
for Quantum Computing (ML4Q) EXC 2004/1 – 390534769.
This research was supported in part by the National Science
Foundation under Grants No. NSF PHY-1748958 and PHY-
2309135.

[1] S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Büchler, and
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SUPPLEMENTAL MATERIAL

Time-dependent matrix product states method for open
cavity-atoms systems

The numerically exact results for the time evolution of
the Liouvillian, Eqs. (1)-(2) in the main text, describing an
one-dimensional Bose-Hubbard model coupled to the dissi-
pative cavity, are obtained with a recent implementation of
a matrix product states (MPS) method [55, 60, 64]. The
method has been developed to perform the time-evolution of
cavity-atoms coupled dissipative systems and the details re-
garding the implementation and benchmarks are presented in
Ref. [60]. This approach employs the stochastic unravelling
of the master equation with quantum trajectories [65–67] and
a variant of the quasi-exact time-dependent variational matrix
product state (tMPS) based on the Trotter-Suzuki decomposi-
tion of the time evolution propagator [68–70] and the dynam-
ical deformation of the MPS structure using swap gates [70–
72]. Our implementation makes use of the ITensor Library
[73].

The convergence of our results is sufficient for at least 500
quantum trajectories in the Monte Carlo sampling. The other
convergence parameters are chosen as described in the fol-
lowing: for the results presented in Fig. 2 and Fig. 3 of the
main text we use a maximal bond dimension of 100 states,
which ensured a truncation error of at most 10−7, the time-
step used was dtJ/ℏ = 10−5, and the adaptive cutoff of
the local Hilbert space of the photonic mode ranged between
Npho = 40 and Npho = 8; for the results presented in Fig. 4 of
the main text we use a maximal bond dimension of 300 states,
which ensured a truncation error of at most 10−7, the time-
step used was dtJ/ℏ = 0.0125, and adaptive cutoff of the
local Hilbert space of the photonic mode between Npho = 45
and Npho = 15.

Dynamics of the Bose-Hubbard in a classical cavity field
potential

In the main text we contrast the dynamics of single-particle
correlations of the Bose-Hubbard model coupled to the quan-
tum dissipative field of an optical cavity with results of a
closed system in which the interacting bosons are subject to
a superlattice staggered potential. In the latter case, the stag-
gered potential can be derived as a mean-field description of
the cavity-atoms coupling, approach in which the cavity field
is described by a classical coherent field [40, 41, 74]. Within
this approximation the atoms are described by the Hamilto-
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nian

HMF = Hint +Hkin +Hstag (B.1)

Hint =
U

2

L∑
j=1

nj(nj − 1),

Hkin = −J
L−1∑
j=1

(b†jbj+1 + b†j+1bj),

Hstag = −V (t)∆, ∆ =

L∑
j=1

(−1)jnj ,

where V (t) mimics the coupling to a classical cavity field de-
scribed by a time-dependent coherent state. For the purpose
of the comparison performed in the main text regarding the
behavior of the atomic correlations, we derive V (t) from ex-
act time-dependence of the photon number via the mean-field
relation

Vexact(t) =
2ℏδΩ√
δ2 + Γ2/4

√
⟨a†a⟩exact (t), (B.2)

where
〈
a†a

〉
exact (t) is given by the full model, Eqs. (1)-(2)

in the main text, for example shown in Fig. 3 of the main
text. This choice allows for a comparison between a quantum
dissipative and classical potentials, which contain the same
time-scales and average behavior, thus, pinpointing the role of
the nature of the dissipation and fluctuation effects stemming
from the cavity-atoms coupling.

As in the effective Hamiltonian given in Eq. (B.1) we im-
pose the sign of the classical potential coupled to the atomic
imbalance, we break the Z2 weak symmetry found in the full
Liouvillian (Eqs. (1)-(2) in the main text) associated to chang-
ing the sign of the cavity field. Thus, in order to be able to
compare the results between the exact evolution and the mean-
field approach we perform the time evolution with both signs
Hstag = ±V (t)∆ and average the results to describe a mix-
ture of states with the two possible signs of the imbalance and
recover the Z2 symmetry.

Symmetries and Liouvillian spectrum for vanishing hopping
J = 0

In the first part of the main text we consider parameter
regimes in which a separation of scales exists between the pa-
rameters describing the cavity field and the ones correspond-
ing to the atoms, ℏΓ, ℏΩ, ℏδ ≫ J . Thus, it is useful to get an
intuition regarding the spectrum of the Liouvillian in the limit
of vanishing hopping, J = 0,

L0(·) = − i

ℏ
[Hc +Hint +Hac, ·] +D(·). (C.1)

In this limit we can analytically compute the eigenstates and
eigenvalues of L0. We can observe that in L0 all atomic op-
erators are diagonal in the position basis due to a strong sym-
metry [33, 36]. For an open quantum system to have a strong

symmetry, the generators of the symmetry need to commute
with both the Hamiltonian and the jump operators, which in
our case are the local atomic density operators.

We can block diagonalize the Liouvillian into symme-
try sectors of the form |pho; {nj}⟩

〈
pho′, {n′j}

∣∣, where the
atomic states are fully characterized by the densities distribu-
tions {nj} and {n′j}, and the photonic states |pho⟩ and ⟨pho′|
need to be determined. Only for the case that {nj} and {n′j}
are identical, the sector contains a physical steady state, oth-
erwise the sector only consists of traceless states.

In the following, we discuss some eigenstates of L0 and
their corresponding right eigenvalues for J = 0 in more detail.
The steady states, which have an eigenvalue λ0,st = 0 are
given by

ρ0,st = |α(∆); {nj}⟩ ⟨α(∆); {nj}| , (C.2)

with the atomic part diagonal in the Fock space, with the lo-
cal densities {nj} parameterizing the symmetry sector. The
photons are in a coherent state which depends on the atomic
imbalance α(∆) = Ω

δ−iΓ/2∆, with ∆ =
∑

j(−1)jnj . One
can find excited eigenstates in these sectors by creating pho-
ton excitations on top of the coherent state, for example in the
subspace of single photon excitations P1, we have

ρP1 =
[
a† − α(∆)∗

]
|α(∆); {nj}⟩ ⟨α(∆); {nj}| , (C.3)

with

λP1 = −ℏΓ
2

− iℏδ. (C.4)

One can show that ρP1
is an eigenstate by performing a dis-

placement of the photonic operators with the value α(∆). Fur-
thermore, a harmonic oscillator ladder is obtained with the
creation ladder operators given by a† − α(∆)∗ generating
multi-photon excitations. Thus, the eigenvalues correspond-
ing to these multi-photon excitations will have a real part
spaced by integer multiples of −ℏΓ/2. We note that the ad-
joint state ρ†P1

is also an eigenstate with the eigenvalue λ∗P1
.

Next, one can show that states that are not diagonal in
the atomic part, of the form |α(∆); {nj}⟩

〈
α(∆′); {n′j}

∣∣ are
eigenstates with the eigenvalues

λ(∆, u,∆′, u′) = −1

2

ℏΩ2Γ

δ2 + Γ2/4
(∆−∆′)2 (C.5)

+ i

[
ℏΩ2δ

δ2 + Γ2/4
(∆2 −∆′2)− (u− u′)

]
,

with the odd-even imbalances, ∆ =
∑

j(−1)jnj and
∆′ =

∑
j(−1)jn′j and the total interaction energies u =

U
2

∑
j nj(nj − 1) and u′ = U

2

∑
j n

′
j(n

′
j − 1). Based on

the values of the imbalances and interaction energies we can
identify the following cases:

• For ∆ = ∆′, even for different density distributions
{nj} and {n′j}, the states

ρ0 = |α(∆); {nj}⟩
〈
α(∆); {n′j}

∣∣ , (C.6)
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have eigenvalues with vanishing real part

λ0 = −i(u− u′). (C.7)

In the case u = u′ we have traceless states with λ0 = 0,
showing the existence of off-diagonal coherences be-
tween Fock states that can survive in the steady states.
Alternatively, for u ̸= u′, we obtain states with purely
imaginary eigenvalues. These states, called rotating co-
herences [33], can lead to persistent synchronized os-
cillations in the long time limit [34, 35].

The evolution of some of these states can be probed by
monitoring, for example, the evolution of single particle
correlations at even distances b†jbj+2d [34, 35], as they
probe the coherences induced by states which have the
same imbalance ∆ in the bra and the ket contribution.

Furthermore, as shown in Ref. [34, 35], we can use
the operators b†i bi+2d to construct the states with purely
imaginary eigenvalues. As the following conditions are
fulfilled

[Hc +Hint +Hac, b
†
i bi+2d]ρ0,st = (C.8)

= −U(ni+2d − 1− ni)b
†
i bi+2dρ0,st,

[a, b†i bi+2d]ρ0,st = 0,

then the state b†jbj+2dρ0,st is an eigenstate of the Li-
ouvillian L0 with the eigenvalue −U(nj+2d − 1 −
nj)i. Thus, we recover a subset of the states given in
Eq. (C.6). We note that in Eq. (C.8) we made use in the
calculation that ρ0,st is diagonal in the Fock space.

All the states with a zero real part, Eq. (C.2) and
Eq. (C.6), are part of the decoherence free subspace Λ0

(see Fig. 1 in the main text).

• For ∆ ̸= ∆′ we observe in Eq. (C.5) that the real part of
the eigenvalues is finite and proportional to (∆−∆′)2.
Thus, the states with the lowest decaying rate are the
ones for which ∆′ = ∆ ± 2, which we mark by the
subspace Λ1 in Fig. 1 in the main text,

ρ1 = |α(∆); {nj}⟩
〈
α(∆± 2); {n′j}

∣∣ , (C.9)

corresponding to the eigenvalues

λ1(∆, u,∆± 2, u′) = − 2ℏΩ2Γ

δ2 + Γ2/4
(C.10)

− i

[
4ℏΩ2δ

δ2 + Γ2/4
(1±∆) + (u− u′)

]
.

Depending on the initial state, the decay of such states
can be observed in the evolution of the single particle
correlations at odd distances b†jbj+2d+1.

We note that a similar construction as in Eq. (C.3) is possi-
ble to describe the photonic excitations in the symmetry sec-
tors in which the lowest decaying states are given by the ones
of Eq. (C.6) and Eq. (C.9).

Furthermore, with the knowledge of the different dissipa-
tive subspaces for J = 0 one can compute perturbatively the
steady state for finite and small J [19, 60, 75]. Considering
the contributions from the subspaces that can be accessed via
one hopping event, Λ1 and back, the effective dynamics for
the elements of the decoherence free subspace is given by

∂

∂t
ρ0 = λ0ρ0 +

1

ℏ2
X0

[
Hkin,L−1

0 X1 [Hkin, ρ0]
]
. (C.11)

The operators X0 and X1 are the projectors onto the decoher-
ence free subspace Λ0 and excited subspace Λ1. The kinetic
term breaks the strong symmetry of L0, which determines a
transition from multiple steady states to a unique steady state
given by the mixed state [60, 64]

ρmix =
1

N
∑
{nj}

|α(∆); {nj}⟩ ⟨α(∆); {nj}| , (C.12)

where the sum runs over all possible density configurations
{nj} and N is the number of these configurations. The state
ρmix exhibits strong, however classical, correlations between
the cavity field and the atoms, as for each term in the sum the
cavity field is fully determined by the atomic imbalance. By
tracing out the photonic states we obtain a fully mixed, infinite
temperature, state for the atoms as all density configurations
have the same probability.

Dynamics of single quantum trajectories

(a) (b)

FIG. D1: Time evolution of the photon number for 500 of the sam-
pled quantum trajectories, for the parameters L = 14, N = 7 ,
ℏδ/J = 5000, U/J = 10, (a) ℏΩ

√
N/J = 6614, ℏΓ/J = 500, (b)

ℏΩ
√
N/J = 1323, ℏΓ/J = 750. The dashed black lines represent

the photon number expected for the possible values of the imbalance
∆ ∈ {±1,±3,±5,±7}.

In the presence of a strong symmetry the quantum trajecto-
ries obtained in the stochastic unraveling of the master equa-
tion can exhibit dissipative freezing [37, 61, 62], i.e. the quan-
tum trajectories can dynamically break the strong symmetry
and be projected to just one of the symmetry sectors. This
phenomenon occurs when the initial state consists of a super-
position of states from different symmetry sectors. The evo-
lution can be sketched as in the following

|ψk(t = 0)⟩ =
∑
{nj}

c [{nj}] |{nj}⟩
projected−−−−−→ (D.1)

|ψk(t≫ 0)⟩ = |{nj}⟩ with probability |c [{nj}] |2,



10

(a) (b)

(d)(c)

FIG. D2: Time evolution of single quantum trajectories for (a),
(c) the photon number and (b), (d) single particle correlations
Re

〈
b†4b4+d

〉
. Panels (a)-(b) correspond to the same trajectory from

the subspace ∆ = ±5, while panels (c)-(d) correspond to a tra-
jectory from the subspace ∆ = ±1. The parameters used are
L = 14, N = 7, ℏδ/J = 5000, U/J = 10, ℏΩ

√
N/J = 1323,

ℏΓ/J = 750.

where {nj} represents the set of conserved quantities of the
symmetry, in our case the local densities, and c [{nj}] the
initial amplitudes for each state. We note that in the case
in which multiple states with the same values of the con-
served quantities exist, the state |ψk(t)⟩ can still evolve in
time within the symmetry sector. This evolution implies that
the steady state of the system is described by a mixed state
of the form ρmix =

∑
|c [{nj}] |2 |{nj}⟩ ⟨{nj}|, without any

coherences between states from different symmetry sectors.
Thus, a necessary condition for dissipative freezing to occur
is that no traceless eigenstates with 0 real part of their eigen-
values which correspond to coherences of different symmetry
sectors are present [62]. Another exception exists when one
has similar symmetry sectors, for which one can find an uni-
tary transformation to map the Hamiltonian of one sector to
the Hamiltonian of the other, while only changing the jump
operators up to a phase factor [62].

In the case of the system considered here [Eqs. (1)-(2) in the
main text] we have shown in the previous section, Eqs. (C.6)-
(C.7), that in the limit J = 0 states corresponding to coher-
ences between different density configurations, and thus dif-
ferent symmetry sectors, are present in the steady state. Fur-
thermore, we also have similar symmetry sectors for which
nj = n′L+1−j for all j = 1, . . . , L, These sectors have an im-
balance of opposite signs and can be mapped to each other by
the transformation which changes the sign of the jump opera-
tor a→ −a. Thus, it is interesting to observe in the dynamics

of quantum trajectories if dissipative freezing can still occur
between certain symmetry sectors, while the coherences be-
tween others survive to long times.

In Fig. D1 we show the photon number corresponding to
single quantum trajectories in the case of small hopping J ,
which slightly breaks the strong symmetry. However, we
have previously shown that also in the presence of an ap-
proximate strong symmetry [37], one can still interpret the
results in the context of dissipative freezing, as the quan-
tum trajectories are initially projected to the symmetry sec-
tors and only on longer timescales, given by the symmetry
breaking term, explore other subspaces. We observe that on
short times, tJ/ℏ ∼ 0.02 in Fig. D1(a) and tJ/ℏ ∼ 0.1
in Fig. D1(b) all 500 trajectories stabilized to a value of the
photon number corresponding to one of the possible values
of the imbalance ∆ ∈ {±1,±3,±5,±7}. This implies that
the quantum trajectories are projected to subspaces spanned
by states with the same absolute value of the imbalance. Fur-
thermore by investigating the behavior of the single particle
correlations for a trajectory, e.g. corresponding to an imbal-
ance |∆| = 5 in Fig. D2(b), we can infer that coherences
within these subspaces are maintained. We can see that at
even distances Re

〈
b†4b4+d

〉
exhibits the oscillating dynam-

ics we observed in the Monte Carlo average and discussed
in the main text, showing the presence of coherences within
the single trajectory. This in contrast to correlations at odd
distance which are quickly suppressed and quantify the co-
herence between sectors with a different |∆|. The behavior
of the odd distance single particle correlations is different for
the quantum trajectories which are projected to the symme-
try sectors with ∆ = ±1, Fig. D2(d). As mentioned above
∆ = 1 and ∆ = −1 are similar symmetry sectors and the
coherence between them is not suppressed in the quantum tra-
jectories. Thus, we see in Fig. D2(d) that the correlations at
odd distances are finite, however they change sign every time
a quantum jump occurs, which leads to a small value in the
Monte Carlo average over all the trajectories.

As we consider a finite J we also see in Fig. D1 that rarely
there are trajectories that change the subspace of fixed imbal-
ance, capturing the long-time dynamics of approaching the
steady state [37].

Thus, we see that the proximity of a strong symmetry of the
open system is crucial for the correlation dynamics. The pro-
tection of the oscillations present in the single particle corre-
lations at even distances stems from the long lived coherences
between degenerate approximate symmetry sectors, while the
suppression of the correlations at odd distances is due to the
fact that they couple to coherence of distinct symmetry sectors
with finite decay rate.
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