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Within the context of epithelial monolayers, T1 transitions, also known as cell-intercalations, are
topological rearrangements of cells that contribute to fluidity of the epithelial monolayers. We use a
multi-phase field model to show that the ensemble-averaged flow profile of a T1 transition exhibits
a saddle point structure, where large velocities are localised near cells undergoing T1 transitions,
contributing to vortical flow. This tissue fluidisation corresponds to the dispersion of cells relative
to each other. While the temporal evolution of the mean pair-separation distance between initially
neighbouring cells depends on specific model details, the mean pair-separation distance increases
linearly with the number of T1 transitions, in a way that is robust to model parameters.

Introduction.- Spontaneous flows within epithelial
monolayers play a pivotal role in many biological pro-
cesses including tissue development, wound healing, an-
giogenesis and invasion of cancer cells [1–3]. In conflu-
ency, cells may migrate collectively while maintaining
contact with their neighboring cells, thus preserving cell-
cell junctions [1]. However, cells may also migrate rel-
ative to each other through structural rearrangements
mediated by local events of remodelling of cell-cell junc-
tions. Three types of such events are identified [4–6]. A
T1 transition is an event whereby two neighbouring cells
move apart while two of their neighbours move towards
each other and make contact. A T2 transition occurs
during extrusion/apoptosis events where cells are elimi-
nated from the monolayer, and a T3 transition is an event
associated with cell division. Notably, T1 events preserve
the total cell count within the monolayer, distinguishing
them from T2 and T3 transitions.

T1 transitions have been observed in both epithelial
[7] and mesenchymal [8] tissues, and play an active role
in development of an embryo from early gastrulation
to late-stage organogenesis [9], as well as during cancer
metastasis [10]. Empirical evidence shows that Myosin
II contributes to the build-up of tension at cell-cell junc-
tions, thereby controlling T1 transitions in epithelial tis-
sues [11, 12]. However, the interplay between mechani-
cal and biochemical signaling in these events remains a
topic of debate [13]. There have been several studies that
are aimed at characterising the mechanical influence of
T1 transitions in tissues [5, 6, 14–18] and in simulations
[15, 19–21].

Tissue flow has been explored mostly using the coarse-
grained approaches from active nematics or active po-
lar matter or, more generally, active p-atic liquid crys-
tals, whereby spontaneous flows are influenced by their
topological defects [22–24]. Several experimental stud-
ies report different discrete orientational order (nematic,
polar or in general p-atic) of cell tissues, correspond-
ing to different lowest-energy topological defects [24–26].
This system dependency may be attributed to different

types of cell lines, but may also signal that the system is
far from a hydrodynamic limit with a well-defined dis-
crete symmetry, thus making the identification of rel-
evant group symmetries and corresponding topological
defects a matter of debate. On the other hand, it is be-
coming more evident that T1 transitions are important
sources of tissue flow [19, 27]. Qualitative differences be-
tween flows occurring at hydrodynamic scales and those
induced by structural re-arrangements of cells have been
identified by comparing hydrodynamic (continuum) sim-
ulations with cell-resolved (discrete) simulations [23, 28].
How the flows originating at the discrete cell level influ-
ence the tissue flow at hydrodynamic scales is far less
explored and understood.

In this paper, we aim to bridge this gap to better un-
derstand the generic flow patterns due to cell neighbor
rearrangements. Within a two-dimensional multi-phase
field model, resolving the dynamics of each individual
cell, we quantify the average flow profile of a T1 transi-
tion. We demonstrate that T1 transitions are short-lived
and localised events of cells with high speeds generating
a 4-fold vorticity with alternating chirality. Considering
the number of cells and their size to remain constant, by
using a Lagrangian approach, we quantify how the cell
pair dispersion is mediated solely by T1 transitions. We
predict a robust scaling of the mean pair separation with
the number of T1 transitions which hints at a generic
mechanism of relative dispersion by structural rearrange-
ments. The details of the model are in the Supplementary
Material (SM) which includes the Refs. [29–39].

T1 transitions.- A T1 transition re-configures the
junctions between neighboring cells as illustrated in
Fig. (1a, 1b, 1c). The two 3-way vertex represented by
red dots move towards each other shrinking the corre-
sponding junction (Fig. 1a). Within multi-phase field
models, a T1 transition is a spatial-temporal event with
finite duration [19], that starts when the junction van-
ishes, i.e. two 3-way vertices merge creating a transient
extracellular gap (approximated as a four-way vertex),
as shown in Fig. 1b. The T1 transition concludes when a
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FIG. 1: Configuration of 4 cells (a) before, (b) during, and (c) after a T1 transition. The 3-way vertices involved in
the T1 are marked by red dots. Angle ζ is the orientation of the newly-formed junction after a T1 transition

measured counterclockwise from the positive x semi-axis. Streamlines of the average flow profile at the end of a T1
transition (d) and (e). The colormap in (d) represents the magnitude of the polarisation, p. p = 1 at a location if for
all T1 transitions in the ensemble, the velocity points in the same direction at that location, and p = 0 if velocity is
randomly oriented. The colormap in (e) represents the average speed. The flow is visualized using LIC (line integral
convolution), and the arrows indicate the direction. The evolution of these fields before and after the T1 transition

are shown in the Supplementary Movies 1-4, see SM [40].

FIG. 2: Temporal snapshots of the evolution of a cell triplet. T1 transitions break the contact between cells in the
triplet, and increase the area spanned by the triplet.

new pair of 3-way vertices nucleate forming a new junc-
tion. We define the orientation, ζ, of the T1 transition
by the angle of the newly formed junction with respect to
the x-axis (Fig. 1a). We use this angle ζ to reorient the
different T1 transitions and the corresponding velocity
profile in order to compute ensemble-averaged properties
as detailed in the SM [40]. The corresponding flow field
is reoriented such that the junction created after the T1
transition aligns with the horizontal axis, see Fig. (1d,
1e). In these figures, we illustrate the average flow pro-
file at the end of a T1 transition. This shows the saddle
point structure with two orthogonal directions of attrac-
tion (along the vertical axis) and repulsion (along the
horizontal axis), respectively. In turn, this is a source
of quadruple vortices with alternating circulations. The
colormap in Fig. (1d) corresponds to the magnitude of
polarization, p(x, t), which varies spatially between 0 and
1. The polarization is 1 when on average cell velocities
point in the same direction at a given position x. Con-
versely, p(x, t) = 0, if there is no preferred direction at x.
Notice that the non-zero polarization is localised around
the T1 transition in such a way that we can discern the

ensemble-averaged shape of the 4 cells involved in the
T1 transition. The polarisation field informs on the like-
lihood of the observed streamlines, where a higher po-
larisation indicates that the streamlines shown are more
likely to occur. The colormap in Fig. (1e) corresponds
to the ensemble-average of the magnitude of the veloc-
ity field around a T1 transition. Higher magnitudes are
localised around the center, where the cells involved in
the T1 transition are present, and decreases in the rest of
the domain [19, 41]. The movies 1− 4 from the SM [40]
show the evolution of flow profiles before and after a T1
transition. The temporal behavior is consistent with the
cell speed profile before and after a T1 transition [19],
whereby the typical cell speed increases during a T1 tran-
sition, and decays back to the average speed of all cells
after the event. This property along with the flow pro-
file suggests that T1 transitions are localised burst of
high speeds, leading to vortical flow [19]. Cells that are
caged among their neighbours, undergo small shape fluc-
tuations and experience resistance to their motion due
to intercellular interaction. However, these small fluctu-
ations may build up and can bring two 3-way vertices
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closer together. This leads to accumulation of energy
near those vertices. Eventually, this can induce a T1
transition releasing energy, and thereby helping uncage
the cells. This is akin to the buildup prior to a slip event
in stick-slip dynamics [42]. Provided, there is no pre-
ferred orientation of the T1 transition, the cells would all
move away from their initial neighbours as elucidated in
the next section.

Relative Dispersion.- The vortical flow induced by T1
transitions is reflected in the dispersion of cells relative
to each other, and thus in the mixing of cells. We can
quantify the flow properties indirectly through the rela-
tive dispersion of cells. We use the center of mass denoted
by ri for the i-th cell to track cell migration, see SM [40]
for details. To quantify single particle dispersion, we use
the mean-squared displacement of the cells given as

σ2(t) =
1

N

N∑

i=1

|ri(t+ t0)− ri(t0)|2, (1)

which measures how far a cell has migrated from its initial
location at t0 in a time-lag t. N is the total number of
cells. Likewise, to quantify relative dispersion, we define
the mean pair-separation distance in a time-lag t as

Π(t) =
1

NP (t0)

NP (t0)∑

j=1

|rj,1(t)− rj,2(t)|, (2)

where NP (t0) is the number of pairs of cells that were
neighbours at an initial time t0. rj,1 and rj,2 are the
positions of the two cells corresponding to the jth neigh-
bour pair at t0. To better quantify the dynamics of the
3-way vertices, we also consider the dispersion of triplets.
A triplet consists of 3 cells where each cell is a neighbour
to the other two cells. Let rk,1, rk,2, and rk,3 be the posi-
tions of the 3 cells corresponding to the kth triplet. The
corresponding lengths of the edges in the triplet triangle
are ā = |rk,1−rk,2|, b̄ = |rk,2−rk,3|, and c̄ = |rk,3−rk,1|.
Given the perimeter of the triangle, s̄ = ā+ b̄+ c̄, the tri-
angle area of the kth triplet is Ak = s̄(s̄− ā)(s̄− b̄)(s̄− c̄).
Thus, we can also define the mean triplet-separation area
as

Λ(t) =
1

NT (t0)

NT (t0)∑

k=1

Ak(t+ t0), (3)

where NT (t0) is the number of triplets of cells at time t0.
Λ(t) is the average area of all triangles made by triplet of
cells that were mutually adjacent at time t0. Snapshots
from the evolution of one such triplet triangle are shown
in Fig 2. Geometrically, the dispersion of cells is associ-
ated with deformations, translations and rotations of the
triplet triangle.

The initial area of the triplet triangles is non-zero and
is related to the cell size. Notice that the cells remain
mutually adjacent for a transient time until the 3-way

FIG. 3: Evolution of σ2 (a), Π (b) and Λ (c) plotted
against time. σ2 (d) and Π (e) plotted against the

cumulative number of T1 transitions within the tissue.√
Λ plotted against Π (f). Different colours correspond

to different cell activities defined by the self-propulsion
speed v0 (see SM [40]), as per the legend at the top.

vertex shared between them is destroyed in a T1 transi-
tion by merging with another 3-way vertex. From hereon,
the cells are likely to further separate from each other
due to subsequent T1 transitions. The triplet area could
also collapse to 0 when the 3 cells become collinear (see
Fig. 2c-d).

The mean dispersion of single cells (σ2), cell pairs (Π)
and triplets (Λ) as functions of time-lag t and for differ-
ent activities v0, see SM [40], are shown in Fig. 3a, 3b,
and 3c. Within the considered computational time, we
see that cells are super-diffusive with a scaling exponent
that lies between 1 (normal diffusion limit of Brownian
motion) and 2 (ballistic limit of self-propulsion). For all
three quantities, the net dispersion increases with cell ac-
tivity which is consistent with the observation that the
fluctuations in the tissue flow increase with activity [22].
At low activities, we notice that there is almost no disper-
sion of cell pairs and triplets. While, the pair-separation
Π increases with time-lag, the triplet area Λ(t) remains
constant for a initial transient period. A single T1 tran-
sition would destroy the 3-way vertex shared by the cells
in the triplet, but 2 pairs out of 3 initial pairs in the
triplet remain. The triplet area starts to diverge when
at least one of the cells breaks contact with the other 2
cells in the triplet, which requires a minimum of 2 T1
transitions. Thus, in this initial period, the area of the
triplet triangle Ak(t) fluctuates around Ak(t0). As the
cells undergo further T1 transitions and move apart, the
area spanned by the triplet Λ increases monotonically
with the time-lag.

Fig. 3d and 3e show the net dispersion of single cells
(σ2(t)) and cell pairs (Π(t)) plotted against the cumula-
tive number of T1 transitions within the tissue in time-
lag t. Interestingly, the curves for Π for different v0 col-
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lapse into a linear master curve. A similar collapse is
also present for the triplet area, which shows that these
two quantities are directly related to the number of T1
transitions. However, this is not the case for σ2, because
cells can also migrate in local flocks, which affects σ2,
but does not change Π and Λ since the cell-cell connec-
tivity is preserved [1]. In the absence of T1 transitions,
cells are topologically caged within their neighbours, and
this makes it difficult to generate flow fluctuations (when
T2 and T3 transitions are also absent). It takes approxi-
mately 250 T1 transitions across the tissue of 100 cells, or
equivalently 10 T1 transitions per cell, for the mean-pair
separation to double its value. Two neighbouring cells
have to undergo around 10 T1 transitions each, such that
their cell centers could be two cell apart. When

√
Λ is

plotted against Π, initially
√
Λ is constant, and later it

varies linearly with Π (see Fig. 3f).
To further explore the robustness of this data collapse,

we also vary other model parameters i.e. cell deformabil-
ity Ca, rotational noise D, shape alignment α, adhesion
parameter aa, and activity ratio ractive. For high values
of Ca, the cells are more deformable. The rotational dif-
fusion coefficient D, and the rate α at which cells tend
to align their preferred direction of motion with the di-
rection of their elongation control the dynamics of the
self-propulsion mechanism. For aa = 0, the interactions
between cells are purely repulsive, while aa > 0 corre-
sponds to additional attraction interaction between cells.
ractive is the fraction of cells which have nonzero activ-
ity. See SM for details [40]. The mean-pair separation
distance as a function of cumulative number of T1 tran-
sitions for these scenarios is plotted in Fig. (4). In all
these scenarios, we see similar scaling behaviour suggest-
ing that T1 transitions affect relative dispersion in similar
ways irrespective of model parameters.

Discussion.- In summary, we have studied how T1
transitions contribute to the fluidization of an epithelial
monolayer. We have shown that T1 transitions, as topo-
logical events of neighbour exchanges, are sources of tran-
sient saddle-point flows generating 4-fold vortices. The
average polarization is high around the principle axes of
the saddle point, which corresponds to underlying cells
losing and gaining neighbours. Due to these flows, T1
transitions promote cell mixing. While the temporal be-
havior of the cell dispersion properties (single, pair or
triplets) depends on the model parameters, we found
an underlying robust scaling law of the relative disper-
sion (pairs and triplets) as function of the number of
T1 transitions. The data collapse of the different dis-
persion curves onto a linear master curve suggests that
the rate of relative dispersion is directly proportional of
the occurrence rate of T1 transitions regardless of the
underlying nucleation mechanism. This unveils a deeper
connection between topological rearrangements and mix-
ing in densely packed systems, in general. As Π(t) and
the cumulative number of T1 transitions are measurable

FIG. 4: Data collapse of the relative dispersion curves
as function of the cumulative T1 transitions for various

model parameters and setups: (a) cell deformability
(Ca) is varied for v0 = 1. (b) rotational noise D and
shape alignment α are varied for v0 = 1. (c) repulsion

vs repulsion and adhesion cell-cell interaction. (d)
mixtures of active and passive cells with a fraction

ractive of active cells with v0 = 1.

within epithelial tissues and other computational models,
our results are accessible for experimental validation.
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MODEL, PARAMETERS AND COMPUTATION

We consider a multi-phase field model, see Ref. [29–33, 41] for various realizations and Ref. [34] for a review and
comparison. The specific formulation builds on the one used in Ref. [19] and is used to simulate the dynamics of a
confluent monolayer of N = 100 cells. Each cell is described by a phase field variable ϕi with i = 1, 2, . . . , N , which
has the bulk values ϕi ≈ 1 inside the cell, ϕi ≈ −1 outside it, with a diffuse interface of width O(ϵ) between them
representing the cell boundary. The phase field ϕi follows the dynamics

∂tϕi + vi · ∇ϕi = ∆
δF
δϕi

, (1)

which ensures conservation of cell area. Diffusive relaxation mechanisms are considered by the total free energy
functional F = FCH + FREP + FADH . It contains the Cahn-Hilliard energy

FCH =
1

Ca

N∑

i=1

∫

Ω

(
ϵ

2
||∇ϕi||2 +

1

4ϵ
(ϕ2i − 1)2

)
dx, (2)

with the capillary number Ca to tune the cell deformability, and two interaction energies, where

FREP =
ar
2In

N∑

i=1

∫

Ω

∑

j ̸=i

(ϕi + 1)2(ϕj + 1)2dx (3)

is the repulsion energy to prevent overlap of cell interior, and

FADH =
aa
2In

N∑

i=1

∫

Ω

∑

j ̸=i

(ϕ2i − 1)2(ϕ2j − 1)2dx (4)

is the adhesion energy that promotes overlap of cell boundaries. In denotes the interaction strength, and ar and aa
are parameters to tune contribution of repulsion and adhesion energy. The adhesive part differs from [19] by rewriting
the interaction using the equilibrium condition ϵ

2∥∇ϕi∥2 ≈ 1
4ϵ (ϕ

2
i − 1)2, see [32, 35? ? , 36].

Cell activity is introduced through the advection term. We consider vi(x, t) = v0B(ϕi)ei(t), where v0 is controlling
the magnitude of activity, B(ϕi) =

ϕi+1
2 and ei = [cos θi(t), sin θi(t)] is its direction. The migration orientation θi(t)

evolves diffusively with drift that aligns to the principal axis of cell’s elongation as

dθi =
√

2DrdWi(t) + α(βi(t)− θi(t))dt, (5)

with rotational diffusivity Dr and a Wiener process Wi. βi(t) is the orientation of the cell elongation and is defined
as

βi(t) =

{
arg(η+

i (t)) : ei(t) · η+i (t) > 0
− arg(η+

i (t)) : ei(t) · η+i (t) < 0.
(6)

The cell elongation is identified by the principal eigenvector η+
i of the shape deformation tensor as described in

Ref. [33]. The parameter α controls the time scale of this alignment. Setting v0 = 0 for some cells allows to model
mixture of active self-propelled cells and passive cells. The activity ratio, ractive, is the fraction of cells for which
v0 > 0.
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Eqs. (1) are considered in a square domain Ω = [0, L]× [0, L] (where L = 100) with periodic boundary conditions
for the time [0, T ].

The problem is solved numerically using finite elements within the toolbox AMDiS [37, 38] and the parallelization
concept introduced in [39], which considers each cell on a different core and accounts for short-range interaction
between cells to reduce the communication. This essentially allows scaling with the number of cells. The system of
partial differential equations is discretized in time using a semi-implicit approach. Timestep size and mesh resolution
are related to ensure stability. For further details and numerical tests, see [19, 34? ].

The parameters are as per Table I unless specified otherwise.

Parameter Value
L 100
T 150
ϵ 0.15
v0 0.5
Ca 0.2
In 0.1
aa 1
ar 1
Dr 0.01
α 0.1

ractive 1
τn 0.005

TABLE I: Default values of the model parameters. τn denotes the timestep size.

PERIODIC BOUNDARY CONDITIONS AND DISPERSION

While the general notion of periodic boundary conditions is standard, the definition of the mean dispersion of a
single cell (σ2), cell pairs (Π) and triplets (Λ) requires some additional thoughts. We essentially assume that when a
cell crosses the periodic boundary, it moves into an identical but a distinct copy of the domain that lies adjacent to
the domain as illustrated in Figure S1. The history of the cells motion is used to determine the modified location of
center of mass in the resulting infinite domain.

AVERAGE FLOW FIELD AT T1 TRANSITION

Let, NT1 be the total number of T1 transitions. Suppose, 4 cells, A,B,C,D, undergo a T1 transition. Let
the cell neighbour pairs involving the four cells before T1 be (A,B), (A,C), (A,D), (C,B), (D,B) and after T1 be
(C,D), (A,C), (A,D), (C,B), (D,B). At the start of the T1 transition, cells A and B lose contact and at the end
of the T1 transition, cells C and D make contact. We denote the start time and end time of the mth T1 transition
as tm,s and tm,e, respectively. Before tm,s, the 3-way vertices where the cells (A,B,C) and (A,B,D) meet, move
towards each other, shrinking the common junction between them, and eventually the junction vanishes at tm,s.
Between, tm,s and tm,e, there is a extracellular gap between the four cells. After tm,e, two new 3-way vertices where
the cells (A,C,D) and (B,C,D) meet are created, and they move away from each other. Let, sm,1 and sm,2 be
the positions of the two 3-way vertices a short time after tm,e. We define the orientation of the mth T1 transition
as ζm = arg(sm,1 − sm,2). Figure S2a shows the histogram for the orientation of T1 transitions. Figure S2b is the
histogram of the difference in junction angle before and after the T1 transition. The junctions before and after a T1
transition are mostly perpendicular to each other.

For each T1 transition, we also find the location of its epicenter as in [19]. The epicenter is defined as the location
of a point whose sum of distances to the four cells involved in the T1 transition is the minimum found at the time
tm,s+tm,e

2 . We denote the location of epicenter of mth T1 transition by sm,c. Essentially, it is the center of the gap
formed between the four cells during the T1 transition.

At any given time t, we define the global velocity field as

vg(x, t) =
N∑

i=1

(ϕi + 1)

2

(ri(t)− ri(t
′))

t− t′
. (7)
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FIG. S1: The triangle with red dotted sides is connected to the cells in the computational domain while, the triangle
with black sides is connected to the location of the cells in an infinite 2D domain. Time evolves from top to bottom.
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FIG. S2: (a) Histogram of the junction angle after a T1 transition, the angle ζ is defined in Figure. 1 in the main
text. (b) Histogram of change in junction angle before and after the T1 transition.

FIG. S3: Steps involved in transformation of the velocity field to align it with respect to a T1 transition. (a) A
small section of a field is shown in black. A T1 transition is shown with the cells that lose neighbours coloured in

pink, while the cells that gain neighbours are coloured in blue. A magenta reference frame is attached to the
epicenter of the T1 and is aligned with the orientation of the the T1, ζ. (b) The origin is translated to the epicenter
of the T1 transitions. (c) The frame attached to the origin is rotated to align the loser cells with the horizontal axis.

(d) The orientation of the vector field is rotated by ζT1

For the mth T1 transition, at any time t, we can transform the global field such that

vm(x, t) = Rζmvg(Rζm(x− sm,c), t), (8)

where Rζm is the 2D rotation matrix with rotation angle ζm. vm(x, t) is centered such that the epicenter is at the
origin, and the junction formed after the T1 transition is aligned along the horizontal axis. Figure S3 visualises the
transformation from vg(x, t) to vm(x, t) in 3 steps for an arbitrary field. First, the field is translated such that the
origin coincides with the epicenter of the T1 transition. Next, the grid is rotated such that the junction formed after
the T1 transition aligns along the horizontal axis. Later, the vectors themselves are rotated while being fixed in space
to reflect the right orientation with respect to the epicenter. The mean velocity field around a T1 transition at time
τ after the end of a T1 transition is then given as

v+
T1(x, τ) =

1

NT1

NT1∑

m=1

vm(x, tm,e + τ). (9)

The corresponding mean velocity magnitude field is obtained as

v+T1(x, τ) =
1

NT1

NT1∑

m=1

|vm(x, tm,e + τ)|. (10)
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FIG. S4: The streamlines in (a) and (c) corresponds to v−
T1(x, 0) whereas, the colormap corresponds to p−

T1(x, 0)
and v−T1(x, 0), respectively. The streamlines in (b) and (d) corresponds to v+

T1(x, 0) whereas, the colormap
corresponds to p+

T1(x, 0) and v+T1(x, 0), respectively.

The corresponding polarisation field around a T1 transition is defined as

p+
T1(x, τ) =

1

NT1

NT1∑

m=1

vm(x, tm,e + τ)

|vm(x, tm,e + τ)| . (11)

Likewise, the fields before the start of a T1 transition are defined as follows

v−
T1(x, τ) =

1

NT1

NT1∑

m=1

vm(x, tm,s − τ), (12)

v−T1(x, τ) =
1

NT1

NT1∑

m=1

|vm(x, tm,s − τ)| (13)

and

p−
T1(x, τ) =

1

NT1

NT1∑

m=1

vm(x, tm,s − τ)

|vm(x, tm,s − τ)| . (14)

The streamlines in the Figure S4a and Figure S4c corresponds to v−
T1(x, 0) whereas, the colormap corresponds to

p−
T1(x, 0) and v−T1(x, 0), respectively. Likewise, the streamlines in the Figure S4b and Figure S4d(also Figures 1d

and 1e in the main text) corresponds to v+
T1(x, 0) whereas, the colormap corresponds to p+

T1(x, 0) and v+T1(x, 0),
respectively. The supplementary movies 1 and 3 show p−

T1(x, τ) and v−T1(x, τ), respectively, and the supplementary
movies 2 and 4 show p+

T1(x, τ) and v+T1(x, τ), respectively.
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FIG. S5: A triangle joining 3 red cells is shown when (left) all 3 cells are mutually adjacent and when (right) one
pair are not neighbours.

FIG. S6: Various properties are plotted while varying activity v0 and deformability Ca. (a) Mean squared
displacement and (b) Mean pair separation for the time lag T = 150. (c) average polar order. (d) average shape

index.

MULTIPLE T1 TRANSITIONS ARE REQUIRED FOR TRIPLET AREA TO DIVERGE

Figure S5 shows an illustration of a section of hexagonal lattice comprising of hexagonal cells. A triangle is marked
that joins the cell centers of the 3 red cells. In the left figure, all 3 cells are mutually adjacent, while on the right
figure, 2 of the 3 cells are not in contact. The area of the triangles are the same in both situations. For a triplet area
to diverge significantly, at least one of the 3 cells must break contact from the other 2 cells. This is why, multiple T1
transitions are required before the mean triplet-separation area (λ) starts to increase.

TWO MODES OF COLLECTIVE BEHAVIOUR

Figures S6a and S6b show the self dispersion (σ(T )) and relative dispersion properties (Π(T )). With increase in
activity, σ(T ) increases. However, there is no change with Ca. This suggests, that the distance travelled by cells
irrespective of their deformability is similar. Whereas for stiffer cells i.e. low Ca, Π(T ) is lower suggesting that stiffer
cells move less relative to each other.
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The polar order at any given time is found as

ψ(t) =
1

N

∣∣∣∣∣
N∑

i=1

(ri(t)− ri(t
′))

t− t′

∣∣∣∣∣ ,

and is a measure of collective flocking behaviour. If ψ(t) = 1, all cells move in the same direction, while if ψ(t) = 0,
the cell velocities have random orientation. The average polar order is the temporal average of ψ(t). We see that
stiffer cells have higher average polar order, see Figure S6c. This explains the discrepancy where we see stiff cells move
similar distances as soft cells as they have a slightly higher flocking tendency. To further quantify the differences due
to varying Ca, we plot the average shape index in Figure S6d. Shape index is the ratio of the perimeter of cells to
the square root of area of the cells. A circle has the lowest shape index, and elongated cells have higher shape index.
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