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Abstract

We exploit holographic duality to study the system of a one-dimensional inter-

face contacting two semi-infinite two-dimensional CFTs. Central to our investiga-

tion is the introduction of a dynamical scalar field located on the bulk interface

brane which breaks the scaling symmetry of the dual interface field theory, along

with its consequential backreaction on the system. We define an interface entropy

from holographic entanglement entropy. At zero temperature we construct several

illustrative examples and consistently observe that the g-theorem is always satis-

fied. These examples also reveal distinct features of the interface entropy that are

intricately linked to the scalar potential profiles. At finite temperature we find that

the dynamical scalar field enables the bulk theory to have new configurations which

would be infeasible solely with a tension term on the interface brane.

1Email: yanliu@buaa.edu.cn
2Email: hongdalyu@buaa.edu.cn
3Email: by2230109@buaa.edu.cn

ar
X

iv
:2

40
3.

20
10

2v
2 

 [
he

p-
th

] 
 4

 A
pr

 2
02

4



Contents

1 Introduction 2

2 Setups of AdS3/ICFT2 4

2.1 Solve the system at zero temperature . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Simple examples of solutions . . . . . . . . . . . . . . . . . . . . . 8

2.2 BCFT limit of the equation of motion . . . . . . . . . . . . . . . . . . . . 9

2.3 Null energy condition on the brane . . . . . . . . . . . . . . . . . . . . . 10

3 Holographic entanglement entropy 13

3.1 Interface entropy and g-function . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 g-theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 BCFT limits of holographic entanglement entropy . . . . . . . . . . . . . 19

3.3 Case studies of several examples . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.1 Solution I with trivial scalar field . . . . . . . . . . . . . . . . . . 22

3.3.2 Solution II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.3 Solution III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.4 Solution IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.5 Solution V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.6 Solution VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Comment on the entanglement entropy of various subsystems . . . . . . . 35

4 Finite temperature 37

4.1 Gluing two BTZ black holes . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Permissible configurations at finite temperature . . . . . . . . . . 42

4.1.2 The solution with trivial scalar field: [H2,H2] . . . . . . . . . . . 43

4.1.3 Solution with nontrivial scalar field: [H2,H2] . . . . . . . . . . . . 45

4.1.4 Solution with nontrivial scalar field: [E,E] and [E,H1] . . . . . . . 47

4.1.5 Solution with nontrivial scalar field: [H1,E] . . . . . . . . . . . . . 49

4.1.6 Solution with nontrivial scalar field: no [H1,H1] . . . . . . . . . . 50

1



4.1.7 BCFT limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Gluing thermal AdS3 and BTZ black hole . . . . . . . . . . . . . . . . . 52

5 Conclusions and open questions 56

A Configurations of non-monotonic profile at zero temperature 57

1 Introduction

Interfaces contacting with two distinct systems are ubiquitous in nature. For instance, an

impurity or defect within a pristine system can be regarded as an interface bridging two

identical systems. Similarly, a quantum dot linked to two interacting quantum wires or a

bubble separating the interior and exterior environments are also examples of interfaces.

The investigation of such systems not only enhances our comprehension of field theories

but also illuminates the intricate interplay between disparate domains [1].

We will investigate the system of a one-dimensional interface which can be thought as a

quantum dot, contacting two two-dimensional CFTs residing on semi-infinite lines. When

both CFTs are identical, the interface resembles a defect or impurity. However, in general

the two CFTs may differ significantly. For instance, one of the CFTs could be trivial,

leading to a boundary conformal field theory (BCFT) system. Alternatively, folding the

system when the two CFTs are identical also yields a BCFT. Naturally, richer physical

phenomena are anticipated in the realm of interface conformal field theories (ICFTs),

where interfaces dynamically interact with CFTs. This is evidenced by the emergence

of novel observables within ICFTs, such as energy transports [2, 3], i.e. transmission or

reflection coefficients quantifying the energy flux across the interface. Additionally, ICFTs

exhibit intriguing entanglement structures [4–6], further deepening our understanding of

their intricate dynamics.

In the literature, considerable attention has been devoted to conformal interfaces

that preserves a single copy of the Virasoro algebra. Yet, it is crucial to note that

the interfaces may host internal dynamical degrees of freedom, or coupling two CFTs

nontrivially, which could break the conformal symmetry of the interface field theory. We

are focused on systems involving strongly interacting field theories and general interfaces.

In such scenarios, the conventional tools of CFT are not applicable, while holography

could provide invaluable insights into the fundamental physics underlying such systems.

Holographic ICFTs have undergone extensive investigation, ranging from the top-

down approaches like intersecting D-branes [7–9], which elucidate the characteristics of

supersymmetric field theories with defects, to bottom-up approaches utilizing holography
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to explore the properties of interface CFTs. One such bottom-up approach involves

constructing the holographic model for ICFTs using the Janus solution in the bulk [10,11].

In this framework, the interface is conceptualized as a non-local defect that smoothly

dissolves within the gravitational bulk. However, solving such systems poses significant

challenges, primarily due to the involvement of PDE’s.

A more straightforward approach to studying holographic ICFT involves considering a

localized interface brane embedded within the gravitational system [12–15]. This method

has attracted significant research attention in recent years. Various dynamics have been

examined in this setups, including the energy transports [16–18] and the entanglement

structures [15,19,20]. Additionally, insights into the island formula for double holography

in holographic BCFT have been provided from the perspective of holographic ICFT

[15, 21]. Moreover, the phases of interfaces in compact CFTs have been investigated

in [22].4 Other progress in AdS/ICFT can be found in e.g. [24–32].

In all the aforementioned setups, the additional dynamics on the interface has often

been overlooked. Here, we propose to consider an AdS3/ICFT2 setup with a dynamical

interface brane involving a localised scalar field. This differs from the studies of DCFT

in [12], where the two CFTs that the defect contacting were identical and a dynamical

brane has been considered at finite temperature. Instead, we consider a scenario where

the dynamical brane is embedded within two distinct AdS spacetime, i.e. the two CFTs

that the defect contacting could be different. On this interface brane within bulk, we

introduce a dynamical scalar field. Our primary objective is to explore the impact of this

scalar field on AdS/ICFT. We will study both zero-temperature and finite-temperature

configurations. Moreover, to gain further insights into the interface field theory, we will

study the entanglement structure and define an interface entropy.

Our paper is organized as follows. In Sec. 2, we introduce the setups of AdS3/ICFT2

and discuss the BCFT limit as well as the null energy condition on the interface brane.

In Sec. 3 we will study the aspect of holographic entanglement entropy, including the

interface entropy and its BCFT limit. Moreover, we will provide several concrete examples

of the zero-temperature configuration to illustrate the behavior of the interface entropy.

In Sec. 4 we turn our attention to the system at finite temperature, exploring the influence

of the scalar field on the profile of the interface brane. In Sec. 5 we conclude our study

and discuss the open questions for further exploration.

4In Euclidean CFTs, a new CFT2 state can be prepared from a CFT1 state through a quenching

operation at the interface [14]. This procedure yields an ICFT in Euclidean spacetime, where the

properties of approximate CFT states are explored through AdS/ICFT in [14]. A similar construction

can be applied to CFTs undergoing weak measurement, as discussed in [23].
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2 Setups of AdS3/ICFT2

In this section we first show the setups of the bulk gravitational theory which are ap-

plicable for both zero and finite temperature scenarios. Then we will sovle it at zero

temperature in Sec. 2.1. We will also discuss the BCFT limit of the zero temperature

system in Sec. 2.2 and the null energy condition on the interface brane in Sec. 2.3.

We consider the gravitational theory

Sbulk = SI + SII + SQ (2.1)

with

SI =

∫
NI

d3x
√
−gI

[
1

16πG

(
RI +

2

L2
I

)]
,

SII =

∫
NII

d3x
√
−gII

[
1

16πG

(
RII +

2

L2
II

)]
,

SQ =
1

8πG

∫
Q

d2y
√
−h
[(
KI −KII

)
− (∂ϕ)2 − V (ϕ)

]
.

(2.2)

Note that there is a minus sign in front of the extrinsic curvature scalar KII in SQ. This

is due to that the extrinsic curvatures are computed using the outward normal vector

pointing from I to II. Without loss of generality, we assume that LI ≥ LII. Our setups

extend the discussion in [12] to the scenarios where different field theories reside on either

side of the interface. Distinguished from the previous studies in [15,16,22] where there is

a constant tension on the interface brane, we here consider a localized dynamical scalar

field residing on the interface brane Q.

CFTI xI

uI

CFTIIxII

uII

(NI, g
I
ab) (NII, g

II
ab)

Q Q

Figure 1: Cartoon plot for the setup. The left and right bulk, denoted as NI and NII respec-

tively, are dual to CFTI and CFTII respectively. The interface brane Q is in blue.

The configuration on a constant time slice is shown in Fig. 1. In the left bulk NI,

we use coordinates xaI = (tI, xI, uI) (where a = 0, 1, 2) while in the right bulk NII we

use coordinates xaII = (tII, xII, uII). On the boundary, CFTI occupies the regime xI < 0
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while CFTII is in the regime xII > 0. The two conformal field theories, CFTI and CFTII,

contact at the interface point where xI = xII = 0. On the interface brane Q, we have the

intrinsic coordinates yµ = (t, z) where µ = 0, 1.5 The embedding equations of Q in NI

and NII are x
a
I (y

µ) and xaII(y
µ), which obeys the following continuous condition on Q

hµν =
∂xaI
∂yµ

∂xbI
∂yν

gIab =
∂xaII
∂yµ

∂xbII
∂yν

gIIab . (2.3)

Here hµν is the the induced metric on Q, i.e. ds2Q = hµνdy
µdyν .

The equations of motion are

RI
ab −

1

2
gIabR

I − 1

L2
I

gIab = 0 , (2.4)

RII
ab −

1

2
gIIabR

II − 1

L2
II

gIIab = 0 , (2.5)

∆Kµν − hµν∆K +
[
(∂ϕ)2 + V (ϕ)

]
hµν − 2∂µϕ∂νϕ = 0 , (2.6)

2∂µ(
√
−hhµν∂νϕ)−

√
−hdV (ϕ)

dϕ
= 0 , (2.7)

where ∆X ≡ XI −XII with X as Kab or K. Here (2.4) and (2.5) are the equations for

the metric fields in the left bulk NI and the right bulk NII, while (2.6) and (2.7) are the

equations on the interface brane Q.

We can separate (2.6) into two parts, i.e. the trace part and the traceless part. The

trace part is

V (ϕ) =
1

2
∆K , (2.8)

and the traceless part is

∆Kµν −
1

2
hµν∆K + (∂ϕ)2hµν − 2∂µϕ∂νϕ = 0 . (2.9)

Now the equations on Q can be summarized as follows

gIabdx
a
I dx

b
I

∣∣∣
Q
= gIIabdx

a
IIdx

b
II

∣∣∣
Q
, (2.10)

∆Kµν −
1

2
hµν∆K + (∂ϕ)2hµν − 2∂µϕ∂νϕ = 0 , (2.11)

V (ϕ)− 1

2
∆K = 0 , (2.12)

2∂µ(
√
−hhµν∂νϕ)−

√
−hdV (ϕ)

dϕ
= 0 . (2.13)

5In Sec. 4, we use intrinsic coordinates yµ = (t, w).
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We will concentrate on the static systems, anticipating the existence of a global time

within the dual field theory. The above setups are applicable for both zero-temperature

and finite-temperature scenarios. In the following we will present the zero temperature

solution and then study its properties. We will study the finite temperature solution in

Sec. 4.

2.1 Solve the system at zero temperature

At zero temperature, the bulk equations (2.4) and (2.5) give the planar AdS3 solution

ds2A =
L2
A

u2A

[
− dt2A + dx2A + du2A

]
, A = I, II . (2.14)

Here uA ∈ (0,∞) with the boundary field theory CFTA located at the boundary uA → 0.

We consider the case that the spatial coordinates xA are non-compact.6 CFTI lives in

the regime xI < 0 while CFTII is in the regime xII > 0. The central charges for the dual

CFTI and CFTII are [33]

cI =
3LI

2GN

, cII =
3LII

2GN

. (2.15)

We have assumed that LI ≥ LII, thus cI ≥ cII. For convenience, we define

ν ≡ cII
cI

=
LII

LI

(2.16)

where ν ∈ (0, 1]. Then we can parameterize the system using LI, ν instead of LI, LII.

It will be convenient to use the rescaled coordinates zA,

uI =

√
LI

LII

zI =
zI√
ν
, uII =

√
LII

LI

zII =
√
νzII . (2.17)

Since we are interested in static configuration, the brane Q is supposed to be a timelike

hypersurface. Assuming it is given by

xI = ψI(zI) or equivalently xII = ψII(zII) , (2.18)

then the continuous condition of the metric on Q reads

νL2
I

z2I

[
−dt2I +

(
1

ν
+ ψ′2

I (zI)

)
dz2I

]
=
νL2

I

z2II

[
−dt2II +

(
ν + ψ′2

II(zII)
)
dz2II

]
. (2.19)

6It is worth noting that the case of compact spatial directions has been recently investigated in [22].
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We assume7

tI = tII ≡ t , (2.20)

then the continuous condition of the induced metric (2.19) gives

zI = zII ≡ z ,
1

ν
+ ψ′2

I (zI) = ν + ψ′2
II(zII) . (2.21)

In following calculations, we identify ψI(zI), ψII(zII) with ψI(z), ψII(z).

Let us remark on the parameterisation of a point p on the brane Q, which can be

expressed in three distinct coordinate systems: the intrinsic coordinates yµ = (t, z), the

NI part of AdS x
a
I = (t, ψI(z), z/

√
ν) and the NII part of AdS x

a
II = (t, ψII(z),

√
νz). We

consider the simplest static case ϕ = ϕ(z)8, then from the equations (2.11, 2.12, 2.13) we

obtain

ϕ′2 =
LI

2z

−ψ′′
I + νψ′′

II√
ν + ψ′2

II

, (2.22)

V (ϕ(z)) =

√
ν (2(ψ′

I − νψ′
II) + 2(νψ′3

I − ψ′3
II)− z(ψ′′

I − νψ′′
II))

2LI(1 + νψ′2
I )

3/2
, (2.23)

dV (ϕ)

dϕ
=

2z2ϕ′′

L2
I (1 + νψ′2

I )
− 2z2νϕ′ψ′

IψI
′′

L2
I (1 + νψ′2

I )
2
, (2.24)

where ψI, ψII, ϕ are all function of z and the prime ′ is the derivative with respect to z.

Note that the above three equations are not independent, i.e. we can derived the third

one from the first two.

The Ricci tensor of the induced metric on the brane is

RQ
µν = λ(z)hµν , (2.25)

where

λ(z) = −1 + νψ′
I (ψ

′
I + zψ′′

I )

L2
I (1 + νψ′2

I )
2

. (2.26)

Obviously when ψ′
I = constant, we have λ(z) = constant. This is consistent with the

picture that in the case of trivial scalar field, the brane is a straight line and has the

induced metric with pure AdS2 [15, 21].9

7In principle, one could consider the solution of tI = α tII, zI = α zII and
1
ν + ψ′2

I (zI) = ν + ψ′2
II(zII).

Here we set α = 1 such that time is globally well-defined.
8More generally, one could consider ϕ = ϕ(t, z) and then the embedding equation as well as the

induced metric of Q is time dependent. It would be interesting to further explore this case.
9One can show that when λ(z) = constant, the only allowed profile for the brane is a straight line.

Another unphysical solution may exist that the brane terminates at a special point in the bulk and we

do not consider such solution.
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We are interested in the case that the brane is asymptotically AdS2 in UV. Then in

the UV limit z → 0, λ(z) should be a negative constant. One class of such solution is

ψI → γ zn, with n ≥ 1 , (2.27)

where γ is a constant. With the above solution, from (2.21) we have

ψII → ±
√

1

ν
− ν + n2γ2δn1 z , when z → 0 . (2.28)

2.1.1 Simple examples of solutions

With the above setups, given the potential V (ϕ), one can obtain consistent solutions

ϕ(z), ψI(z), ψII(z) of the system. In practice, we construct the consistent solution as

follows. We start from an “arbitrary” function ψI(z) which should satisfy the null energy

condition discussed in Sec. 2.3. Then ψII(z) can be solved from (2.21). The consistent

scalar field ϕ(z) should satisfy (2.22) which are determined by ψI(z) and ψII(z), and V (ϕ)

satisfies (2.23). In the following we will show two simple examples. More examples will

be discussed in Sec. 3.3.

The first example is the case that the brane Q is a straight line. In this case we have

solutions,

ψI = γz ,

ψII = ±
√

1 + γ2ν − ν2

ν
z ,

ϕ(z) = ϕ0 ,

V (ϕ) =
γν3/2 ∓

√
1 + γ2ν − ν2

LIν
√

1 + γ2ν
,

(2.29)

where γ, ϕ0 are constants. Note that the sign in front of ψII is related to if the configu-

ration of Q is an acute angle or an obtuse angle in the bulk NII.

This case has been studied in [14,15] with ϕ0 = 0 and the tension T = V . Similar to

the result in [14,15], from (2.29) the tension is constrained by

Tmin < |T | < Tmax , (2.30)

where

Tmin =
1− ν

LIν
, Tmax =

1 + ν

LIν
. (2.31)

For a given value of the tension satisfying (2.30), the profiles of the branes are uniquely

determined, as shown in (2.29).
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The second example is the case when ν = 1, i.e. the two CFT’s have the same central

charge. In this case, the system can be viewed as the presence of a defect located at the

origin of field theory. The equations (2.21) become

ψ′2
I = ψ′2

II , (2.32)

which have two kinds of solutions. The first one is

ψ′
I = ψ′

II , ϕ = c1 , V = 0 . (2.33)

This is a trivial one and the brane does not play any role, i.e. there is no defect at all on

the field theory. The second one is

ψI(z) =− ψII(z) = φ(z) ,

ϕ′2(z) = − LI φ
′′(z)

z
√
1 + φ′2(z)

,

V (ϕ) =
2φ′ + 2φ′3 − zφ′′

LI(1 + φ′2)
3
2

.

(2.34)

This could be understood as unfolding a holographic BCFT system. We will further

comment on this solution in the next subsection.

2.2 BCFT limit of the equation of motion

ICFTs are more generic than BCFTs in the sense that BCFT can be viewed as special

limit of ICFT. There are two different ways to obtain the BCFT limit from ICFT. The

first way is to consider the limit

ν =
LII

LI

→ 0 , (2.35)

which can be realized by setting LII → 0 while LI is finite. This means that the central

charge of CFTII is relatively small and we can ignore it in the whole system.

To study the limit, it is more convenient to work in the coordinates of t, u on Q where

u = uI. Using the relation in (2.17), we can fix uII = νu. The profile of the brane could

be parameterized as xI = ψ̃I(u), or equivalently xII = ψ̃II(u) and ϕ = ϕ̃(u). The equations

for these fields can be obtained by rewriting (2.21) and (2.22, 2.23, 2.24) with

ψ′
I(z) →

ψ̃′
I(u)√
ν
, ψ′′

I (z) →
ψ̃′′
I (u)

ν
, ψ′

II(z) →
ψ̃′
II(u)√
ν

, ψ′′
II(z) →

ψ̃′′
II(u)

ν
, ϕ′(z) → ϕ̃′(u)√

ν
.

Here the prime in functions of z (e.g. ψ′
I(z)) represents the derivative with respect to z,

while the prime in functions of u represents the derivative with respect to u. We take

9



the ν → 0 limit, assuming that in this limit ψ̃I(u) = φ(u) which is a ν-independent and

smooth function, then we can obtain

ψ̃I(u) = φ(u) ,

ψ̃′
II(u) = ±

√
1 + φ′2(u) +O(ν) ,

ϕ̃′2(u) = − LIφ
′′(u)

2u
√

1 + φ′2(u)
+O(ν) ,

V (ϕ̃) = ∓ 1

LIν
+

2φ′(u) + 2φ′3(u)− uφ′′(u)

2LI(1 + φ′2(u))
3
2

+O(ν) .

(2.36)

Note that there is a divergent term in the potential V . This also has been seen in [14,15]

where the tension is divergent in the AdS/BCFT limit. For the special case ϕ = 0, V = T ,

the above system reduced to the results in [14,15] and solution of (2.36) gives to a straight

line.

We can make a comparison to the case without regime NII, i.e. the framework of

AdS/BCFT. In the case of AdS/BCFT with a dynamical scalar field on Q, we parame-

terize Q as x = ψ̃I(u) = φ(u). Then the equations of motion are

ϕ′2(u) = − LI φ
′′(u)

2u
√

1 + φ′2(u)
,

V (ϕ) =
2φ′(u) + 2φ′3(u)− uφ′′(u)

2LI(1 + φ′2(u))
3
2

.

(2.37)

These equations have been studied in [34]. The above equations are the same as (2.36)

except that they do not have divergent term in the potential V (ϕ).

The second way to obtain a BCFT is to consider the limit ν = 1 where we can perform

the folding trick [19]. In this case the dynamical equations in ICFT are listed in (2.34).

Note that when ν = 1 we have uI = uII = z = u. Obviously, it has exactly the same form

as (2.37) after setting ϕ′2, V (ϕ) in the ICFT (2.34) as twice of those in (2.37).

2.3 Null energy condition on the brane

The energy conditions on the brane is important to constrain the dynamics of the interface

brane. Particularly within the framework of AdS/BCFT, the null energy condition (NEC)

is widely used.10 In the following we derive the constraints on the profiles of the interface

brane from the NEC for the matter field residing on the brane.

10For discussions regarding other energy conditions in AdS/DCFT, wherein the NEC is deemed the

most fundamental, see e.g. [12].
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The coordinate system on Q is yµ = (t, z). The null vector on Q is

Nµ =

(
±
√

1

ν
+ ψ′2

I , 1

)
, (2.38)

and therefore the NEC is

(∆Kµν − hµν∆K)NµNν =
LI

z

(−ψ′′
I + νψ′′

II)√
1
ν
+ ψ′2

I

≥ 0 . (2.39)

From (2.22), the NEC is equivalent to ϕ′2(z) ≥ 0. This means that whenever we have a

consistent background solution, then the NEC is satisfied.

However, as we show in the following, this condition actually constrains the possible

choices of ψI. From the junction condition (2.21), we have

ψ′
II = ±

√
1

ν
− ν + ψ′2

I . (2.40)

The sign above is related to the tangent direction of the brane is form an obtuse angle

or an acute angle. When 0 < ν < 1, the NEC (2.39), at z where ψ′2
I ̸= ν − 1

ν
, can be

simplified as

−ψ′′
I + νψ′′

II =

−1± νψ′
I√

1
ν
− ν + ψ′2

I

ψ′′
I ≥ 0 , (2.41)

or equivalently,

ψ′′
I ≤ 0 (2.42)

by noticing that
∣∣∣ νψ′

I√
1
ν
−ν+ψ′2

I

∣∣∣ < 1 . When ν = 1, i.e. the two CFTs have the same central

charge, the NEC (2.39) can be simplified as

ψ′
I = ψ′

II or ψ′
I = −ψ′

II , ψ′′
I ≤ 0 . (2.43)

Note that the first case in (2.43) is trivial in the sense that the brane does not play any

role, which has been discussed in (2.33). Therefore we will focus on the case with ψ′′
I ≤ 0

for all the values of ν. This condition constraints the allowed configurations of Q.

We can use NEC to study the configuration of ψII. From the junction condition (2.21),

we have

ψ′
I = ±

√
−1

ν
+ ν + ψ′2

II . (2.44)
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Note that for ν ∈ (0, 1], the expression in the square root needs to be non-negative and

this constraints the possible values of ψ′
II. Now the NEC (2.39), at z where ψ′2

II ̸= 1
ν
− ν,

becomes

−ψ′′
I + νψ′′

II =

ν ∓ ψ′
II√

− 1
ν
+ ν + ψ′2

II

ψ′′
II ≥ 0 , (2.45)

where the sign in the bracket is aligned with the sign in (2.44). When 0 < ν < 1 we

have |ψ′
II| ≥

√
1
ν
− ν > 0. In this case the possible constraints from the NEC for the

monotonic profiles are

(1) 0 < ν < 1, ψ′
II ̸= constant, ψ′

II ≥
√

1
ν
− ν, ψ′

I = +
√

− 1
ν
+ ν + ψ′2

II , ψ′′
II ≤ 0.

(2) 0 < ν < 1, ψ′
II ̸= constant, ψ′

II ≤ −
√

1
ν
− ν, ψ′

I = +
√

− 1
ν
+ ν + ψ′2

II , ψ′′
II ≥ 0.

(3) 0 < ν < 1, ψ′
II ̸= constant, ψ′

II ≥
√

1
ν
− ν, ψ′

I = −
√
− 1
ν
+ ν + ψ′2

II , ψ′′
II ≥ 0.

(4) 0 < ν < 1, ψ′
II ̸= constant, ψ′

II ≤ −
√

1
ν
− ν, ψ′

I = −
√

− 1
ν
+ ν + ψ′2

II , ψ′′
II ≤ 0.

(5) 0 < ν < 1, ψ′
II = constant, |ψ′

II| ≥
√

1
ν
− ν, ψ′

I = ±
√
− 1
ν
+ ν + ψ′2

II .

In the first four cases, we always have ψ′′
I ≤ 0 as shown in (2.42). In the case (5) the

interface brane is a straight line, which corresponds to the scenario involving a trivial

scalar field. Obviously with a nontrivial scalar field, the brane can bend in different ways.

Note that in the cases (1-4), for the specific point in the bulk where ψ′
II = ±

√
1
ν
− ν,

we have ψ′
I = 0 which is a turning point for the profile ψI of the brane. This indicates

that the brane is no longer monotonic. We will only consider the case that the brane is

monotonic in the main text.11

We show the cartoon picture of the bending branes in Fig. 2. We have used the blue

line to represent the profile of Q with ψI and the red line for ψII. In the cases (1)&(2) the

brane will extend to infinity while in the cases (3)&(4), the brane can extend to infinity

or a finite value of u.

When ν = 1, we have (2.33) with the relation ψ′
I = +ψ′

II ; or (2.34) with the relation

ψ′
I = −ψ′

II , ψ
′′
II ≤ 0 , i.e. the configurations of (2)&(3) in Fig. 2.

11In appendix A, an example of a profile ψI of the brane which is a non-monotonic function is shown

in Fig. 27 .
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(2) (1) (3)(4)

Figure 2: Cartoon plot for the four kinds of monotonic configuration of brane profile when

0 < ν < 1 and ψ′
II ̸= constant. These configurations shows clearly about the allowed convexity

of the brane.

3 Holographic entanglement entropy

The presence of a nontrivial scalar field on the interface braneQ leads to more complicated

brane profiles, indicating that the ICFT is away from a fixed point. In this section, we

will first study the entanglement entropy of a specific regime within field theory using

holographic techniques. Subsequently, we will introduce a g-function for the ICFT to

quantify the effective degrees of freedom in Sec. 3.1 and discuss the BCFT limits of

holographic entropy in Sec. 3.2. In Sec. 3.3 we will present several illustrative examples

to demonstrate the characteristic features of the system. A consistent observation is that

whenever the null energy condition is satisfied, the g-function is monotonically decreasing

from UV to IR. We will comment on the entanglement entropy for other intervals in Sec.

3.4.

xI

uI

z∗γ1

−σI xII

uII

(NI, g
I
ab) (NII, g

II
ab)

Q Q

z∗ γ2

σII(0, 0) (0, 0)

Figure 3: Cartoon plot for the configuration of the extremal surfaces γ1 and γ2 for chosen the

boundary subsystem [−σI, 0] ∪ [0, σII].

We are interested in the boundary subsystems including the interface. We consider

the subsystem [−σI, 0] ∪ [0, σII], the corresponding extremal surface contains two parts,

denoted by γ1 and γ2 as shown in Fig. 3. In the coordinate system (2.14) and using

(2.17), at a constant time t, γ1 and γ2 can be written as

γ1 =

(
t, xI[ξ1],

zI[ξ1]√
ν

)
, γ2 = (t, xII[ξ2],

√
νzII[ξ2]) , (3.1)

13



where ξ1 and ξ2 are the parameters of the two curves. The length functional is

A =

∫
dξ1

LI

√
ν

zI

√
ẋ2I +

ż2I
ν

+

∫
dξ2

LI

√
ν

zII

√
ẋ2II + νż2II , (3.2)

where the dots are derivatives with respect to ξ1 or ξ2.

For these two curves, we first perform the variation to obtain the boundary terms and

then we choose ξ1 = zI and ξ2 = zII. We get the boundary condition on the brane

x′I(z)ψ
′
I(z) +

1
ν√

x′2I (z) +
1
ν

+
x′II(z)ψ

′
II(z) + ν√

x′2II(z) + ν

∣∣∣∣∣
Q

= 0 , (3.3)

where the prime is the derivative with respect to z. Note that xI(zI) and ψI(z) are curves

for γ1 and Q respectively, similarly for the other functions.

Let us give a geometrical interpretation of (3.3). The tangent vectors for the curves

γ1 and γ2 are

V1 =

(
0, x′I[zI],

1√
ν

)
, V2 = (0, x′II[zII],

√
ν) , (3.4)

where we have chosen the parameter ξ1 = zI, ξ2 = zII. The tangent vectors of the brane

Q are

W1 =

(
0, ψ′

I[z],
1√
ν

)
, W2 = (0, ψ′

II[z],
√
ν) . (3.5)

The boundary condition (3.3) on the brane Q can be rewritten as

gIabV
a
1 W

a
1√

gIabV
a
1 V

a
1

√
gIabW

a
1W

a
1

+
gIIabV

a
2 W

a
2√

gIIabV
a
2 V

a
2

√
gIIabW

a
2W

a
2

= 0 , (3.6)

where we have used the continuous condition (2.21). The above equation can be formally

written as

V̂1 · Ŵ1 + V̂2 · Ŵ2 = 0 , (3.7)

where the hat means the normalized vector and the dot means the contraction of two

vectors by the AdS metric. (3.7) indicates that the angles between the tangent vector

of γ1 and Q and the one of γ2 and Q are supplementary, which is consistent with the

construction of geodesic in [15] when Q is a straight line.

The equations of motion from (3.2) give

x′′I −
x′I + νx′3I

zI
= 0 , x′′II −

νx′II + x′3II
νzII

= 0 , (3.8)
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where the prime are derivatives with respect to zI and zII. Obviously they take the same

form as the ones in AdS/BCFT [35, 36]. For the case that the bulk system is a portion

of AdS3 (2.14), the solutions xI(zI) and xII(zII) are circle arcs passing through the points

marked as −σI and z∗ as well as σII and z∗ in Fig. 3. Plugging these solutions into (3.3),

the boundary condition can be written as

z2 − ν(σI + ψI)(σI + ψI − 2zψ′
I)

z2 + ν(σI + ψI)2
+
ν (νz2 − (σII − ψII)(σII − ψII + 2zψ′

II))

νz2 + (σII − ψII)2

∣∣∣∣∣
Q

= 0 . (3.9)

After solving (3.9), we obtain the location z∗(σI, σII) of the extremal surface intersecting

on the interface brane. Then we can obtain the entanglement entropy in terms of the

geodesics length

SE(σI, σII) =
A(σI, σII)

4G

=
LI

4G

[
cosh−1

z2√
ν
+
√
ν(σI + ψI(z))

2

2zϵI
+ ν cosh−1 z

2ν + (σII − ψII(z))
2

2z
√
νϵII

] ∣∣∣∣∣
z=z∗

=
cI
6
log

z2∗√
ν
+
√
ν(σI + ψI(z∗))

2

z∗ϵI
+
cII
6

log
z2∗ν + (σII − ψII(z∗))

2

z∗
√
νϵII

,

(3.10)

where z∗ = z∗(σI, σII), ϵI and ϵII are UV cutoffs along the radial direction in the left

and right AdS3 and we have ignored the terms of order O(ϵ2I ),O(ϵ2II).
12 In (3.10), we

have assumed that the extremal curves are smooth and within the bulk. There exists

situations that the extremal surface passing the solution of (3.9) and the boundary point

might be out of bulk of one side, e.g. for σI ≫ σII in the configuration (3) shown in Fig.

2. In this case, we could use the squashed geodesics [37] for the extremal curves out of

the bulk, i.e. demanding the extremal curve spanning along the interface brane instead

of out of the bulk regime. We will not consider this case in our study.

Another equivalent method to obtain the boundary condition (3.9) is to minimise the

length of the geodesic with respect to the intersecting point between the geodesics and

the interface brane. Suppose that the intersecting point between the extremal surface

and the brane takes the intrinsic coordinate (t, z), the location can be solved from

d

dz

[
cosh−1

z2√
ν
+
√
ν(σI + ψI(z))

2

zϵI
+ ν cosh−1 z

2ν + (σII − ψII(z))
2

z
√
νϵII

]
= 0 , (3.11)

which is equivalent to (3.9).

12If we demand that the two cutoffs are the same on the brane Q, then we have ϵI = ϵII/ν.
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3.1 Interface entropy and g-function

Setting σI = σII = σ, the interface entanglement entropy can be defined for the interface

field theory as

SiE(σ) = SE − 1

2
SLE − 1

2
SRE (3.12)

where SE is the holographic entanglement entropy of the interval [−σ, σ] from AdS/ICFT

(3.10), while SLE and SRE are the holographic vacuum entanglement entropy of the same

interval that are obtained from the holographic CFTI and CFTII respectively, i.e.

SLE =
cI
3
log

2σ

ϵI
, SRE =

cII
3

log
2σ

ϵII
. (3.13)

Note that similar proposal has also been used in [14] for AdS/ICFT without scalar field.

One nice feature of the above definition (3.12) is that when the the brane is completely

trivially connecting the two AdS spacetime, i.e. the case of (2.33), we have SiE(σ) = 0.

Then we can define a g-function g(σ) as follows

log g(σ) = SiE(σ)

=
cI
6
log

z2∗√
ν
+
√
ν(σ + ψI(z∗))

2

2z∗σ
+
cII
6

log
z2∗ν + (σ − ψII(z∗))

2

2
√
νz∗σ

,
(3.14)

with z∗ = z∗(σ) determined from (3.9) by setting σI = σII = σ. The g-function is finite

and independent with the UV cutoffs ϵI and ϵII.

Note that log g(σ) ∈ (−∞,∞). When the brane has a constant tension, i.e. the

solution (2.29), the interface entropy SiE = log g(σ) is a constant so that the above g-

function is also a constant [14]. This is expected as the induced metric on Q is an AdS2

slice. We will show this as the first example in the section 3.3.1. Specially, when the

profiles satisfy the relations ψI(z) ≥ 0 and ψII(z) ≤ 0, we have ψI(z∗) ≥ 0 and ψII(z∗) ≤ 0,

then from (3.14), log g(σ) ≥ 0.

The monotonic behavior of log g(σ) is expected to reflect the RG flow the interface-

associated degrees of freedom of the interface field theory. In Sec. 3.1.1 we will prove

g-theorem for the profile of the case (2) in Fig. 2. In Sec. 3.3 we will present specific

examples demonstrating that log g(σ) consistently exhibits a monotonic decrease when

the NEC is satisfied, which includes other cases in Fig. 2.13

3.1.1 g-theorem

We will first prove that when the induced metric on the interface Q is asymptotic to

AdS2 in both the UV and IR limits, we have limσ→0 SiE(σ) ≥ limσ→∞ SiE(σ). Then will

13It is interesting to connect the g-function to the defect RG flow in the field theory, see e.g. [38].
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give a proof of g-theorem for the profile of case (2) in Fig. 2.

In the UV limit z → 0, the brane is asymptotically AdS2 if we assume that the brane

Q has the following asymptotic profile

ψI(z) ≃ γzn + · · · , (3.15)

and

ψII(z) ≃ ±
√

1

ν
− ν + γ2n2δ1n z + · · · , (3.16)

where the dots are the higher order term in z. From the above asymptotic behaviors,

expanding (3.9) by assuming that z∗ and σ are of same order, we have

z∗ =

√
ν

1 + γ2νδ1n
σ + · · · . (3.17)

Therefore the interface entropy in the UV limit is

SUV
iE = lim

σ→0
SiE(σ)

=
cI
6
log
(
γ
√
νδ1n +

√
1 + γ2νδ1n

)
+
cII
6

log

(√
1 + γ2νδ1n ∓

√
1− ν2 + γ2νδ1n

ν

)
+O(σ) ,

(3.18)

which is a constant in the leading term. The sign in (3.18) corresponds to the choice of

sign in (3.16). When n = 1, SUV
iE is the same as the result with trivial scalar field, which

will be written out explicitly in (3.42). When n > 1, the left brane is perpendicular to

the boundary in the near-boundary limit thus the left part contributes nothing to SUV
iE ,

i.e. we have SUV
iE = cII

6
log(1∓

√
1−ν2
ν

).

In the IR limit z → +∞, the brane is asymptotically AdS2 if we assume that the

brane Q has the asymptotic profile

ψI(z) ≃ ψ′
I(+∞)z + ... , (3.19)

and

ψII(z) ≃ ±
√
ψ′2
I (∞) +

1

ν
− ν z + ... , (3.20)

with the dots the subleading terms compared to z. Note that the above asymptotic

behaviors are not the most generic ones while a special one which would lead to the IR

geometry asymptotically AdS2. From the above asymptotic behavior and (3.9), we have

σ ≃
√

1

ν
+ ψ′2

I (+∞) z + ... . (3.21)
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The interface entropy in the IR limit is

SIR
iE = lim

σ→+∞
SiE(σ)

=
cI
6
log

(
ψ′
I(+∞)

√
ν +

√
1 + ψ′

I(+∞)2ν

)
+
cII
6

log

√
1 + ψ′

I(+∞)2ν ∓
√
1 + ψ′

I(+∞)2ν − ν2

ν
,

(3.22)

where the sign corresponds to the choice of sign in (3.20).

When the matter field on Q satisfies the NEC as discussed in Sec. 2.3, i.e. when ν ̸= 1,

or the condition ν = 1, ψ′
I = −ψ′

II, we have ψ
′′
I ≤ 0. This indicates that ψ′

I(0) ≥ ψ′
I(+∞).

From (3.18) and (3.22), we always have

SUV
iE ≥ SIR

iE . (3.23)

When ν = 1, ψ′
I = ψ′

II, we have SiE = 0 indicating the interface is trivial.

Note that (3.23) is a relation between the values of g-function at the specific UV and

IR fixed points. When we are away from the UV and IR limit, the g-function is expected

to satisfy the g-theorem d
dσ
SiE(σ) ≤ 0 along the whole RG flow. In Sec. 2.3 we have

proved that the existence of the profile indicates the NEC. With the assumption of a

given profile, now let us analyze the g-theorem in detail.

From (3.14), we have

d

dσ
SiE(σ) =

cI
6

[
2ν(σ + ψI(z∗))

z2∗ + ν(σ + ψI(z∗))2
+

2ν(σ − ψII(z∗))

z2∗ν + (σ − ψII(z∗))2
− 1 + ν

σ

]
, (3.24)

where we have used ∂SE

∂z∗
= 0.

When ν = 1, we consider (2.34), i.e. ψI(z) = −ψII(z). Eq. (3.24) can be simplified

as14
d

dσ
SiE(σ) = − cI(z

2
∗ − σ2 + ψ2

I (z∗))

3σ(z2∗ + (σ + ψI(z∗))2)
. (3.25)

The profile of system is case (2) or (3) in Fig. 2, where we can always find z2+ψ2
I (z∗) ≥ σ2

using the convex property of the interface brane and the boundary condition (3.38)

introduced in the next subsection, thus d
dσ
SiE(σ) ≤ 0 and g-theorem holds.

When 0 < ν < 1, using ∂SE

∂z∗
= 0 we can simplify (3.24) as

d

dσ
SiE(σ) =

cI
6σ

[
−2ν(σ + ψI(z∗))(ψI(z∗)− zψ′

I(z∗))

z2∗ + ν(σ + ψI(z∗))2
+

2ν(σ − ψII(z∗))(ψII(z∗)− zψ′
II(z∗))

z2∗ν + ν(σ − ψII(z∗))2

]
.

(3.26)

14In this case, the system can be viewed as an unfolding of BCFT. It was proved in [36, 39] that for

AdS/BCFT when NEC is satisfied, the g-theorem d
dσSiE(σ) ≤ 0 holds.
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For the case (2) in Fig. 2, we have ψI(0) = ψII(0) = 0, ψI(z) ≥ 0, ψII(z) ≤ 0, and the

NEC constraints ψ′′
I (z) ≤ 0, ψ′′

II(z) ≥ 0. Then

(σ + ψI(z∗))(ψI(z∗)− zψ′
I(z∗)) ≥ 0 , (σ − ψII(z∗))(ψII(z∗)− zψ′

II(z∗)) ≤ 0 , (3.27)

thus d
dσ
SiE(σ) ≤ 0, i.e. the g-theorem holds. For other cases in Fig. 2, it is not obvious

to prove the g-theorem. Moreover, the possible existence of squashed geodesics makes

the proof more complicated. Instead we will provide some examples in Sec. 3.3, to show

that it is indeed satisfied for the specific examples we considered.

3.2 BCFT limits of holographic entanglement entropy

The BCFT limit of AdS/ICFT was discussed in Sec. 2.2 and there are two different BCFT

limits, i.e. ν → 0 and ν = 1. Here we take these two BCFT limits to the entanglement

entropy and the interface entropy.

Let us first study the limit ν → 0. In this case, the BCFT limit of the geodesic can

be found by solving the boundary condition (3.9). Similar to the discussion in Sec. 2.2,

it is more convenient to work in the t, u coordinate on Q. We first rewrite (3.9) in u

coordinate

u2 − (σI + ψ̃I)(σI + ψ̃I − 2uψ̃′
I)

u2 + (σI + ψ̃I)2
+ ν

ν2u2 − (σII − ψ̃II)(σII − ψ̃II + 2uψ̃′
II)

ν2u2 + (σII − ψ̃II)2

∣∣∣∣∣
Q

= 0 , (3.28)

where the conventions in Sec. 2.2 have been used and the prime denotes the derivative

with respect to u. In the limit ν → 0, it becomes

u2 − (σI + ψ̃I)(σI + ψ̃I − 2uψ̃′
I)

u2 + (σI + ψ̃I)2

∣∣∣∣∣
Q

= 0 . (3.29)

Using the fact that the normalized tangent vector of γ1 and the brane take the fol-

lowing form in u coordinate from (3.4) and (3.5),

V̂1 =
2(ψ̃I + σI)

(ψ̃I + σI)2 + u2

(
−u, (ψ̃I + σI)

2 − u2

2(ψ̃I + σI)

)
, Ŵ1 =

1√
ψ̃′2
I + 1

(
ψ̃′
I, 1
)
, (3.30)

it is straightforward to prove that (3.29) is equivalent to

V̂1 · Ŵ1 = 0 . (3.31)
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Therefore (3.29) is exactly the boundary condition of minimal surface in AdS/BCFT [35].

Given the solution u∗ of (3.29), we can calculate the entanglement entropy in AdS/BCFT

SE =
cI
6
log

u2∗ + (σI + ψ̃I(u∗))
2

u∗ϵI
. (3.32)

The interface entanglement entropy or g-function takes the following form in AdS/BCFT,

log g(σ) = SiE(σ) =
cI
6
log

u2∗ + (σ + ψ̃I(u∗))
2

2u∗σ
. (3.33)

In the case of trivial scalar field with ϕ = 0, V = T , the configuration for the ICFT is

(2.29). From (2.36) the BCFT limit is given by

ψ̃I =
LIT√

1− L2
IT

2
u , ψ̃II = ± 1√

1− L2
IT

2
u+O(ν) . (3.34)

From (3.29), (3.32) and (3.33), the entanglement entropy takes the following form

u∗ =
√

1− L2
IT

2σ ,

SE =
cI
6
log

2σ

ϵI
+ log g =

cI
6
log

(√
1 + LIT

1− LIT

2σ

ϵI

)
,

log g =
cI
12

log

(
1 + LIT

1− LIT

)
.

(3.35)

This is precisely the result obtained in [35]. For nontrivial scalar field case, boundary

entropy is not a constant anymore [34] and the results depend on the detailed profile of

the brane Q.

Another type of BCFT limit is the ν = 1 limit. Noticing that now we have z = uI =

uII = u and we will use z-coordinate for convenient. We set σI = σII = σ and from (2.34)

we also set ψI(z) = −ψII(z) = φ(z). The boundary condition (3.3) becomes

x′I(z)φ(z) + 1√
x′2I (z) + 1

+
−x′II(z)φ(z) + 1√

x′2II(z) + 1

∣∣∣∣∣
Q

= 0 . (3.36)

Note that when ν = 1, from (3.8) the equations for xI and xII are the same, so they

should have the same solution. From the Z2 folding symmetry between the left part and

right part of the system, we have x′I = −x′II = x′ on the brane. Then (3.36) becomes

2
x′(z)φ(z) + 1√

x′2(z) + 1

∣∣∣∣∣
Q

= 0 . (3.37)
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Repeating the analysis below (3.3), (3.37) indicates that

V̂1 · Ŵ1 = V̂2 · Ŵ2 = 0 , (3.38)

which is precisely the perpendicular boundary condition of the minimal surface on the

EOW brane in AdS/BCFT. We can also use (3.8) to write (3.37) in the following form

z2 − (σ + φ)(σ + φ− 2zφ′)

z2 + (σ + φ)2

∣∣∣∣∣
Q

= 0 , (3.39)

which is just a rewrite of (3.9) by setting ν = 1, σI = σII = σ and ψI(z) = −ψII(z) = φ(z).

Note that this is also the same as (3.29) in the ν → 0 limit. Similarly, after solving above

equation to obtain the intersecting point z∗, we can calculate EE and g-function and they

just have the form of (3.32) and (3.33) by identifying u∗ → z∗ and ψ̃I(u∗) → φ(z∗).

3.3 Case studies of several examples

In this subsection, we present six distinct examples with different monotonic profiles of

the interface brane Q. An example with non-monotonic profile is shown in appendix

A. With a nontrivial scalar field, the interface field theory is expected to deviate from a

fixed point. The bending of the interface brane reflects the RG flow of interface, revealing

numerous significant physical phenomena.

Before proceeding, let us summarize our findings based on the specific examples ex-

amined:

(1) In cases where the induced metric on the interface brane Q flows from a UV AdS to

an IR AdS, the scalar potential evolves from a locally maximal in UV to a globally

minimal in IR, as shown in the solutions II, III, V. In solution I where the scalar

field is trivial, the induced metric is a pure AdS2.

(2) When the induced metric on the interface brane Q flows from a UV AdS to an IR

flat spacetime, the scalar potential evolves from a locally maximal in UV (solution

VI or the solution in Appendix A) or a locally minimal in UV (solution IV with

n > 3) to a globally minimal in IR.

(3) The relation ∂ϕV (ϕ)|ϕUV
= ∂ϕV (ϕ)|ϕIR = 0 is always satisfied for all examples.

(4) When the scalar potential exhibits non-monotonic behavior, i.e. the solutions IV and

V, multiple extremal surfaces may exist for the interval we studied. Consequently,

a first order phase transition occurs for the interface entropy SiE(σ) as σ increases.

(5) When the induced metric is asymptotically flat in IR, i.e. the solutions VI and IV

and the solution in Appendix A, the interface entropy SiE(σ → ∞) goes to −∞.
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Notably, in such cases, the scalar field could be divergent (or finite) if the interface

brane spans to z → ∞ (or a finite value) in the IR limit.

(6) The g-theorem is always consistently satisfied, i.e. SiE(σ) monotonically decreases

when σ increases. This is consistent with the analytical proof in Sec. 3.1.1.

3.3.1 Solution I with trivial scalar field

The simplest example is the case with trivial scalar field, i.e. ϕ = 0, V = T . This case

was studied in [14,15]. Now the interface Q is a straight line and the solution is given by

(2.29) and the tension is bounded by (2.30). The induced metric on the interface brane

is AdS2.

In this case, the intersection point between the minimal surface and the brane is

z∗ =

√
ν

1 + γ2ν
σ . (3.40)

Then we can calculate the entanglement entropy

SE =
cI
6
log

2σ

ϵI
+
cII
6

log
2σ

ϵII
+ log g , (3.41)

with the g-function

log g =
cI
6
log
(
γ
√
ν +

√
1 + γ2ν

)
+
cII
6

log

(√
1 + γ2ν ∓

√
1 + γ2ν − ν2

ν

)
, (3.42)

where the signs ∓ in (3.42) corresponds to the choices of sign ± in (2.29). Note that the

g-function is a constant and independent of the interval length σ. This is consistent with

the fact that the induced metric on the interface Q is an AdS2 and the interface field

theory on the boundary is expected to be a CFT. Notably, when ν = 1 and ψI = ψII = γz

we have log g = 0 which is precisely the case that the interface Q does not play any role

in the construction.

We can also perform the coordinate transformation on Poincare AdS coordinate (2.14)

via

uA =
yA

cosh(ρA/LA)
, xA = yA tanh(ρA/LA) , A = (I, II) (3.43)

then the interface entropy can be expressed as

SiE = log g(σ) =
1

4G
(ρ∗I + ρ∗II) , (3.44)

where ρ∗I , ρ
∗
II are

ρ∗I = LI log(λ
√
ν +

√
1 + λ2ν), ρ∗II = LII log

√
1 + λ2ν ∓

√
1 + λ2ν − ν2

ν
. (3.45)

which parameterize the positions of the branes. This is the same as the result in [14,15].
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3.3.2 Solution II

The second example of the interface is described by

ψI(z) =
az + bz2

1 + z
. (3.46)

The NEC (2.42) imposes the constraint a ≥ b. The solution for ψII can be represented

using elliptic integrals, which are quite complicated. Fig. 4 illustrates an example of the

brane configuration when a = 2, b = 1, LI = 1, and ν = 1/2, with the minus sign selected

for ψII. It belongs to the case (2) classified in Fig. 2.
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Figure 4: The profiles of the interface brane Q for the example (3.46) with a = 2, b = 1, LI = 1,

and ν = 0.5.

In the UV limit z → 0 and the IR limit z → ∞, ψI behaves as

ψI(z) = az + (b− a)z2 +O(z3) , (z → 0) ,

ψI(z) = bz − (b− a) +O
(
1

z

)
, (z → ∞) .

(3.47)

Therefore, we can approximate it with a straight line in both the UV and IR regimes,

and it exhibits asymptotic AdS2 behavior in both the UV and IR. Therefore the profile

can be though of a precise example in Sec. 3.1.1. The nature of fixed points can also be

confirmed by examining equation (2.26), where we find

λ(z) =− 1

L2
I (1 + a2ν)

+O(z) , (z → 0) ,

λ(z) =− 1

L2
I (1 + b2ν)

+O
(

1

z2

)
, (z → ∞) .

(3.48)

The leading term is a negative constant in both the UV and IR regimes, indicating that

the interface brane asymptotically approaches AdS2 in these regions. Interestingly, the
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condition derived from the NEC is equivalent to requiring that the effective AdS2 radius

on the interface Q satisfy LUV
Q ≥ LIR

Q for b > 0.15 The ICFT dual to the interface is

anticipated to flow from a UV fixed point to an IR fixed point.

The interface entropy at both the UV and IR fixed points can be calculated using

equation (3.42)

SUV
iE =

cI
6
log
(
a
√
ν +

√
1 + a2ν

)
+
cII
6

log

(√
1 + a2ν ∓

√
1 + a2ν − ν2

ν

)
,

SIR
iE =

cI
6
log
(
b
√
ν +

√
1 + b2ν

)
+
cII
6

log

(√
1 + b2ν ∓

√
1 + b2ν − ν2

ν

)
.

(3.49)

For the condition a ≥ b, we have

SUV
iE ≥ SIR

iE , (3.50)

as discussed already in Sec. 3.1.1. A special case is that the g-function becomes a constant

thus SUV
iE = SIR

iE when a = b and the brane becomes ψI(z) = az which is precisely the

example discussed in Sec. 3.3.1.

In the UV limit z → 0, the scalar field and its potential exhibit the following asymp-

totic behavior

ϕ2(z) =
4(a− b)LI

√
ν(
√
1 + a2ν − ν2 ∓ aν3/2)√

1 + a2ν
√
1 + a2ν − ν2

z + · · · ,

V (ϕ) =
aν3/2 ∓

√
1 + a2ν − ν2

LIν
√
1 + a2ν

− 1

4L2
I (1 + a2ν2)

ϕ2 + · · · .
(3.51)

In the IR limit as z → ∞, the scalar field and its potential demonstrate the following

asymptotic behavior

(ϕ(z)− ϕ0)
2 =

(a− b)LI

√
ν(
√
1 + b2ν − ν2 ∓ bν3/2)√

1 + b2ν
√
1 + b2ν − ν2

1

z2
+ · · · ,

V (ϕ) =
bν3/2 ∓

√
1 + b2ν − ν2

LIν
√
1 + b2ν

+
2

L2
I (1 + b2ν)

(ϕ− ϕ0)
2 + · · · .

(3.52)

where ϕ0 is a constant of integration. From the above expressions, the potential V exhibits

a maximum at ϕ = 0 and a minimum at ϕ = ϕ0. These points respectively correspond

to the UV and IR fixed points.

We show an example of this solution in Fig. 5, where the parameters are set to be

a = 2, b = 1, LI = 1, and ν = 1/2. The upper two plots are for ϕ(z) and V (ϕ). The

integration constant ϕ0 in (3.52) is 1.62. The lower two plots are for the entanglement

entropy and the interface entropy. Obviously the g-theorem is satisfied.

15The relation is no longer true for a < 0. Nevertheless, we have checked several examples and find

that the g-theorem is still satisfied.
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Figure 5: The ϕ(z), V (ϕ) (upper plots) and the entanglement entropy and interface entropy

(lower plots) for the profile (3.46). Here we set a = 2 , b = 1 , LI = 1 , ν = 0.5.

3.3.3 Solution III

The third example of the interface brane is described by

ψI(z) = a arctan(bz) + cz , (3.53)

where a, b, c are constants. We choose b > 0 since its sign can be moved out. The NEC

(2.42) demands ab ≥ 0. The solution for ψII can only be obtained numerically. In Fig. 6,

we show an example of the brane configuration. Similar to the discussion of the previous

example, the minus sign for ψII is chosen and it belongs to the case (2) classified in Fig.

2.

ψI(z) has the following asymptotic behaviour,

ψI(z) = (ab+ c)z − ab3

3
z3 +O(z5) , (z → 0) ,

ψI(z) = cz +
πa

2
− a

bz
+

a

3b3z3
+O

(
1

z5

)
, (z → ∞) .

(3.54)

The induced metric on the brane and the Ricci tensor satisfy the relation RQµν = λ(z)hµν ,
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Figure 6: The profile of the interface brane Q for the example (3.53). Here we choose a = b =

c = 1 , ν = 0.5 , LI = 1.

where

λ(z) = − 1

(1 + (ab+ c)2ν)L2
I

+O(z4) , (z → 0) ,

λ(z) = − 1

(1 + c2ν)L2
I

+O
(

1

z2

)
, (z → ∞) .

(3.55)

This indicates that the brane is also asymptotically AdS in the UV and IR limits.

The entanglement entropy can also computed from (3.42). Following the discussion

in Sec. 3.1.1, once the NEC is satisfied, we have

SUV
iE ≥ SIR

iE . (3.56)

A special case is that the g-function becomes a constant thus SUV
iE = SIR

iE when ab = 0

and the brane becomes ψI(z) = cz, i.e. the solution in Sec. 3.3.1.

In the UV limit z → 0, the scalar field and its potential behave as follows,

ϕ2(z) =
ab3LI

√
ν(
√

1 + ((ab+ c)2 − ν)ν ∓ (ab+ c)ν3/2)√
1 + (ab+ c)2ν

√
1 + ((ab+ c)2 − ν)ν

z2 + . . . ,

V (ϕ) =
(ab+ c)ν3/2 ∓

√
1 + ((ab+ c)2 − ν)ν

LIν
√
1 + (ab+ c)2ν

+ C1 · ϕ4 + . . . ,

(3.57)

where C1 are complicated functions depending on a, b, c and ν. It is interesting to see

that the effective mass of the scalar field vanishes in the UV limit which means that the

scalar field is sourceless on the brane. In the IR limit z → ∞, the scalar field and its

potential have following asymptotic behaviour,

(ϕ(z)− ϕ0)
2 =

aLI

√
ν(
√
1 + c2ν − ν2 ∓ cν3/2)

b
√
1 + c2ν

√
1 + c2ν − ν2

1

z2
+ . . . ,

V (ϕ) =
cν3/2 ∓

√
1 + c2ν − ν2

LIν
√
1 + c2ν

+
2

L2
I (1 + c2ν)

(ϕ− ϕ0)
2 + . . . .

(3.58)
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In Fig. 7, we show an example of the scalar field, the potential, as well as the

entanglement entropy and the interface entropy SiE. Obviously the g−theorem holds

and ϕ0 ≃ 1.28. Different from the behavior of SiE in Fig. 5, here when σ → 0, we have

∂σSiE → 0.
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Figure 7: The ϕ(z), V (ϕ) (upper plots) and the entanglement entropy and interface entropy

(lower plots) for the profile (3.53). Here we chose a = b = c = 1 , ν = 0.5 , LI = 1 and we have

ϕ0 ≃ 1.28.

3.3.4 Solution IV

We have considered the curved interface branes that can be approximated as straight

lines in both the UV and IR regimes in Sec. 3.3.2 and Sec. 3.3.3. Here, we will study a

more general solution that is asymptotically AdS2 in the UV regime, as shown in (2.27).

The profile ψI of the interface brane has the form

ψI = γ zn (3.59)

where n ≥ 1 and γ are constants. When n = 1, this exactly matches the case we studied

in Sec. 3.3.1 and there is no constraint on γ from NEC. In this subsection we focus on
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the regime n > 1, where the NEC further constraints γ < 0. Evaluating (2.26) we obtain

λ(z) =− 1

L2
I (1 + γ2νδn1)

+ · · · , (z → 0) , (3.60)

λ(z) =− 1

n(L2
Iγ

2ν)z2(n−1)
+ · · · , (z → ∞) . (3.61)

This implies that the brane asymptotically approaches AdS2 in the UV regime. However,

the condition λ(z) → 0 as z → ∞ indicates that it becomes flat in the deep IR.

The solution of ψII can be obtained as

ψII = ±
√

1− ν2

ν
z 2F1

(
−1

2
,

1

2n− 2
,
2n− 1

2n− 2
, − n2γ2ν

1− ν2
z2n−2

)
, (3.62)

where 2F1 denotes the hypergeometric function. Fig. 8 illustrates an example of the

brane configuration when γ = −2, n = 10, LI = 1, and ν = 1/2, with the minus sign

selected for ψII. It belongs to the case (4) classified in Fig. 2.
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Figure 8: Plots of configurations of ψI of (3.59) and ψII of (3.62). Here we have set γ = −2,

n = 10, LI = 1 and ν = 0.5.

The behaviors of the scalar field and its potential at the UV limit (z → 0) are

ϕ2 = − 2n

n− 1
LI

√
νγ zn−1 + · · · ,

V = ∓
√
1− ν2

νLI

+
(n− 1)(n− 3)

4L2
I

ϕ2 + · · · ,
(3.63)

where we have assumed ϕ(0) = 0, i.e. the source of the scalar field on Q in UV is set to

be zero. From (3.63), we observe that V ′(0) = 0 and V ′′(0) > 0 and < 0 when n < 3

and n > 3 respectively. Here, the prime ′ denotes the derivative with respect to ϕ. This

suggests that ϕ = 0 (i.e. UV) corresponds to a local maximum, and a local minimum for

n < 3, and n > 3, respectively.
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The behaviors of the scalar field and its potential at the IR limit (z → ∞) are

|ϕ| =
√

(n− 1)LI(1± ν)

2
log(z) + · · · ,

V =
∓1− ν

νLI

+ · · · .
(3.64)

In contrast to the previous examples, the scalar field ϕ undergoes a monotonic increase

until infinity while the potential V converges towards a constant. Fig. 9 shows a typical

example of the scalar field ϕ and the potential V with the same parameters in Fig. 8.

The scalar field ϕ is divergent when z → ∞. The potential is non-monotonic: V has a

local minimum at ϕ = 0 and a global minimum for large ϕ, while it has a maximum at a

finite value of ϕ.
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Figure 9: The typical configuration of the scalar field ϕ and the potential V . Here we have set

γ = −2, n = 10, LI = 1 and ν = 0.5.

Numerically, we find that the non-monotonic nature of the scalar potential can lead

to the existence of multiple extremal surfaces for the specific spatial regime we have

considered. More precisely, for the profile ψII < 0 that we analyzed in Fig. 8, there are

three possible intersection points z∗ within the interval (0.708, 0.774) of σI = σII = σ,

as illustrated explicitly in the upper two plots of Fig. 10. Furthermore, the lower plots

in Fig. 10 show the entanglement entropy S and the interface entropy SiE = log g as

functions of σ. A notable observation is that there is a first-order phase transition for

both the entanglement entropy and the boundary entropy when we increase σ. This

transition is a result of the competition among three extremal curves. We anticipate

that this result stems from the non-monotonic behavior of the scalar field’s potential.

Moreover, the interface entropy is monotonically decreasing and satisfies the g-theorem.

3.3.5 Solution V

The studies in Sec. 3.3.4 demonstrate the occurrence of multiple extremal curves in sce-

narios where the scalar potential exhibits a non-monotonic behavior. To further support
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Figure 10: The upper two figures are the typical configurations of the extremal surface for

σ = 0.75. The lower two figures are the entanglement entropy and interface entropy as functions

of σ for the profile (3.59) and (3.62) with the minus sign selected. Here we have set γ = −2,

n = 10, LI = 1 and ν = 0.5.

this observation, we will now delve into another intriguing example. We consider the

following profile for the interface brane

ψI = γ a−z − γ , (3.65)

where γ, a are constants. The NEC requires γ < 0. We set a > 1 to ensure ψI ≥ 0. After

evaluating (2.26), we find

λ(z) =− 1

L2
I (1 + γ2ν(log a)2)

+ · · · , (z → 0) ,

λ(z) =− 1

L2
I

+ · · · , (z → ∞) .
(3.66)

This implies that the brane asymptotically approaches AdS2 in both the UV and deep

IR regions.

In this case, the solution of ψII is quite complicated and its expression will be shown

here. In Fig. 11 we show an example of the profiles where γ = −5, a = 10, LI = 1 and

ν = 0.5. Note for the left portion of bulk spacetime, the brane only approaches a finite
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value of xI = −γ.16 It belongs to the case (2) classified in Fig. 2.
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Figure 11: Plots of interface brane for the example (3.65). Here we have set γ = −5, a =

10, LI = 1 and ν = 0.5.

Obtaining the analytical behavior for scalar field and the potential up to subleading

order is challenge. Here we instead present the numerical plots of ϕ and V in Fig. 12. We

observe that the scalar field ϕ tends towards a constant value ϕ0 as z increases, indicating

that the brane asymptotically approaches AdS2 in the deep IR region. Regarding the

potential V , its behavior is non-monotonic, similar to the potential in Sec. 3.3.4. It

exhibits a local maximum at ϕ = 0, corresponding to the UV fixed point, and a global

minimum at ϕ = ϕ0, corresponding to the IR fixed point. Additionally, between these

two points, the potential has a local minimum and a local maximum.
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Figure 12: Typical configuration of the scalar field ϕ(z) and potential V (ϕ). We choose

γ = −5, a = 10, LI = 1 and ν = 0.5 and we have ϕ0 = 2.09.

Similar to the observation in Sec. 3.3.4, with a non-monotonic potential, we might

have multiple extremal curves. More precisely, as illustrated in the upper two plots,

Fig. 13, for the ψII < 0 case we analyzed, there are three possible intersecting points

16This feature reminds us the profiles of the end-of-world (EOW) brane in AdS/BCFT for gapped

phases [40].
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z = z∗ within the regime (0, 1.099) of the spatial interval σI = σII = σ. In the lower two

figures in Fig. 13, we show the entanglement entropy S and the interface entropy SiE,

as functions of σ. We observe again there is a first-order phase transition in both the

entanglement entropy and the boundary entropy when we increase σ. This is due to the

competition among the multiple extremal surfaces. This observation further confirms

that the potential V ’s non-monotonic nature leads to the phase transitions of the g-

function of ICFT. Here the g-theorem is also satisfied. Note that the boundary entropy

has a lower bound and is always greater than 0 in this case and this is different from the

case in Sec. 3.3.4.
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Figure 13: The upper two plots are the multiple extremal surfaces and the lower two plots are

the entanglement entropy and the interface entropy SiE = log g as functions of σ for the profile

(3.65). Here we have set γ = −5, a = 10, LI = 1 and ν = 0.5.

3.3.6 Solution VI

In the previous discussions, we have provided several examples where, in the IR regime,

the interface brane extend to z → ∞. Here we present a specific example where the

interface brane only spans upto a finite regime of z. We consider the following profile of

the interface brane

ψI =
a

z − b
+
a

b
, (3.67)
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where a and b are constants with b > 0. The NEC constraints a > 0. Note that when x

goes to −∞, z only approaches a finite constant value b, therefore the brane exists solely

within the finite range 0 < z < b. From (2.26) we obtain

λ(z) = − b4

L2
I (b

4 + a2ν)
+O(z) , (z → 0) ,

λ(z) = O((z − b)3) , (z → b) .

(3.68)

These results suggest that the brane is asymptotic AdS2 near the UV boundary, yet

becomes flat in the vicinity of z = b, similar to the studies in Sec. 3.3.4.

The solution for ψII in this scenario is

ψII = ±

(
a

b− z
2F1

(
−1

2
,−1

4
,
3

4
,−(b− z)4(1− ν2)

a2ν

)

− a

b
2F1

(
−1

2
,−1

4
,
3

4
,−b

4(1− ν2)

a2ν

))
,

(3.69)

where 2F1 is a hypergeometric function. Note that (3.69) has a pole at z = b where the

brane is asymptotically to and the brane is defined within the interval 0 < z < b. In

Fig. 14 we show an example configurations of ψI and ψII by setting a = b = 1. This is a

special example of case (3) classified in Fig. 2. When we choose the plus sector in (3.69),

the configuration becomes to case (4) classified in Fig. 2.
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Figure 14: Plots of configurations of ψI in (3.67) and ψII with minus sector in (3.69) when

a = b = 1. We set LI = 1 and ν = 0.5.

In the UV limit z → 0, the scalar and its potential exhibit the following asymptotic

behavior

ϕ2 =
4aLI

√
ν(
√
b4 + a2ν − b4ν2 ± aν3/2)

b
√
(b4 + a2ν)(b4 + a2ν − b4ν2)

z + · · · ,

V =
−aν3/2 ∓

√
b4 + a2ν − b4ν2

LIν
√
b4 + a2ν

− b4

4L2
I (b

4 + a2ν)
ϕ2 + · · · ,

(3.70)
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where we have assumed that ϕ(z = 0) = 0. Near the z = b, the behaviors become

(ϕ− ϕ0)
2 =

4LI(1± ν)

b
(b− z) + · · · ,

V =
∓1− ν

LIν
+

b4

64a2L4
Iν(±1 + ν)2

(ϕ− ϕ0)
6 + · · · ,

(3.71)

where ϕ0 is the constant of integration and denotes the position at which the potential

V attains its minimum value.
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Figure 15: The upper two figures are plots of scalar field ϕ(z) and its potential V (ϕ). The

lower two are plots of entanglement entropy and interface entropy SiE as functions of σ. Here

we set a = b = 1, LI = 1, ν = 1/2 and consider the profile with negative sign in (3.69).

In Fig. 15, we choose the minus sign for ψII in (3.69) and set a = b = LI = 1 and

ν = 1/2. The two upper figures illustrate the configurations of the scalar field ϕ(z) and its

potential V (ϕ). We observe that the potential V monotonically decreases as a function of

the scalar field ϕ yet remains always positive. Additionally, the scalar field approaches a

maximum value of ϕ0 = 2.15 as z → b, corresponding to a local minimum of the potential

V . The evolution from ϕ = 0 to ϕ = ϕ0, which moves from a local maximum to a local

minimum of the potential V , can as thought of a RG flow from UV to IR for ICFT. The

two lower figures of Fig. 15 illustrate the EE and interface entropy as functions of the

subsystem size σ. We observe that the boundary entropy SiE decreases monotonically,

and this decrease does not have a lower bound. Together with the results of solution IV
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in Fig. 10, we suspect that this behavior is an intrinsic characteristic of a brane that is

asymptotically flat in the IR.

In Fig. 16 we consider the case that ψII in (3.69) is positive. We also set a = b = LI = 1

and ν = 1/2. The two upper figures in Fig. 16 illustrate the configurations of the scalar

field ϕ(z) and its potential V (ϕ). Similar to the case with a negative ψII, the potential V

monotonically decreases as ϕ increases, and the maximum value of the scalar field ϕ0 =

3.48 corresponds to the point where the potential reaches its minimum value. However,

in this scenario, the potential V is always negative. The two lower figures illustrate the

entanglement entropy and the interface entropy as functions of the subsystem size σ. The

interface entropy SiE again monotonically decreases from a negative value towards −∞.
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Figure 16: The upper two figures are plots of scalar field ϕ(z) and its potential V (ϕ). The

lower two are plots of entanglement entropy and interface entropy SiE as functions of σ. Here

set a = b = 1, LI = 1, ν = 0.5 and consider the profile with positive sign in (3.69).

3.4 Comment on the entanglement entropy of various subsys-

tems

In comparison to CFT or BCFT, ICFT presents a more intricate entanglement structure,

where the entanglement entropy of diverse subsystems offers a detailed exploration of the

interface dynamics [6,41]. For example, the entanglement entropy serves as a tool to char-

acterize the impact of interaction strength on the defect [6]. In [19,20], the entanglement
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structure has been studied within a class of holographic ICFT model. Interestingly, a

universal relation between the coefficients of divergent terms in the entanglement entropy

of various subsystems has been uncovered, in both Janus solutions and RS braneworld

models. Compared to the holographic models in [19, 20], due to the presence of a dy-

namical scalar field on the interface brane the induced metric might no longer be AdS2.

However, we can extract information regarding the divergent term in the entanglement

entropy from the position of the extremal surface endpoint on the boundary for the spe-

cific case (2) classified in Fig. 2.: i.e. we assume ψ′
I ≥ 0, ψ′

II ≤ 0. As in previous

discussions, we consider the case ν ≤ 1.

X

(a)

X

(b)

X

(c)

Figure 17: Cartoon plot for various boundary subsystems. CFTI,II are two halves of the straight

line and the red dot is the interface. X is the subsystem. (a) the interface is at the interior of

the subsystem and the subsystem is finite; (b) the interface is at one end of the subsystem and

the subsystem is finite; (c) the interface is at one end of the subsystem and the subsystem is

infinite.

Let us first consider the subsystem (a) in Fig. 17, which is the union of −σI ≤ xI ≤ 0

and 0 ≤ xII ≤ σII. Suppose the intersecting point S between the brane and the extremal

surface is z∗. Denote the left, right end points of the extremal surface by A,B. Then

the left Poincare coordinates of A, S are (0,−σI, ϵI) , and (0, ψI(z∗),
z∗√
ν
) and the right

Poincare coordinates of S,B are (0, σII, ϵII) and (0, ψII(z∗),
√
νz∗). Then from (3.10) the

entanglement entropy is

SE =
LI

4G
cosh−1 (σI + ψI(z∗))

2 + z2∗
ν

2 1√
ν
z∗ϵI

+
LIν

4G
cosh−1 (σII − ψII(z∗))

2 + νz2∗
2
√
νz∗ϵII

=
cI + cII

6
log

(σI + σII)

ϵ
+ (regular terms) .

(3.72)

In the last line, we have chosen ϵI =
ϵII
ν
= ϵ.

Next we consider the subsystem (b) in Fig. 17, which is 0 ≤ xII ≤ σII. For the case we

considered, the extremal surface does not cross the brane. Suppose the two end points

of the extremal surface γb are A : (tII, xII, uII) = (0, σII, ϵ) and B : (tII, xII, uII) = (0, 0, ϵ).

The entanglement entropy is

SE =
LIν

4G
cosh−1 σ

2
II + 2ϵ2

2ϵ2
=
cII
3

log
σII
ϵ

+ (regular terms) . (3.73)
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Finally, let us consider the subsystem (c) in Fig. 17, which is +∞ ≥ xII ≥ 0. Noticing

that cI ≥ cII, then the extremal surface γc is xII = 0 and the induced metric on γc is

ds2γ = L2
Iν

2dy
2
II

y2II
. (3.74)

The entanglement entropy is

SE =
LIν

4G

∫ ℓIR

ϵ

dyII
yII

=
c2
6
log

ℓIR
ϵ
, (3.75)

where ϵ is the UV cutoff and ℓIR is the IR cutoff.

From the divergence term in (3.72), (3.73) and (3.75), we can obtain an effective

central charge that satisfies the universal relation proposed in [19, 20]. In [19] it was

suggested that the endpoint of a finite interval could characterize the underlying field

theory, thus cII can be viewed as an effective central charge of the defect, satisfying the

upper bound proposed in [25]. However, as it only appears within divergent terms, it

appears to lack information regarding the dynamics of the defect along RG flow, merely

reflecting the coupling properties between the defect and CFT. A deeper understanding

on the effective central charge from the perspective of field theory, particularly when the

scaling symmetry of interface is broken, is necessary.

4 Finite temperature

We have explored the zero temperature solution and its associated interface entropy. In

this section, we extend our previous study to the finite temperature case, focusing on the

configurations of brane solutions. We will first glue two BTZ black holes along a brane

in Sec. 4.1, then glue a thermal AdS solution with a BTZ black hole in Sec. 4.2. We

mostly concern with the impact of the interface-located scalar field on the configuration.

4.1 Gluing two BTZ black holes

The planar BTZ black hole metric is given by

ds2 =
L2
A

u2A

[
−fA(uA)dt2A +

du2A
fA(uA)

+ dx2A

]
, A=I , II , (4.1)

where

fA(uA) = 1− u2A
(uHA )

2
, A=I , II . (4.2)
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Similar to the zero temperature case, LA is the AdS radius. Note that u = uHA is the

location of the horizon. We consider the case that xA is non-compact. The Hawking

temperatures of the black holes are17

ΘI =
1

2πuHI
, ΘII =

1

2πuHII
. (4.3)

The dual field theory lives at the conformal boundary u→ 0.

The boundary field consists of two semi-infinite CFTs intersecting at the interface.

Same as the zero temperature case, CFTI lives in the regime xI < 0 while CFTII is in

the regime xII > 0. The left (or right) portion of the bulk has three possible different

configurations for the brane Q related to one side of the system NI (or NII), as shown

in Fig. 18. The gray regime denotes the black hole interior, whereas the orange regime

is the bulk system NI (or NII). In the left figure “E”, there is no horizon for the bulk

geometry. In the middle figure “H1”, there is a complete horizon for the bulk geometry.

In the right figure “H2”, there is only a portion of horizon for the bulk geometry. These

notations follow those in [22].

E H1 H2

Figure 18: Cartoon plot for the configuration of different types of spacetime slice. The gray

region is the interior of the black hole. The orange region is one part of the bulk. “E” means

there is no horizon in the bulk and “H” means there is a complete or a part of horizon in the

bulk.

Suppose the intrinsic coordinate system on the interface brane Q is (t, w) and the

brane is parameterized as

tI(t, w) = tII(t, w) = t , (4.4)

and uI(w), uII(w), xI(w), xII(w). Assuming the induced metric on Q takes the form

ds2Q = −F (w)dt2 +G(w)dw2 , (4.5)

17We use Θ for temperature to avoid possible confusion with the tension T .
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satisfying

uI(w) =
uHI LI√

L2
I + (uHI )

2F (w)
, uII(w) =

uHIILII√
L2
II + (uHII )

2F (w)
,(

dxI
dw

)2

=
(uHI )

2
(
4(L2

I − (uHI )
2F (w))F (w)G(w) + L2

I (u
H
I )

2(dF
dw

)2
)

4L2
IF (w) (L

2
I + (uHI )

2F (w))
2 ,(

dxII
dw

)2

=
(uHII )

2
(
4(L2

II − (uHII )
2F (w))F (w)G(w) + L2

II(u
H
II )

2(dF
dw

)2
)

4L2
IIF (w) (L

2
II + (uHII )

2F (w))
2 .

(4.6)

One convenient parameterization is that

F (w) = w ,

G(w) =
L2
I (u

H
I )

2

4L2
Iw + 4(uHI )

2w2
+ η2I =

L2
II(u

H
II )

2

4L2
IIw + 4(uHII )

2w2
+ η2II .

(4.7)

We will solve the system under this assumption. The expression for uA and xA becomes

uI(w) =
uHI LI√

L2
I + (uHI )

2w
, uII(w) =

uHIILII√
L2
II + (uHII )

2w
,

xI(w) = −
∫ +∞

w

uHI ηI(σ)√
L2
I + (uHI )

2σ
dσ , xII(w) = −

∫ +∞

w

uHIIηII(σ)√
L2
II + (uHII )

2σ
dσ .

(4.8)

Note that the parameter w ranges from w0 to ∞, where w0 is a non-negative integra-

tion constant determined by (4.8). When w → ∞, both uI and uII tend to zero, marking

the boundary of bulk geometry, which corresponds to the UV limit.

On the hand hand, when ω0 → 0, uI and uII converge to finite values uHI and uHII
at specific, finite values of xI and xII. In this case, the brane should touch the horizon,

i.e. the configuration “H2”. Consequently, as w decreases towards zero, w → 0, xI, xII
are expected to approach finite values. Lastly, when w0 is a positive nonzero number,

the brane should only approach a finite value uA, correponding to either the “E” or

“H1” configuration. In this case, as w → w0, it is expected that xI → ±∞, xII → ±∞.

Obviously, from the possible choice of w0, the configurations [E, H2], [H1, H2], [H2, E]

and [H2, H1] are not allowed.18

With the above setup (4.8), the profile of the interface brane Q in NI or NII is

parameterized by

dxA
duA

= −2
LA

u2A
ηA(ξ)

∣∣∣∣∣
ξ=

L2
A

u2
A

−
L2
A

(uH
A

)2

, A = I, II , (4.9)

18We use [E, H2] to refer that the left bulk NI is empty while the right bulk NII belongs to type H2

shown in Fig. 18. The other pairs follow the same convention.
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with the boundary condition xA(uA = 0) = 0.

For the simplest static case ϕ = ϕ(w), there are only three independent equations in

(2.10, 2.11, 2.12, 2.13). Here we write out the explicit expressions as follows

0 =
L2
I (u

H
I )

2

4L2
Iw + 4(uHI )

2w2
+ η2I −

L2
II(u

H
II )

2

4L2
IIw + 4(uHII )

2w2
− η2II ,

V (ϕ)

2
= −(L2

I + 2w(uHI )
2)ηI(L

2
I (u

H
I )

2 + 2w(L2
I + w(uHI )

2)η2I ) + L2
I (u

H
I )

2w(L2
I + (uHI )

2w)η′I

LIuHI (L
2
I (u

H
I )

2 + 4w(L2
I + w(uHI )

2)η2I )
3
2

+
(L2

II + 2w(uHII )
2)ηII(L

2
II(u

H
II )

2 + 2w(L2
II + w(uHII )

2)η2II) + L2
II(u

H
II )

2w(L2
II + (uHII )

2w)η′II

LIIuHII (L
2
II(u

H
II )

2 + 4w(L2
II + w(uHII )

2)η2II)
3
2

,

ϕ′2(w) = −L
2
I (u

H
I )

2 + 4(L2
I + (uHI )

2w)wη2I
4(L2

I + (uHI )
2w)w2

[
− wV (ϕ)

− 2w(L2
I + (uHI )

2w)ηI

LIuHI
√
L2
I (u

H
I )

2 + 4(L2
I + (uHI )

2w)wη2I
+

2w(L2
II + (uHII )

2w)ηII

LIIuHII
√
L2
II(u

H
II )

2 + 4(L2
II + (uHII )

2w)wη2II

]
.

(4.10)

Note that in the above equations only up to first order derivative of η is involved, different

from the zero temperature case (2.22). This is due to the fact that η plays the role of

the slop of the brane which can be seen in (4.9). The first equation in (4.10) is from the

continuity of the metric field at the interface brane.

For a given potential V (ϕ), by solving (4.10) one can derive ηI(ω), ηII(ω) and ϕ(ω).

Subsequently, one can obtain the induced metric (4.5) and all the information about

the system. In practice, we solve the system in a reverse manner, similar to the zero

temperature case. More precisely, for a specified G(w), we know the form of ηI and ηII
from (4.7), i.e. the profile of the system. Then, by solving (4.10), we obtain the scalar

field ϕ and its potential V (ϕ), ensuring a consistent system.

Note that our study differs from [22], where the dual field theory was analyzed in

a compact spatial direction. In contrast, the system we investigate lacks any additional

scale, affording us the freedom to choose the unit for temperature in the dual field theory.

Similar to the discussion in Section 2.1, our focus is on a globally static configuration,

implying the existence of a global time in the dual field theory. Furthermore, we assume

that the periods of the imaginary time are identical. It is crucial to emphasize that

the temperature associated with the H1 and H2 configurations is determined by (4.3),

whereas the temperature of the type E configuration is independent of the parameter uH .

Additionally, it is worth noting that for the type E configuration, any potential conifold

singularity that arises due to an arbitrary choice of the periodicity of the imaginary time

is hidden behind the interface brane.

In all these different configurations, the brane should intersect with the boundary.
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We can find a class of solutions by imposing the following asymptotical behaviours

UV , w → +∞ , ηI(w) →
C

wa
, a ≥ 1 . (4.11)

Note that the intersecting condition only constraints a > 1/2. However, when we demand

that the brane is asymptotically AdS in the UV limit, we should have a ≥ 1. On the other

hand, in the deep IR, depending on the possible configures we have different conditions

on the functions ηI and ηII. If the interface brane intersects with the horizon of the

BTZ black holes, then ηI(w)/
√
L2
I + (uHI )

2w, ηII(w)/
√
L2
II + (uHII )

2w must be integrable

at w = 0 and there should be no singularity for ηA when 0 < w <∞. We expect that

IR , w → 0 , ηA(w) →
B

wb
, (b < 1) , for H2 (4.12)

IR , w → w0 , ηA(w) →
B

(w − w0)b
, (b ≥ 1) , for E or H1 (4.13)

where w0 > 0.

In the finite temperature case, the NEC, expressed as (∆Kµν − hµν∆K)NµN ν ≥ 0

with Nµ bing an arbitrary null vector on the brane, is again equivalent to ϕ′2(w) ≥ 0.

This is similar to the behavior observed in the zero temperature case. The NEC can be

simplified as

− (uHI )
4 ηI + (L2

I + (uHI )
2w)(−2η3I + (uHI )

2η′I)

νuHI (L
2
I (u

H
I )

2 + 4w(L2
I + (uHI )

2w)η2I )
3
2

+

+
(uHII )

4 ηII + (L2
Iν

2 + (uHII )
2w)(−2η3II + (uHII )

2η′II)

uHII (L
2
I (u

H
I )

2ν2 + 4w(L2
Iν

2 + (uHII )
2w)η2II)

3
2

≥ 0 .

(4.14)

In the special case uHI = uHII , i.e. the configuration [H1,H1]19 or [H2,H2], the NEC

(4.14) can be further simplified. When ν = 1, from the first equation in (4.10), we have

ηI = ±ηII. When ν = 1 and ηI = ηII, the NEC holds automatically. If ν = 1, ηI = −ηII,
or if 0 < ν < 1 the NEC can be further simplified as(

2η2I −
(uHI )

4

(uHI )
2w + L2

I

)
ηI − (uHI )

2 η′I ≥ 0 , (4.15)

or equivalently, (
2η2II −

(uHI )
4

(uHI )
2w + L2

Iν
2

)
ηII − (uHI )

2 η′II ≥ 0 . (4.16)

Note that here it is quite similar to the zero temperature case discussed in Sec. 2.3, i.e.

we have nontrivial constraint on the ansatz of the interface brane Q.

19We will show that the NEC will forbid this type of configuration in Sec. 4.1.6.
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The Ricci tensor of the induced metric on the brane is

RQ
µν = λ(w)hQµν , (4.17)

where

λ(w) =
−L2

I (u
H
I )

4 + 4(L2
I + (uHI )

2w)2(η2I + 2wηIη
′
I)

[L2
I (u

H
I )

2 + 4w(L2
I + (uHI )

2w)η2I ]
2 . (4.18)

From (4.11), the condition that the brane is asymptotically AdS in the UV limit (i.e.

w → ∞) is a ≥ 1 in (4.11). When a = 1, we have the following asymptotic behaviour

ηII(w) → ±
√
4C2 + L2

I (1− ν2)

2w
,

ϕ′(w) → 0 ,

V (ϕ) →
−2Cν ±

√
4C2 + L2

I (1− ν2)

LIν
√

4C2 + L2
I

,

λUV → − 1

4C2 + L2
I

.

(4.19)

When a > 1, we have the following asymptotic behaviour

ηII(w) → ±LI

√
1− ν2

2w
,

ϕ′(w) → 0 ,

V (ϕ) → ±
√
1− ν2

LIν
,

λUV → − 1

L2
I

.

(4.20)

The absolute value of the UV limit of the potential always satisfies the bound for the

tension with trivial scalar field

Tmin < |V UV| < Tmax , (4.21)

where Tmin and Tmax are defined in (2.30).

4.1.1 Permissible configurations at finite temperature

We have shown above the equations of the systems at finite temperature. We will solve

them and illustrates sample profiles. It turns out when the scalar field is trivial, the

only allowed profile of the interface brane is [H2,H2]. However, with the presence of a
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nontrivial scalar field, we find four permissible configurations: [E, E], [E, H1], [H1, E] and

[H2, H2]. These configurations are summarized in table 1. One common feature among

all the profiles we have found is that the scalar potential flows from a global maximal in

the UV region to a global minimum in the IR region. Furthermore, in the IR region, the

induced metric on the brane exhibits distinct behaviors: it could be asymptotically AdS

(in the case of [H2,H2] with a trivial scalar field), dS (for [H2,H2] with a nontrivial scalar

field) or flat (for other permissible configurations). Moreover, when the induced metric

is asymptotically flat in the IR region the scalar field diverges.

E H1 H2

E
√ √

×
H1

√
× ×

H2 × ×
√

Table 1: The permissible configurations with a dynamical scalar filed located on the interface

brane. The column denotes the profile of the interface brane in NI while the row signifies the

profile in NII.

4.1.2 The solution with trivial scalar field: [H2,H2]

Let us first study the case with ϕ = 0 and V (ϕ) = T . The zero temperature solution

has been discussed in Sec. 2.1.1 and 3.3.1. Here we consider the finite temperature

generalizations.

The equations of motion on Q (4.10) become

L2
I (u

H
I )

2

4L2
Iw + 4(uHI )

2w2
+ η2I =

L2
I (u

H
II )

2ν2

4L2
Iν

2w + 4(uHII )
2w2

+ η2II ,

LIT

2
=

−((uHI )
2w + L2

I )ηI

uHI
√
L2
I (u

H
I )

2 + 4w((uHI )
2w + L2

I )η
2
I

+
((uHII )

2w + L2
Iν

2)ηII

νuHII
√
L2
I (u

H
II )

2ν2 + 4w((uHII )
2w + L2

Iν
2)η2II

.

(4.22)

We eliminate ηII in above equations and obtain the solution of ηI which takes the

following form

ηI = ±
LIu

H
I

(
L2
Iν

2((uHII )
2 − (uHI )

2) + w(uHI )
2(uHII )

2(−1 + (1 + L2
IT

2)ν2)
)

2
√
w(L2

I + w(uHI )
2)
√
A(w − w+)(w − w−)

, (4.23)

where

w± =
−B ±

√
B2 − AC

A
(4.24)
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and

A = (uHI )
4
(
uHII
)4
L4
Iν

4

((
1 + ν

νLI

)2

− T 2

) (
T 2 −

(
1− ν

νLI

)2
)
,

B = L2
Iν

2(uHI )
2(uHII )

2
(
(uHI )

2(−1 + (1 + L2
IT

2)ν2) + (uHII )
2
(
1 + (−1 + L2

IT
2)ν2

))
,

C = −L4
I

(
(uHI )

2 − (uHII )
2
)2
ν4 .

(4.25)

In the above equations (4.25), we always have C ≤ 0 where C = 0 only occurs when

uHI = uHII . Meanwhile, A has to be positive otherwise the square root in (4.23) is negative

and therefore no consistent solution for ηI. We should impose the constraint

1− ν

νLI

< |T | < 1 + ν

νLI

. (4.26)

Note that this constraint is exactly the same as the zero temperature result discussed in

(2.30).

Similarly, the solution of ηII is obtained to be

ηII = ∓u
H
IILIν

2

L2
Iν

2((uHI )
2 − (uHII )

2) + w(uHI )
2(uHII )

2(1 + (−1 + L2
IT

2)ν2)√
w(L2

Iν
2 + w(uHII )

2)
√
A(w − w+)(w − w−)

, (4.27)

with the w±, A defined in (4.24) and (4.25).

Therefore, with a consistent solution, i.e. (4.26), we always have AC ≤ 0 and ω+ ≥ 0.

In this case where uHI ̸= uHII , we have AC < 0, leading to ω+ > 0. At first glance, one

might infer that ω+ > 0 implies the brane does not intersect with the horizon. However,

(4.8) reveals finite value for xI and xII when w0 = w+, indicating that the brane terminates

at a specific point. This behavior suggests that the interface brane does not effectively

divide the bulk into two distinct regions, making it seem unphysical. Therefore, a static

solution does not exist when the temperatures ΘI and ΘII differ. To address the issue, one

has to consider a dynamical brane solution, e.g. the holographic NESS state [42, 43], or

possibly a stationary state as described in [44]. It is noteworthy that this situation differs

from the compact case, where the brane can curve at this ending point and intersects

with the boundary again [22].

Therefore, the only allowed static solution exists when uHI = uHII , which implies ΘI =

ΘII. In this scenario, the only allowed configuration is [H2, H2]. The solutions (4.23) and
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(4.27) can be further simplified. Using (4.8) we have

xI = uHI arctanh

(
uI(−1 + (1 + L2

IT
2)ν2)√

u2I (−1 + (1 + L2
IT

2)ν2)2 + (uHI )
2(−1 + (1 + L2

IT
2)ν2 − (−1 + L2

IT
2)2ν4)

)
,

xII = uHI arctanh

(
uII(−1 + (1− L2

IT
2)ν2)√

u2II(1 + (−1 + L2
IT

2)ν2)2 + (uHI )
2(−1 + (1 + L2

IT
2)ν2 − (−1 + L2

IT
2)2ν4)

)
.

(4.28)

In Fig. 19, we show an example of the profiles when LI = 1, ν = 0.5, uHI = uHII = 2

and T = 2.99. We see that the black hole horizon attracts the interface brane to a curved

shape.
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Figure 19: An example of the configurations [H2,H2] for trivial scalar field. Here we set

LI = 1, ν = 0.5, uHI = uHII = 2 and T = 2.99.

Note that from (4.18), we have

λ(w) = − 1

4T 2

[(
1

LIν
+

1

LI

)2

− T 2

][
T 2 −

(
1

LIν
− 1

LI

)2
]
. (4.29)

This indicates that the induced metric on the interface brane is AdS2.

4.1.3 Solution with nontrivial scalar field: [H2,H2]

We have shown that the [H2,H2] configuration is the only possibility in the trivial scalar

field case. Here we will explore if such configuration exists when there is a non-trivial

scalar field.

To obtain an [H2,H2] configuration, we set

ηI =
1

2LI

1√
a+ bw2

, (4.30)
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with a > 0 , b > 0. Obviously it is a profile of type H2. The NEC in (4.15) constraints

2a(uHI )
4 − 1 ≤ 0.

We can solve the first equation in (4.10) to derive

ηII = ± 1

2LI

√
1

a+ bw2
+

L4
I (u

H
I )

4(1− ν2)

((uHI )
2w + L2

I )((u
H
I )

2w + L2
Iν

2)
, (4.31)

where we have set uHII = uHI . With the condition a > 0, b > 0, the NEC is satisfied. The

brane can be found by solving the equation

dxI
duI

= − (uHI )
2√

au4I (u
H
I )

4 + bL4
I ((u

H
I )

2 − u2I )
2
, (4.32)

with the boundary condition xI(uI = 0) = 0 . Similarly we have an differential equation

for xII(uII) which we do not write out here. We find that the functions xI(w), xII(w) are

finite in the limit w → 0 and vanish in the limit w → +∞ thus this solution is a [H2,H2]

solution. A typical example for the profile is shown in Fig. 20.
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Figure 20: An example of the configurations [H2,H2] at finite temperature with dynamical

scalar field. Here we set a = 1/5, b = 1, LI = 1, ν = 0.5, uHI = 1.

The scalar field ϕ(w) and the potential V (ϕ) are very complicated and we just show

a numerical result in Fig. 21. In the left plot, 1/w → 0 (or ∞) is the UV (or IR) limit.

We find that the potential also has a local maximal in the UV limit while a local minimal

in the IR limit.

Evaluating (4.18), we obtain the asymptotic behaviours

λ(w) ≃ − bL2
I

1 + bL4
I

+O
(

1

w2

)
, w → ∞ , (4.33)

i.e. the brane is asymptotically AdS2 in the UV limit, while

λ(w) ≃ 1− a(uHI )
4

aL2
I (u

H
I )

4
+O (w) , w → 0 , (4.34)
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Figure 21: The scalar field and its potential for the configuration [H2,H2] when a = 1/5, b =

1, LI = 1, ν = 0.5, uHI = 1.

i.e. the brane is asymptotically dS2 in the IR limit for the example shown in Fig. 19.

Similar structure of spacetime has been constructed in e.g. [45]. It would be interesting

to study our setup from the perspective of double holography [46].

4.1.4 Solution with nontrivial scalar field: [E,E] and [E,H1]

The presence of a nontrivial scalar field enables various types of configurations. This

subsection will present an example of the [E,E] and [E,H1] configurations and in the next

subsection we will show an example of the [H1,E] configuration.

As we have shown in (4.11) and (4.13), a type E or type H1 brane should have a special

behavior in the UV and IR limits, respectively. A simple example can be constructed as

follows

ηI =
a

w − bL2
I

, (4.35)

where a and b are constants. Solving the first equation in (4.10) yields the solution for

ηII

ηII = ±

√
a2

(w − bL2
I )

2
+ L2

I

(
(uHI )

2

4L2
Iw + 4(uHI )

2w2
− (uHII )

2ν2

4L2
Iν

2w + 4(uHII )
2w2

)
. (4.36)

The NEC (4.14) further constraints the parameters in a complicated way, e.g. when

uHI = uHII we have a > 0. We further impose b > 0, then the brane is of type E. After

substituting (4.35) into (4.9) and performing the integration, we obtain the profile of the

brane Q

xI = − 2auHI

LI

√
1 + buHI

arctanh
uI
√
1 + buHI
uHI

, (4.37)
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where we have used xI(uI = 0) = 0. When uI → uHI√
1+buHI

, we have xI → −∞. This

indicates that the left spacetime is of type E, i.e. there is no horizon in left spacetime.

An analytical solution for xII does not exist. Nevertheless, its derivative with respect

to uII can be derived from (4.9), from which we know that xII is a monotonic increasing

or decreasing function of uII. And there is a pole upII where xII → ±∞, as can be seen

from

dxII
duII

∝ ± 1

uII − upII
, with upII =

uHIIν√
b(uHII )

2 + ν2
. (4.38)

When we choose ηII > 0 in (4.36), the right part of the bulk contains a black hole.

This is the configuration [E,H1]. The inertial observer in the left bulk will hit the brane

and the inertial observer in the right bulk will hit the horizon. When we choose ηII < 0

in (4.36), the right part of the bulk does not contain a horizon of the black hole. Now

the configuration is [E,E]. In Fig. 22, we show the typical profiles of [E,E] or [E,H1],

depending on the sign we chose in (4.36). These profiles are allowed only when we have

a dynamical scalar field on the interface brane.
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Figure 22: An example of the configurations [E,E] or [E, H1] at finite temperature with dy-

namical scalar field. Here we set a = b = LI = 1, ν = 0.5, uHI = uHII = 1.

Similar to the previous discussions, we can show the profile of the scalar field and

its potential for the configuration, e.g. [E,H1], as shown in Fig. 23. On the brane, the

potential also has a local maximal in the UV limit and a local minimum in the IR limit.

Moreover, the scalar field diverges in the deep IR. The profiles of the configuration [E,

E] have similar behavior.

The induced metric on the interface brane is

ds2Q = −wdt2 +
(

a2

(w − bL2
I )

+
L2
I (u

H
I )

2

4L2
Iw + 4(uHI )

2w2

)
dw2 . (4.39)
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Figure 23: The scalar field and its potential for the configuration [E,H1] when a = b = LI =

1, ν = 0.5, uHI = uHII = 1. A similar profile for the configuration [E,E] can be obtained and we

do not show it here.

In the IR limit w → bL2
I , the induced metric becomes

ds2Q ≃ −bL2
Idt

2 +
a2

(w − bL2
I )
dw2 , (4.40)

which implies the brane is not a black hole.

Evaluating (4.18), we obtain the asymptotic behaviours

λ(w) ≃ − 1

4a2 + L2
I

+O
(

1

w2

)
, w → ∞ , (4.41)

i.e. the interface brane is asymptotically AdS in the UV limit, while

λ(w) ≃ −w − bL2
I

2a2bL2
I

+O
(
(w − bL2

I )
2
)
, w → bL2

I , (4.42)

i.e. the interface brane is asymptotically flat in IR limit.

4.1.5 Solution with nontrivial scalar field: [H1,E]

In this subsection we show an example of the configuration [H1,E]. Motivated by the

previous subsection, we consider the following configuration

ηI =− a

w − bL2
I

,

ηII =−

√
a2

(w − bL2
I )

2
+ L2

I

(
(uHI )

2

4L2
Iw + 4(uHI )

2w2
− (uHII )

2ν2

4L2
Iν

2w + 4(uHII )
2w2

)
.

(4.43)

The NEC (4.14) constraints the choices of the parameters. We find that under the choice

of parameters a = 3, b = 1, LI = 1, uHI = 3, uHII = 1, ν = 0.5, the NEC is satisfied.
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Figure 24: Plot of the configuration [H1, E] for a = 3, b = 1, LI = 1, ν = 0.5, uHI = 3 and

uHII = 1.

This case provides an example of configuration [H1,E]. The profiles of the configuration

is shown in Fig. 24.

In Fig. 25 we show the profiles of the scalar field and its potential. Similar to

the previous examples, the potential evolves from a local maximum in UV to a global

minimum in IR. In the deep IR, the induced metric on Q is asymptotically flat, which is

again associated with a divergent scalar field in IR.
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Figure 25: The scalar field and its potential for the configuration [H1, E] when a = 3, b =

1, LI = 1, ν = 0.5, uHI = 3 and uHII = 1.

4.1.6 Solution with nontrivial scalar field: no [H1,H1]

We have demonstrated examples of the [E,E], [E,H1] and [H2,H2] configurations. The

nonexistence of the [E,H2], [H1,H2], [H2,E] and [H2,H1] configurations has been men-

tioned below (4.8). It can be seen as follows: Suppose there exists a solution for [E,H2]

or [H1,H2]. For E or H1 configuration, there exists a lower bound at w = w0 where the

value of xI approach ∞ or −∞. However, for the other side, from (4.8), uII can not
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approach the horizon when w → w0. Therefore the configurations [E,H2] and [H1,H2]

are not allowed. Similar arguments apply for the [H2,E] and [H2,H1] configurations. In

the following, we will prove that the [H1,H1] configuration cannot exist neither from the

NEC.

If there exists an [H1,H1] solution, i.e. we can find a function ηI(w). Supposing

w0 > 0 is the lower bound of w where the brane goes to xI → ∞. From (4.9), we have

x′I(uI) ∼ −ηI(w) → ∞ when w → w0. We assume this solution satisfies the NEC (4.15)

which is only valid when we impose uHI = uHII .
20 Then when w decreases to w0, we should

have η′I → −∞ thus x′I(uI) → ∞. This implies that when uI increase to uI(w0), we have

xI(uI) decrease. This means it is impossible to approach the critical value w → w0 from

below. One possibility is that we have a turning point for the non-monotonic profile of

the interface brane. However, in this case one could repeat the aforementioned reasoning

near the turning point, where u′I(xI) = 0. By doing so, we arrive at the conclusion that

it is indeed impossible to obtain the profile [H1, H1].

4.1.7 BCFT limit

Here we briefly discuss the the BCFT limits of the system, following the same method

for the zero temperature case. The first BCFT limit is ν → 0, the equation of motion in

(4.10) becomes

ηII = ±1

2

√
LI(uHI )

2

w(L2
I + (uHI )

2w)
+ 4η2I +O(ν2) ,

ϕ′2(w) = −
LI

(
(uHI )

4ηI + (L2
I + (uHI )

2w)((uHI )
2η′I − 2η3I )

)
2uHI (L

2
I + (uHI )

2w)
√
L2
I (u

H
I )

2 + 4w(L2
I + w(uHI )

2)η2I
+O(ν) ,

V (ϕ) = ± 1

LIν

− 2(L2
I + 2w(uHI )

2)ηI(L
2
I (u

H
I )

2 + 2w(L2
I + w(uHI )

2)η2I ) + 2L2
I (u

H
I )

2w(L2
I + (uHI )

2w)η′I

LIuHI (L
2
I (u

H
I )

2 + 4w(L2
I + (uHI )

2w)η2I )
3
2

+O(ν) .

(4.44)

Similar to the zero temperature case (2.36), there is a divergent term 1
LIν

in the expression

of V (ϕ). In above equations, the parameter uHII appears in higher order terms.

The second way to obtain a BCFT is to consder the limit ν = 1, uHI = uHII and

ηII = −ηI , where we can perform the folding trick. In this case, the nontrivial equations

20For the configurations [H1,E] and [E, H1] we do not have such constraint and therefore the following

argument does not apply for these two cases.

51



of motion are

ϕ′2(w) = −
LI

(
(uHI )

4ηI + (L2
I + (uHI )

2w)((uHI )
2η′I − 2η3I )

)
uHI (L

2
I + (uHI )

2w)
√
L2
I (u

H
I )

2 + 4w(L2
I + w(uHI )

2)η2I
,

V (ϕ) =

− 4(L2
I + 2w(uHI )

2)ηI(L
2
I (u

H
I )

2 + 2w(L2
I + w(uHI )

2)η2I ) + 4L2
I (u

H
I )

2w(L2
I + (uHI )

2w)η′I

LIuHI (L
2
I (u

H
I )

2 + 4w(L2
I + (uHI )

2w)η2I )
3
2

,

(4.45)

where the quantities ϕ′2(w), V (ϕ) are twice of those in (4.44).

4.2 Gluing thermal AdS3 and BTZ black hole

In this subsection we will glue a thermal AdS3 with a BTZ black hole along the interface

brane. The permissible configuration in thermal AdS3 spacetime is expected to be of

type empty, denoted as EtAdS, while the allowed configurations for a BTZ black hole can

be type E, H1 or H2 as illustrated in Fig. 18. In the absence of a scalar field, we will

show that finding a solution is impossible. However, with the inclusion of a brane-located

scalar field, we will demonstrate that the permissible configurations only include [EtAdS,

E], and [E, EtAdS].

The metric for thermal AdS3 is (2.14), and the metric for BTZ is (4.1). Note that one

can set uHA → ∞ with A = I or II in (4.1) to make it a thermal AdS3. As an example,

we take the left portion of the bulk as thermal AdS3 while the right portion of spacetime

as BTZ black hole. The parameterization is

uI(w) =
LI√
w
, uII(w) =

uHIILII√
L2
II + (uHII )

2w
,

xI(w) = −
∫ +∞

w

ηI(σ)√
σ
dσ , xII(w) = −

∫ +∞

w

uHIIηII(σ)√
L2
II + (uHII )

2σ
dσ .

(4.46)

It is straightforward to generalize following analysis to the case that the left portion is

BTZ black hole while the right portion is a thermal AdS spacetime.

Plugging the above parameterization into the equations in Sec. 2 we can obtain the

equations for this case. Another consistent way is to take the limit uHI → ∞ to the
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equations in Sec. 4.1. The independent equations of motion are

0 =
L2
I

4w2
+ η2I −

L2
II(u

H
II )

2

4L2
IIw + 4(uHII )

2w2
− η2II ,

V (ϕ)

2
= −2wηI(L

2
I + 2w2η2I ) + L2

Iw
2η′I

LI(L2
I + 4w2η2I )

3
2

+
(L2

II + 2w(uHII )
2)ηII(L

2
II(u

H
II )

2 + 2w(L2
II + w(uHII )

2)η2II) + L2
II(u

H
II )

2w(L2
II + (uHII )

2w)η′II

LIIuHII (L
2
II(u

H
II )

2 + 4w(L2
II + w(uHII )

2)η2II)
3
2

,

ϕ′2(w) = −L
2
I + 4w2η2I
4w3

[
− wV (ϕ)

− 2w2ηI

LI

√
L2
I + 4w2η2I

+
2w(L2

II + (uHII )
2w)ηII

LIIuHII
√
L2
II(u

H
II )

2 + 4(L2
II + (uHII )

2w)wη2II

]
.

(4.47)

The NEC becomes

− ηI + wη′I

ν(L2
I + 4w2η2I )

3
2

+
(uHII )

4 ηII + (L2
Iν

2 + (uHII )
2w)(−2η3II + (uHII )

2η′II)

uHII (L
2
I (u

H
I )

2ν2 + 4w(L2
Iν

2 + (uHII )
2w)η2II)

3
2

≥ 0 , (4.48)

which is again consistent with the condition ϕ′2 ≥ 0.

One observation from the continuous equation for the metric field is that the profile

[EtAdS, H2] does not exist. If such configuration exists, the parameter regimes for w

should be from zero to infinity. Then from the first equation in (4.47), we have ηII → 1
w

when w → 0. However, from (4.47) we know xII → ∞. Therefore it is not possible to

have the profile [EtAdS, H2]. Note that this observation does not depend on whether there

is any scalar field located on the interface brane.

When the scalar field is trivial, i.e. ϕ = 0, V = T , one can confirm that there is no

solution for this case as follows. Solving (4.47), one obtains

ηI = ± LI

2w

L2
Iν

2 + (uHII )
2(1− (1 + L2

IT
2)ν2)w√

(1− (1− LIT )2ν2) (uHII )
2w + L2

Iν
2
√

((1 + LIT )2ν2 − 1) (uHII )
2w − L2

Iν
2
.

(4.49)

Similarly one can obtain a solution of ηII from the above expression. From (4.49) one

finds that the tension has to be in the regime (2.30). Furthermore, the parameter w takes

value from w0 = L2
Iν

2/(((1 + LIT )
2ν2 − 1) (uHII )

2) to infinity which means it can not be

the profile of H2 on the BTZ side. Close to w0 we find ηI ∝ 1/
√
w − w0 which indicates

xII is finite. This is inconsistent with the profile E and H1. Therefore we do not have

any consistent solution for this case of trivial scalar field with constant tension on the

interface brane.
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We find (4.43) with ν = 1 and uHI → ∞ satisfies all the above equations,

ηI =− a

w − bL2
I

,

ηII =−

√
a2

(w − bL2
I )

2
+ L2

I

(
1

4w2
− (uHII )

2ν2

4L2
Iν

2w + 4(uHII )
2w2

)
.

(4.50)

This can give the solution of [EtAdS, E]. With the choice of a = 2, b = uHII = LI = ν = 1,

we show the profiles as well as the scalar potential in Fig. 26. Here again the potential

evolves from a locally maximal in UV to a global minimal in IR. Note that when a < 0 in

(4.50), e.g. the choice of a = −2, b = uHII = LI = ν = 1, we also have consistent solutions.

Now the brane in the left bulk curves towards xI → −∞, while in the right bulk it curves

towards xII → +∞. The scalar field and its potential exhibit similar behaviors to the

one shown in Fig. 26. We will not show the plots here.
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Figure 26: Top: Plots of configurations xI and xII. Bottom: Plots of the scalar field ϕ as

a function of 1/w and its potential as a function of ϕ. The parameters are chosen to be

a = 2, b = uHII = LI = ν = 1.

Suppose there exists a configuration [EtAdS, H1], from (4.12) we should have when

w → w0

ηII →
B

(w − w0)b
(4.51)
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with b ≥ 1, w0 > 0 and B > 0. From the first equation in (4.47), we should have

ηI → ± B
(w−w0)b

when w → w0. From the last equation in (4.47), we find for both plus

and minus sectors in ηI,

ϕ′2 → − B2LIν

2uHII
√
L2
Iν

2w0 + (uHII )
2w2

0

(w − w0)
−2b . (4.52)

Therefore it is impossible to find a consistent solution of [EtAdS, H1] as above behavior.

Note that when B < 0 in (4.51), we have a consistent solution, i.e. ϕ′2 > 0 as expected.

When the left side is a BTZ black hole while the right side is thermal AdS3, by

exchange ηI with −ηII as well as other geometry quantities, we obtain the same results

as above. Namely, only configuration of type [E, EtAdS] is permissible, while all other

configurations are not allowed.

Therefore, with a dynamical scalar field, solutions of type [EtAdS, E], [E, EtAdS] are

permissible. However, the solutions [EtAdS, H1], [H1, EtAdS], [EtAdS, H2] and [H2, EtAdS]

do not exist due to the NEC or the requirement of metric compatibility on the interface

brane.

Finally, let us briefly discuss the above configuration. This category of intriguing

configurations includes [EtAdS,E], [E,EtAdS], [EAdS,EAdS] and [E,E]. The latter two type

of solutions were previously discussed in Sec. 3.3.6, and Sec. 4.1.4. These configurations

share the common feature of covering only an “empty” portion of the spacetime, devoid

of horizons. The metrics of EAdS and EtAdS are the same in real time but differ solely in

the periodicity of Euclidean time. These two solutions are quite different from the type E

solution of the BTZ black hole, as no regular coordinate transformation can make them

the same. Additionally, the properties of the dual field theory for the bulk AdS and type

E solution of BTZ black hole differ, exhibiting different vacuum expectation value (VEV)

of energy densities [47].21 Note that both the left and right portions of the bulk do not

involve horizons, allowing for arbitrary periodicity of Euclidean time, independent of the

Hawking temperature in black hole case. While a conifold singularity may exist for type

E in the Euclidean BTZ black hole, it is hidden behind the interface brane. Considering

both the similarities and differences among these configurations, it would be interesting

to understand the detailed emergence of specific bulk geometries for a given ICFT.

21It is crucial to keep in mind that the vacuum expectation value of the operators in the dual field

theory might be influenced by the special dynamics occurring on the brane. For instance, a discussion

on the VEV of scalar operator in AdS/BCFT can be found in [36]. It would indeed be intriguing to

explicitly calculate the VEV of the energy momentum tensor in these various scenarios.
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5 Conclusions and open questions

We have studied an AdS3/ICFT2 system, focusing on the role of a dynamical scalar field

residing on the interface brane. This bulk scalar field serves as a distinguishing feature,

characterizing nontrivial intrinsic dynamics within the interface field theory. At zero

temperature, we show the typical profiles of the system, highlighting scenarios where the

interface field theory deviates from the fixed point. We define an interface entropy from

the holographic entanglement entropy, providing a quantitative measure of entanglement

at the interface. Through the examination of several illustrative examples, we consistently

observe that the g-theorem is upheld whenever the null energy condition is satisfied. In

the beginning of Sec. 3.3 we outline a summary of our intriguing findings on the interface

entropy during the evolution of the scalar potential along the RG flow. These observations

provide further insights into the intricate interplay between holography and properties of

the interface field theory.

We have also studied the configurations at finite temperature. We first glue together

two BTZ black holes along an interface brane. In the absence of a scalar field the only

permissible profiles are two segments of BTZ black hole spacetime with the interface

brane intersecting the horizon. However, with the inclusion of a brane-localized scalar

field, there are more allowed profiles, as summarized in Table 1. Moreover, we also glue

together a thermal AdS3 spacetime with a BTZ black hole, further exploring the rich

configurations enabled by the brane-localized scalar field.

There are several potential extensions of our work that deserve further exploration.

While we have primarily focused on static systems, where a global time exists and the

interface brane remains static, it would be intriguing to generalize our analysis to the

dynamical interface branes. Such a generalization would enable us to investigate the

diverse configurations and entanglement structures that may arise, providing deeper in-

sights into the behavior of the g-theorem when the interface field theory deviates from

the fixed point.

It is also interesting to generalize our study to scenarios involving multiple interfaces in

ICFTs. The emergence of diverse interface brane topologies and the exploration of phase

transitions among them offer rich physics for exploration. In the case of AdS/ICFT with

CFTs living in compact spaces, it was shown that there are also multiple phases [22],

with the phase transition identified as manifestations of the ER=EPR hypothesis [48,

49]. However, within our current setup, the absence of additional dimensional quantities

beyond temperature precludes such phase transitions. Nevertheless, in systems involving

CFTs living in non-compact spaces, the presence of multiple defects introduces extra

dimensional quantities associated with the finite interval between the defects. Exploring

phase transitions in such settings would provide valuable insights into the holographic
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dual of an ICFT.

We introduced a dynamical brane-localized scalar field to break the scaling symmetry

of the interface field theory. It would be worthwhile to explore the impact of incorporat-

ing other matter fields or higher derivative gravitational effects on the interface brane.

Subsequently, studying the coefficients of energy transport and entanglement structure

within these models would be intriguing. This exploration could shed light on the poten-

tial universality of these energy transport coefficients, as proposed in [16,18].

Another natural extension of our work would be to explore higher-dimensional AdS/ICFT

scenarios. Additionally, investigating the stability of the system through the analysis of

its perturbations presents an intriguing direction. Lastly, delving deeper into the under-

standing of AdS/ICFT from the perspective of bulk reconstruction [50] would be a highly

intriguing avenue for future research.
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A Configurations of non-monotonic profile at zero

temperature

In this appendix we show an example of non-monotonic profile for the interface brane.

The interface brane profile in NI is chosen as

ψI(z) =− az(z − b) . (A.1)

The NEC constrains a ≥ 0 and we will focus on the case a > 0, b > 0 where ψI(z) is non-

monotonic clearly. This brane is asymptotically AdS in UV. From (2.21), the solution of

ψII(z) is

ψII(z) = ±(2z − b)

4

√
1− ν2 + a2(2z − b)2ν

ν

∓ 1− ν2

2aν
tanh−1 2az

√
ν√

1− ν2 + a2b2ν −
√

1− ν2 + a2(2z − b)2ν

∓ b

4

√
1 + a2b2ν − ν2

ν
∓ ν2 − 1

2aν
tanh−1

√
a2b2ν + 1− ν2

ab
√
ν

.

(A.2)
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It is monotonic in NII.

An example of the configuration (A.1) and (A.2) is shown in Fig. 27 when a = b =

LI = 1, ν = 0.5.
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Figure 27: Typical configurations of ψI and ψII when a = b = LI = 1, ν = 0.5. We have chosen

the minus sector for ψII in (A.2).

In the UV limit z → 0, the scalar and its potential have following asymptotic be-

haviour

|ϕ(z)| = 2

[
aLI

√
ν

1 + a2(b− 2z)2ν

(
1∓ a(b− 2z)ν

3
2√

1 + a2(b− 2z)2ν − ν2

)] 1
2 √

z + ... ,

V (ϕ) = −

√
ν
(
−ab± (a2b2 + 1

ν
− ν)

3
2 − a3b3ν +

√
ν(1− ν + a2b2ν)

)
LI(1 + a2b2ν)

3
2

+m2ϕ2 + ... ,

(A.3)

and

m2 =
±abν2 −

√
ν(1− ν + a2b2ν)

4L2
I (1 + a2b2ν)(

√
ν(1− ν + a2b2ν) + abν2)

. (A.4)

In the IR limit z → +∞, the scalar and its potential behave as

|ϕ(z)| =
√
LI(1± ν)

2
log z + ... ,

V (ϕ) =
∓1− ν

LIν
+

1∓ ν

4a2LIν

1

z2
+O

(
1

z3

)
.

(A.5)

In Fig. 28, we show an example of the profiles of the scalar field and its potential

where we choose ψ′
II ≤ 0. The scalar field goes to infinity in the deep IR resulting in a

flat induced metric. Along the RG flow, the monotonic potential is a maximum in UV

and minimal in IR.
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Figure 28: Typical configurations of the scalar field and its potential when a = b = LI = 1, ν =

0.5. In the limit z → ∞, ϕ(z) diverges and V (ϕ) approaches a constant value V0 = 1.

In Fig. 29, we show an example of the entanglement entropy and the interface entropy,

where we choose ψ′
II ≤ 0. We see that the interface entropy goes to −∞ in the deep IR

and the g-theorem holds.
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Figure 29: Typical configurations of the scalar field and its potential when a = b = LI = 1, ν =

0.5.

Evaluating (2.26) we obtain

λ(z) = − 1

L2
I (ν

2 + a2b2)
, (z → 0) , (A.6)

λ(z) = 0 , (z → ∞) . (A.7)

This implies that the brane asymptotically approaches AdS2 in the UV regime. However,

the condition λ(z) → 0 as z → ∞ indicates that it becomes flat in the deep IR.
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