
Na Vacancy Driven Phase Transformation and

Fast Ion Conduction in W-doped Na3SbS4 from

Machine Learning Force Fields

Johan Klarbring∗,†,‡ and Aron Walsh†

†Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ,

United Kingdom

‡Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83,
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Abstract

Solid-state sodium batteries require effective electrolytes that conduct at room tem-

perature. The Na3PnCh4 (Pn = P, Sb; Ch = S, Se) family have been studied for their

high Na ion conductivity. The population of Na vacancies, which mediate ion diffu-

sion in these materials, can be enhanced through aliovalent doping on the pnictogen

site. To probe the microscopic role of extrinsic doping, and its impact on diffusion and

phase stability, we trained a machine learning force field for Na3−xWxSb1−xS4 based

on an equivariant graph neural network. Analysis of large-scale molecular dynamics

trajectories shows that an increased Na vacancy population stabilises the global cubic

phase at lower temperatures with enhanced Na ion diffusion, and that the explicit role

of the substitutional W dopants is limited. In the global cubic phase we observe large

and long-lived deviations of atoms from the averaged symmetry, echoing recent ex-
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perimental suggestions. Evidence of correlated Na ion diffusion is also presented that

underpins the suggested superionic nature of these materials.

Introduction

As the development of solid-state lithium-ion batteries is maturing,1–3 an increased emphasis

is being placed on alternative battery chemistries to reduce future lithium demand for energy

storage technologies. Beyond Li, Na-ion batteries have distinct advantages in that Na is

cheaper and more abundant.4 Among promising candidate materials, the class Na3PnCh4,

where Pn = P or Sb and Ch = S or Se, stands out.5 Na3PS4 was demonstrated as a solid-

state electrolyte in 2012 by Hayashi et al.,6 and a host of studies have followed, attempting

to understand and optimize materials in this class.

It has since been realised that Na+ vacancies are key to the high Na+-diffusivity. Indeed,

samples prepared with low intrinsic Na+-vacancy concentrations are poor ionic conductors,

while samples with higher defect concentrations show much higher conductivities.7–9 Along

these lines, several studies have identified aliovalent substitutional doping as an effective

way to introduce charge-compensating Na+-vacancies, and thus boost the ionic conductivity

in these materials. In particular, doping W+6 on the Pn+5-site has been demonstrated to

effectively increase the ionic conductivity and Na3−xWxSb1−xS4, for x ∼ 10-12 % shows

among the highest room temperature (RT) Na-ion conductivity of any solid-state material

to date.10,11

Materials in the Na3PnCh4 class crystallize in a tetragonal structure (space group P 4̄21c)

at low temperatures and transform to a cubic phase (space group I 4̄3m) on heating. In

addition to boosting the ionic conductivity, substitutional doping, has been shown to have

a large influence on the tetragonal to cubic phase transformation temperature, TC . Indeed,

while pristine Na3SbS4 stays tetragonal up to at least∼ 440 K,12 Na2.9W0.1Sb0.9S4 transforms

below RT.9
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An interesting feature of these materials is that different samples show either a tetragonal

or cubic average structure depending on synthesis route,8 while local structural probes, such

as eg. pair distribution function (PDF) measurements, show that the local structure is better

described by the tetragonal phase, even in samples where the long-range averaged structure

is cubic.8 In particular, recent work on W-doped Na3SbS4
9 showed that 10% W-substitution

yields an averaged cubic phase at RT, while PDF, Raman and nuclear magnetic resonance

(NMR) measurements hint at a local structure of lower symmetry. This type of discrepancy

between long-range global- and local symmetry appears to be a feature of many modern

energy materials, eg. the halide perovskites.13,14

The functionality of these materials is the result of an intricate interplay between dop-

ing, local- and average structure, phase transformations and ionic diffusion, and the separate

effects of each of these phenomena are not fully understood. Atomistic modeling offers an at-

tractive route to address these questions, and several density functional theory (DFT) based

studies have been performed in recent years. Nevertheless, the inherently high computa-

tional cost of DFT prohibits simulations from covering the range and time-scales required to

properly investigate the phenomena mentioned above. Towards this end, classical molecular

dynamics (MD) simulations can be leveraged, as for instance done by Sau et al to study

the ion conduction in Na3PS4.
15 The force-fields used in classical MD studies, however, are

often not accurate enough and, in particular, often suffer from transferability issues between

different systems and across dopant ranges.

Machine-learned force-fields (MLFFs) offer a potential route to overcome these issues.16

Indeed, rapid progress has been made in recent years in the design of accurate and com-

putationally efficient machine-learning architectures. These modern MLFFs are being ap-

plied to study progressively more complex problems, including ionic diffusion in solid-state

electrolytes, and phase transformations in complex energy materials. Nevertheless, their

accuracy in describing phase-transformations and diffusion, and their interplay, in substitu-

tionally doped solid-state electrolyte materials, remains an open question.
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In this work, we construct an MLFF based on the Allegro17,18 architecture, an equiv-

ariant graph neural network, capable of running large-scale MD simulations and accu-

rately describing and providing physical insight into the intricate interplay between substitu-

tional W-doping, structural phase transformations and diffusion in Na3−xWxSb1−xS4. Using

our trained MLFF, we show that W-doping, provided that it is accompanied by charge-

compensating Na-vacancies, results in a monotonous decrease in the cubic-to-tetragonal

phase transformation temperature, in full agreement with available experimental data. We

then show that this reduction in TC is an effect of the Na-vacancies, rather than the W-

dopants. We further show that our model can reproduce the Na-ion diffusion in fair agree-

ment with experimental data, and that, again, W-dopants have little effect on the diffusion

other than introducing Na-vacanies. We also explicitly show, through calculation of the

Haven ratio, that the Na-ion diffusion in these systems is correlated. In summary, we demon-

strate that a carefully constructed MLFF can describe diffusion and phase transformations

in prospective doped Na-ion electrolyte materials.

Methodology

Allegro Machine Learning Force Field construction

Allegro17 is a recently developed equivariant graph neural network (GNN) potential. While

many MLFF architectures ensure translational and rotational invariance of the predictions

by using invariant scalar descriptors based on eg. distances, angles or dihedrals, the equiv-

ariant GNNs act directly on displacement vectors in a symmetry-respecting way.19 This can

result in more accurate, stable and data efficient models. Different to several equivariant

GNNs,19,20 which rely on message passing, Allegro is strictly local, which allows for efficient

parallelization and makes simulations of very large system sizes possible.17,18

To generate a robust training set, we utilize a two step procedure. First, we generate a set

of configurations using an on-the-fly learning procedure implemented in VASP21,22 where a
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Gaussian approximation potential (GAP)-style23 potential is re-fit to data picked out during

and MD run based on a Bayesian error prediction. These runs are performed on 128 atom

supercells corresponding to 2 × 2 × 2 expansions of the conventional cubic unit cell. We

do separate runs for a few different Sb-W configurations ranging from 0 to 4 W-dopants

(up to 25 atomic %) with 1 charge-compensating Na-vacancy introduced per W dopant.

Using this training set we fit a preliminary Allegro MLFF. The purpose of this initial model

is purely to allow us to run cheap and stable MD simulations for a range of W-dopant

concentrations. Second, using this preliminary force-field, we perform MD simulations using

the atomic simulation environment (ASE)24 in 2× 2× 4 supercells for a total of 11 different

W/Sb configurations, with W-concentrations ranging from 0 to 25 %. These configurations

cover both highly clustered and highly separated distributions of W dopants. Each W/Sb

configuration is ran for 200 ps at 700 K and 200 ps at 200 K. We then pick out a total of

2861 configurations from these MD runs and run single-point DFT calculations on them to

make up the final training and validation sets.

Our Allegro model used a 6.5 Å radial cutoff and 2 layers. We used 32 tensor features

with lmax = 2 and full O(3) symmetry. The 2-body latent multi-layer perceptron (MLP)

and later latent MLP had dimensions [64, 128, 256, 512] and [512], respectively and SiLU

non-linearities. The final edge-energy MLP had dimensions [128] without non-linearity. In-

teratomic distances were embedded using trainable Bessel functions. The training and vali-

dation set consisted of 2289 and 572 structures, respectively, and were reshuffled after each

epoch during training. The loss function was equally weighted between Allegros per atom

energy, force and stress terms. The training used the pytorch25 Adam optimizer and ran for

1121 epochs using a batch size of 5 and a learning rate of 0.001.

A test set was generated using the final Allegro model by running MD using 2 × 2 × 4

supercells at 600, 400 and 200 K for 10 ps each using 6 different W/Sb configurations

ranging from 0 to 18.75 %. These W/Sb configurations were generated independently from

the training set. The test set contained 180 structures. The final model achieves root mean
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squared errors (RMSE) on this test set of 0.38 meV/atom, 28 meV/Å and 0.18 kbar, for

energies, force components and stress components, respectively. See SI Fig. 1 for parity and

error distribution plots. The model is further validated versus DFT by comparing nudged

elastic band (NEB) diffusion barriers, phonon dispersions and soft-mode potential energy

surfaces (PES), achieving satisfactory accuracy in all cases, see SI.

The final training and validation and test set as well as the final trained model is available

at 10.5281/zenodo.10891472.

Simulations using the final MLFF were run on stoichiometric Na3SbS4 and the W-doped

system with charge compensating Na-vacancies, Na3−xWxSb1−xS4. In addition, we also

performed simulations on Na-deficient systems, Na3-xSbS4, and on W-doped systems with no

compensating Na-vacancies, Na3Sb1-xWxS4, where the charge compensation is implicit. Here

the potential energy surface described charged sodium vacancies/W-dopants, but without

the explicit presence of compensating W dopants/Na-vacancies. This is feasible since the

potential is short-ranged and local, and the training set contains large-enough regions with

and without dopants in proximity of the Na vacancies.

Density Functional Theory Calculations

All DFT calculations used for the training, validation and tests sets were performed using

VASP,26–28 within the Projector Augmented Wave formalism29 and the r2SCAN30 exchange-

correlation functional. For the final training set we used a cutoff energy of 520 eV and a

2×2×1 Monkhorst-Pack k -point grid for the 2×2×4 (256 atom) supercells. The threshold

for the electronic self-consistent field iterations was set to 10−6 eV and a 50 meV Gaussian

smearing was applied to the electronic occupancies. We used the default recommended VASP

PBE-PAW potentials, labeled ’W sv’, ’Sb’, ’Na pv’ and ’S’ for the corresponding elements.
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Molecular Dynamics Simulations

All ML-MD simulations were performed using LAMMPS31 with the pair allegro32 patch.

We used a 2 fs timestep, and a Nose-Hoover thermostat and barostat using time constants

of 0.2 ps and 2 ps, respectively. W-dopants were distributed in the supercells on Sb sites

using the special quasi random structure (SQS) methodology,33 as implemented in icet,34

and the Na-vacancies were introduced by randomly removing Na atoms.

To determine phase transformation temperatures we use the following procedure. First,

starting from a 12×12×12 conventional-cubic supercells, NPT MD simulations with a fully

flexible cell were performed on a coarse temperature grid (50 K spacing) between 200 and 600

K for 200 ps. Based on the behaviour of the lattice parameters after an initial equilibration

period, each of these temperature points were then assigned either to the tetragonal phase,

cubic phase or a mixture. In the temperature region between the highest temperature that

can be identified to be in the tetragonal phase, and the lowest temperature which can be

clearly identified to be in the cubic phase, we ran two sets of new simulations on a 12.5 K

spaced grid. One of these sets used the positions and velocities from the tetragonal endpoint

and the other those from the cubic endpoint. These simulations were ran for at least 400

ps, as needed. The temperature points on this more tightly spaced grid where then assigned

to one of the phases when the simulations from both staring points could be identified

(after an equilibration period) to be in the same phase. Typically, at one temperature,

we saw long timescale shifts between the tetragonal and cubic phases (see SI Fig. 5 for an

example). These shifts between cubic and tetragonal lattice parameters is an indication that

the system is in the vicinity of the phase transformation and that there is a (weak) first-order

nature associated with the transition, at least for the 12×12×12 supercell sizes used in this

procedure. In the end, this procedure yields phase transformation temperatures with a ±

12.5 K associated uncertainty, which is accurate enough for our purposes.

The self diffusion coefficients, D and the charge diffusion coefficient, Dσ, were obtained

using ’kinisi’.35 For the self diffusion coefficient, we used the averaged lattice parameters
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extracted from the NPT runs, and performed at least 0.5 ns of equilibration in the canonical

(NVT) ensemble using 8×8×8 supercells, followed by at least 0.5 ns in the microcanonical

(NVE) ensemble using from which D was extracted.

The Haven ratio HR, was obtained as HR = D/Dσ. As Dσ requires significantly longer

trajectories to converge, compared to D, we used 4×4×4 supercells to allow for longer simu-

lation time. At each temperature we performed 4 separate runs, these runs were equilibrated

for 0.5 ns in the NVT ensemble, followed by long runs in the NVE ensemble. In total, 48 ns

of NVE dynamics was used to extract Dσ at each temperature.

The self diffusion coefficients agree closely between 4×4×4 and 8×8×8 supercells, as

shown in SI Fig. 8

Phonon Dispersion Relations

We calculated harmonic phonon dispersion relations of cubic Na3SbS4 with both r2SCAN

and Allegro using 2×2×2 supercells. We generate small displacements with amplitudes 0.02

Å using phonopy36,37 and then extracted the interatomic force constants, phonon dispersion

relations and density of states (DOS) using the temperature dependent effective potential

(TDEP) package.38,39

Results

Structure and Phase Transformation

Fig. 1 (a) shows the calculated phonon dispersion of cubic Na3SbS4 with its characteristic

imaginary phonon mode at the H-point. This mode has been connected to the cubic-to-

tetragonal phase transformation, as is the case for several compounds from this class of

materials.40 Indeed, the eigendisplacements of this mode largely overlaps with those that

transforms the system from cubic to the tetragonal phase.41 The tetragonal phase is obtained

from the cubic phase by (1) a shuffling of Na-ions along the [001] directions, and (2) a rotation
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Figure 1: (a) Phonon dispersion relations in cubic Na3SbS4. (b) Cubic and (c) Tetragonal
polymorphs of Na3SbS4. The right panels of (b) and (c) show a view along the [111] direction
(Na-ions are removed for clarity), highlighting the relative tilt of sequential SbS4 tetrahedra
away from perfect alignment in the tetragonal phase.

of the SbS4 tetrahedra around [111], as indicated in Fig. 1 (c). There is also an accompanying

elongation of the structure along the c-axis, yielding c/a > 1 in the tetragonal phase.

To probe the tetragonal to cubic transformation we perform large-scale (∼ 27.6k atoms)

NpT MD simulations for a range of different temperatures. The blue markers in Fig. 2

show the resulting averaged lattice parameters as a function of temperature. Below 500 K

Na3SbS4 is in the tetragonal phase with the a = b different from the c lattice parameter, while

above 525 K, a = b = c, and the system is in the cubic phase, giving a phase transformation

temperature, TC , of ∼ 512.5 K ± 12.5 K. This number is in fair agreement with experimental

observations where TC has been reported at ∼ 440 K12 or ∼ 480 K;9 the difference likely

being related to intrinsic defect concentration. The overestimation of TC is partly related to

the overestimation of the c/a of the r2SCAN DFT functional used to train our MLFF (see

Table S1). Another potential source of discrepancy is that we simulate pristine Na3SbS4,

while the experimental samples contain intrinsic defects, in particular Na-vacancies.

Doping Na3SbS4 with W has been reported to drastically increase the Na diffusivity,
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Figure 2: (a) Lattice parameters vs temperature for Na3−xWxSb1−xS4 for x in 0-0.1. The
shaded regions indicate the phase transformation temperatures. (b) Cubic-tetragonal phase
transformation temperature, TC , as a function of x in Na3−xWxSb1−xS4, compared to exper-
iment (XRD) from Ref.9
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as well as to decrease TC .
9–11 We start by investigating the reduction in TC . Fig. 2 (a)

shows the averaged lattice parameters as a function of temperature of Na3−xWxSb1−xS4 for

W-dopant concentrations from 0 to 10%. Note that we introduce one charge-compensating

Na-vacancy for each W-dopant in the simulation cell. We observe a clear reduction of both

c/a in the tetragonal phase, and of TC , with increasing W-content. We explicitly show TC as

a function of dopant concentration in Fig. 2, where we compare to experimental transition

temperatures from XRD measurements by Maus et al.9 We see that our results reproduce the

experimental trend nicely, again with a slight overestimation. Another observation that can

be made from Fig. 2 is that while W-doping has a large effect on the c/a in the tetragonal

phase ratio, and as a result TC , its effect on the volume, once the systems have transformed

into the cubic phase, is small.

Disentangling the effect of W-substitution and Na-vacancies
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Figure 3: Lattice parameters vs temperature of (a) pristine Na3Sb1S4, (b) W substitu-
tion with no Na vacancies (Na3W0.05Sb0.95S4) (c) Na vacancies but no W substitution
(Na2.95Sb1S4) and (d) W substitution with compensating Na vacancies (Na3W0.05Sb0.95S4).
Shaded areas represent the phase transition region.

While experimental data has shown a trend of decrease in TC with increasing W-content,9
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which our MLMD simulations accurately reproduce (Fig. 2), it is unknown whether this re-

duction is due to the W substitutions, the accompanying Na+-vacancies, or a combined

effect. To separate these influences, we perform NpT MD simulations, with the same setup

as in Fig. 2, for two additional systems: one with 5 % W-dopants but no Na vacancies

(Na3W0.05Sb0.95S4) and one with no W-dopants but an amount of Na-vacancies that corre-

sponds to the charge-compensating amount for 5 % W (Na2.95SbS4).

In Fig. 3 we compare these two systems to the 0 (Na3Sb1S4), and 5 % (Na2.95W0.05Sb0.95S4)

W-substituted ones from Fig. 2. We can see that introducing Na vacancies has a large effect

on the transition temperature (comparing Fig. 2 (a) and (c)), while introducing W-dopants

without Na vacancies (comparing Fig. 2 (a) and (b)), has a negligible effect. Furthermore,

the combined effect of W dopants and Na vacancies is small, as can be seen by comparing

Fig. 2 (c) and (d).

We may thus conclude that the reduction of TC in these systems by substitutional W-

doping is an effect of the accompanying Na-vacancies, rather than the W-dopants themselves.

This can be understood as follows: To retain the lower symmetry tetragonal phase, a mod-

ulation with a long correlation length must be maintained in the structure. Since the W-S

bond length is only slightly shorter than the Sb-S one, W-doping (at these low concentra-

tions) has a small effect on this modulation. On the other hand, introducing Na-vacancies,

which are highly mobile, has a large destabilizing effect on this long-range modulation, and

thus favours the cubic phase.

These results may partly explain the observation that different sample preparation proce-

dures have been observed to yield different phases (cubic or tetragonal) in Na3PS4.
8 Indeed,

synthesis routes where relatively high concentrations of defects may be expected, tend to

produce samples which are, on average, cubic.8
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along the [111] direction (illustration in the inset) as a function of MD simulation time. The
top row shows the undoped system at 400 K (tetragonal phase), while the bottom shows the 5
% W doped system at 400 K (cubic phase). The orange line corresponds to a square window
average of 2 ps. The shaded region highlights one particular large and long lived deviation
from the average cubic phase. (b) Cartoon schematic of the potential energy surfaces along
a normal mode coordinate, Q, representative of the dihedral angle. Q = 0 corresponds to
high symmetry phase. Gray shaded area represents the thermal population.
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Local vs Global Structure

There have been several indications in the literature that this class of materials show de-

viations of their apparent average symmetry, as probed by eg. X-ray diffraction, and

their local symmetry, as revealed by a local probe eg. PDF measurements.8,9,40 Indeed,

Na3−xWxSb1−xS4 shows an average cubic symmetry at high T, while being better described

by the symmetry of the low T tetragonal phase on a local scale.9 To probe this behaviour in

our MD simulations we track the dihedral angles between successive SbS4 tetrahedra along

the [111] directions, illustrated in the inset of Fig. 4. In the ideal cubic phase, the tetrahedra

are perfectly aligned, resulting in dihedral angles equal to zero, while in the ideal tetragonal

phase there is a relative tilt of the tetrahedra.

The top row of Fig. 4 shows the 3 dihedral angles formed between a selected pair of

consecutive SbS4 tetrahedra along the [111] direction of pristine Na3SbS4 in the tetragonal

phase at 400 K. We observe the expected behaviour where the dihedral angles oscillate

around non zero values. Note that the tetragonal distortion results in one larger (right panel

in the top row) and two smaller dihedral angles.

The bottom row shows the 5 % W substituted system at 400K, which is above TC , c.f.

Fig. 2. The expected behaviour in the cubic phase, where the ideal positions correspond to

perfectly aligned tetrahedra, would be oscillatory motion of the dihedral angles around zero

degrees, cf. Fig. 4 (b). We see that the long-time average value of the dihedral angles indeed

is zero, consistent with the average cubic phase. It is also apparent, however, that there are

large deviations from the cubic phase. Indeed, as exemplified by the shaded gray region,

these deviations can exists over many ps.

We note that for W substituted systems we have sequential pairs of both WS4-SbS4, SbS4-

SbS4 and WS4-WS4 tetrahedra. We have found no qualitative difference between these. A

set of random dihedral angles from several different sequential pair of tetrahedra of all types

is shown in SI Fig 6.

These results are in line with recent experimental observations of ”local tetragonal-
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ity”8,9,40 mentioned above. Indeed, when such large deviations from the global average

symmetry occur at the local scale, it is expected that eg. a measured PDF fits better to the

lower tetragonal symmetry over short distances.

The situation is schematically illustrated in Fig. 4 (b), where two limiting cases of a

globally cubic phase is shown. The coordinate Q is representative of the dihedral angle.

In the first case, which corresponds to the ”expected” behaviour mentioned above, there is

an effective potential above TC , and the system simply performs low frequency oscillations

around Q=0. The other, limit is the case where the systems attains a cubic phase, i.e. Q=0,

on average, through oscillations within an energy well overlaid with infrequenct stochastic

hops between the wells. From Fig. 4 (a) we can recognize such hops for the 5 %W substituted

system in the cubic phase.

Diffusion
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a 
± 
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Figure 5: Calculated self diffusion coefficient, D, of Na2.9W0.1Sb0.9S4 as a function of in-
verse temperature (blue circles), compared to experimental values extracted from QENS
and NMR.9 The black line represents an Arrhenius fit and the gray shaded area shows the
sensitivity of the D to a change in the lattice parameter, a, of ± 1.5 %.

Next we investigate how well our MLFF reproduces the diffusion behaviour. Fig. 5

shows the calculated Arrhenius plot of the self diffusion coefficient, D, for Na2.9W0.1Sb0.9S4,
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(shaded area). Below TC , in the tetragonal phase, D is calculated separately in the c direction
and in the ab-plane.

compared to results extracted from quasi-elastic neutron scattering (QENS) and nuclear

magnetic resonance (NMR) from Ref.9 We note a good agreement compared to experimen-

tal values, barring a slight overestimation. In particular, our calculated activation energy,

corresponding to the slope of the Arrhenius fit, of ∼ 0.07 eV is in close agreement with the

QENS and NMR values of ∼ 0.05 and 0.09 eV, respectively. The overestimation of D is

partly related to the overestimation by r2SCAN of the volume. To highlight the sensitivity

of the calculated diffusion coefficients to the volume, we show results using lattice constants

changed ± 1.5 %, highlighted in gray in Fig. 5.

At this point, we can ask the question to what extent the W dopants influence the

self diffusion, beyond inducing Na-vacancies. By comparing diffusion coefficients between

calculating with and without W dopants, but with the same number of Na-vacancies, we

find that the W dopants have a minor detrimental effect on the predicted diffusivities (see

SI Fig. 7). We may thus conclude that W dopants have a weak explicit effect on both the

structural and phase behaviour, and on the ionic diffusion, and their utility in these systems

is limited to a means of inducing Na-vacancies.
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Next we probe the effect the phase transformation on the diffusion. Fig. 6 shows the

diffusion coefficient of Na2.95W0.05Sb0.95S4 in the cubic and tetragonal phases. In the tetrag-

onal phase ,we separately calculate the diffusion coefficient along the c direction and in the

ab plane and find a significant anisotropy. Indeed, the activation energy for diffusion in the

c direction is ∼ 0.14 eV, significantly larger than ∼ 0.09 eV, in the ab plane.

The general connection between vibrations and diffusion in potential solid-state elec-

trolyte materials has been studied intensively in recent years.42,43 For the present class of

materials in particular, Gupta et al.41 proposed a connection between the soft phonon mode

(see Fig. 1) and the ionic diffusion. Indeed, it is easy to imagine that a low energy phonon,

indicative of a shallow potential energy surface, with eigendisplacements aligning closely

with the Na migration path would be beneficial for diffusion. Furthermore, since the soft

phonon mode (see Fig. 1) contains concerted motion of whole chains of Na ion along a [100]

direction, one would expect diffusion events triggered by this phonon mode to involve several

Na ions. From animations of our MD trajectories (see Suppl. video), it can indeed be appre-

ciated that the diffusion process does not consist solely of isolated Na hops, but that there is

typically concerted motion of several Na ions along the diffusion pathways. To quantify this

behaviour we calculate the Haven ratio, HR, which is a measure of the degree of correlation

in the diffusion process of a material (see methods). Loosely speaking, HR < 1 indicates

that distinct Na ions tend to preferentially move in the same direction, as would be expected

in our case. For Na2.9W0.1Sb0.9S4 we find values ∼ 0.35 ± 0.1 in the whole temperature

range of the cubic phase (see SI Fig. 8). We note that converging HR requires significantly

more statistics than the self diffusion coefficient, and we don’t have enough data resolve any

potential temperature dependence. Nevertheless, these values of HR indicate significant con-

certed diffusion and are in the range of values found in superionic conductors, eg. Li3N
44,45

and Bi2O3.
46
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Conclusions

We have constructed a machine learning force field capable of describing the phase trans-

formations and diffusion over a range of substitutional W doping in Na3Sb1S4, a promising

Na-ion electrolyte material. We reproduce the experimentally known trend of decreasing

tetragonal-to-cubic phase transition temperature on increasing W-content and reveal that

this reduction is an effect of the charge-compensating Na-vacancies, rather than the W-

dopant themselves. We further show that the cubic phase displays large local deviations

from the average symmetry, in line with recent experimental suggestions. Our MLFF further

reproduces, barring a slight overestimation, the temperature dependence of the experimental

self diffusion coefficient, and again reveals that the explicit effect of W substitution is small,

and that the diffusion behaviour is governed by the Na-vacancies. Our work shows that care-

fully constructed force fields, using modern architectures, can describe the highly complex

interplay between substitutional doping, structural phase transformations and diffusion in

promising Na-ion solid state electrolytes.

Acknowledgement

J. K. acknowledges support from the Swedish Research Council (VR) program 2021-00486.

Computations were enabled by resources provided by the National Academic Infrastructure

for Supercomputing in Sweden (NAISS) at NSC and PDC partially funded by the Swedish

Research Council through grant agreement no. 2022-06725. The training of the machine-

learned force fields were enabled by the Berzelius resource provided by the Knut and Alice

Wallenberg Foundation at the National Supercomputer Centre. We also acknowledge the

National Academic Infrastructure for Supercomputing in Sweden (NAISS) partially funded

by the Swedish Research Council through grant agreement no. 2022-06725 for awarding

this project access to the LUMI supercomputer, owned by the EuroHPC Joint Undertaking,

hosted by CSC (Finland) and the LUMI consortium. Via our membership of the UK’s HEC

18



Materials Chemistry Consortium, which is funded by EPSRC (EP/X035859/1), this work

used the ARCHER2 UK National Supercomputing Service (http://www.archer2.ac.uk). A.

W. acknowledges support from EPSRC project EP/X037754/1.

Supporting Information Available

The Supporting information contains additional validation of the MLFF, and additional

figures relating to the phase transformation and the diffusion process. and a video illustrating

the diffusion process for 5 % W-doped Na3SbS4 at 450 K. This material is available free of

charge via the Internet at http://pubs.acs.org.

References

(1) Kim, J. G.; Son, B.; Mukherjee, S.; Schuppert, N.; Bates, A.; Kwon, O.; Choi, M. J.;

Chung, H. Y.; Park, S. A review of lithium and non-lithium based solid state batteries.

Journal of Power Sources 2015, 282, 299–322.

(2) Janek, J.; Zeier, W. G. A solid future for battery development. Nature Energy 2016,

1 .

(3) Zhao, Q.; Stalin, S.; Zhao, C.-Z.; Archer, L. A. Designing solid-state electrolytes for

safe, energy-dense batteries. Nature Reviews Materials 2020, 5, 229–252.

(4) Zhao, C.; Liu, L.; Qi, X.; Lu, Y.; Wu, F.; Zhao, J.; Yu, Y.; Hu, Y.; Chen, L. Solid-State

Sodium Batteries. Advanced Energy Materials 2018, 8 .

(5) Jia, H.; Peng, L.; Yu, C.; Dong, L.; Cheng, S.; Xie, J. Chalcogenide-based inorganic

sodium solid electrolytes. Journal of Materials Chemistry A 2021, 9, 5134–5148.

(6) Hayashi, A.; Noi, K.; Sakuda, A.; Tatsumisago, M. Superionic glass-ceramic electrolytes

for room-temperature rechargeable sodium batteries. Nature Communications 2012, 3 .

19

http://www.archer2.ac.uk
http://pubs.acs.org


(7) Zhang, L.; Zhang, D.; Yang, K.; Yan, X.; Wang, L.; Mi, J.; Xu, B.; Li, Y. Vacancy-

Contained Tetragonal Na3SbS4 Superionic Conductor. Advanced Science 2016, 3 .

(8) Krauskopf, T.; Culver, S. P.; Zeier, W. G. Local Tetragonal Structure of the Cubic

Superionic Conductor Na3PS4. Inorganic Chemistry 2018, 57, 4739–4744.

(9) Maus, O.; Agne, M. T.; Fuchs, T.; Till, P. S.; Wankmiller, B.; Gerdes, J. M.;

Sharma, R.; Heere, M.; Jalarvo, N.; Yaffe, O.; Hansen, M. R.; Zeier, W. G. On the

Discrepancy between Local and Average Structure in the Fast Na+ Ionic Conductor

Na2.9Sb0.9W0.1S4. Journal of the American Chemical Society 2023, 145, 7147–7158.

(10) Hayashi, A.; Masuzawa, N.; Yubuchi, S.; Tsuji, F.; Hotehama, C.; Sakuda, A.; Tat-

sumisago, M. A sodium-ion sulfide solid electrolyte with unprecedented conductivity at

room temperature. Nature Communications 2019, 10 .

(11) Fuchs, T.; Culver, S. P.; Till, P.; Zeier, W. G. Defect-Mediated Conductivity Enhance-

ments in Na3–xPn1–xWxS4 (Pn = P, Sb) Using Aliovalent Substitutions. ACS Energy

Letters 2019, 5, 146–151.

(12) Zhang, D.; Cao, X.; Xu, D.; Wang, N.; Yu, C.; Hu, W.; Yan, X.; Mi, J.; Wen, B.;

Wang, L.; Zhang, L. Synthesis of cubic Na3SbS4 solid electrolyte with enhanced

ion transport for all-solid-state sodium-ion batteries. Electrochimica Acta 2018, 259,

100–109.

(13) Weadock, N. J.; Sterling, T. C.; Vigil, J. A.; Gold-Parker, A.; Smith, I. C.;

Ahammed, B.; Krogstad, M. J.; Ye, F.; Voneshen, D.; Gehring, P. M., et al. The

nature of dynamic local order in CH3NH3PbI3 and CH3NH3PbBr3. Joule 2023, 7,

1051–1066.

(14) Baldwin, W. J.; Liang, X.; Klarbring, J.; Dubajic, M.; Dell’Angelo, D.; Sutton, C.;

Caddeo, C.; Stranks, S. D.; Mattoni, A.; Walsh, A., et al. Dynamic local structure

20



in caesium lead iodide: Spatial correlation and transient domains. Small 2024, 20,

2303565.

(15) Sau, K.; Ikeshoji, T. Origin of Fast Ion Conduction in Na3PS4: Insight from Molecular

Dynamics Study. The Journal of Physical Chemistry C 2020, 124, 20671–20681.

(16) Ko, T. W.; Ong, S. P. Recent advances and outstanding challenges for machine learning

interatomic potentials. Nature Computational Science 2023, 3, 998–1000.

(17) Musaelian, A.; Batzner, S.; Johansson, A.; Sun, L.; Owen, C. J.; Kornbluth, M.; Kozin-

sky, B. Learning local equivariant representations for large-scale atomistic dynamics.

Nature Communications 2023, 14 .

(18) Kozinsky, B.; Musaelian, A.; Johansson, A.; Batzner, S. Scaling the Leading Accuracy

of Deep Equivariant Models to Biomolecular Simulations of Realistic Size. Proceedings

of the International Conference for High Performance Computing, Networking, Storage

and Analysis. 2023.

(19) Batzner, S.; Musaelian, A.; Sun, L.; Geiger, M.; Mailoa, J. P.; Kornbluth, M.; Moli-

nari, N.; Smidt, T. E.; Kozinsky, B. E(3)-equivariant graph neural networks for data-

efficient and accurate interatomic potentials. Nature Communications 2022, 13 .

(20) Batatia, I.; Kovacs, D. P.; Simm, G. N. C.; Ortner, C.; Csanyi, G. MACE: Higher Order

Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields.

Advances in Neural Information Processing Systems. 2022.

(21) Jinnouchi, R.; Karsai, F.; Kresse, G. On-the-fly machine learning force field generation:

Application to melting points. Phys. Rev. B 2019, 100, 014105.

(22) Jinnouchi, R.; Lahnsteiner, J.; Karsai, F.; Kresse, G.; Bokdam, M. Phase Transitions

of Hybrid Perovskites Simulated by Machine-Learning Force Fields Trained on the Fly

with Bayesian Inference. Phys. Rev. Lett. 2019, 122, 225701.

21



(23) Klawohn, S.; Darby, J. P.; Kermode, J. R.; Csányi, G.; Caro, M. A.; Bartók, A. P.
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