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Abstract. The honeycomb Kitaev model describes a Z2 spin liquid with topological

order and fractionalized excitations consisting of gapped π-fluxes and free Majorana

fermions. Competing interactions, even when not very strong, are known to destabilize

the Kitaev spin liquid. Magnetic fields are a convenient parameter for tuning between

different phases of the Kitaev systems, and have even been investigated for potentially

counteracting the effects of other destabilizing interactions leading to a revival of the

topological phase. Here we review the progress in understanding the effects of magnetic

fields on some of the perturbed Kitaev systems, particularly on fractionalization and

topological order.

1. Introduction

Quantum spin liquids (QSLs) are among the most interesting paramagnetic quantum

phases of matter with long range entanglement and fractionalized emergent excitations

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. The honeycomb Kitaev model, which happens to

be integrable, describes a quantum spin liquid where the lattice spins are fractionalized

into free Majoranas fermions subjected to a static Z2 gauge field [12]. The model also has

π-flux excitations or visons (Wilson loops), which are gapped. These properties make

it a deconfined phase. More importantly, the ground state of the Kitaev model has Z2

topological order (same as the Toric code) which means it is four-fold degenerate on the

torus, the excitations are abelian semionic anyons, and the topological entanglement

entropy γ is nontrivial, with a value γ = ln 2. The Majorana excitations in the Kitaev

model are gapped or gapless depending upon the relative strength of the interactions

in the three bonds emanating from each site, with the gapless majoranas appearing

when the magnitudes of the three interaction strengths satisfy the triangle inequality.

Applying a small Zeeman field in certain directions (such that the magnetic field has

nonzero components along the three spin projection axes) gaps out the Majorana modes

in the gapless phase and makes them chiral. A half-quantized thermal Hall conductivity

is expected in this regime, and attributed to chiral gapless majoranas on the edge.
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Such Majorana edge modes leading to half-quantized thermal Hall response are also

expected for some topologically trivial states such as chiral p-wave superconductors

[14]. However in the Kitaev model, this low-field chiral phase also has a nonabelian

Ising topological order (ITO) characterized by intrinsic nonabelian anyonic excitations

in the bulk, a three-fold degeneracy of the ground state on the torus, and a finite

topological entanglement entropy γ = ln 2. Both the Toric code and nonabelian ITO

phases of the Kitaev model are useful from the point of view of topological quantum

computing - especially in the nonabelian phase, qubit operations are realized by braiding

sub-gap Majorana excitations. Spin fractionalization and topological order are thus the

two most remarkable features of the Kitaev model.

Considerable attention has been devoted to Zeeman effects in Kitaev systems.

The non-commutation of Zeeman perturbation with the Kitaev Hamiltonian induces

π-flux (vison) fluctuations. In his original work, Kitaev studied the effect of weak

magnetic fields in the gapless regime ignoring vison fluctuations by projecting the

Zeeman perturbed Hamiltonian to the flux free sector associated with the ground state

of the Kitaev model. In the effective model thus obtained, Zeeman perturbations with

nonzero field components along the three natural spin quantization axes induce a three-

spin interaction that breaks time reversal and parity symmetries (similar to three spin

scalar spin chirality terms in spin rotation invariant models) but is otherwise diagonal in

the flux sector. The Majorana excitations also remain eigenstates of the model; however,

they now become gapped and chiral. Kitaev demonstrated that this phase is associated

with a half-quantized thermal Hall conductivity. Later it was shown that the Zeeman

field also imparts a dispersion to the visons, and their contribution to properties such

as the thermal Hall response has attracted attention recently. The behaviour at higher

fields is dictated by the sign of the Kitaev interaction K. For ferromagnetic (FM) sign of

the Kitaev coupling, the system directly transitions into a topologically trivial partially

spin-polarized phase. The transition to the topologically trivial phase appears to be a

confinement-deconfinement type driven by vison proliferation. In the antiferromagnetic

(AFM) case, there is at least one intermediate field phase that separates the low

field ITO phase and the high field partially spin-polarized paramagnetic phase. The

nature of the intermediate field phase in the AFM Kitaev model is still not well

understood and there is ongoing debate even about a basic matter as to whether it is a

topologically trivial phase or not. At high fields, spin waves (and not the fractionalized

Kitaev quasiparticles) are expected to provide a good approximation for the many-body

excitations. Topological order in the ferromagnetic case is fragile, and is easily degraded

by, say, a (111) Zeeman field of the order of 10−2 ×K, while for the antiferromagnetic

case, the field required (for the same orientation) is around ten times larger.

Apart from Zeeman perturbations, various competing spin interactions (e.g.

Heisenberg-type exchange, anisotropic and off-diagonal interactions) also induce vison

fluctuations and degrade topological order, often resulting in the appearance of magnetic

order. Motivated by Kitaev materials, a significant effort has already gone into

understanding different magnetic phases in the parameter space of such interactions,
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and the likelihood that for a given set of parameters, how close a magnetically ordered

Kitaev material is to the Kitaev spin liquid phase [15, 16, 17, 18]. Changes in the

symmetry and order of the ground state are reflected in the quasiparticle excitations,

which are essentially created through making certain local moves on the ground state.

Quasiparticle character is expected to evolve from the fractionalized Majoranas and

visons in the Kitaev spin liquid phase to spin waves in the magnetically ordered or

high field phases. The parameter regimes straddling these extremes hold the promise

of hosting both conventional and fractionalized quasiparticles. For example, in the

magnetically ordered phases very close to the Kitaev spin liquid, the excitations can

have a substantial Kitaev-like character that ultimately goes away as one moves deeper

into the magnetically ordered phase [19]. Such magnetically ordered phases, in which

energy windows exist where quasiparticles have characteristics of the adjacent spin liquid

phase have been termed as proximate spin liquid (PSL) phases. While Zeeman fields

and non-Kitaev spin interactions both degrade the topological order, not much is known

about their interplay when they are simultaneously present. One possibility is that the

two kinds of perturbations likely have very different and competing mechanisms for

degrading topological order, which tempts one to use them simultaneously in a manner

that neither is able to suppress the topological order existing nearby in parameter space.

Another possibility is that both degrading mechanisms not only compete with each

other, but also act in tandem to destroy topological order. In the latter situation, using

field suppression of, say, magnetic order would not prove to be a viable strategy for

resurrecting the lost topological order.

Disorder is ultimately unavoidable, and thus, it becomes important to understand

the effects they have on the physical properties of the Kitaev system and the role they

play in the degradation of topological order. When disorder is weak, it may even serve

as a way to detect the underlying topological phase. For example, site vacancies in the

Kitaev model are known to host localized nonabelian anyons and these fractionalized

magnetically active states are known to impart specific singularities to the field and

temperature dependence of impurity susceptibility. Disorder signatures in other phases

in Kitaev systems, brought about through field tuning or competing interactions, are

currently not well understood.

From the experimental perspective, material realization of this phase has proved

elusive. One of the main obstructions is the presence of competing exchange interactions

that may be small compared to the Kitaev interaction, but nevertheless significant

enough to cause a long range magnetic ordering of the spins. Indeed, some of

the most celebrated Kitaev materials fall in this category. Both α-RuCl3 and

Na2IrO3 - first generation Kitaev materials with ferromagnetic Kitaev interaction -

have antiferromagnetic order which is zigzag type in the Kitaev planes, but fully

three-dimensional. However the large ratio of the Curie-Weiss temperature (order of

the Kitaev scale) to antiferromagnetic (AFM) ordering temperature suggests strong

frustration effects and proximity to the spin liquid phase. The magnetic order can be

suppressed either thermally or through Zeeman fields. This naturally raises the question
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if some of the excitations in the magnetically disordered phases thus obtained have a

substantial resemblance to the fractionalized Kitaev quasiparticles, and whether any

signatures of topological order could be detected here. New generation Kitaev materials

are designed to be more two-dimensional which frustrates the tendency for 3D magnetic

ordering. Both FM and AFM Kitaev interactions have been found, and the latter looks

very promising given the greater robustness of topological order in AFM Kitaev systems.

Unfortunately, enhancing two-dimensionality comes at a cost because the abundant

interplanar space allows strong interstitial and substitutional disorder which is another

parameter that degrades topological order. The resulting states are often glassy and

there is some evidence for underlying fractionalized excitations. Not only the strongly

disordered spin liquids are insufficiently understood, but they are also less likely to see

a revival of topological order through parametric tuning compared to their disorder free

or low disorder counterparts. Consequently, here we will mostly focus on systems that

are not very strongly disordered. We will review available experimental data on some

of the Kitaev materials covering field-dependent transport (e.g. thermal conductivity,

thermal Hall conductivity), magnetometry (high field torque response, susceptibility)

and inelastic neutron scattering for clues.

This paper reviews the current experimental and theoretical understanding of

magnetic field effects on the fractionalization and topological order of the honeycomb

Kitaev system. The models we are interested in have the general form

H = −K
∑

⟨ij⟩∈γ-links

Sγ
i S

γ
j +

∑
i

h · S+H ′, (1)

where H ′ represents other competing spin interactions. While modeling material

systems, the components of the vectors are taken along the three spin projection axes

of the system and they do not normally coincide with the crystallographic axes. In

his original work [12], Kitaev studied the effect of small Zeeman perturbations in the

flux-free sector and showed that in the gapless Majorana phase of the Kitaev model,

such perturbations introduce a gap,

∆M ∼ |hxhyhz|
∆V

2 , (2)

in the Majorana spectrum. Here ∆V is the flux or vison gap, which for the ferromagnetic

Kitaev model is ∆V ∼ 10−2K. Strictly speaking, the validity of Eq. 2 is limited to

|h| < ∆V within the ITO phase, and higher fields degrade the topological order through

vison fluctuations.

This review is structured as follows. Sec. 2 is devoted to the review of experiments

on Kitaev materials for signs of fractionalization and/or topological order, especially

involving magnetic fields. Particularly in Subsec. 2.1 we demonstrate the results of

scattering and spectroscopic probes for fractionalization e.g. inelastic neutron scattering

[20] vs interacting magnons [21], Raman and terahertz spectroscopy, NMR and NQR

probes. Subsec. 2.2 is regarding the thermodynamic response in Zeeman fields, where
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we have described specific heat/thermal conductivity and thermal Hall response - field

dependence (including direction), high field torque magnetometry, etc. In Sec. 3, we

briefly explain the review of field-tuned phases in Kitaev and perturbed Kitaev systems -

both numerical and analytical studies. Subsec. 3.1 shows the Zeeman effects in the pure

Kitaev limit whereas Subsec. 3.2 is about field effects with competing spin interactions.

The theoretical study of response in Kitaev systems is summarised in Subsec. 3.3. We

end this review with some discussion and future directions in Sec. 4.

2. Experimental scene

Kitaev materials have been a subject of extensive investigation for identifying possible

parameter tuning into regimes where ITO and fractionalized excitations could exist.

Among these materials, α-RuCl3 stands out. While it orders antiferromagnetically

(zigzag) at TN ≈ 7K, the ordering temperature is much smaller than the Curie-

Weiss temperature of ΘCW ≈ −150K, indicating magnetic frustration. The other

workhorse Kitaev material has been the alkali iridate Na2IrO3, also with zigzag order,

and TN ≈ 15K, ΘCW ≈ −130K. Experimentally, some of the techniques that are

commonly adopted for exploring possible signatures of fractionalized excitations in

Kitaev magnets include (a) spectroscopic probes such as inelastic neutron scattering

(INS), Raman scattering and time-dependent terahertz spectroscopy, NMR and NQR,

and (b) thermodynamic probes. Below we review some of the key experiments that help

shed light on this question.

2.1. Scattering and spectroscopic probes for fractionalization

Inelastic neutron scattering : In INS measurements on α-RuCl3, the high-energy part

of a persistent broad continuum centered at the Γ−point, that remains essentially

unchanged until high temperatures of the order of 100 K, has been interpreted as

a signature of fractionalized excitations. In zero field, the momentum dependence

of the scattering was seen to resemble the response calculated for the AFM Kitaev

QSL at zero temperature, whereas the constant Q response at the Γ−point was seen

to be closer to that calculated for a FM Kitaev model in an effective magnetic field

[22]. Since the current understanding is that the sign of the Kitaev interaction in this

material is definitely ferromagnetic (FM), we believe that the fits to the momentum

dependence of scattering obtained from AFM Kitaev models are not very relevant here.

INS measurements were also carried out with a finer field step, higher energy resolution

and greater field strength [23]. For an in-plane field, spin-wave excitations around the

M−point are gradually suppressed and vanish around the critical field of 7.5 T, while

a continuum observed near the Γ−point under zero field still persists when the spin

waves vanish. Based on the gap evolution of the continuum, it is concluded that the

intermediate-field spin liquid phase is possibly gapless. In a related study, Balz et al.

[24] explored α-RuCl3 under external magnetic fields using INS, and found the absence
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of well-defined magnons near field-suppressed magnetic order, suggesting a magnetically

disordered state. In another work [25], it has been argued that the presence of a broad

excitation continuum and the absence of clear magnon peaks does not prove the existence

of fractionalized excitations, and such broadening of the magnons could also originate

from magnon-magnon interactions.

Inelastic neutron scattering measurements data have thus been interpreted in both

ways - either as consistent with the existence of fractionalized excitations [20] or as

a manifestation of magnon-magnon interactions [25, 21]. Clearly, a positive test of

fractionalization is desirable, instead of arguments that merely indicate consistency with

fractionalization.

Raman spectroscopy : A magnetic continuum with spin-wave excitations has been

inferred from Raman measurements [26] at low fields, suggesting simultaneous presence

of excitations with spin-wave and possibly fractionalized character. At higher fields,

the spectral weight is transferred to well-defined sharp excitations corresponding to

one-magnon and multimagnon bound states, while at intermediate fields, a weakly

bound state emerges which does not connect smoothly to them. This mode has been

argued by the authors of Ref. [26] as consisting of bound states of itinerant Majorana

fermions, since flux excitations are largely invisible to the Raman scattering process .

The magnetic field-induced QSL phase was also addressed via helicity-dependent Raman

scattering, which could potentially capture anyonic excitations that are chiral [27]. The

field regime between 7.5-10.5 T is characterized by clear spectroscopic signatures, such

as a plateau of the Raman optical activity of a dominant, chiral spin-flip excitation.

However the chiral excitations could also be topological magnons, the quasiparticles

expected in the Kitaev model at higher magnetic fields in the partially polarized

paramagnetic phase.

Terahertz spectroscopy : Time-dependent terahertz spectroscopy (TDTS) probes the

continuum spectrum with high sensitivity and energy resolution, yielding an absolute

measurement of the imaginary part of the dynamical magnetic susceptibility at zero

wave vector. The THz spectra determined for parallel and perpendicular orientation of

the static and THz magnetic fields, up to 7 T, showed [28] two sharp resonances at 2.5

and 3.2 meV and broader features in the range 4-6 meV that appear only at applied

fields above approximately 4 T. The authors of Ref. [28] interpreted this behaviour using

linear spin wave theory, taking into account a C3−breaking distortion of the honeycomb

lattice and the presence of structural domains.

NMR and NQR probes : It has also been shown using NMR [29] that the field-

dependence of the spin excitation gap can be fitted by the sum of a finite zero-field

value and a cubic growth in the low-field region. Since a single spin flip is expected to

create a pair of visons and a Majorana, the low field behaviour provides a positive test for

the existence of fractionalized Kitaev excitations. The spin excitations of α−RuCl3 have

also been investigated through combined NMR and NQR spectroscopy for temperatures

down to 0.4 K, well below the magnetic ordering temperature. Upon field-suppression

of magnetic order, two kinds of gapped excitations are observed, and interpreted as
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evidence for Majorana hybridization by the external field in a re-emergent ITO phase

[30]. However, since spin-wave analysis in the partially polarized high field phase would

also yield two gapped modes, this latter observation does not by itself resolve the issue.

2.2. Thermodynamic response in Zeeman fields

Thermodynamic response is a valuable resource for probing fractionalization in Mott

insulator spin liquid systems. The dramatic observation in 2010 [31] of a linear-T

thermal conductivity in a certain organic triangle lattice antiferromagnetic insulating

spin liquid material has been regarded as a key evidence for a fractionalized (spinon)

Fermi surface. Thermal measurements have also been widely employed for probing

possible fractionalization and topological order in the Kitaev materials, especially α-

RuCl3.

Thermal Hall response: The most important claim in this context has been the

observation of half-quantized thermal Hall conductivity κxy in the vicinity of field-

suppressed magnetic order [32, 33, 34, 35]. An in-plane magnetic field of strength

h ≲ 10T is sufficient to degrade the magnetic order and the half-quantized thermal Hall

response was reported for a field window 7T ≤ h ≤ 9T, with one report at even higher

fields [32]. However other groups have strongly contested these claims [32], contending

that while the thermal Hall response in the vicinity of field-suppressed magnetic order

is indeed large (often significantly exceeding half-quantization), at low temperatures

κxy/T appears to fall sharply below the πk2
B/12ℏ value expected for half-quantization,

suggesting the absence of gapless chiral edge modes. These studies have either supported

interpretations based on chiral magnons (see also Sec. 3) or even phonon scattering from

spin-dependent excitations or disorder. Proponents of the phonon mechanism point out

that the thermal Hall response is seen even along directions normal to the Kitaev-

planes [36] and that its temperature and field evolution tracks the longitudinal thermal

conductivity that is expected to be phonon-dominated. We have a word of caution here,

for phonons will in general couple to magnons since lattice vibrations, through their

effect on electron-electron interactions, result in local electronic spin excitations. This

is more likely in frustrated magnets where multiple competing states are found in close

proximity. Thus the phonon excitations are not quite decoupled from the magnetic

ones. The same arguments also lead to the expectation that such magneto-phonon

excitations should be susceptible to decay to fractionalized emergent excitations. Sans

a microscopic calculation of thermal Hall response or a more direct experimental test, it

would not be correct to rule out any of these physical mechanisms. Later in the review

we will discuss the theoretical treatments for the thermal Hall response of perturbed

Kitaev systems.

Thermal conductivity : Along with the sizable thermal Hall effect, α-RuCl3
also displays unusual features in the longitudinal thermal conductivity. Multiple

“oscillations” of the longitudinal thermal conductivity have been observed over a range

of fields around field-suppressed magnetic order. These are not quantum oscillations
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[36, 37] because the fields in question are much smaller than the values requires for

inserting O(1) flux quanta in the unit cells. A possible origin, suggested in the literature

[36, 37], is a succession of field-induced canted magnetically ordered states.

Specific heat : In contrast to thermal Hall measurements that have hitherto not been

able to establish field-induced ITO, a clearer evidence of fractionalization is available

[38] from specific heat measurements in the vicinity of field-suppressed magnetic order in

α-RuCl3. The authors of Ref. [38] observed that for the field h ∥ a – a configuration that

has nonzero components along all three spin projection axes – the field dependence of

the excitation gap extracted from the specific heat data is consistent with the behaviour

in Eq. 2. However, when the field is in the direction h ∥ b, which corresponds to

hxhyhz = 0, the specific heat reportedly has a T 2 behaviour expected for 2D fermionic

Dirac dispersion (or even 2D magnons). Such interpretation of the specific heat data is

based on a crucial assumption that the excitations in the magnetically disordered phase

obtained through field induced suppression of magnetic order in α-RuCl3 are similar in

nature to the fractionalized Majorana excitations of the Kitaev model.

Over a larger range of temperatures exceeding the Curie-Weiss scale, one of the

most common features observed is the characteristic two-peak structure in the heat

capacity, after properly accounting for the phonon background, corresponding to the

entropy release of localized fluxes and itinerant Majorana fermions. The Kitaev model

has a characteristic two-peak spectrum of the heat capacity, separated in temperature

by at least one order of magnitude. Experimentally, a clear double-peak structure is

observed at all the magnetic fields investigated, and the high-temperature anomaly

remains almost constant as a function of external fields, and is indicative of itinerant

Majorana fermions [39].

Other thermometry probes : From magnetocaloric, thermal expansion and

magnetostriction data in α−RuCl3 single crystals, it was shown that an apparent

energy gap structure that evolves when the low-temperature antiferromagnetic order is

suppressed, can show a cubic field dependence and remain finite at zero field, depending

on how the thermal expansion data are modeled [40].

Torque magnetometry measurements: The appearance of nonmonotonic behavior

and a peak-dip feature in the torque response, around magnetic fields corresponding to

the scale of the zigzag ordering temperature, in both the Kitaev materials Na2IrO3

[41] and α−RuCl3 [42], has been interpreted as evidence for a field-induced phase

transition from the zigzag ordered state to a state with no magnetic order and no

simple spin polarization. The size of the anomaly in the torque response is found

to drop significantly for temperatures exceeding the magnetic ordering temperature,

indicating that this behavior is connected to the presence of magnetic order. In the case

of Na2IrO3, the observed signature in the torque response has been used to constrain the

effective spin models for these classes of Kitaev materials to ones with dominant FM

Kitaev interactions, while excluding alternative models with dominant AFM Kitaev

interactions. At high magnetic fields, the long-range spin correlation functions have

been shown to decay rapidly, pointing towards the possibility of a transition to a field-
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induced QSL. More recently, the presence of the intermediate QSL phase in α−RuCl3 has

been a subject of debate, with certain experiments indicating that a moderate in-plane

field of about 7 T may induce an intermediate QSL phase before the polarized phase

[43, 32, 24, 33, 30] and other experimental evidence, such as that based on magnetization,

magnetocaloric and torque measurements, pointing towards a single transition with no

such intermediate phase [44, 45, 46]. Recent theoretical work has suggested the absence

of the intermediate QSL phase under in-plane fields and predicted its presence for out-

of-plane fields, with two phase transitions involved in the process. Notably, there has

been a detailed study of the magnetization of α−RuCl3 for fields in various directions

within the honeycomb plane and along the c∗−axis perpendicular to it, up to about 100

T [47]. Under fields applied along and close to the c∗−axis, an intermediate phase was

found, bounded by two transition fields of about 32.5 T and 83 T. For a tilt of about

9◦ from the c∗−axis, only the lower transition field was observed to be present, which

decreased for larger tilt angles, while the intermediate phase disappeared. These results

were supported by DMRG calculations on the K − J − Γ− Γ′ model.

3. Theoretical studies

We will review the theoretical progress in the following order. First we will examine

the literature devoted to the pure Kitaev model subjected to Zeeman fields focusing

on aspects such as fractionalization, topological order and signatures. Thereafter we

will review the current understanding of competing spin interaction effects on similar

aspects. Properties that one can experimentally measure to seek answers to the above

questions will also be discussed. Here we would pay particular attention to the theory

of the thermal Hall effect since, as we argue below, some of the approaches in wide use

that are based on the spin wave approximation are not correct.

3.1. Zeeman effects in the Kitaev limit

The low-energy excitations of the isotropic Kitaev model consist entirely of free, gapless

Majorana excitations and no visons. Kitaev showed [12] that in the presence of a small

Zeeman perturbation, the model, upon projecting to the vison-free ground state sector,

results in an effective low-field Hamiltonian containing three-spin perturbations,

Hlow = −K
∑

⟨ij⟩∈γ-links

Sγ
i S

γ
j + κ

∑
⟨ijk⟩

Sα
i S

β
j S

δ
k + geometrical equivalents, (3)

that breaks parity and time reversal symmetry and is equivalent to scalar spin chirality

type perturbations in models of Heisenberg magnets. Here κ ∝ hxhyhz/K
2, the sites

in the triad ⟨ijk⟩ are nearest neighbours, and the components α, β, δ are such that

ij ∈ α-link, jk ∈ δ-link, and β ̸= α, δ. The above model is integrable and has the

same excitations as the unperturbed Kitaev model (static, gapped visons and free

Majorana fermions). If the field has nonzero components along all the three natural

spin quantization axes, a nonzero Majorana gap ∆M ≈ |hxhyhz|/∆2
V appears with
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Figure 1. : In (a) (Reprinted with permission from Ref. [48]), the expectation values

of Wilson loop operators Wy (main panel) and Wx (inset) for the two lowest energy

states for both AFM and FM models are shown as a function of (111) Zeeman field.

The two states have Wy = −1 but are distinguished by Wx = ±1. (b) (from Ref. [49])

describes all the topological properties (ground state degeneracy, topological entropy,

quasi-particles) and chiral central charge for both FM and AFM Kitaev models in

different (001) field regimes.

characteristic cubic scaling with the field strength, a peculiar direction dependence, and

inversely proportional to the square of the vison gap ∆V . For the FM Kitaev model,

∆V ≈ 0.025K. The Majorana fermions in this gapped phase are chiral, and while the

bulk is gapped, the boundary hosts a gapless edge mode, and given that the filling

fraction of the edge fermions is 1/2, which Kitaev argued will result in a half-quantized

thermal Hall response. These arguments relied on the noninteracting mean field model.

Kitaev did not however demonstrate using any bulk-edge correspondence that the edge

modes are associated with a conformal field theory (CFT) with a chiral central charge

c− = ν/2, where ν = ±1 is the Majorana Chern number. By considering half-vortex

twist defects in the bulk (not intrinsic excitations of the mean field theory), he argued

that the vortex cores would host zero energy sub-gap majoranas that obey non-abelian

braiding rules of Ising topological order (ITO). Here he made the observation that the

mean field model is equivalent to a chiral p-wave superconductor - a phase that has no

topological order [14] but is known to allow Majorana zero modes in half-vortices that

satisfy ITO braiding rules. Assuming that c− = ν/2 is correct, Kitaev reasoned that

this would be consistent with a bulk ITO phase although he had demonstrated ITO

braiding rules not for intrinsic excitations but for half-vortices.

Subsequently, a number of works provided additional evidence in support of Kitaev’s

ITO proposition. One way to probe the topological order numerically, using exact

diagonalization, has been to study the expectation of fluxes (Wilson loops) associated

with non-contractible loops on the torus [48] (see Fig. 1(a)), which were found to take

definite values ±1 for one of the loops and only −1 for the other. However because

of finite size effects, the three-fold ground state degeneracy expected of ITO could not

be established. In another work [50], density matrix renormalization group (DMRG)

techniques were used to calculate the von Neumann bipartite entanglement entropy for

open cylinder geometries. The entropy was shown to have an “area law” component

and a constant “topological” component, where the latter had values γ = ln 2, or
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γ = (1/2) ln 2, both of which were argued to be consistent with ITO and the difference

was on account of boundary conditions. Unlike the mean field theories, the DMRG

calculation accounts for both the fermion as well as gauge contributions. Zeeman

induced vison fluctuations, although small in the ITO phase, are nevertheless interesting,

since the erstwhile static visons now acquire a dispersion. For the FM Kitaev model,

the dispersing visons are not topological [51, 52] and have a trivial non-projective

translational symmetry [52]. In contrast, for the AFM case, the visons have a nonzero

Chern number of ±1 [51, 52] and a nontrivial projective translational symmetry with

π-flux per unit cell.

Larger Zeeman fields are known to destabilize the ITO in both AFM and FM Kitaev

model. However for a given strength of the Kitaev coupling, the topological order is more

robust in case of AFM model compared to the FM case. For the AFM case, there is an

ongoing debate surrounding the existence and nature of an intermediate abelian phase

between the low field ITO and high field partially polarised paramagnetic phase whereas

the in the FM model, one directly transits from the ITO to the partially polarised phase.

From DMRG and ED calculations [48, 53], the transition takes place in the pure Kitaev

model with a (111) oriented Zeeman field at h ≈ 0.02K for the FM Kitaev coupling

and the intermediate regime persists in a field interval 0.2K ≤ h ≤ 0.36K in the AFM

case. Subsequently a debate has arisen about the nature of the intermediate phase for

Zeeman (111) fields, for example with the authors of Ref. [53, 54, 55, 56] contending

that it was a gapless U(1) spin liquid with a spinon fermi surface, while in Ref. [57],

using a combination of parton mean field theory and numerics, it was argued that the

intermediate field is gapped and chiral (with ν = ±4.) Another work [58] identifies

a second narrow region with fractionalized abelian excitations and (ν = ±4) followed

by a wider topologically trivial phase with ν = ±1. In Ref. [50], the spin-diagonal

zero momentum response Sxx(0, ω) was studied using tensor network techniques for

the AFM Kitaev model in a (111) Zeeman perturbation together with the scalar spin

chirality terms. Small magnetic fields tend to reduce the Majorana and flux gaps and also

give additional features in the dynamical response function that the authors interpret

as flux dispersion. At intermediate fields, the zero momentum gap becomes much

smaller (possibly gapless within numerical resolution), and at large fields, a magnon

mode grows out of the continuum. The features in the intermediate phase could not be

properly interpreted whether they arose from fractionalized excitations or from magnon

broadening through magnon-magnon interactions. Clearly, the intermediate phase for

(111) field orientation is not fully understood.

In contrast, there is a better understanding for (001) Zeeman perturbations and we

confine our attention to the AFM case where there is an intermediate phase [59, 60].

A parton mean field study of the Kitaev model with a (001) field shows a gapless

spectrum persisting up to h ≈ 0.5K; however this gapless regime actually consists of

two phases separated by hC1 ≈ 0.42K and hC2 ≈ 0.5K with the low-lying wavefunctions

in the two regimes having opposite chiralities [59]. At higher fields, a partially polarized

trivial phase appears. Remarkably, there is a dimensional reduction of the excitation
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spectrum in the high field partially polarized phase from 2D to 1D dispersing spin waves

along the xy-chains [59, 61, 62]. The authors of Ref. [61] further found from numerical

calculations that the intermediate gapless phase consists of weakly-coupled 1D quantum

Ising critical fermionic chains described by a (1+1)D CFT with a central charge c = 1/2.

Upon introducing a small scalar spin chirality, the spectrum becomes gapped [59] and

chiral with ν = ±1,, and the parton Chern number is found to change sign at hC1. Based

on the change of sign of the parton Chern number from the ITO to the intermediate

phase, the authors of Ref. [59] offered that this would manifest in a change of sign of the

half-quantized thermal Hall conductivity. We have already discussed above that mean

field parton theory is not sufficient for a complete characterization of a spin liquid, and

it is essential to take the contribution from the gauge sector into account. Recently

two of us [49] microscopically derived and analyzed an effective abelian Chern-Simons

gauge theory using a Jordan-Wigner fermionization strategy. For this, the authors of

Ref. [49] considered gauge fluctuation effects around the mean field theory of Ref.

[59]. Despite the change of sign of the Chern number at hC1, it was found that upon

taking the contribution from the gauge sector into account, the chiral central charge

remains unchanged at c− = 1/2, implying no change of sign of the half quantized

thermal Hall response. Moreover, the intermediate phase is topologically trivial with

no fractionalized excitations, a unique ground state, and no topological entanglement

entropy. The complete results are summarized in Table 1 (b).

3.2. Zeeman effects with competing spin interactions

There is already a vast literature on the possible phases of Kitaev models subjected

to competing spin interactions and magnetic fields (see e.g. Ref. [15, 16, 17, 18]).

However we are interested in a more restricted question, namely the signatures of

fractionalization and topological order and changes to such properties upon field tuning.

Such questions should not be viewed in isolation - for example, in the context of

magnetically ordered underdoped cuprates, there has been an effort to understand the

properties (especially an anomalously large thermal Hall response) originating from

fractionalized (semionic) excitations within the magnetically ordered phase [63]. In our

opinion a similar situation is indicated in the characteristic cubic field scaling of the

spin gap from NMR measurements in the Kitaev material α-RuCl3 for small Zeeman

perturbation within the magnetically ordered phase [63].

Microscopic models - phenomenology and numerics : Perhaps the simplest models

with competing interactions that one can study are those with K − Γ and K − J

type of interactions, together with a Zeeman field. Although these toy models are not

immediately relevant for the Kitaev materials, they provide a simple example of how the

competition of two phases, one of which is a Kitaev spin liquid, is affected by the action of

a magnetic field. Ref [64] reports a study of K−Γ model on the honeycomb lattice in an

external magnetic field by parton mean field and variational Monte Carlo calculations.

The partons move in a mean field that corresponds to zigzag magnetic order - however
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the zigzag order here appears to be imposed only as a parameter and not the result

of a phase competition. Depending on the field orientation, the authors predict the

existence of a field induced Dirac spin liquid (e.g. for (001) Zeeman fields) or an abelian

Kalmeyer-Laughlin type chiral spin liquid with ν = ±2, where the latter would show an

integer quantized thermal Hall effect. The analysis does not take into account the gauge

fluctuation effects required to impose U(1) charge conservation and the understanding

of the nature of the spin liquid phases and their excitations could change once the gauge

fluctuations are taken into account. In Ref. [65], possible field induced quantum phases

in theoretical models of the Kitaev magnets (Ferromagnetic Kitaev - antiferromagnetic

Γ) is studied, using the two dimensional tensor network approach or infinite tensor

product states. Various magnetically ordered and paramagnetic states are reported

apart from the expected chiral Kitaev spin liquid occupying a small area in the phase

diagram (i.e. small Γ/K, h/K). The finite field paramagnetic phases of interest have

nematic order. The nematic phases in the K − Γ model give away to the complex

magnetic orders with large unit cells when Γ/K becomes large. Neither of these two

papers shed light on the nature of topological order or fractionalized excitations, if any,

in the field induced paramagnetic phases. More complicated models that better describe

the parent Kitaev materials have also been investigated. In a recent study [66] a number

of numerical techniques were deployed to understand possible field induced spin liquid

phases in a (K−J−Γ−Γ′) model with FM Kitaev interactions, with parameters chosen

from fits to certain established experimental results on α-RuCl3. Finite-temperature

calculations suggested that in α-RuCl3, a window of excitation energies above the

magnetization gap exists and is possibly a Kitaev phase (similar to proposals in some INS

experiments) but the nature of the paramagnetic phase was not proved explicitly. When

the magnetic field is applied perpendicular to the honeycomb plane, the zigzag order is

suppressed at 35 T, above which, and below a polarization field of 100 T level, there

emerges a field-induced paramagnetic phase distinct from a partially polarized phase

that exists at higher fields. While ED and DMRG calculations suggest the intermediate

field phase to be gapless, the VMC calculations suggest an abelian gapped chiral spin

liquid phase with ν = ±2. Intermediate field gapless phases have also been found in Ref.

[67] for fields in the (111) direction, where spin correlations were found to decay as a

power law in distance and the specific heat obeyed a T 2 law. Note that experimentally,

a gapped phase is indicated at intermediate fields in specific heat measurements [29]

except for certain directions where the Majorana gap in the Kitaev model vanishes. In

summary, the existing studies of Kitaev models perturbed by various spin interactions

and subjected to a magnetic field have not reported any evidence for field revived ITO

although there is some support for intermediate paramagnetic phases that could be

regarded as abelian spin liquids. Furthermore, in the analytical studies, gauge effects

have not been taken into account, which limits the confidence with which one can claim

anything about the nature of topological order and fractionalized excitations.

Gauge theory phenomenology : A deeper analysis of the possibility of field-

induced ITO in magnetically ordered Kitaev systems has been made recently using a
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phenomenological gauge theory approach. For example in [68], the field tuned criticality

in α-RuCl3 has been described using models of critical bosons or gapless fermions

coupled to emergent non-abelian QCD3 Chern-Simons gauge theory. Although not

microscopically derived, these models are designed to give a field-theoretical description

of a pre-determined sequence of phases, namely zigzag (ZZ) AFM order → ITO →
partially polarized paramagnet. The ITO phase is proposed to consist of an SU(2)2 CS

theory and a U(1)−4 CS theory (both of which have Majorana excitations) followed by

hybridizing the Majorana fermions in these two theories (i.e. an anyon condensation).

The zigzag AFM to ITO and ITO to polarized transitions are respectively described by

Nf = 1 and Nf = 2 QCD3 theories. Since there is no independent microscopic support

for the above sequence of transitions, it remains an open question whether this gauge

theory is suitable for the Kitaev materials where field-tuned re-emergence of ITO is

being investigated.

3.3. Response in Kitaev systems

A number of proposals have been made theoretically for the experimental detection of

fractionalization in Kitaev materials using magnetic field tuning. These studies, like

we reviewed earlier for experiments, can be broadly categorized as spectroscopic or

thermodynamic probes.

Spectroscopic probes of Zeeman perturbed Kitaev models

Apart from the dynamical spin structure factor (governing INS) studies that we have

already described above, we mention here some more studies of response in the Kitaev

limit. Ref. [69] used a time dependent mean field approach to study the “transient

Fermi surface” of the Majorana excitations created following a (001) Zeeman quench

from a finite value to zero at some instant of time. In particular, for the AFM case,

such transient Fermi surfaces were argued to be topologically different from those at

low fields. More recently, it was shown [70] that it is possible to control the local vison

density by spatio-temporal variation of a (001) field.

Thermal response

Thermal Hall conductivity κxy is the leading thermal transport probe for Kitaev systems,

with the latter providing a direct test of the topological order. The low temperature

thermal Hall response of a gapped chiral state is determined by the chiral central charge

c− of the edge excitations. For the ITO phase, c− = 1/2, which translates to a 1/2-

quantized thermal Hall conductivity. This value of c− is not unique to ITO and also

appears, for example, in a topologically trivial phase such as a p + ip superconductor

(see our earlier discussion). Thus, half-quantized thermal Hall response is a necessary

but not sufficient condition for establishing ITO.
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The chiral central charge can in principle be obtained provided one has the

knowledge of the low-energy effective theory in the relevant parameter regime. As

we have seen above, for realistic models of Kitaev materials, we do not yet have a good

understanding of the field induced paramagnetic phases realized upon suppression of the

magnetic order present in the parent material. At high fields, in the partially polarized

phase, spin waves provide a good description of the low-lying physics.

Linear response calculation of thermal Hall response is complicated on two counts.

First, unlike its electrical counterpart where one has a TKNN [71] formula relating

the Chern number of the bulk ground state to the Hall conductivity, thermal Hall

conductivity must be calculated for geometries with a boundary. Second, the linear

response thermal Hall conductivity contains two important components [72] - a Kubo

part which is a correlator of energy currents, and an energy magnetization part which

represents bound currents that must be subtracted from the local energy current since

they do not contribute to the transport thermal Hall current. In practice, it is difficult

to obtain the Kubo and energy magnetization contributions in interacting systems,

and almost all the past studies have been conducted for models with free fermion [73] or

bosonic excitations [74]. More recently there has been progress in the finite temperature

thermal Hall response of interacting fermionic matter [75] where the contribution of

gauge fluctuations has been addressed in a large-N theory. Another approach has been

to consider the contribution of vison dispersion in the ITO phase to the thermal Hall

response [51, 52]. While the half-integer quantization does not appear to be affected

at such low fields, κxy displays a nonmonotonous temperature dependence in the AFM

Kitaev model where the visons are in general chiral.

For noninteracting fermions, taking into account both the Kubo and energy

magnetization contributions yields the following expression for the thermal Hall

conductivity (see Ref. [73]):

κtr
xy = − 1

e2T0

∫
dϵ(ϵ− µ0)

2Θxy(ϵ)ϵf
′(ϵ), (4)

where Θxy(ϵ) =
2e2

ℏ
∑

ϵnk≤ϵ Im < ∂unk

∂kx
|∂unk

∂ky
> is the total Berry curvature of the fermionic

bands up to an energy ϵ.

In magnetically ordered or partially polarized paramagnetic phases of the perturbed

Kitaev systems, the spin wave approximation is a reasonable starting point. In Ref. [74],

the following expression for the bulk thermal Hall response of noninteracting bosons was

obtained (ℏ = kB = 1),

κxy = −T

V

∑
k

∑
n=1

[
c2(nB(ξnk))−

π2

3

]
Ωnk, (5)

where c2(x) =
∫ x

0
dt
(
ln 1+t

t

)2
and Ωnk = iϵµν

[
σ3

∂T †
k

∂kµ
σ3

∂Tk

∂kν

]
is the Berry curvature of the

nth boson band. Tk is the Bloch eigenstate and nB is the Bose distribution function.

This expression has been the most widely used in the Kitaev literature.
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A general real space expression for thermal Hall response of arbitrary 2D

Hamiltonians with local interactions was provided by Kitaev [12] and subsequently

clarified by Kapustin [76]. A significant point made in these papers was that linear

response theory does not directly yield κxy but instead changes in κxy/T between

different temperatures, and that the correct temperature dependence of κxy can be

obtained once the value of κxy/T is known for a particular temperature.

Application of Kitaev-Kapustin theory for noninteracting bosons yields [75] an

expression for the derivative of κxy/T :

d(κxy/T )

dT
=

1

2T 3V

∑
k

∑
n

n′
B(ξik)ξ

3
ikΩ

z
nk. (6)

The sum runs over both positive and negative eigenmodes with equal contribution.

The thermal Hall conductivity is obtained by integrating Eq. (6), and the constant

of integration is fixed by specifying κxy/T at some temperature. For instance, for a

bounded spectrum, limT→∞(κxy/T ) = 0.

For interacting bosons, one needs to revert again to Kitaev-Kapustin theory and

obtain the thermal Hall response in terms of the interacting Green functions. To the

best of our knowledge, this has not been done yet.

In an earlier work [77], two of us observed that κxy for the Kitaev model numerically

obtained from Eq. (5) for moderate fields h ∼ K(111) shows a tendency to saturate [78]

to a finite value even at high temperatures. The same is the case when κxy is obtained

from Eq. (6). This was puzzling on two counts. First, since the “infinite” temperature

density matrix is diagonal with equal elements, the energy currents and κxy should

vanish. Second, physically, thermal response should be proportional to the specific

heat which vanishes at high temperatures in any system with a bounded spectrum. In

Ref. [77] a new technique for the calculation of the thermal Hall response of gapped

2D spin systems was proposed which is simpler to implement numerically compared to

the Kitaev-Kapustin linear response treatment, which was used to decide between Eq.

(5) and Eq. (6). The basic idea is that for any local Hamiltonian, i.e. H =
∑

iHi,

where i refer to spatial coordinates, the thermal current jE(ij) from i to j is given by

jE(ij) = i[Hi, Hj]. The energy current across a surface is found by summing such local

energy current contributions such that the two sites in each local contribution jE(ij)

lie on either side of the boundary. For Hall response, the 2D lattice is rolled up into

a cylinder, a time reversal symmetry breaking perturbation (here, a Zeeman field) is

applied, and the system is immersed in a uniform temperature bath. The thermal Hall

current is measured across any simple curve (boundary) that connects the two open

edges. Since both the edges are at the same temperature, the total Hall current is zero,

a consequence of the exact cancellation of Hall currents reckoned from the two edges. For

gapped systems, the Hall currents are the largest near the edges and exponentially decay

into the bulk. Thus one obtains the Hall current associated with a single edge at any

given temperature T by computing the energy current across a curve that extends from
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Figure 2. (a) (Reprinted with permission from Ref. [77]) shows isomagnetic plots

of κxy/T for the ferromagnetic Kitaev model in the field range 0.025 ≤ h/K ≤ 0.5

interpolating the Ising topological order (ITO) and spin wave limits. Solid gray line

describes the half-quantized thermal Hall effect. Inset shows the plot of peaked κxy/T

versus magnetic field on the left y axes and topological entanglement entropy γ on the

right y axes in pure Kitaev limit. In (b) the same is shown for the J −K model, with

Heisenberg interactions chosen both inside the Kitaev spin liquid phase (J/K = 0.1)

as well as in the SDW phase (J/K = 0.2, 0.3) whereas the inset shows the plot of

topological entanglement entropy γ as a function of magnetic field h/K for different

values of J/K.

one of the edges to the midpoint of a sufficiently large cylinder. For calculation of the

thermal averages, a purification based tensor network technique was used. Thermal Hall

response of the Kitaev model as well as Kitaev-Heisenberg models were thus obtained.

The numerical strategy does not require any quasiparticle picture.

Figure 2(a) shows the thermal Hall response of the Kitaev model in a (111) Zeeman

field calculated using the technique introduced in Ref. [77]. Because of the finite size

nature of the samples, the edge modes become gapped even at vanishing fields. At

higher fields when ITO is lost, the excitation gaps are genuine and not a finite size

effect. At the lowest fields, κxy/T peaks near the half-quantized value expected for the

ITO phase. Thereafter, the peak rapidly declines upon increasing the field beyond the

ITO regime. At a field h = 0.5K(111), the thermal Hall conductivity is practically zero,

unlike the results obtained from spin wave theory. No saturation of κxy is observed at

high temperatures. We believe that this difference is on account of the inapplicability

of spin wave theory in such a field regime where nonlinear magnon interaction effects

could be significant. The topological entanglement entropy (see inset) also shows a

similar behaviour, declining sharply from γ = ln 2 outside the ITO phase. At the higher

range of fields far from ITO, the spin wave approximation becomes justifiable.

When perturbed by Heisenberg or other competing spin interactions, the ground

state becomes magnetically ordered. Thermal Hall effect has been studied in such cases

using the spin wave approximation around the classical magnetic ground states. Ref.

[78] describes that the spin-wave bands of the K − J − Γ − Γ′ model carry nontrivial

Chern numbers over large regions of the phase diagram, implying the presence of chiral
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magnon edge states. Unlike other models of topological magnons here nonvanishing

anomalous (number nonconserving) terms are responsible for opening up a gap in

the spectrum leading to Chern bands. The evidence of the chiral surface states

that are present and topologically protected in linear spin-wave theory is shown from

the time-dependent DMRG and interacting spin-wave theory, and hence, should be

experimentally detectable in principle. These chiral magnons lead to integer quantized

Hall response that reverses its sign upon the reversal of the magnetic field [79]. A

direct numerical calculation [77] for the Kitaev-Heisenberg model in the vicinity of field

suppressed magnetic order reveals a large finite temperature peak (approaching integer

quantization for J/K near the Kitaev spin liquid boundary), see Figure 2(b). However

at low as well as high temperatures, the thermal Hall response approaches zero. This

is reminiscent of recent observations [37]. A calculation of the topological entanglement

entropy [77] does not indicate any restoration of ITO near field suppressed magnetic

order. It appears that although the magnetic field is determental to magnetic ordering,

in parallel it also acts to suppress topological order.

Phonon contribution to Hall effect : Although phonons are not intrinsically chiral

and do not directly contribute to the thermal Hall effect, the phonons inevitably couple

to the magnetic excitations in the Kitaev system, owing to the dependence of the spin

interactions on the interatomic separations. The phonon contributions could have both

intrinsic origin (from Berry phase effects of the hybrid magnon-phonon modes) as well

as extrinsic ones associated with defect scattering (side jump and/or skew symmetric

origin). The theory of phonon contribution to thermal Hall effect through their coupling

to spin waves has been recently developed in Ref. [80]. Using these ideas, it has been

argued in Ref. [81] that to explain the experimentally observed thermal Hall response

in the vicinity of field-suppressed magnetic order, one must include both intrinsic and

extrinsic contributions to the thermal Hall effect. Being a spin-wave analysis, these

studies however do not shed light on whether there is any signature of fractionalized

excitations in this field regime.

Other thermal response: Experimentally, we have seen how the field dependence

of the spectral gap extracted from specific heat measurements could provide convincing

evidence for the existence of fractionalized Kitaev quasiparticles. We are not aware of

theoretical work that supports this picture

Disorder as a signature of fractionalized excitations: There have also been

theoretical and experimental studies on the consequences of various types of disorder in

quantum spin liquid systems. Most materials realistically have some level of disorder,

which can significantly affect their low-energy properties, but can also serve as a probe

for exotic excitations characterizing spin liquid systems. In this context, more than

a decade ago, both site dilution and exchange randomness were considered in the

Kitaev honeycomb model, and it was shown that in the gapless phase, a single vacancy

binds a flux and induces a local moment, leading to a logarithmically divergent local

susceptibility [82, 83]. This effect is further enhanced for a pair of nearby vacancies.

On the other hand, in the gapped phase, it was shown that a finite density of randomly
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distributed vacancies remains tractable via a mapping to a bipartite random hopping

problem [84], which leads to a strong disorder form of the low-energy thermodynamics.

The effect of coupling magnetic impurities to the honeycomb lattice spin-1/2 Kitaev

model in its spin liquid phase also gives rise to an unusual Kondo effect [85] whose

strong coupling limit creates localized nonabelian anyons just like in the vacancy case

[85, 83]. Furthermore, the massless spinons in the spin liquid were shown to mediate

an interaction between distinct impurities unlike the usual dipolar RKKY interaction

noted in various 2D impurity problems.

More recently, other possible signatures of different types of disorder in the Kitaev

model have been considered, with a focus on intercalated compounds, with weaker

interlayer couplings, an effectively quasi-2D nature and a large number of stacking

faults, where defects are expected to play an important role, and which are also relatively

better described by a pure Kitaev model without competing interactions. For example,

in the the hydrogen intercalated iridate H3LiIr2O6, vacancies in the Kitaev model have

been found to play an important role in understanding the origin of a low-temperature

divergence in the specific heat C/T ∝ T−1/2 as resulting from a pileup of the low-

energy density of states [86, 87]. The vacancy-induced low-energy states are predicted

to be gapped out in the presence of a magnetic field, resulting in the suppression of the

specific heat, as observed in this material. It was also predicted that Raman or inelastic

neutron scattering experiments should be able to detect the low-energy divergent power-

law tail of the density of states, and a controlled, sufficiently large change of disorder

concentration should be observable as a drift in the exponent of this divergence. While

such an interpretation is indicative of the potentially useful role played by disorder in

detecting spin liquid physics, further discussion on other possible ways of understanding

these experimental observations, unrelated to fractionalization or topological order, is

desirable. Besides, spin vacancies in the non-abelian Kitaev spin liquid are known to be

harbor Majorana zero modes, the spectroscopic signatures of which have recently been

studied in a scanning tunneling setup [88] where a non-abelian Kitaev spin liquid with a

finite density of spin vacancies forms a tunneling barrier between a tip and a substrate,

and the key results include a well-defined peak close to zero bias voltage in the derivative

of the tunneling conductance whose intensity increases with the density of vacancies,

and a single-fermion Van Hove singularity at a higher voltage that reveals the scale of

the emergent Majorana fermions in the Kitaev spin liquid. The dynamical response of

vacancy-induced quasiparticle excitations in the site-diluted Kitaev spin liquid has also

been studied in the presence of a magnetic field [89]. Due to the flux-binding effect and

the emergence of dangling Majorana fermions around each spin vacancy, the low-energy

physics is governed by a set of vacancy-induced quasi-zero-energy modes, resulting in

unique characteristics of the dynamical spin correlation functions.
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4. Discussion

To conclude, we have surveyed the current theoretical and experimental understanding of

Zeeman field tuned degradation of topological order and spin fractionalization in Kitaev

magnets. Along with external Zeeman field, effects of other competing perturbations

like Heisenberg and Gamma interactions were also discussed.

Among the signatures of fractionalization, data from inelastic neutron scattering

measurements [20, 22, 24, 23, 25, 21], while not inconsistent with fractionalized

excitations, can also be explained from an interacting spin waves perspective. A

definitive confirmation of fractionalization is preferred over arguments merely suggesting

compatibility with it. NMR studies [29] have demonstrated that the field-dependent spin

excitation gap can be modeled by combining a finite value at zero field with a cubic

increase in the low-field range. Given that a solitary spin flip is anticipated to yield

a pair of visons and a Majorana in the Kitaev model, this behaviour in the low-field

regime serves as positive evidence for the presence of fractionalized Kitaev excitations.

The cubic behaviour can also be extracted from recent specific heat measurements a

field configuration that has nonzero components along all three spin projection axes.

NMR and specific heat measurements [29, 38], in our opinion, represent the strongest

evidence so far for fractionalization in field-tuned Kitaev magnets, although one must

remember here that the cubic field dependence is for the Kitaev model, and it is not

known if the same behaviour would persist in the presence of competing interactions

strong enough to cause magnetic ordering.

The most important debate regarding thermal measurements [32, 33, 34, 35]

concerns the controversial observation of a half-quantized thermal Hall conductivity

near the field suppressed magnetic order, where there is strong disagreement in the

community even on the existence of the phenomenon in α-RuCl3 [36, 37]. The

experiments are conducted in a field regime where neither spinons nor magnons provide

a good quasiparticle starting point for analyzing thermal Hall response. To add to

the confusion, it appears that spin-dependent scattering of phonons from electronic

excitations and defects could strongly affect the thermal Hall response of Kitaev

magnets. However there has been progress in the development of quasiparticle agnostic

numerical approaches for the study of thermal Hall response in many-body systems

[76, 75, 77]. Second generation Kitaev materials, while heavily disordered, are less

susceptible to magnetic order, and the known properties of defects in Kitaev spin liquids

have been used to interpret specific heat data of second generation Kitaev materials as

evidence of spin fractionalization [86, 87]. The defect studies are, however, based on

mean-field fermionization of the Kitaev model and do not take into account the gauge

fluctuation contributions.

Given the complicated nature of the problem when both Zeeman perturbations as

well as competing spin interactions are simultaneously present, a significant theoretical

focus has been directed towards the simpler problem of Zeeman effects in Kitaev systems.

A small Zeeman field (with nonzero field components along the three natural spin
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quantization axes) gaps out the Majoranas and makes them chiral [12]. In the case

of a ferromagnetic (FM) sign for the Kitaev coupling, the system undergoes a direct

transition into a partially spin-polarized phase, which is topologically trivial. The shift

towards the topologically trivial phase seems to follow a confinement-deconfinement

mechanism driven by the proliferation of visons. Conversely, in the antiferromagnetic

(AFM) scenario [48, 50, 49, 59], there exists at least one intermediate field phase

that separates the low-field intermediate topological order (ITO) phase from the high-

field partially spin-polarized paramagnetic phase. In recent studies, the intermediate

field phase is shown to be abelian [53, 54, 55, 56, 57, 49] and exhibits half quantized

thermal Hall response [59, 49] indicating the half quantization is a necessary but not

sufficient condition for proving the Ising topological order, which additionally requires

the demonstration of appropriate braiding statistics and fusion rules [49].

Competing spin interactions are necessary to account for various experimental

observations, such as the existence of low-field antiferromagnetic zigzag order in

α−RuCl3. One possibility is that the Zeeman and competing spin interactions operate

through distinct and competing mechanisms to disrupt topological order. This provides

a motivation to employ both simultaneously, preventing either from fully suppressing

the nearby topological order within the parameter space, while effectively counteracting

their individual influence. Different numerical and analytical studies [64, 65, 66, 67, 68]

have been developed in this context, focusing on fractionalization and topological order,

but have not reported any evidence for field revived ITO, although there is some support

for intermediate paramagnetic phases that could be regarded as abelian spin liquids.

Moreover, in analytical investigations, the influence of gauge effects has typically been

disregarded, impacting the reliability with which assertions can be made about the

characteristics of topological order and fractionalized excitations.

Field-tuned strategies for Ising topological order in Kitaev systems could work in a

few scenarios. First, based on the observation that models with the AFM sign of Kitaev

interaction are significantly more robust to field induced ITO degradation, it makes

sense to search for highly frustrated magnetic insulators with AFM Kitaev interactions.

Second, even in FM Kitaev materials (which are more common so far), if the magnetic

ordering scale happens to be well below the vison gap, then such systems can also be

field-tuned to an ITO phase. Further work is also needed to understand better the

nature of any paramagnetic phases that are obtained upon the Zeeman suppression of

magnetic order in Kitaev models with competing spin interactions.

The bulk of the theoretical treatment of Zeeman-perturbed Kitaev systems is based

on quasiparticle mean field treatments, whether magnons or spinons. Effects of magnon

interactions have been studied in the context of inelastic neutron scattering, although not

on thermal Hall response. However, more work needs to be done to understand magnon

interaction effects closer to spin liquid instabilities. From the spinon end, interactions

are naturally introduced through coupling to suitable gauge fluctuations. Gauge theory

approaches are still in the process of development and offer a complementary treatment

to spin wave approaches. The effect of gauge fluctuations on physical properties such
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as thermal Hall response is a topic that is relevant for a wide range of 2D quantum

magnets, including the cuprates.

Acknowledgements

The authors acknowledge support of the Department of Atomic Energy, Government

of India, under Project Identification No. RTI 4002, and Department of Theoretical

Physics, TIFR, for computational resources. S.K. acknowledges financial support from

UF Project No. P0224175 - Dirac postdoc fellowship, sponsored by the Florida State

University National High Magnetic Field Laboratory (NHMFL), and from NSF DMR-

2128556. The authors thank Subir Sachdev, Shiraz Minwalla, Kedar Damle, Darshan

Joshi, Avijit Maity, Inti Sodemann, Nandini Trivedi, Wen-Han Kao, Yong-Baek Kim

and Matthias Gohlke for fruitful discussions.

References

[1] Anderson P W 1987 Science 235 1196–1198

[2] Baskaran G, Zou Z and Anderson P W 1993 Solid state commun. 88 853–856

[3] Kalmeyer V and Laughlin R 1987 Phys. Rev. Lett. 59 2095

[4] Kivelson S A, Rokhsar D S and Sethna J P 1987 Phys. Rev. B 35 8865

[5] Affleck I and Marston J B 1988 Phys. Rev. B 37 3774

[6] Read N and Sachdev S 1991 Phys. Rev. Lett. 66 1773

[7] Wen X G 1989 Phys. Rev. B 40 7387

[8] Wegner F J 1971 J. of Math. Phys. 12 2259–2272

[9] Senthil T and Fisher M P 2000 Phys. Rev. B 62 7850

[10] Kogut J B 1979 Rev. Mod. Phys. 51 659

[11] Moessner R and Sondhi S 2001 Phys. Rev. Lett. 86 1881

[12] Kitaev A 2006 Ann. Phys. (N. Y.) 321 2–111

[13] Savary L and Balents L 2016 Rep. on Prog. in Phys. 80 016502

[14] Ivanov D A 2001 Phys. Rev. Lett. 86 268

[15] Janssen L and Vojta M 2019 Journal of Physics: condensed matter 31 423002

[16] Hermanns M, Kimchi I and Knolle J 2018 Annual Review of Condensed Matter Physics 9 17–33

[17] Takagi H, Takayama T, Jackeli G, Khaliullin G and Nagler S E 2019 Nature Reviews Physics 1

264–280

[18] Trebst S and Hickey C 2022 Physics Reports 950 1–37

[19] Kumar A and Tripathi V 2020 Physical Review B 102 100401

[20] Banerjee A, Bridges C, Yan J Q, Aczel A, Li L, Stone M, Granroth G, Lumsden M, Yiu Y, Knolle

J et al. 2016 Nature materials 15 733–740

[21] Winter S M, Li Y, Jeschke H O and Valent́ı R 2016 Physical Review B 93 214431

[22] Banerjee A, Lampen-Kelley P, Knolle J, Balz C, Aczel A A, Winn B, Liu Y, Pajerowski D, Yan

J, Bridges C A et al. 2018 npj Quantum Materials 3 8

[23] Zhao X, Ran K, Wang J, Bao S, Shangguan Y, Huang Z, Liao J, Zhang B, Cheng S, Xu H et al.

2022 Chinese Physics Letters 39 057501

[24] Balz C, Lampen-Kelley P, Banerjee A, Yan J, Lu Z, Hu X, Yadav S M, Takano Y, Liu Y, Tennant

D A et al. 2019 Physical Review B 100 060405

[25] Winter S M, Riedl K, Maksimov P A, Chernyshev A L, Honecker A and Valent́ı R 2017 Nature

communications 8 1152



Field tuning Kitaev systems for spin fractionalization and topological order 23

[26] Wulferding D, Choi Y, Do S H, Lee C H, Lemmens P, Faugeras C, Gallais Y and Choi K Y 2020

Nature communications 11 1603

[27] Sahasrabudhe A, Prosnikov M A, Koethe T C, Stein P, Tsurkan V, Loidl A, Grüninger M, Hedayat
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