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Spiral spin liquids possess a subextensively degenerate ground-state manifold, represented by a
continuum of energy minima in reciprocal space. Since a small change of the spiral state wavevec-
tor requires a global change of the spin configuration in real space, it is a priori unclear how such
systems can fluctuate within the degenerate ground state manifold. Only recently it was proposed
that momentum vortices are responsible for the liquidity of the spiral phase and that these sys-
tems are closely related to an emergent rank-2 U(1) gauge theory [H. Yan and J. Reuther, Phys.
Rev. Research 4, 023175 (2022)]. As a consequence of this gauge structure, four-fold pinch-point
singularities were found in a generalized spin correlator. In this article, we use classical Monte
Carlo and molecular dynamics calculations to embed the previously studied spiral spin liquid into a
broader phase diagram of the square lattice XY model. We find a multitude of unusual phases and
phase transitions surrounding the spiral spin liquid such as an effective four-state Potts transition
into a colinear double-striped phase resulting from the spontaneous breaking of two coupled Zo
symmetries. Since this phase is stabilized by entropic effects selecting the momenta away from the
spiral manifold, it undergoes a re-entrance phenomenon at low temperatures into a nematic spiral
phase. We also observe a region of parameters where the phase transition into the spiral spin liquid
does not break any symmetries and where the critical exponents do not match those of standard
universality classes. We study the importance of momentum vortices in driving this phase transition
and discuss the possibility of a Kosterlitz-Thouless transition of momentum vortices. Finally, we
explore the regime where the rank-2 U(1) gauge theory is valid by investigating the four-fold pinch

point singularities across the phase diagram.

I. INTRODUCTION

Spin liquids (SLs) are one of the most sought-after
states in the field of modern condensed matter physics [1-
3]. This is because these disordered yet highly correlated
spin states offer an ideal platform to study a wide range
of captivating emergent phenomena [4-8]. Examples in-
clude hidden topological order, long-range entanglement,
fractional excitations, fracton physics, and many more.
In the classical limit, where spins behave as unit vectors,
much attention has been focused on lattices of corner-
sharing frustrated motifs such as triangles or tetrahe-
dra [9-13]. These lattices allow for a re-writing of a
nearest neighbor Heisenberg Hamiltonian into a sum of
complete squares over the triangular or tetrahedral build-
ing blocks. Hence, all ground states are determined by
local spin constraints such as the condition of a vanishing
total spin on each of these motifs [14-17]. Prominent ex-
amples occur on kagome and pyrochlore lattices, where
extensively degenerate ground state manifolds are con-
nected by local spin flips and the spin structure factors
exhibit characteristic two-fold pinch-point singularities.
Upon adding quantum fluctuations these highly degen-
erate ground states comprise a well-known route toward
inducing quantum spin liquid behavior [18-22]. Partic-
ularly fascinating is the possibility of realizing emergent
gauge theories via these local spin constraints, which in

pyrochlore quantum spin ice systems gives rise to an ef-
fective U(1) quantum electrodynamics [23, 24].

Another kind of spin liquid is the spiral spin liquid
induced by competition between the nearest and further
neighbor couplings. Contrary to the aforementioned spin
liquids which result from local spin constraints, this kind
of system exhibits only a subextensively degenerate clas-
sical ground-state manifold given by a continuum of min-
ima in reciprocal space, homotopic to a ring in two di-
mensions or sphere (or other 2D surfaces) in three dimen-
sions [25-34]. In these systems, however, a small change
in the spiral wave vector implies a global, coordinated
change of all spins in real space, contrary to the local
spin flips of kagome or pyrochlore magnets. Thus, it is
not a priori clear how spiral spin liquids can explore the
whole ground-state manifold. A solution to this issue was
proposed very recently, identifying the momentum vor-
tices as the effective local degrees of freedom responsible
for the liquidity of the phase [35]. The proliferation of
these topological defects allows each small patch of spins
in the system to visit different wave vectors along the
spiral surface at very little energy cost.

Furthermore, a low-energy effective theory for a clas-
sical spiral spin liquid was derived, which possesses re-
markable similarities with a rank-2 U(1) gauge theory.
The family of such theories constitutes higher-rank gen-
eralizations of U(1) electromagnetism known for their un-
usual kinetically constrained fracton quasiparticles [35—



37]. As a result of the tensor structure of the associated
Gauss’ law, a rank-2 U(1) gauge theory exhibits four-
fold pinch-point singularities in the electric-field corre-
lator [38] instead of the usual two-fold pinch points of
the electric-field correlator in standard U(1) electromag-
netism. The effective theory also has a close relation to
the fracton theory of smectic matter [39-43]. In particu-
lar, the topological defects known as momentum vortices
have the same exotic feature as those in smectic matter,
namely the winding number cannot be larger than 1, but
can be any arbitrary negative number. The mathematics
behind this has been discussed in detail in Refs. [35, 43].

In the spiral system of Ref. [35] — a classical square
lattice XY model with up to third nearest neighbor in-
teractions — the emergent electric field translates into a
second-order derivative of the spin angle field and the cor-
responding correlation function of these objects has in-
deed been numerically confirmed to show four-fold pinch
points. Nevertheless, the range of validity of the rank-
2 U(1) gauge theory emerging from a spiral spin liquid
remains uncharted since the exact mapping requires the
radius of the spiral contour in momentum space to be
nearly vanishing. A further question left unanswered in
Ref. [35] is the nature of the thermal phase transition
observed as a sharp heat capacity peak when the system
enters the spiral spin liquid regime.

Motivated by the previous results but also by remain-
ing open questions, in this article, we revisit the spi-
ral phase of the classical XY model on the square lat-
tice using classical Monte Carlo and molecular dynamics
calculations. Compared to Ref. [35] where the system
was only studied for a single parameter set for a fixed,
small, and almost circular spiral ring, here, we explore
a larger region of the phase diagram with varying radii
of the spiral contour, revealing the broader interplay of
phases in which the spiral spin liquid is embedded. Par-
ticularly, moving away from the circular spiral ring we
study the range of validity of the correspondence between
the spiral spin liquid and the rank-2 U(1) gauge theory.
We also uncover a rich phase diagram in temperature
and parameter space that contains a variety of interest-
ing magnetic phases beyond the previously studied spiral
spin liquid, pancake liquids, and rigid vortex networks.
This includes double stripe states stabilized by two in-
tertwined entropic selection mechanisms that lead to a
Z.5 X 7.5 symmetry breaking of lattice translation and ro-
tation symmetries. However, since these selection mecha-
nisms have a finite energy cost, at lower temperatures the
system regains one of the broken Zs symmetries, showing
a re-entrant behavior into a nematic spiral phase. The
different broken symmetries lead to phase transitions be-
longing to the 2D Ising and four-state Potts universality
classes. Furthermore, between the pancake and spiral
spin liquids, we observe a phase transition with a log-
arithmically divergent specific heat that is not related
to any symmetry breaking. We investigate the behavior
of momentum vortices at this transition and discuss the
possibility of a Kosterlitz-Thouless transition of momen-
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FIG. 1. Square lattice with up to third-nearest-neighbor ex-
change interactions shown in orange, purple, and blue, respec-
tively, emanating from an arbitrary site (black).

tum vortices.

The remainder of the article is organized as follows:
Section II introduces the XY model on the square lattice
and the key properties of the spiral contour. In Sec. I11 we
show the finite-temperature phase diagram as obtained
in our calculations, with different subsections devoted to
the individual phases. In Sec. IV we investigate the dy-
namical spin structure factor and discuss the character-
istic spectral features of the different phases. In Sec. V
we discuss the roles of spin and momentum vortices, es-
pecially at the phase transition into the spiral spin liquid
regime. Finally, in Sec. VI we study the validity of the
rank-2 U(1) gauge theory throughout the phase diagram.
Sec. VII contains the conclusions of our work.

II. SPIRAL SPIN MODEL

The Hamiltonian for the XY model on the square lat-
tice considered in this article is given by

(ig)1 (ij)2 (ij)s

where (i5)1, (if)2, and (ij)s indicate first-, second-, and
third-nearest neighbor sites, respectively (see Fig. 1).
The XY spins S; = (Siz, Siy) are normalized as |S;| =1
and represented by an angle ¢ € [0,27) via S; =
(cos ¢y, 8in ¢p;). Throughout this work we constrain the
coupling parameters as follows: We fix the nearest-
neighbor interaction to be ferromagnetic, J; = —1, and
consider antiferromagnetic Jo and J3. Furthermore, we
fix Jo > 0.25 and J5 = J2/2, as this gives rise to the spiral
ground states of interest here [35]. It is thus convenient
to use the parametrization § = Jy — 0.25, such that the
transition between a pure ferromagnet and spin spirals
occurs at 6 = 0. The degenerate momenta q = (g, qy)
of the spin spirals lie on a ring in reciprocal space, deter-
mined by the solutions of the equation
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cos(qy) + cos(qy) = LIl (2)
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FIG. 2. Continuous ground-state manifolds of wave-vectors as
a function of § corresponding to the spiral solutions of Eq. (2).
Contour lines are shown for § = 0.001, 0.01, 0.03, 0.05, 0.10,
0.15, and 0.20 from smallest to largest.

In Fig. 2 we show the continuous manifolds of ground
state wave-vectors in reciprocal space for varying values
of § from § = 0 to 0.25. When § = 0.25 the spiral ring
reaches the special wave-vectors (£7,0) and (0, 7).
From Eq. (2) it is clear that § = 0 only allows for the
ferromagnetic solution q = (gz,qy) = (0,0). When ¢ is
finite but ¢ < 1, solutions in the vicinity of q = (0,0)

can be found by approximating cos(q) = 1 — % +0(q%).
Inserting this into Eq. (2) results in circular rings given

by
q ? q ?
x y

+(—=) =1, 3
(15) +(i%5) )
where the radius is 4v/8 [35]. This is evidenced in Fig. 2,
where contour lines with small § close to the origin be-
come more circular. It is in this limit that the spiral spin
liquid physics is governed by momentum vortices whose

effective theory corresponds to a rank-2 U(1) gauge the-
ory [35].

III. PHASE DIAGRAM

We perform classical Monte Carlo (¢cMC) calculations
in a range of the phase diagram given by § € [0,0.25],
from the ferromagnetic limit to the point where the spiral
ring touches the wave vectors (+75,0) and (0,%+7). Note
that the last wave vectors correspond to spirals with a pe-
riodicity of four sites along one lattice direction. The be-
havior in this case is expected to be substantially different
from the spiral liquid studied in Ref. [35]. Our core cal-
culations are performed with the following specifications.
We consider square systems with periodic boundary con-
ditions, with up to N = 200 x 200 = 40000 sites. A
logarithmic cool-down protocol is implemented with 120
temperature steps from 7' = 2 down to 7" = 0.02 (where
the units of energy are eliminated via |J;| = 1). Each
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FIG. 3. Phase diagram of the Hamiltonian in Eq. (1) obtained
by ¢cMC. The color indicates the size of ¢,. Open symbols
and lines indicate the positions of the peaks or local maxima
in ¢, (see main text), except for the orange symbols that
are calculated from an energy crossover. The type of phase
transition (for example, the universality class) is indicated
in the legend (SB = symmetry breaking), and the phases are
indicated in the corresponding regions (SL = spiral liquid, VN
= vortex network). The red star corresponds to the transition
into the spiral liquid as obtained in Ref. [35].

temperature step consists of 5 x 10° Monte Carlo steps
composed of N Metropolis trials and N over-relaxation
steps each. The acceptance ratio remains close to 50%
thanks to the adaptive Gaussian step [8]. Data for e and
¢, is collected after performing half of the cMC steps at
a given temperature. Results are averaged over 10 in-
dependent runs. Apart from these core calculations, we
perform additional calculations, e.g. for the spin struc-
ture factors, starting from stored thermalized states.

The energy and specific heat calculations exhibit finite-
temperature phase transitions in the full range of inves-
tigated & > 0. The phase diagram is presented in Fig. 3,
where the background color indicates the magnitude of
the specific heat ¢, (T, ). The colors of the lines and sym-
bols indicate the types of phase transitions manifested by
peaks in the specific heat, which we will explain in detail
in the following subsections. Overall, the phase diagram
reveals many interesting features such as the existence of
two phase transitions (red and green lines) at § > 0.16,
where the lower critical temperature T, goes to zero as
6 — 0.25. These transitions surround a double-striped
phase which we denote (2). The central part of the phase
diagram is dominated by incommensurate lattice nematic
spirals which can be understood as stripy spin states in
one of the two Cartesian directions. At small § < 0.05,
the system shows a crossover at high temperatures from
the paramagnetic regime into a pancake liquid phase [44].
Upon lowering the temperature further, the system un-
dergoes a transition into a spiral spin liquid phase (brown
line) without displaying any signs of symmetry breaking.
The red star on this line highlights the phase transition



found in Ref. [35]. At even lower temperatures, this phase
turns into a rigid vortex network.

These phase transitions and crossovers depict a rich
phase diagram including the spiral spin liquid phase at
finite temperatures, which we will characterize in the
following. Before we continue describing the individual
phases in detail, it is important to note that the Mermin-
Wagner theorem forbids the spontaneous breaking of the
continuous U(1) spin rotation symmetry at any finite
temperature. Therefore, (S;) = 0 holds for any site 4
at T' > 0. This means that whenever we speak of ‘sym-
metry breaking order’ we refer to orders that manifest
in spin-rotation invariant order parameters (such as spin
correlations (S;S;)) and that break discrete lattice sym-
metries.

A. Double colinear stripes

Let us start with the parameter regime correspond-
ing to the (2) phase (2-up-2-down phase), which consists
of nematic two-site-wide stripes of antiparallel spins [see
Fig. 4 (a)]. This phase breaks both lattice translation
and rotation symmetries and is typically observed in sys-
tems with short-ranged ferromagnetic and long-ranged
antiferromagnetic interactions [45-47]. In the spin struc-
ture factor,

1 iq-ri;
Sta) = (8:-8;) e 4
,J
where r;; = r; —r; is the distance between spins S;

and S;, the (2) phase is characterized by peaks at q =
(£7/2,0) or (0,+7/2) [see Fig. 4 (b)]. It is important to
note that these points only belong to the spiral ground-
state manifold at exactly § = 0.25. For § < 0.25 there is
another transition at lower temperatures that takes the
system to the ground-state manifold.

The selection of g-points on the Cartesian axes in re-
ciprocal space is entropic and happens due to the discrete
nature of the lattice. Naively, breaking the discrete Zo
lattice rotation symmetry that transforms the wave vec-
tors q = (£7/2,0) and (0,+7/2) into each other would
lead to an Ising transition, as in the well-known Ji-J5
square lattice Heisenberg model for Jy > 0.5 Ji, where
simple antiferromagnetic stripes are selected [48, 49].
However, this is not the case here since there is an extra
accidental degeneracy that is responsible for the forma-
tion of the (2) phase. Specifically, the Hamiltonian in
Eq. (1) implies that all coplanar spin stripes with the
periodic four-site pattern [¢p4dpd 40 5] along one of the
two Cartesian axis have the same energy regardless of the
values of ¢4 and ¢p (¢4 and ¢p indicate two different
angles and ¢ 4, = ¢4 + 7 is the opposite direction of ¢4).
Within this manifold there are spin spirals with a pe-
riod of four lattice sites and spatially homogeneous /2
rotation angles between neighboring spins (i.e., ¢4 and
¢p differ by 7/2) as well as (2) phases when ¢4 = ¢p or
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FIG. 4. Characterization of phase (2): (a) Snapshot of a real-
space spin configuration from cMC for L = 200 at § = 0.17
and T = 0.119 (the inset shows a zoom-in), where colors
indicate the angle ¢; at each site 7. (b) Spin structure factor
S(q) (on a logarithmic scale) for 6 = 0.17 and T' = 0.119. (c)
Order parameter O; to test for lattice translation symmetry
breaking [see main text and Eq. (6)].

b4 = ¢. The entropic term of the free energy selects the
(2) states, indicating a preference for colinear states. The
two possibilities TLJTT4LT -+ or LU -+« of break-
ing the lattice translation symmetry represent an extra
Z5 broken symmetry. Typically, there is no reason why
the two Zy symmetries should be broken at the same tem-
perature. However, we observe only one phase transition
belonging to the 4-state Potts universality class [50], con-
firmed by finite-size scaling from ¢cMC calculations (see
Appendix B). This indicates a strong order parameter
coupling, leading to a broken Zsy X Zs = 7, symmetry.
Such an emergent 4-state Potts transition through order-
by-disorder was already observed in the J;-J3 kagome lat-
tice Heisenberg model but as a result of a true four-fold
symmetry and not a combination of two coupled two-fold
symmetries [51]. One possible reason for the merging of
the two types of symmetry breaking is that the two order
parameters are fundamentally dependent on each other:
Translation symmetry breaking along a lattice direction
can only occur if nematic symmetry breaking has selected
this lattice direction.

As already mentioned, the phase (2) breaks transla-
tion symmetry by one lattice spacing. As we will see
later, other phases of our system (such as the nematic
spiral) also break translation symmetry but remain in-
variant under combined translation and spin rotation.
What is special about the (2) phase is that it also breaks
all possible combinations of translation symmetry by one
lattice spacing and global spin rotations. To explicitly
prove this it is useful to consider the following order pa-
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where we have slightly changed the notation in the sense
that the subscripts x, ¥ in S, , now indicate the Carte-
sian coordinates of the square lattice sites i. This order
parameter takes into account all nearest neighbor corre-
lations in the z direction with alternating signs. Analo-
gously, OY can be defined that detects translation sym-
metry breaking by one lattice spacing in the y-direction.
To take into account both types of translation symmetry
breaking along the z and y axes we consider the order
parameter

O = OF + OV, (6)

It is easy to see that for an ideal (2) state (with either
stripes along the x or y directions), O; = 1. In the same
manner, one can check that @O; = 0 for ferromagnetic,
antiferromagnetic Néel, and spiral states with homoge-
neous rotation angles.

The results for Oy as a function of T and ¢ are shown in
Fig. 4 (c). The order parameter O; takes a finite value
only in the region encapsulated by the green and red
curves at high values of §, that has been denoted (2) in
Fig. 3. Even though favored by thermal fluctuations, the
(2) phase (and more generally, all [pappp ¢ 5] states)
is not a part of the ground-state manifold for § < 0.25.
Therefore, we cannot strictly speak of order by disorder
due to thermal fluctuations. As a consequence, another
phase transition must occur at lower temperatures for
0 < 0.25, taking the system to the ground-state mani-
fold. This is confirmed by the recovery of the transla-
tion symmetry at lower temperatures (below the green
line), where O; takes again small values, evidencing a
re-entrance phenomenon.

We note that there is still some reminiscence of the (2)
phase after the system passes through it at lower tem-
peratures, manifested by the non-zero value of O; below
the green line at high values of §. The boundary condi-
tions are responsible for this spurious effect, as the sys-
tem tries to evolve from a 4-spin periodic structure ((2)
phase) onto an incommensurate spiral phase. The frus-
tration induced by the boundary conditions may forbid
the system from fully re-arranging into a nematic spiral.
Another consequence of this is the larger energy differ-
ence between these states when we reach 7' = 0 and the
exact ground-state energy (see Appendix A).

B. Nematic coplanar spirals

The nematic spiral phase exists below the green curve
in the phase diagram of Fig. 3 and only breaks the lattice
rotation symmetry by choosing two equivalent points on
the spiral ring [see Fig. 5 (a) and (b)]. The spiral states
in this phase are characterized by spatially homogeneous
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FIG. 5. Characterization of the nematic spiral phase: (a)
Real-space configuration for . = 200 at § = 0.14 and
T = 0.0001 (the inset shows a zoom-in), where colors indi-
cate the angle ¢; at each site i. (b) Spin structure factor
(in logarithmic scale) for 6 = 0.14 and 7" = 0.02. (c) Order
parameter Oz to test for lattice rotation symmetry breaking
(see main text).

rotation angles between spins on neighboring sites. For
0 > 0.16, the nematic spiral phase is reached through
the recovery of the translation symmetry that is bro-
ken in the (2) phase. The corresponding transition is
found to belong to the Ising universality class (see Ap-
pendix B) which becomes evident when approaching the
phase boundary from the low-temperature side. Below
the phase transition, the system only breaks 7/2 lattice
rotation symmetry while translation symmetry (in com-
bination with a properly chosen spin rotation) is intact.
On the other hand, above the phase transition (i.e. in the
(2) phase), an extra Zs translation symmetry is broken,
explaining the Ising nature of the transition.

For 0.05 < § < 0.15, the nematic spiral phase is di-
rectly reached from the paramagnetic regime, populating
a large region of the phase diagram. In this J region, the
transition is also in the Ising universality class due to the
broken Z lattice rotation symmetry. For most values of
d, these spirals are incommensurate since the wavelength
changes smoothly with §. For example, commensurate
spirals with wavelengths of 4, 5, and 6 lattice spacings are
realized for values § given by 0.25, ~ 0.131, and ~ 0.083,
respectively [see Eq. (2)]. As a consequence, finite lattices
have an extra degree of frustration due to the boundary
conditions which lead to deviations from the ideal wave
vectors (¢, 0) and (0, ¢,). These effects, however, vanish
in the thermodynamic limit where order-by-disorder ef-
fects can select the exact wave vectors (g, 0) and (0, g,)
on the spiral ring.

An order parameter that detects the lattice rotation
symmetry breaking can be constructed in terms of the
local momentum (i.e. local wave vector) of the spiral.



At each site, we can define the local momentum via q =
V¢ [35] (where V is implemented as a discrete derivative
on the square lattice) which is a two-component vector
in the zy-plane. Then, our order parameter for lattice
rotation symmetry breaking is defined by

0n = 5 [t =l + (™ - az | 0

ieEN

where q; = q;/|q;| is the normalized unit vector of q;
at site i of the square lattice. Furthermore, the super-
scripts indicate the components of q; where = + y and
x — y are symbolic notations for the two diagonal lattice
directions. Even though these two directions are not fa-
vored by entropy, we include them to account for canted
stripes that appear due to finite-size effects. In practice,
this makes the results slightly smoother at small §. The
Os order parameter vanishes when there is no imbalance
between the total momentum of the spirals in the z and
y directions (or the x + y and x — y directions). On the
other hand, Oy = 1 if a spiral is aligned along a Cartesian
or a diagonal direction.

The results for Oy are shown in Fig. 5 (¢). We find
that Oy is always sizeable below the green curve. This
confirms that the peak in the heat capacity at 0.05 < § <
0.15, identified as an Ising transition, is due to lattice ro-
tation symmetry breaking. The small but non-zero sig-
nal observed at § < 0.05 can be attributed to the phase’s
slow dynamics (or bad thermalization) and a small num-
ber of independent runs trapped in a nematic state near
the orange boundary. The Oy order parameter provides
evidence of the existence of the phase transition shown
in orange, which is not captured by the specific heat and
which we will discuss in detail later. It is also important
to note that the poor signal obtained in the (2) region
originates from the discrete definition of the momentum.
Due to the colinear double-stripe nature of the phase, the
relative angles ¢; — ¢; between neighboring sites ¢ and j
vary vastly on the scale of one lattice distance, making
discrete derivatives ill-defined. Still, the non-zero values
of Oz confirm that the (2) phase also breaks the lattice
rotation symmetry.

C. Pancake and spiral liquids

Finally, for § < 0.06, the heat capacity peak indicat-
ing a finite-temperature phase transition splits into two,
a wide shoulder at higher T' signaling a crossover and
a sharp peak at lower T that gets smaller and shifts
to T = 0 as ¢ decreases (brown curve in Fig. 3). The
broad shoulder, shown by the light-blue curve in Fig. 3,
is only discernible for § < 0.05 and does not exhibit
critical behavior (no scaling with system size) indicat-
ing a crossover. Generally, this part of the phase dia-
gram is well represented by the results for § = 0.03 in
Ref. [35]. The onset of spin correlations at the broad
high-temperature peak leads to a phase known as pan-
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FIG. 6. Pancake liquid phase: (a) Real-space configuration
for L = 200 at § = 0.04 and 7" = 0.119 (the inset shows a
zoom-in), where colors indicate the angle ¢; at each site ¢,
and (b) the corresponding spin structure factor (in logarith-
mic scale). Spiral liquid phase: (c) Real-space configuration
for 6 = 0.04 and T' = 0.081 where one momentum vortex and
antivortex are indicated by an up and down arrow, respec-
tively, and (d) corresponding spin structure factor.

cake liquid [44], where the spin states have contributions
from spiral wave vectors ranging from q = 0 up to the
spiral ring [see Fig. 6 (a) and (b)]. This property leads to
a spin structure factor featuring an almost uniform disk-
like signal (pancake shape) within the spiral surface.

Further decreasing the temperature leads to a phase
transition into the spiral spin liquid phase [see Fig. 6 (c)
and (d)], which does not show any symmetry breaking.
Contrary to the pancake liquid, this phase presents a
nearly isotropic signal in the spin structure factor only
along a circle inside the spiral ring [highlighted by dashed
white lines in Fig. 6 (d)]. This phase shows liquid-like
fluctuations between spin spirals with all possible direc-
tions of spiral wave vectors, justifying the name spiral
spin liquid. These fluctuations give rise to well-defined
momentum vortices and antivortices representing local
defects in the spiral configurations [35] [see up and down
arrows in Fig. 6 (¢)]. The circle formed in the spin struc-
ture factor slightly enlarges as the temperature decreases
until it reaches the spiral surface corresponding to the
ground-state manifold. At the same time, the dynamics
of the phase are slowed down and thermalization becomes
difficult in the cMC runs. The transition separating the
pancake and spiral spin liquids has a logarithmically di-
vergent specific heat (see Appendix B), corresponding
to a critical exponent @ = 0. Typically, « = 0 could
be associated with an Ising transition, as it is found for
6 > 0.05. However, in this case, the critical exponent for
the correlation length v is not consistent with an Ising
universality class, and the spiral spin liquid does not ex-
hibit any signs of symmetry breaking. This evidences
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FIG. 7. Energy-level crossings between the nematic spiral
and spiral liquid/vortex network phases. Dashed lines indi-
cate decreasing J-sweeps starting from § = 0.07. Full lines
indicate increasing d-sweeps starting from J = 0.03. Black
dots indicate the crossing points.

that the transition falls out of the standard paradigm
of phase transitions, and we will argue in Sec. V that
it is possibly a Kosterlitz-Thouless transition driven by
momentum vortices.

As mentioned before, two different phases are observed
at low temperatures around § = 0.05. On one hand, we
find nematic spirals for § 2 0.05, which break the lattice
rotation symmetry (green curve in Fig. 3). On the other
hand, we find a spiral liquid for § < 0.05, which does not
break any symmetries (brown curve in Fig. 3). Thus,
a phase transition must exist between these two phases.
However, no such phase transition is captured by the spe-
cific heat, even when very small § steps are considered
(see Appendix C). Furthermore, performing d-sweeps at
constant T', coming from either of the two phases, we
could not tune the system from one phase into the other.
This can be attributed to the large change of spin con-
figuration needed to go from one phase to the other, the
slow dynamics of spin fluctuations at these temperatures,
and/or the frustration generated by the boundary con-
ditions. Other update methods for cMC could provide a
solution to this challenging problem which, however, we
leave for future work.

Despite the difficulties in evolving the two phases into
each other, we can infer the existence of a phase tran-
sition from energy considerations. Specifically, Fig. 7
shows an energy-level crossing in our J-sweeps at con-
stant T', when either starting in the nematic spiral phase
and decreasing ¢ (dashed lines) or starting in the spiral
liquid /vortex network phase and increasing ¢ (full lines).
The crossing points are denoted by black dots and are
shown by orange symbols in Fig. 3. This line roughly
agrees with the region in the phase diagram where the
order parameter Os, detecting lattice rotation symme-
try breaking, vanishes. Nonetheless, it is worth noticing
that this method of locating the phase transition is only

strictly valid at T = 0 or when the two phases have
the same entropy (which is probably not the case here).
Therefore, the orange line in Fig. 3 should only be un-
derstood as a rough estimate for the transition. Since we
could not observe the system’s evolution from one phase
to the other, we could also not detect any hysteresis be-
havior.

D. Vortex network or ripple state

As mentioned in the previous section, the ring-like sig-
nal in the spin structure factor characterizing the spi-
ral liquid (see Fig. 6) grows as the temperature is low-
ered until it reaches the spiral ring of the exact ground
state manifold. Around this temperature, a crossover to
a rigid vortex network state occurs, where the spirals are
well-defined and correspond to four different wave vec-
tors q = (%¢,0) and (0,=£q) [35] selected by an order-
by-disorder mechanism. A typical spin configuration is
shown in Fig. 8 (a), with the corresponding spin structure
factor presented in Fig. 8 (b). This rigid vortex network
does not show any indications of symmetry breaking and
realizes an approximate square arrangement of momen-
tum vortices and antivortices (therefore the name vortex
network) connected by straight domain walls [35]. Fur-
thermore, these structures are rigid, in the sense that
they evolve very slowly in Monte Carlo time. This makes
the system very prone to getting stuck in a metastable
spin configuration. For example, while the wave vectors
q = (£q,0) and (0,=+q) are favored by entropic effects
at finite temperature, we still find configurations with
q = +(q,q) and *(g, —q), indicating that the cMC runs
are affected by thermalization issues, as well as by finite
sizes and boundary conditions.

Other studies of a closely related model on the hon-
eycomb lattice found that the low-temperature phase is
a ripple state for systems with open boundary condi-
tions [44]. The ripple state consists of a single momen-
tum vortex from which spin spirals extend in all direc-
tions. Interestingly, we also find such a state in the vor-
tex network regime when imposing open boundary con-
ditions [see Fig. 8 (d)]. The discrepancy between the two
boundary conditions indicates that they play an essen-
tial role in determining the bulk spin configurations even
for large lattice sizes. This applies in particular to the
limit § — 0 where the spiral wavelength diverges such
that it is not possible to make a sensible extrapolation to
the thermodynamic limit. Nonetheless, at finite temper-
atures, a ripple state in the thermodynamic limit seems
peculiar because this would imply that spins far away
from the ripple center are affected by it, regardless of the
distance. In what follows, we provide a simple under-
standing of why the single vortex state is favored by the
open boundary condition.

As an example, we examine the bottom boundary of
a square-shaped system (i.e., a boundary oriented along
the z-axis) and investigate the Hamiltonian at the bound-
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FIG. 8. Vortex network phase: (a) Real-space configuration
for L = 200 at 6 = 0.03 and T" = 0.02, and (b) the corre-
sponding spin structure factor. (c) Real-space configuration
for § = 0.03 and 7" = 0.0001, where the black arrow shows an
elongated momentum antivortex. (d) Ripple state obtained
for § = 0.03 and 7' = 0.02 with open boundary conditions.
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FIG. 9. Bottom part of a lattice with an open boundary and
the remaining couplings to the system of a spin at the edge
(black circle).

ary. The other three boundaries of the system can be
treated analogously. Assuming that the spins are in a
spiral state with wave vector q = (¢s, qy), the energy of
a spin closest to the boundary can be obtained by com-
puting the Hamiltonian in Eq. (1) for the spiral state but
omitting the contributions from the bonds that are cut
by the boundary. This leads to an energy contribution
from such a spin given by (see Fig. 9)

2epdry =2J1 cos (gza) + Jq cos (gya)
+ Js cos (gza + gya) + Jacos (—gza + gya) (8)
+ 2J3 cos (2¢za) + J3 cos (2gya),

where we recall that J; = —1, Jo = 1/4+ 6, J3 =
1/8 +6/2 and a = 1 is the nearest-neighbor distance.
Minimizing epqry as a function of ¢, and ¢, leads to a
wave vector q' = (0, +¢;) with ¢; given by
1—46
/
e 9
cos(dja) = 11 Q
Note that since cos(0) +cos(g,a) = ﬁ, the wave vector
(0, £q,) is exactly on the spiral ring [see Eq. (2)].

This analysis shows that open boundaries energetically
prefer spirals whose stripe-like spin patterns are parallel
to the boundary, as is (approximately) realized for the
ripple state in Fig. 8 (d). While the bulk energy is mini-
mized by a domain with a single wave vector q on the spi-
ral ring, such a state costs much energy on the boundary
(growing linearly with the linear system size L) since a
single domain cannot simultaneously satisfy the energetic
preferences at all boundaries. Hence, the system forms a
single momentum vortex in the bulk which reduces the
energy costs at the boundary (note that the bulk energy
of a single momentum vortex only scales logarithmically
in the system size L [35]). This mechanism stabilizes the
single vortex ripple state in Fig. 8 (d) at low tempera-
tures when open boundary conditions are imposed.

Upon further decreasing the temperature, sys-
tems with periodical boundary conditions show a re-
organization of momentum vortices associated with a
bending of the spiral wavefronts. This leads to spin con-
figurations shown in Fig. 8 (c) obtained at 7" = 0.0001.
The bending of the wavefronts gives rise to momentum
antivortices with a very elongated shape along one Carte-
sian direction [shown by the black arrow in Fig. 8 (c)].
Selecting one of the two lattice directions corresponds
to a Zso symmetry breaking and implies a certain degree
of lattice nematicity in the system. This spontaneous
breaking of a Zs symmetry is expected at low but fi-
nite temperatures. However, due to the aforementioned
thermalization issues in the vortex network phase, most
independent cMC runs do not present any signatures of
this transition in the specific heat such that the numeri-
cal evidence for the spontaneous symmetry breaking re-
mains rather weak. On the other hand, the decreasing
density of momentum vortices at low temperatures is a
very robust observation. When the distance between mo-
mentum vortices becomes comparable to the system size,
the results are largely affected by the boundary condi-
tions and therefore cannot be trusted. We thus conclude
that the vortex network regime is the numerically most
challenging part of the phase diagram and a thorough
understanding of this phase is still lacking.

IV. DYNAMICS

To study the signatures of the different phases in the
dynamical spin structure factor which is experimentally
accessible through inelastic neutron scattering, we per-
form molecular dynamics (MD) calculations. These sim-
ulations start from XY spin configurations obtained from
cMC for a set of coupling parameters at a given temper-
ature and then calculate the system’s time evolution by
solving the Landau-Lifshitz equations (without a damp-
ing term) [12, 52]. The dynamical spin structure factor



T = 0.031

ol i

(0,0) (7, ) (7,0)

q

(0,0) (0, %) (0,m)

FIG. 10. Spin structure factor S(q,w) from MD calculations
at 0 = 0.18 for two different temperatures, corresponding to
the colinear (2) phase (top panel) and the coplanar nematic
spiral phase (bottom panel). The dashed white lines are the
spin wave bands obtained by LSWT at T' = 0, and the dashed
blue vertical lines indicate momenta on the spiral ring. The
inset shows the plotted path in momentum-space (red) and
the spiral ring corresponding to the ground-state manifold
(blue). The white dashed boxes indicate spurious ghost sig-
nals (see main text).

is then calculated as

1 Ny N ‘
Sla.w) = NVN, Z Z (Si(t) - S;(0)) eilaris—wt)

ny=0 4,5

(10)
where the time is given by ¢t = n;dt, for a given time
step 0t [53, 54]. It is important to note that the
Landau-Lifshitz dynamics are only well-defined for three-
component spins. Hence, for the MD calculations, we use
the XY Hamiltonian from Eq. (1) but let it act on three-
component spins [55], i.e., the spin’s z-component (which
vanishes in the initial spin state from ¢MC) does not con-
tribute to the energy. During the MD runs, the energy
per spin is conserved up to the fifth decimal digit, in-
dicating that the time evolution is well performed. The
dynamical spin structure factors in Figs. 10 and 11 are
obtained by averaging over 120 independent initial con-
figurations. We point out that the vertical high-intensity
signals extending from w = 0 to the upper boundary of
the plotted regions are artifacts generated by the Fourier
transform in time, which can be explained as follows.
The mismatch between the period of spin oscillations
and the simulation time generates a finite offset in the
Fourier-transformed signal. Although this offset is much
smaller than the height of the peak, it is visible for the
momenta where the intensity is highest. The MD re-
sults are compared with the zero-temperature spin wave
bands from linear spin-wave theory (LSWT), calculated

with the software SpinW [56].
In Fig. 10 we show results for § = 0.18 at two differ-
ent temperatures, above and below the low-temperature
phase transition between the (2) phase and the nematic

spiral phase. The bottom panel shows results for the
nematic spiral phase, where the magnetic Bragg peak
occurs at a wave vector on the spiral ring close to
q = (0,7/2). Momenta on the spiral ring that lie on
the plotted path are indicated by dashed blue lines. As a
reference, we also plot the spin wave bands obtained with
LSWT, shown as dashed white lines in Fig. 10. Overall,
the spectral weight obtained within MD closely follows
the dispersive bands from LSWT. Another relevant fea-
ture revealed by both methods is that, away from the
Bragg peak the spectrum is always gapped, even for mo-
menta q on the spiral ring, which is a consequence of the
XY-anisotropy. A band minimum with a small but finite
gap is found close to q = (0,7/2) and is related to the
proximity to the (2) phase at § = 0.25. Finally, it should
be noted that some lower energy “ghost” excitations are
also observed, highlighted by dashed white rectangles.
These are spurious signals originating from the passing
through the colinear (2) phase, as was already found in
the translation symmetry-breaking order parameter Oy
(see Fig. 4). These features should be disregarded as
remnants from the (2) phase.

The top panel of Fig. 10 corresponds to the higher-
temperature colinear (2) phase, where the magnetic
Bragg peak is located at q = (0,7/2). Note that in
this case, LSWT cannot be applied because the order is
unstable at 7' = 0 (it does not belong to the ground-state
manifold for § # 0.25). In addition to the gapless exci-
tations at the Bragg peak, there are further low-energy
band minima at the wave vectors where the plotted path
crosses the spiral ring (indicated by dashed blue lines). In
contrast to the coplanar nematic spiral phase, the spec-
trum is more dispersed and the weight is not concen-
trated along well-defined narrow excitation modes. Over-
all, apart from the low-energy signal around the Bragg
peak, the intensity distributions in the colinear (2) and
the coplanar spiral phases are rather different. This is
a remarkable observation given that the wave vectors of
the two corresponding orders are very similar.

We now turn to the other end of the phase diagram at
0 = 0.03, where the pancake and spiral spin liquids are
found. Figure 11 shows the MD results for the dynam-
ical spin structure factor for two different temperatures
corresponding to both phases. The pancake liquid phase
receives its name due to the nearly homogeneous contri-
butions from all wave vectors inside the spiral ring. This
property is also observed in the dynamical spin structure
factor of the pancake liquid, displayed in the top panel of
Fig. 11. The intensity distribution shows a strong signal
at low energies for all wave vectors enclosed by the spi-
ral ring (i.e., between the dashed blue lines) without any
particular Bragg peak. Here, the white and green dashed
lines represent the LSWT bands at 7' = 0 for wave vec-
tors q = (¢,0) and q = (0, ¢q) on the spiral ring, respec-
tively. In Fig. 11 one can appreciate that the spectral
weight of the pancake liquid follows these bands while
displaying a continuum of excitations in the region en-
closed by them.
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FIG. 11. Spin structure factor S(q,w) from MD calculations
at § = 0.03 for two different temperatures, corresponding to
the pancake liquid (top panel) and the spiral spin liquid (bot-
tom panel). The white and green dashed lines correspond
to the spin wave bands obtained by LSWT at T = 0 for
ground state nematic spirals with wave vectors q = (¢, 0) and
q = (0,q) on the spiral ring, respectively. The dashed blue
vertical lines indicate the momenta on the ground state spiral
ring. The plotted path in g-space is shown in the inset (red),
together with the spiral ring (blue). Note that the color scale
is logarithmic.

When decreasing the temperature at 6 = 0.03, the sys-
tem enters the spiral spin liquid phase where only wave
vectors close to the spiral ring coexist. This implies that
spin spirals are well-defined but their momentum direc-
tion can vary in real space. The dynamical spin struc-
ture factor of the spiral spin liquid in the bottom panel
of Fig. 11 displays this property where the low energy
signal is now more concentrated around the spiral ring
(blue dashed lines). Also at higher energies the spectral
weight is sizeable only close to the T'= 0 LSWT bands,
while the region enclosed by them remains empty, repre-
senting a significant difference from the pancake liquid.
Overall these features help to distinguish the two types
of spin liquids by their excitation spectrum.

V. EFFECTS OF SPIN AND MOMENTUM
VORTICES

As mentioned in Sec. IIIC, the phase transition be-
tween the pancake liquid and the spiral spin liquid shows
unusual properties. It is not associated with any spon-
taneous symmetry breaking and its scaling behavior falls
out of the standard classification of second-order phase
transitions. Specifically, the specific heat is logarithmi-
cally divergent (see Appendix B) but the critical ex-
ponent v is not consistent with the known universality
classes. Here, we revisit the nature of this phase transi-
tion and discuss whether it could be driven by vortices,
either formed by spin or momentum. Since both degrees
of freedom are planar quantities, a Kosterlitz-Thouless
transition seems to be a natural possibility [57, 58].
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FIG. 12. Top panel: Spin vortex density n, (defined by the
number of spin vortices per number of sites) as a function of
temperature 7" and §. Bottom panel: Derivative of n, with
respect to the temperature. The lines and circles indicate the
phase boundaries obtained from peaks in the specific heat.

To obtain insights into whether spin or momentum vor-
tices show any special behavior across the phase transi-
tion, we first examine the density of vortices within cMC.
We start investigating spin vortices which are identified
by the total spin rotation angle along elementary four-
site loops of the square lattice and whose density we de-
note n,. The results for n, are shown in the top panel
of Fig. 12 while the bottom panel displays its deriva-
tive with respect to temperature, dn,/9T. In the small
d-regime the spin-vortex density n, shows a pronounced
drop at rather large temperatures T' ~ 0.4. As a result of
this pronounced decrease, at the low-temperature phase
transition between the pancake liquid and the spiral spin
liquid (brown line) n, is negligibly small. This makes it
evident that the transition is not related to spin vortices
and we, therefore, rule out a Kosterlitz-Thouless transi-
tion from the spin degree of freedom. Furthermore, n,
increases with &, and close to the Ising transition indi-
cated by the green line the system is still populated by a
considerable number of spin vortices.

It is worth emphasizing that our investigation of the
vortex density is only to check whether there is a general
connection between vortices and the spiral liquid transi-
tion. The vortex density is expected to be smooth across
a Kosterlitz-Thouless transition [59, 60], however, the
derivative has been shown to exhibit a peak at the same
position as that of the specific heat [59]. Despite coincid-
ing, these peaks occur at temperatures slightly above the
Kosterlitz-Thouless transition and do not diverge on the
square lattice XY model [61]. Thus, n, is no good quan-
tity to precisely locate a Kosterlitz-Thouless transition.
We, nevertheless, study the vortex density here since
more standard quantities for identifying a Kosterlitz-
Thouless transition, such as the correlation length, are
difficult to calculate accurately due to the spiral nature
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FIG. 13. Top panel: Momentum vortex density ng, (defined
by the number of momentum vortices per number of sites) as
a function of temperature 7" and §. Bottom panel: Derivative
of ng, with respect to the temperature. The lines and circles
indicate the phase boundaries from the specific heat.

of the magnetic parent state (which leads to oscillating
correlation functions).

Next, we investigate the density of momentum vortices
Ngy in the §-T' phase diagram. If ¢(r) evolves smoothly
throughout the lattice, we can define the momentum field
q(r) = V¢(q) locally as the discrete derivative of ¢(r)
and identify momentum vortices in the local momentum
texture q(r). The results are shown in the top panel
of Fig. 13 while the derivative dngy,/0T is presented in
the bottom panel. One sees that for all values of §, the
momentum vortices have a strong presence at temper-
atures above the phase transitions. TFurthermore, ng,
drops abruptly at the transitions as evidenced by its
derivative, which is peaked along the brown line. At
0 = 0, where there is no finite-temperature phase transi-
tion, the momentum vortex density remains high down to
the lowest temperatures. This observation indicates that
momentum vortices play a key role in driving the phase
transition between the pancake liquid and the spiral spin
liquid.

The close connection between the spiral liquid tran-
sition and momentum vortex proliferation motivates us
to analyze more closely whether this transition could be
a Kosterlitz-Thouless transition of momentum vortices.
To do so, we investigate the behavior of the momentum-
momentum correlation length £,,, which is expected to
diverge at a Kosterlitz-Thouless transition Tkt according
to [58, 61]

b TKT

T—-TKT (11)

€aq (T) ~e

when approaching Tk from above. Here, b is a non-
universal, dimensionless number. To obtain £,q(T) we
calculate the momentum-momentum correlation function
{(q(r)-q(r”)) for distances r —r’ along the z and y Carte-
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sian directions. We average the correlation function over
the whole lattice and over 10 independent cMC runs. The
results are shown by circles in the top panel of Fig. 14 for
L =200 and § = 0.03, and the colors indicate the tem-
perature ranging from 0.409 (red) to 0.029 (blue). The
black circles indicate the temperature of the peak in the
specific heat for this lattice size. The lines correspond
to exponential fits, from which we extract the correla-
tion length £,, whose temperature dependence is shown
in the inset. It becomes evident that there is a sudden
growth of the correlation length close to the critical tem-
perature (indicated by the dashed black line), which can
be interpreted as the start of a divergence. The expected
divergence in the correlation length for the Kosterlitz-
Thouless transition corresponds to a power-law decay in
the entire temperature region 7' < Tixr. However, in our
case, a clean divergence {;,, — oo cannot be detected
due to the finite size of our system. The pink curve in
the inset of Fig. 14 shows a fit of £, in the range from
T = 0.204 to 0.084 above the critical temperature to
the aforementioned functional dependence of £,,(T) ac-
cording to the Kosterlitz-Thouless theory. Apart from
the high-temperature regime and the temperature region
near the observed transition, the fit shows good agree-
ment with our data. Finally, the bottom panel of Fig. 14
displays the behavior of £, across the whole phase di-
agram, showing the sudden increase of §,, at the phase
transition in a wider § region.

Overall, our numerical results are consistent with a
Kosterlitz-Thouless transition associated with momen-
tum vortices, but cannot ultimately resolve the nature of
this transition. If present, such a transition would con-
stitute a rather uncommon and previously unexplored
occurrence of Kosterlitz-Thouless physics. In fact, mo-
mentum degrees of freedom are quite different from the
usual microscopic conditions of a Kosterlitz-Thouless
transition, which, at first sight, rather speaks against
a Kosterlitz-Thouless transition from momentum vor-
tices. First, the system does not have an exact global
U(1) rotation symmetry of the momentum q. Rather,
an exact energy-conserving U(1) transformation of spiral
momenta is only possible in the ground state manifold.
Second, from q(r) = V¢(q) it follows that the momen-
tum field q(r) is curl-free, V x q(r) = 0, a condition
that does typically not exist for more standard planar
degrees of freedom such as XY spins. Third, as a re-
sult of the last property, it was shown in Ref. [35] that
momentum antivortices have a larger excitation energy
than momentum vortices giving rise to a peculiar dis-
parity between both vortex types. These arguments led
the authors of Ref. [35] to be reluctant to the possibil-
ity of a Kosterlitz-Thouless transition from momentum
vortices. If our present numerical indications in favor of
such a transition are true, this would indicate a striking
robustness of Kosterlitz-Thouless physics. However, to
eventually resolve this question, further studies are nec-
essary.
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FIG. 14. Top panel: Decay of momentum-momentum corre-
lations {q(r)-q(r’)) as a function of the distance between sites
[r — r'| at § = 0.03. The temperature ranges from T = 0.409
(red) to 0.029 (blue), and lines correspond to exponential fits
(black lines and points indicate data near the critical tem-
perature). The extracted correlation lengths £,, are shown
in the inset and fitted by the pink curve between T' = 0.204
and 0.084. Bottom panel: Momentum-momentum correlation
length &44 as a function of temperature T" and §.

VI. EFFECTIVE RANK-2
ELECTRODYNAMICS AND PINCH-POINTS

An effective continuum theory for a spiral spin liquid
was recently derived in the small ¢ limit where the spi-
ral ring is approximately circular [35]. One of the as-
sumptions of this theory is that the spin texture ¢(r) is a
smooth function in real space so that the momentum field
q(r) = V¢(r) is curl-free, V x q(r) = 0. Note that this
excludes the possibility of spin vortices which represent
a local source of curl, V x q(r) = §(r). The Hamiltonian
of the continuum theory for small § and ¢ = |q| reads as

4
= / P2r (‘116 _ 25q2> + / Pr (0 Cavpo Qo) (12)

where C,p0 = % (09006 + 000up — 0,0 ,5) is & combi-
nation of Kronecker deltas and Q,,, = 9,0, ¢ is the Hes-
sian matrix of ¢(r) [35]. The Hamiltonian in Eq. (12)
has two terms [35]; the first term is an effective poten-
tial for spin spirals that governs the energy cost of a ho-
mogeneous spiral with momentum q. The second term
describes a spiral stiffness that captures the energy cost
of deforming spiral configurations in real space. Impor-
tantly, within this effective theory a matrix-valued field
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E,,, can be defined via

E;w = eupevagpaa (13)
that is subject to the constraint
auauEpy = O, (14)

again under the assumption that spin vortices are ab-
sent. In Eq. (13), €,, denotes the Levi-Civita symbol.
The condition in Eq. (14) can be interpreted as a gener-
alized Gauss law in a charge-free rank-2 electrodynamics
theory, where the emergent electric field E,,, is a rank-2
tensor as opposed to the vector-valued electric field in
conventional electrodynamics. Inspired by the unusual
kinetic properties of the associated charged matter fields
(in this case called fractons) which retain their mobility
only within subdimensional manifolds [36, 37, 62], such
higher-rank versions of electrodynamics have become a
topical research field. For further details about the map-
ping between a spiral spin liquid and a rank-2 electrody-
namics theory, we refer the interested reader to Ref. [35].

A characteristic feature of a rank-2 electrodynamics
theory is a four-fold pinch point (4FPP) in the electric
field correlation function defined by

Cop(@) = 5 D {Fual6) By () €0 (15)

r,r’

For an exact fulfillment of Eq. (14), the 4FPP in the
electric field correlator has the form

04,
Cer(q) x @i’ o sin”(26) (16)

at small ¢. In the right-most expression of Eq. (16) we
have used a polar representation of the momentum, i.e.,
¢z = qcos(f) and g, = gsin(f). This expression makes it
obvious that an ideal 4FFP does not have a dependence
on ¢q. Importantly, the sharpness of the non-analyticity
of Eq. (16) at q = 0 serves as a useful measure for the
fulfillment of the generalized Gauss law in Eq. (14). In
Ref. [35], well-defined 4FPP in Cgg(q) have already been
observed in the spiral spin liquid phase at § = 0.03 using
numerically-obtained spin configurations.

The mapping between a spiral spin liquid and a rank-2
electrodynamics theory, however, depends on various as-
sumptions such as small § < 1 and the absence of spin
vortices, both of which are not fulfilled in large parts
of the phase diagram. Furthermore, the exact 4FPP
shape of the electric field correlator in Eq. (16) does
not take into account possible thermalization problems,
which, however, are known to occur in our spiral model
and which limit the configuration space the system can
explore. Therefore, it is a priori unclear to what ex-
tent the analogy between the spiral spin liquid and the
rank-2 electrodynamics theory is valid across the phase
diagram. To answer this question, we calculate the cor-
relation function Cgp(q) in Eq. (15) from spin configura-
tions obtained by ¢MC in the entire -1 phase diagram
and investigate the intactness of 4FPPs.
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FIG. 15. Electric field correlator Cer(q) [see Eq. (15)]: (a)
for § = 0.03, T'=0.081 and (b) for § = 0.10, T'= 0.119. (c)
and (d) show the corresponding signal along circular paths
0 € [0, 27] with radii ¢ ranging from 0.1 to 1.0 at 0.1 intervals
[indicated by color lines in the first quadrants of (a) and (b)].

Note that even for an exact lattice realization of a rank-
2 electrodynamics theory Eq. (16) is only valid at small
q while near the boundary of the Brillouin zone, lattice
effects play a role that leads to deviations from the exact
4FPP shape. For a large part of the phase diagram, we
observe four symmetric lobes in Cgg(q) resembling the
shape of 4FPPs at intermediate values of q. The decisive
property, however, is the behavior of these lobes at ¢ — 0.

We observe distinctly different behaviors in this limit
across the §-T phase diagram, for which we show two rep-
resentative examples in Fig. 15. Panels (a) and (c) dis-
play Cer(q) from cMC results at § = 0.03 and T' = 0.081
(close to the phase transition between the pancake and
spiral spin liquids). Ideal pinch-point singularities have
an intensity that only depends on the angle § in momen-
tum space and not on the distance ¢ from the origin. To
check this, we plot in Fig. 15 (c) the signal along the
circular paths 6 € [0, 27] with constant ¢ as indicated in
Fig. 15 (a). We observe that all curves overlap for dif-
ferent radii ¢ down to ¢ = 0.1, very close to the origin,
indicating an intact 4FPP. On the other hand, we show
in Fig. 15 (b) and (d) results for § = 0.10 and 7' = 0.119
(close to the phase transition between the paramagnet
and the nematic spiral). In this case, we see that the
intensity vanishes as the radius q decreases, signaling the
absence of a singularity. Such a smearing of pinch points
may indicate that emergent charge fluctuations are soft
and become thermally activated [6].

To investigate the behavior of 4FPP at small momenta
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FIG. 16. Pinch-point singularity quality @ as a function of T
and J (see main text). Lines and symbols correspond to the
phase transitions indicated by the heat capacity.

more systematically and over the whole phase diagram,
we define a quality measure of pinch points in the fol-
lowing way. For the 10 different values of the radii g;
ranging from 0.1 to 1.0 in steps of 0.1, we fit the data
to A(g;)sin®(20) and extract A(g;). We then define our
quality measure as Q = b?/|a| where a and b are obtained
from a fit to a linear function A(q) = aq + b. The choice
of defining @ with b2 in the numerator as opposed to just
b is to suppress the influence of a small fluctuating back-
ground signal for a,b ~ 0. Then, @ takes large values
when A(q) is approximately constant (a — 0), signaling
a sharp singularity. On the other hand, ) takes negligible
values if the slope a is finite and/or b vanishes (feature-
less electric field correlator), indicating deviations from
the exact pinch point shape in Eq. (16). The results for
Q as a function of § and T are shown in Fig. 16, where it
becomes clear that the quality of 4FPPs is highest around
and below the phase transition into the spiral spin liquid
(brown line). This demonstrates that the fluctuations
in the spiral spin liquid can indeed be described by an
effective Gauss law associated with a higher-rank gen-
eralization of electromagnetism. In the nematic spiral
phase (below the green line), four-fold symmetric lobes
with Cpr(q) ~ Asin?(26) are also observed, as shown in
Fig. 15. However, in this case, the magnitude A = A(q)
depends on the distance ¢ from the origin.

VII. CONCLUSIONS

We have used classical Monte Carlo and molecular dy-
namics simulations to study the finite-temperature phase
diagram of a prototypical spiral spin model on the square
lattice with XY spins. We have identified a variety of in-
teresting phases and emergent phenomena in this model.
First investigating the regime of large 4, at § = 0.25
we found that the ground-state manifold contains spiral
stripes with a wavelength of four sites, as well as col-
inear stripes with two-up-two-down magnetic unit cells,
called the (2) order. At finite temperatures, entropic ef-



fects select ordering wave vectors along the x or y direc-
tions corresponding to a discrete Zy symmetry breaking
of the C} lattice rotation symmetry down to C3. On
top of this, entropy selects the colinear (2) states over
the homogeneous spin spirals which constitutes an addi-
tional Zy symmetry breaking related to lattice transla-
tion. We found that the two Zsy symmetries are broken
at the same temperature due to order-by-disorder effects,
leading to a Ziy X Zo = Z4 symmetry breaking into the
(2) phase. We verified that the critical exponents agree
with a second-order Ashkin-Teller (or four-state Potts)
phase transition.

We found that the phase transition into the (2) phase
persists for 0.16 < § < 0.25, even though the (2) order is
no longer part of the ground-state manifold. As a con-
sequence, a second phase transition into a nematic spiral
state arises at lower temperatures. This is an example of
a re-entrance phenomenon since it implies a restoration
of the broken lattice translation symmetry (while lattice
rotation symmetry remains broken). We verified that
this second phase transition belongs to the Ising univer-
sality class. For 0.05 < § < 0.15, the system shows only
one finite-temperature phase transition into the nematic
spiral state which breaks lattice rotation symmetry. This
transition is again associated with a broken Zs symmetry
and the transition belongs to the Ising universality class.

For § < 0.05, the peak in the specific heat splits into
two peaks. A wide shoulder shifts to higher temperatures
as d decreases, while a sharp low-temperature peak de-
creases in intensity and shifts towards 7' — 0 as § — 0.
The high-temperature feature shows an off-critical be-
havior, indicating a crossover into a pancake spin liquid,
where spirals with all wave vectors inside the spiral ring
coexist. On the other hand, the low-temperature tran-
sition leads into a spiral spin liquid phase and shows a
logarithmic divergence of the specific heat in system size,
consistent with a critical exponent o = 0 and reminiscent
of an Ising transition. However, no spontaneous symme-
try breaking is observed across this transition and the
critical exponent v is inconsistent with an Ising transi-
tion, excluding a standard second-order transition. In-
stead, we found indications that the transition is driven
by momentum vortices. While the density of momen-
tum vortices shows a sudden decrease at the transition,
the momentum-momentum correlation length increases
sharply, pointing to the possibility of an unusual and
hitherto unexplored Kosterlitz-Thouless transition from
momentum degrees of freedom.

We also performed molecular dynamics calculations to
characterize the dynamical spin structure factor of the
different phases. The colinear (2) phase shows low-energy
spin-wave bands at all momenta on the spiral ring, con-
trary to the nematic spiral phase where all modes are
gapped, except for the Goldstone mode. On the other
hand, the pancake liquid shows abundant low-energy ex-
citations for all wave vectors inside the spiral ring with
a continuum of excitations extending to higher energies.
For the spiral spin liquid, low-energy modes are only ob-
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served in the vicinity of the spiral ring while at higher
energies a fading of the continuum and spectral weight
mostly concentrated along well-defined spin wave bands
is found.

Finally, we verified the claim of Ref. [35] that the fluc-
tuations in the spiral spin liquid can be captured by
an effective rank-2 Gauss law for an emergent matrix-
valued electric field as it appears in a so-called rank-2
U(1) electrodynamics theory. We took the sharpness
of the characteristic 4FPP singularities in the electric-
field correlator as a measure to determine the regions
in the phase diagram where the mapping onto a rank-2
electrodynamics theory holds. We, indeed, verified that
the sharpest 4FPP are observed in the spiral spin liquid
regime, demonstrating the close connection between this
phase and an emergent rank-2 electrodynamics.

In total, our work presents a coherent picture of a
spin model that, even on the classical level, displays a
wealth of fascinating features ranging from spiral spin
liquids, re-entrance phenomena, and unusual Kosterlitz-
Thouless transitions to emergent higher-rank gauge the-
ories. While our work resolves many unanswered ques-
tions from previous studies, it also points to several as-
pects that deserve further investigation. For example,
developing a deeper understanding and verification of the
proposed Kosterlitz-Thouless transition from momentum
degrees of freedom would be a worthwhile future research
effort. Furthermore, the inclusion of quantum fluctu-
ations and their effects on the rank-2 electrodynamics
theory may give rise to even more fascinating emergent
phenomena in this spin system.
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Appendix A: Exact vs. cMC ground-state energy

The ground-state energy can be obtained via cMC as
a continuation of the cooldown process to T' = 0. In
Fig. 17 we compare these results for L = 200 and peri-
odical boundary conditions with the exact values of the
ground-state energy for the spiral solutions. At low val-
ues of §, we can see that the energy of the ferromag-
netic state (green line) lies very close above the spiral
state. This can explain why at finite temperatures, when
these ferromagnetic states can be realized, a pancake lig-
uid emerges that displays strong ferromagnetic and spiral
correlations up to the edge of the spiral ring in reciprocal
space.
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FIG. 17. Top panel: Ground-state energy per site ep obtained
from cMC (blue circles) compared to the exact energies for
the spiral ground state (orange line) and the ferromagnetic
state (green line). Bottom panel: Energy difference edC — e
between the cMC result and the exact value.

On the other hand, due to the frustrating boundary
conditions for incommensurate spiral phases, it is ex-
pected that the exact ground-state energy differs from
the cMC result (bottom panel). However, we can see that
the difference is small. Two parts show larger differences:
One is the region where the system passes through the
(2) phase. As explained in the main text, there are remi-
niscences of the passage through this phase in the form of
small but finite O; order parameter values [see Eq. (6)]
that lead to a higher ground-state energy in cMC. On the
other hand, also when the system goes through the vor-
tex network, the cMC ground-state energy differs from
the exact one, showing that the dynamics of these struc-
tures are slow and that the systems need more space to
accommodate properly.

Appendix B: Finite-size scaling and universality
classes of phase transitions

To determine the order of the different phase transi-
tions and the corresponding universality classes, we per-
form c¢cMC calculations on a large range of lattice sizes
starting from L = 4 up to L = 80. In some cases, the
peaks in the specific heat ¢, (T") get sharp (thin and high)
very fast with increasing system size. In such cases, it be-
comes difficult to obtain an accurate value of the peak,
cy'®, while T, is well-defined.

The correlation length of the system near the critical
point diverges like £ o< |T' — T.|™, where v is the criti-
cal exponent. However, in finite systems, the correlation
length cannot be larger than ~ L. Therefore, we can
assume that |T.(c0) — Te(L)|™ o L where T.(L) is the
position of the peak in the specific heat for a given linear
size L and T (c0) is the value in the thermodynamic limit
L — oo. Then we obtain the finite-size scaling law [63—
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T.(L) = To(c0) +a L7, (B1)

Using this, we can fit the positions of the peak in ¢, (T)
as a function of 1/L and obtain T.(c0), a, and v from
the fit. While typically T.(oc0) is well defined by these
fits, v tends to present larger uncertainties because the
curvature of T.(L) is affected by the values on small lat-
tices, where the effect of the boundary conditions on the
state of the systems is more visible. On the other hand,
the specific heat behaves like ¢, o |T' — T.|™® around
the critical point, such that it is straightforward to see
that [65]

(LY oc LYY, (B2)

In this case, a log-log plot allows the extraction of the
quotient a/v as the slope of a linear fit, whereas in the
case of Eq. (B1) an unknown constant T, (cc) needs to be
removed before using the same method. For this reason,
the determination of «/v is more precise than that of
v from T.(L). However, obtaining a precise value for
c@x (L) is complicated for large lattices because the peak
becomes too thin and high, leading to large differences
in (L) for small deviations in T,(L).

In practice, there are two different routes for cal-
culating the specific heat and obtaining ¢?**(L) and
T.(L). One consists of calculating ¢,(T) = N({e(T)?) —
(e(T))?)/T?, where e(T) is the internal energy per site
and (.) is the cMC average over different Monte Carlo
steps at a given temperature. Then, ¢,(T) is averaged
over several independent runs. The second route consists
of taking the discrete derivative of e(T) in the temper-
ature grid available. This is done after averaging e(T)
over independent runs. Ideally, both approaches should
lead to the same result, but in practice, we find that the
second option leads to less noisy results. Still, the spe-
cific heat calculations are not always smooth for small
temperature steps AT because small uncertainties in the
energy e lead to large ones when calculating Ae/AT. To
overcome this, we use a Savitzky—Golay filter to smooth
the curves and improve the finite-size scaling [66].

In Fig. 18, we show the results for the high-
temperature phase transition at § = 0.25, where the sys-
tem goes from a paramagnetic phase to a phase with (2)
order. We obtain «/v = 1.0, which is consistent with a
4-state Potts (or Ashkin-Teller) transition in two dimen-
sions (top panel). These four possible states are realized
by combinations of horizontal or vertical stripe configu-
rations and the two possibilities for the two patterns of
stripes (¢pgp and dppdo) related by a lattice translation
of one nearest neighbor distance. In the bottom panel of
Fig. 18, we see that v takes values close to the expected
v = 2/3 for the 4-state Potts transition.

In Fig. 19, we show the results for the low-temperature
phase transition between the (2) phase and the nematic
spiral phase at § = 0.17. In this case, the peaks in
the specific heat become very thin as the system size in-
creases, and it becomes difficult to determine the height
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FIG. 18. Finite-size scaling of ¢,,'** and T, for the phase tran-
sition at 6 = 0.25 between the paramagnetic phase and the
(2)-ordered phase. Points correspond to the ¢cMC calcula-
tions, while fits to extract the critical exponents are shown
with lines (see main text).
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FIG. 19. Finite-size scaling of c,** and 7. for the phase
transition at § = 0.17 between the (2) phase and the nematic
spiral phase. Note that the top panel uses a logarithmic scale
only on the z-axis but not on the y-axis because o = 0 for
an Ising transition and the leading term becomes ¢, **(L) o
log(L). The parameter that indicates the goodness of the fit,
R?, is shown in the legend and is close to the optimal value
of 1.

accurately (top panel). However, the critical temperature
shown in the bottom panel is very well fitted by v ~ 1.1.
This is consistent with v = 1 expected for an Ising tran-
sition in two dimensions. We can think of this transition
coming from the nematic spiral phase at lower temper-
atures. Then, when the temperature increases and the
system evolves to the (2) phase, there are two possible
choices of double stripes (¢pppd and ¢pdpg). An Ising
transition is characterized by o = 0 and the next relevant
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FIG. 20. Finite-size scaling of ¢;'** and T. for 6 = 0.10,
extracted from the transition between the disordered and the
nematic spiral state. Note that the top panel does not show
a log-log plot but a lin-log plot to obtain the leading term
(L) x log(L) for an Ising transition where o = 0.

term in Eq. (B2) is « log(L). The top panel of Fig. 19
shows that the numerical result for ¢**(L) as a function

of log(L) is indeed well fitted by a linear function.

In Fig. 20 we show the results for § = 0.10, where
there is a transition between a disordered and a nematic
spiral state. As in the previous case, the transition is
expected to be of Ising type because of the selection of
stripes along the x or y directions. This is confirmed by
the linear growth of the peak in the specific heat ¢**(L)
as a function of log(L) (top panel). On the other hand,
T.(L) shows an approximate linear behavior as a func-
tion of 1/L, indicating v = 1, as expected for an Ising
transition. The large deviation in the values T,.(L) for
small systems can be associated with the frustration in-
duced by the boundary conditions, which is stronger for
incommensurate spirals in the case of small lattices.

Finally, in Fig. 21 we show the finite-size scaling for the
low-temperature peak at § = 0.03, where the system goes
from the pancake liquid to the spiral spin liquid. In this
case, we observe that ¢I®*(L) diverges logarithmically
with system size, indicating that the corresponding crit-
ical exponent vanishes, & = 0. However, T.(L) does not
evolve linearly with 1/L, as expected for an Ising tran-
sition (o = 0). Instead, the critical exponent is closer
to v = 1/2, which corresponds to a linear behavior in
L='/* = N=1. As explained in the main text, this tran-
sition is connected to the proliferation of momentum vor-
tices and antivortices and may be a Kosterlitz-Thouless
transition of momentum vortices. However, a more thor-
ough investigation is needed to confirm this scenario.



0.7 T T T
W H. Yan and J. Reuther == R? =0.988
S)
r 06 -
B2
Q
0.5 1 1 1
3 4 ) 6
log(L)
0.10 T T T T
_— L J
— o0
= 005 F -
&~
W H. Yan and J. Reuther v =0.430
0.00 1 1 1 1

0.00 0.01 0.02 0.03 0.04 0.05
1/L

FIG. 21. Finite-size scaling of ¢;'** and T, for the low-
temperature peak at 6 = 0.03, where the system evolves from
the pancake to the spiral spin liquid. The orange square cor-
responds to the result of Ref. [35] for L = 400.

0.03 0.04 0.05 0.06 0.07
0

FIG. 22. Specific heat ¢, as a function of 6 and 7" in a smaller
region of the §-1" space than in Fig. 3, for lattice size L = 200
and periodical boundary conditions.

17

Appendix C: Transition between the spiral spin
liquid and nematic spiral phase

As discussed in the previous section and in the main
text, the phase transition for § > 0.05 belongs to the Ising
universality class and leads to a nematic stripe spiral or-
der. On the other hand, for § < 0.05 the transition does
not fit in any universality class and presents no symme-
try breaking. Since the two low-temperature phases are
fundamentally different in terms of broken symmetries, a
phase transition has to exist between them. However, as
shown in Fig. 3 and in Fig. 22, such a phase transition is
not observed in the specific heat. For the enlarged view
in Fig. 22, we performed independent cMC runs for § be-
tween 0.03 and 0.07 in 0.001 steps. At 6 = 0.07, there is
a clear transition from a disordered state into a nematic
spiral state. As ¢ is lowered, the transition is weakened,
i.e., the peak decreases and shifts to lower temperatures.
Furthermore, a wide shoulder emerges at higher temper-
atures (as evidenced by the contour lines). The latter
indicates the onset of correlations leading to the pan-
cake liquid phase. The low-energy transition indicates
the passage into the spiral spin liquid without symme-
try breaking. As shown in the previous section, all along
the low-temperature phase transition, the specific heat
diverges logarithmically. The fact that the specific heat
calculations cannot resolve this transition even with this
small § step size indicates that the single-spin update al-
gorithm might not be sufficient to capture it and further
studies are needed to confirm its presence. Nonetheless,
as discussed in the main text, the transition can be de-
tected via the calculation of appropriate order parame-
ters and evidenced by energy-level crossings in d-sweeps.
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