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We investigate the viscoelastic relaxation to
equilibrium of a disordered planar epithelium
described using the cell vertex model. In its standard
form, the model is formulated as coupled evolution
equations for the locations of vertices of confluent
polygonal cells. Exploiting the model’s gradient-flow
structure, we use singular-value decomposition to
project modes of deformation of vertices onto modes
of deformation of cells. We show how eigenmodes of
discrete Laplacian operators (specified by constitutive
assumptions related to dissipation and mechanical
energy) provide a spatial basis for evolving fields,
and demonstrate how the operators can incorporate
approximations of conventional spatial derivatives.
We relate the spectrum of relaxation times to the
eigenvalues of the Laplacians, modified by corrections
that account for the fact that the cell network (and
therefore the Laplacians) evolve during relaxation
to an equilibrium prestressed state, providing the
monolayer with geometric stiffness. While dilational
modes of the Laplacians capture rapid relaxation in
some circumstances, showing diffusive dynamics,
geometric stiffness is typically a dominant source of
monolayer rigidity, as we illustrate for monolayers
exposed to unsteady stretching deformations.
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21. Introduction
The cell vertex model [1–4] provides a simple description of the mechanics of spatially disordered
multicellular tissues, such as the epithelia that coat developing embryos, form our skin and line many
internal organs [5]. The vertex model can capture elastic, viscous and plastic deformations [6,7], as
well as more exotic features of spatially disordered glassy systems such as a jamming/unjamming
transition [8]. The model is reasonably straightforward to implement computationally, at least in
two dimensions (2D), and it is readily integrated with models of biological processes such as cell
division, cell signalling and cell motility [9]. The vertex model’s parsimony (in having a small number
of material parameters) supports inference [10–14], providing the model with a degree of predictive
power. Together, these features make the cell vertex model a popular tool in developmental biology,
and in mechanobiology more generally, with simulations bringing valuable mechanical insights to
the interpretation of experimental observations. Given its wide utility and application, it is helpful to
understand and potentially exploit the model’s underlying mathematical structure.

It is well established that epithelial cells are sensitive to their mechanical environment [5]. For
example, stretching of an epithelium stimulates cell division and reorients divisions along the axis
of stretch, helping to dissipate stress and maintain epithelial homeostasis [15–19] . The responses of
epithelial tissue to mechanical force are dynamic and adaptive; for example cell circularity following
a uniaxial stretch can be restored close to pre-stretch levels in 90 min via actomyosin contraction [18].
Moreover, the force regimes experienced by epithelial tissues in vivo can vary significantly, from the fast
changes seen upon wounding to the slower changes seen in the embryo during tissue morphogenesis.
In order to investigate questions arising from these dynamic considerations, for example to benchmark
deformation rates against intrinsic timescales of the monolayer, it is helpful to calculate the spectrum
of viscoelastic relaxation times of a monolayer. These are determined not only by cell mechanical
properties but also by the geometrical arrangements of cells within a monolayer. By incorporating the
spatial disorder that is intrinsic to many natural tissues, the vertex model is particularly well suited to
address the way in which geometry and topology together mediate multiscale mechanical effects.

The cell vertex model rests on two primary assumptions. The first is that in 2D a confluent cellular
monolayer can be represented geometrically as a set of polygons that tile the plane. This abstraction
allows cell shapes to be represented in terms of the locations of the vertices of the polygons. The second
assumption is that a mechanical energy can be defined in terms of geometric features of the polygons.
The principle of virtual work allows forces to be defined at vertices as gradients of the energy, and
movement of vertices down this energy gradient (at a rate defined by a suitable model of dissipation)
takes the system to the nearest equilibrium, possibly allowing cells to exchange neighbours (via
so-called T1 transitions) in the process. In what follows, we adopt a variant of a simple but widely-
used energy, defined in terms of the area and perimeter of each cell, that has two dimensionless
parameters; we also refine a common model of friction between cells and their substrate. This approach
is undoubtedly an oversimplification of biological reality; nevertheless a proper understanding of this
foundational model is useful when introducing additional processes.

Development of a rigorous link between discrete (cell-scale) and continuous (tissue-scale)
descriptions of multicellular tissues remains an open challenge, motivating a variety of upscaling
approaches. Long-wave approximations assume disparate lengthscales and slow variation of
properties over scales much longer than the size of cells, and have been conducted for the vertex model
in one dimension (1D) [20,21] or in 2D via homogenizaton [22] or using probabilistic arguments [23].
Mean-field models are based either on a phenomenological macroscopic constitutive model [24–26] or
rely on an assumption of regularity in the organisation of cells [27–32]. Two studies in particular have
emphasised the diffusive nature of the dynamics: coarse-graining of a 1D analogue of the vertex model
revealed diffusive dynamics in a Lagrangian frame of reference [20]; while a gradient flow of particles
under an energy defined by areas of a tessellation was reduced to an (Eulerian) nonlinear diffusion
equation [33]. In the present study, in which we investigate a monolayer undergoing viscoelastic
relaxation to an equilibrium, we remain in a discrete framework, while seeking points of contact
with continuum descriptions. Our spectral perspective captures evolution across a wide range of
lengthscales and timescales, retaining features that elude some upscaled models.



3Building on studies of granular materials [34,35], we have demonstrated previously how the
geometry of the cells themselves can be exploited in order to build operators of a discrete calculus
[36,37], including spatial Laplacians defined over vertices and over cell centres. The eigenmodes of
these operators provide bases for fields defined over a cell monolayer: exploiting Helmholtz–Hodge
decomposition, we used this approach to represent the mechanical stress over a monolayer in terms
of scalar potentials [36]. Low-order eigenmodes are sensitive to the shape of the monolayer as a
whole, while high-order modes are sensitive to the shape of individual cells, providing a natural
bridge between microscopic and macroscopic features. (An alternative approach [38] uses a Laplacian
that is weighted on the basis of a localised kernel function, rather than using the detailed structural
information of individual cells.) The Laplacians identified in [36] provide a representation of scalar
fields defined on cells and vertices and vector fields defined on cell edges and links between cell
centres, and rely intrinsically on a primal network of cells and its dual triangulation. Below, we
introduce complementary spatial Laplacians LF and LF that are suitable for discrete vector fields
defined on vertices and scalar fields on faces, or vice versa, which do not require use of a dual network.

These discrete spatial operators provide a valuable framework for multiscale analysis but are
agnostic to the physical processes being modelled. However the vertex model is a gradient flow on
a manifold defined by both the choice of mechanical energy and the model for dissipation, implying
a role for model-dependent operators. In the form of the vertex model that we consider, each cell
is characterised by two scalar variables (area and perimeter), geometric attributes that are energy-
conjugate to a pressure and a tension. The mapping between cell and vertex deformations is associated
with the first variation of cell area and cell perimeter with respect to vertex locations. We will use
these quantities (in a framework provided by singular value decomposition (SVD)) to construct matrix
operators that allow projection of the 2Nv degrees of freedom of the Nv vertices in R2 onto the
fewer 2Nc scalar variables defined over the Nc cells. Thereby we construct a scalar Laplacian LG

c

and its vector equivalent LG
v that combine physical parameters with geometric information. These

model-dependent operators are constructed such that they have embedded within them the the purely
spatial Laplacians LF and LF , as well as interactions with non-standard (and more nonlocal) spatial
operators. Additional complexity arises from the fact that the network on which the operators are
constructed evolves in time. This can arise in two ways: either through T1 transitions (ignored here),
or from vertex motion associated with stress relaxation. Were the system defined on a static domain,
one might expect the eigenvalues of LG

c and LG
v to determine the spectrum of relaxation times. This

turns out typically not to be the case for monolayers in a jammed state: evolution of the prestressed
network modifies relaxation times, endowing the monolayer with so-called geometric stiffness.

Spectra constructed from the full Hessian of the vertex model were computed by Tong et al. [39] in
a study of monolayer viscoelasticity.

A monolayer with Nv vertices has 2Nv degrees of freedom, a 2Nv × 2Nv Hessian and 2Nv

eigenvalues in its spectrum. Of this set, approximately one quarter showed sensitivity to large
variations in a parameter Γ (measuring resistance to perimeter change relative to area change), with
the remaining modes being relatively insensitive [39]. We rationalize these observations by identifying
a component of the spectrum that can be associated (for very large or small values of Γ ) with a set of
dilational modes of LG

c and LG
v ; we show how such modes have essentially diffusive dynamics. The

remainder of the spectrum is strongly influenced by the monolayer’s geometric stiffness.
In the present study, we restrict attention primarily to monolayers in a jammed phase and ignore

neighbour exchanges, extrusion and cell division. We formulate the vertex model in Section 2 using a
framework that distinguishes cell-based from vertex-based evolution. We then use SVD in Section 3 to
formally identify model-dependent Laplacian operators and to identify their contribution to the overall
dynamics. This is illustrated via computation in Section 4. A gradient-flow perspective in Section 5
suggests connections with nonlocal aggregation-diffusion models. Technical details are provided in
appendices, where we use incidence matrices to perform key calculations.

2. The vertex model



4(a) Evolution equations for vertices and cells
In the cell vertex model, the evolution of a planar simply-connected monolayer formed of Nc cells is
simulated numerically by evolving the location of Nv vertices r∗(t∗)≡ (r∗1, . . . , r

∗
Nv

)⊤ embedded in
R2 at time t∗, giving the model 2Nv degrees of freedom (stars denote dimensional quantities). The
vertices define a network of confluent polygonal cells. We assume all cells have the same material
properties, and define the dimensional energy of cell i as K∗

AU(A∗
i /A

∗
0) +K∗

LU(L
∗
i /L

∗
0), for some

positive constants K∗
A and K∗

L. Here A∗
i and L∗

i are the area and perimeter of cell i; A∗
0 and L∗

0 are
a reference area and perimeter at which the relevant component of the energy is minimal. Accordingly,
the dimensionless function U(θ) is assumed to be convex, satisfying U(1) = U ′(1) = 0, U ′′(1) = 1

and U ′′(θ)> 0 for all θ > 0. We rescale lengths on
√
A∗
0 (so that A∗

i =A∗
0Ai, L∗

i =
√
A∗
0Li etc.) and

energy on K∗
A. Then the dimensionless energy of cell i becomes Ui(Ai, Li) = U(Ai) + ΓL2

0U(Li/L0),
where L0 =L∗

0/
√
A∗
0 and Γ = (K∗

L/K
∗
AL

2
0). Γ measures the relative energetic cost of cell perimeter

change to area change. The pressure and tension of cell i are defined as Pi ≡ ∂Ui/∂Ai = U ′(Ai) and
Ti ≡ ∂Ui/∂Li = ΓL0U ′(Li/L0).

Taylor-expanding U about Ai = 1 and Li =L0 gives Ui ≈ 1
2 (Ai − 1)2 + 1

2Γ (Li − L0)
2, recovering

a commonly adopted expression for cell energy [2,40], for which Pi ≈Ai − 1 and Ti ≈ Γ (Li − L0).
These linear pressure and tension relationships, if extrapolated, permit areas and perimeters to shrink
to zero under finite energy change. To prevent this, we take U(θ) = θ(log θ − 1), giving

Pi(Ai) = logAi, Ti(Li) = ΓL0 log(Li/L0), (2.1)

with P ′
i (Ai) = 1/Ai and T ′

i (Li) = Γ (L0/Li). The rigidity of an isolated cell is provided by tension Ti >
0 (with Li >L0) balancing pressure Pi < 0 (with Ai < 1). Under (2.1), cell shrinkage requires greater
mechanical energy than comparative cell expansion, while recovering the classical model for Ai near
unity and Li near L0 (so that for a perfect hexagon, Pi = 0 and Ti = 0 for L0 = 2× 121/4 ≈ 3.72). This
formulation (2.1) accommodates heterogeneity of areas and perimeters across a monolayer, allowing
significant deviations from Ai ≈ 1 and Li ≈L0.

Cells are characterised by two pairs of scalar attributes, making it convenient to group these
quantities into vectors of length 2Nc. We define g(t) to be the vector of cell pressures and tensions (so
that g≡ (P1, . . . , PNc

, T1, . . . , TNc
)⊤), s(t) to be the corresponding vector of cell areas and perimeters

(we write s(t) as shorthand for s(r(t))) and let s0 ≡ (1, 1, . . . , 1, L0, L0, . . . , L0)
⊤ denote reference areas

and perimeters. Pressures and tensions are related to areas and perimeters through the nonlinear
function

g= G(s; s0, Γ ) (2.2)

that captures (2.1). The total mechanical energy of the monolayer U =
∑

i Ui satisfies U̇ = g⊤ṡ and
Us = g. Here a dot denotes d/dt and the subscript s denotes a Fréchet derivative. Likewise, ġ=Gṡ

where G is a matrix satisfying

G= Gs ≡

(
A−1
c 0

0 ΓL0L
−1
c

)
, (2.3)

where Ac =diag(A1, . . . , ANc
) and Lc =diag(L1, . . . , LNc

). To explain notation, we use i= 1, . . . , Nc

to sum over cells and α= 1, . . . , 2Nc to sum over pairs of attributes assigned to cells; k= 1, . . . Nv sums
over vertices. We use a lower-case bold font to denote vectors in the physical plane R2, lower-case sans
serif to denote 2Nc-vectors and sans serif italic to denote vectors or tensors with 2-vector-valued or
tensor-valued components. We adopt matrix notation but use indices for clarity where necessary. ⊤ (or
T ) denotes a transpose with respect to coordinates α or k (or R2).

Linearization around an equilibrium state (writing s= s̄+ ŝ, etc.) gives ḡ= G(s̄; s0, Γ ) with
perturbations satisfying ĝ≈ Ḡŝ, using (2.3). The total energy, when expanded in terms of variations
in areas and perimeters, is then U ≈

∑
i Ūi + ŝ⊤ḡ + 1

2 ŝ
⊤Ḡŝ. Accordingly, we define inner products for

scalar-valued attributes u, v of cells, and vector-valued attributes u, v of vertices, as

⟨u, v⟩G ≡ u⊤Gv≡
∑

α,α′uαGα,α′vα, ⟨u, v⟩E ≡ u⊤E · v ≡
∑

kEkuk · vk. (2.4a)



5Here E=diag(E1, . . . , ENv
) and Ek is an area assigned to each vertex, defined as the area of the

triangle having vertices at the edge centroids neighbouring a given vertex (see Fig. 8a below). While
G is the natural weighting for areas and perimeters, G−1 is the natural weighting for pressures and
tensions, so that the quadratic contribution to the energy becomes

1
2 ⟨̂s, ŝ⟩Ḡ = 1

2 ⟨ĝ, ĝ⟩Ḡ−1 ≡ 1
2 ĝ

⊤Ḡ−1ĝ. (2.4b)

Some of the complexity of the vertex model originates in the nonlinear relationship between areas,
perimeters and cell vertex locations. We capture this by defining Mαk = ∂sα/∂rk, or M = sr . The
elements ofM related to ∂Ai/∂rk can be visualised as the normal to the link between edge centroids
adajecent to vertex k of cell i; those related to ∂Li/∂rk correspond to unit vectors acting along the
edges of cell i adjacent to vertex k, as explained in Appendix A. Going to higher order, we can relate
small changes in area and perimeter to vertex displacements by

δsα =
∑

kMαk · δrk + 1
2

∑
k,k′δrk ·M′

αkk′ · δrk′ + . . . (2.5)

where M′
αkk′ ≡ ∂2sα/∂rk∂rk′ (see Appendix A), and therefore

ṡα =
∑

kMαk · ṙk, i.e. ṡ=M · ṙ . (2.6)

Here we see a suggestion of M· acting analogously to a divergence operator, mapping a discrete
(vector-valued) velocity field defined over vertices to (scalar-valued) area and perimeter changes
defined over cells. This notion will be developed more formally below.

A common model of viscous dissipation (often chosen more for computational convenience than
for mechanical realism) assigns a drag to each vertex, leading to the coupled evolution equations ṙk =

−∂U/∂rk for k= 1, . . . , Nv [2]. Here time has been scaled so that the vertex drag coefficient is unity. We
consider two refinements to this approach. First, in accounting for substrate drag alone it is natural to
assume that the drag force is proportional to a surface area of contact associated with each vertex. One
natural choice for this area, defined solely in terms of the polygonal cell network, is Ek, introduced in
(2.4a). The monolayer is then assumed to evolve under Ek ṙk =−∂U/∂rk.

For a vertex in the interior of a monolayer, Ek is composed of three triangles, one lying in each
adjacent cell; a vertex at the monolayer periphery, adjacent to one or two triangles, will therefore
experience relatively lower drag. A further feature of this choice is that (1/Ek)∂Ai/∂rk has a direct
interpretation as a discrete approximation of the spatial ∇ operator in R2 (Appendix B), from which a
discrete Laplacian operator (in a Euclidean metric) can be constructed, acting on scalar fields defined
over cells.

Movement of vertices down energy gradients can then be written (at vertex k, or over the whole
monolayer) as

Ek ṙk =−
∑

αgαMαk, i.e. Eṙ =−Ur ≡−M⊤g, (2.7)

with g satisfying (2.2). We can interpret (2.7) as a force balance on vertices, with drag on the left-hand
side balancing elastic forces on the right; in a more global interpretation, (2.7) is a Darcy-type relation
expressing the velocity field ṙ as a gradient (in a sense defined below) of pressures and tensions.

A second model of dissipation is relevant when adhesion to the substrate is weak relative to
dissipation internal to cells. The rate of dissipation due to area and perimeter changes can be written
(following (2.4a) and [6]) as

Φ (ṡ) = ⟨ṡ, ṡ⟩H where H≡

(
γA 0

0 γL

)
⊗ INc

, (2.8)

for some positive parameters γA and γL. Here INc
is the Nc ×Nc identity matrix. Equating the rate of

change of mechanical energy with the rate of dissipation, the evolution in this case follows

0 = U̇ + Φ= g⊤ṡ+ ṡ⊤Hṡ=
(
g⊤M + ṡ⊤HM

)
· ṙ , (2.9)



6indicating that the net force on the vertex (the quantity conjugate to the vertex velocity) is −M⊤g −
M⊤HM · ṙ . Combining this force with the substrate drag model (2.7) leads to the composite evolution
equation (

E⊗ I2 +M⊤HM
)
· ṙ =−M⊤g. (2.10)

Two alternative nonlocal models of dissipation are discussed by [39], involving relative motion of
neighbouring vertices and relative motion of neighbouring cell centres, but we do not pursue these
here. Projecting (2.10) onto ṙ shows that energy is dissipated as vertices move via

U̇ =−Φ− ṙ⊤ · Eṙ ≤ 0. (2.11)

The evolution (2.2, 2.10) can formally be written as the gradient flow ṙ =−gradD U , using the
dissipation operator in (2.10) as a metric; see Appendix C. Here, the gradient is in a function space
defined by the dissipation, and it is implemented formally as a 2Nv × 2Nv matrix that can be expected
to be dense when H is non-zero.

To relate vertex dynamics to cell dynamics, we project (2.10) ontoM using (2.6), to give (2.2) plus

(I2Nc
+ LH) ṡ=−Lg where L≡M · E−1M⊤ ≡

(
LA LC

L⊤
C LL

)
. (2.12)

The operator L combines matrix multiplication (contracting over vertices) and a dot product
(contracting over vectors in R2) to construct a 2× 2 matrix of Nc ×Nc blocks with scalar components;
diagonal elements LA and LL describe respectively squared area and perimeter changes of individual
cells as a result of vertex displacements; off-diagonal elements LC and L⊤

C describe the magnitude
of area and perimeter changes arising from displacements of vertices shared by neighbouring cells.
Equivalently, (2.12) can be expressed in terms of evolving pressures and tensions using(

I2Nc
+ GLHG−1

)
ġ=−GLg. (2.13)

Typically, pressures and tensions are coupled via the off-diagonal blocks LC and L⊤
C of L.

For extreme values of Γ , however (see (2.3)), the operator GL decouples into two components
(Appendix D) representing fast cell dilation and slow cell shear. For small (large) Γ , cell dilation
is driven predominantly by pressure (tension) changes, and the relevant component of (2.13) is
approximated by

(I+ γAA−1
c LAAc)Ṗ=−A−1

c LAP, (Γ ∼ γL ≪ 1) (2.14a)

(I+ γLL
−1
c LLLc)Ṫ=−ΓL0L

−1
c LLT, (Γ ∼ γ−1

A ≫ 1), (2.14b)

where P≡ (P1, . . . , PNc
) and T≡ (T1, . . . , TNc

); ∼ denotes ‘scales like’. The operator −A−1
c LA in

(2.14a), the first diagonal block of GL, is a discrete approximation of the spatial ∇2 operator in R2

(Appendix B) when approximated on the polygonal grid defined by cells using the metrics E and
G (see (2.3, 2.4a)), indicating that cell pressures can exhibit diffusive dynamics (mediated by viscous
resistance to area change that is proportional to γA). The corresponding operator −L−1

c LL in (2.14b)
does not appear to have such a straightforward interpretation in terms of conventional derivatives.

In summary, (2.2, 2.10) provides a full description of the dynamics (with 2Nv degrees of freedom),
while (2.12) and (2.13) each describe the evolution of 2Nc cell-based variables, albeit depending on
the 2Nv × 2Nv matrix L. Despite a suggestion of diffusive dynamics in (2.13, 2.14), this interpretation
is imperfect because the operator L evolves with s and g via its dependence on r ; this can have a
significant influence on the dynamics of the system.

(b) Cell stress
At equilibrium, g and s are typically non-uniform (with g in the kernel of M⊤), representing the fact
that there can be residual stress (or prestress) in the equilibrium state of a disordered monolayer.
The stress of cell i is σi ≡ I2Pi + (LiTi/Ai)Qi, where Qi is a shape tensor [6,40] defined in (A.9b)
(Appendix A) satisfying Tr(Qi) = 1; it quantifies the degree to which a cell is sheared. We can



7characterise cell stress through the magnitudes of the isotropic and deviatoric components of σi

[37,40], namely

Peff,i = Pi +
LiTi
2Ai

, ζi =
LiTi
A1

√
−det(Qi − 1

2 I2). (2.15)

An isolated hexagonal cell, for which Peff,i = 0 and Qi =
1
2 I2, can still exhibit prestress at the level of

individual vertices when Ti > 0 (i.e. for L0 ≲ 3.72).
Defining W ≡ diag(I2, . . . , I2,Q1, . . . ,QNc

), (A.9) shows that r ⊗M⊤ =W s and hence, taking the
trace,

M · r = (2A1, . . . , 2ANc
, L1, . . . , LNc

)⊤; (2.16)

(the factor of 2 is analogous to the identity ∇ · x= 2 in R2), again hinting at the divergence-like nature
ofM·. Applying r ⊗ to the force balance equation (2.10) leads to

d

dt

{
1
2 r ⊗ Er + 1

2 s
⊤WHs

}
=−s⊤Wg≡−

∑
iAiσi. (2.17)

This sum over cells equates the elastic cell stress σi, integrated over the monolayer, with expressions
measuring the rate of working of dissipative forces associated with vertex motion and changes in area
and perimeter. At equilibrium, both sides of (2.17) tend to zero, although the stress in individual cells
can be non-uniform.

As shown in Eq. (23) of [6], the stiffness of a monolayer (under imposition of a small affine
deformation with strain E) includes terms involving Tr(E) and Qi : E (associated with changes in cell
areas and perimeters respectively) and Bi : E (where Bi is a fourth-order tensor, describing changes
in Qi via reorientation of edges). The former terms contribute to the so-called material stiffness of
the monolayer (by changing the energy directly), while the latter contributes to its geometric stiffness
(providing stiffness without directly changing areas and perimeters). We now consider the role of these
different forms of stiffness in the viscoelastic relaxation of a monolayer.

(c) Linearized dynamics
To better understand the relationship between the evolution of vertices and cells, we consider how the
system relaxes to an equilibrium state. We write s= s̄+ ŝ(t) (with ⟨̂s, ŝ⟩G ≪ ⟨̄s, s̄⟩G, etc.) to distinguish
a steady state (with a bar) from decaying perturbations (with hats). In force balances, we neglect terms
that are quadratic (or smaller) in hatted quantities. We Taylor-expandM with respect to rk using (2.5)
to obtain M̂ = M̄′ · r̂ , so that M̂⊤ = r̂⊤ · M̄′⊤. Steady states satisfy

ḡ= G(̄s; s0, Γ ), M̄⊤ḡ= 0. (2.18)

We then assume that all hatted quantities have time dependence e−λt, seeking the spectrum
λ(1), . . . , λ(2NV ) defined by possible values of λ; we suppress the superscript in what follows. Given
the gradient-flow structure of the problem, we expect λ∈R with λ≥ 0. Evolving states satisfy, from
(2.3, 2.6, 2.10),

ĝ= Ḡŝ, ŝ= M̄ · r̂, −λ
(
Ē⊗ I2 + M̄⊤HM̄

)
· r̂=−M̄⊤ĝ − M̂⊤ḡ. (2.19)

Thus, using L̂= M̂ · Ē−1M̄⊤ + M̄ · Ê−1M̄⊤ + M̄ · Ē−1M̂⊤, the linearized dynamics of vertices and
cells follows, respectively,

λ
(
Ē⊗ I2 + M̄⊤HM̄

)
· r̂ =

(
M̄⊤ḠM̄ + ḡ⊤M̄′

)
· r̂ , (2.20a)

λ
(
I2Nc

+ L̄H
)
ŝ= L̄Ḡŝ+ L̂ḡ= L̄Ḡŝ+ M̄ · Ē−1(r̂⊤ · M̄′⊤)ḡ. (2.20b)

We recognise M̄⊤ḠM̄ + ḡ⊤M̄′ in (2.20a) as the Hessian Ūr r , with terms representing respectively
material stiffness and geometric stiffness [41,42]. Equivalently, expanding the energy to second order



8with respect to vertex locations using (2.5) gives

U ≈
∑

iŪi + r̂
⊤ · M̄⊤ḡ + 1

2 r̂
⊤ ·
[
M̄⊤ḠM̄ + ḡ⊤M̄′

]
· r̂ . (2.21)

The evolution of cell pressures and areas is coupled to movement of vertices in (2.20b) via M̄′⊤ḡ. A
geometric interpretation of the associated forces is given in Appendix E and steps needed to evaluate
M̄ and M̄′ are outlined in Appendix A. The scalar and vector operators L̄ and M̄⊤ḠM̄· are suggestive of
Laplacian operators, in a sense that we will qualify below. The relaxation rates λ appear as eigenvalues
of the generalized eigenvalue problem (2.20a). The λ-spectrum was evaluated by [39] and [43] under
periodic boundary conditions (using different models of dissipation). Here, we seek an understanding
of the contributions of the Laplacian operators in (2.20) to the dynamics of an isolated monolayer.

(d) Simulations
We simulated the growth of isolated 100-cell monolayers, implementing a stochastic cell-division
algorithm and T1 transitions to produce realisations of disordered monolayers for chosen values of
Γ and L0; the monolayer periphery is force-free. Monolayers are successively relaxed to equilibrium
for different parameter choices. We chose a disordered monolayer such that it maintained the
same topology across the parameter space and did not contain any quadrilaterals at equilibrium.
(Quadrilaterals can add the additional complexity of retaining localised prestress beyond the usual
rigidity transition because their shape incompatability does not allow them to relax their tension; in
the jammed regime the exclusion of quadrilaterals makes a negligible difference to results.) We also
simulated a symmetric 127-cell monolayer of hexagonal cells. In what follows, the parameters Γ and
L0 are chosen primarily so that the monolayer is in a jammed state.

Simulation code is available as the VertexModel.jl package [44], previously developed for our
past work in this area [36]. The DiscreteCalculus.jl package [45] was developed to aid the
analysis in this paper. This package contains Julia code that creates operators discussed in this paper.

3. Singular-value decomposition
In order to relate the full spectrum describing relaxation of vertices (with 2Nv eigenvalues) to the
potentially smaller system describing the evolution of 2Nc scalars defined over cells, it is helpful
to reframe the problem using singular-value decomposition (SVD). SVD provides a framework for
understanding the action of the singular matrix operators M and M⊤, by identifying associated
Laplacian operators (illustrated in Figure 1) and enabling an assessment of their contribution to the
overall dynamics.

Let Z ⊂RNv × R2 be the (state) space of vertex locations and T Z be its tangent space. Let Y ⊂R2Nc

be the space of areas and perimeters and T Y be its tangent space. The matrix operator M· (see (2.5))
maps from T Z to T Y (Fig. 1). We define q such that rank(M)≡ q < 2Nc < 2Nv . For a scalar-valued
field Y ∈ T Y , GY represents the associated variations in pressures and tensions; the norm 1

2 ⟨Y,Y⟩G
(see (2.4b)) measures the change in elastic energy associated with area and perimeter variation. GY sits
in T X , the tangent space to the space of pressures and tensions, which is dual to T Y under (2.4a). For
Z ∈ T Z , the norm 1

2 ⟨Z,Z⟩E measures the dissipation associated with vertex motion. T W (the space
of force variations) is dual to T Z under (2.4a).

We then define N =ME−1 so that ⟨N⊤, ·⟩E maps from T Z to T Y . Exploiting SVD [46], we can
express N acting under the inner products (2.4a) as

N =

q∑
p=1

σpYpZ
⊤
p where

{
⟨Zp,Zp′⟩E = δpp′ (1≤ p, p′ ≤Nv),

⟨Yp,Yp′⟩G = δpp′ (1≤ p, p′ ≤ 2Nc).
(3.1)

Here {Y1 . . .Y2Nc
} form an orthonormal basis of T Y and are the left-singular vectors of N;

{Z1, . . . ,ZNv
} form an orthonormal basis of T Z and are the right-singular vectors of N. The non-

zero singular values of N are ordered as 0<σ1 ≤ σ2 ≤ · · · ≤ σq and the singular vectors are related via
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ZM

Figure 1. Left: a diagram summarising the action of matrix operators M , G and E. M has components that are vectors

describing how cell areas and perimeters change under small vertex displacements. ‘Vertex displacements’ describes the

tangent space T Z of the state space Z . ‘Forces at vertices’ describes the dual space T W ; ‘Pressures, tensions’ sit in a

space T X that is dual to the tangent space T Y denoted ‘Areas, perimeters.’ The operators M· and M⊤ are singular with

rank q < 2Nc and therefore have nontrivial kernels mapping to ∅. Laplacians LG
c and LG

v are defined in (3.4); dual operators

are given in (3.9). Right: kernels in T Z and T Y are shown as red boxes. Perturbations are mapped between these spaces by

divergence ⟨N⊤, ·⟩E and gradient ⟨N, ·⟩G matrix operators. Elements of ker(M̄⊤) are denoted States of Self-Stress (SSS);

elements of ker(M̄·) are denoted Zero Modes (ZM).

⟨N⊤,Zp⟩E = σpYp (1≤ p≤ q), ⟨N,Yp⟩G = σpZp (1≤ p≤ q), (3.2a)

⟨N⊤,Zp⟩E = 0 (q + 1≤ p≤ 2Nv), ⟨N,Yp⟩G = 0 (q + 1≤ p≤ 2Nc). (3.2b)

From this it follows that

⟨N⊤,N⊤⟩E =NE ·N⊤ =

q∑
p=1

σ2pYpY
⊤
p , ⟨N,N⟩G =N⊤GN =

q∑
p=1

σ2pZpZ
⊤
p . (3.3)

Thus, defining the vertex and cell operators

LG
v =N⊤GNE· = E−1M⊤GM· , LG

c =NE ·N⊤G=ME−1 ·M⊤G≡LG, (3.4)

it follows that, for 1≤ p≤ q, singular values can be related to eigenvalues of (3.4) via

⟨N, ⟨N⊤,Zp⟩E⟩G ≡LG
vZp = σ2pZp, ⟨N⊤, ⟨N,Yp⟩G⟩E ≡LG

c Yp = σ2pYp. (3.5)

The operators LG
v and LG

c are self-adjoint under the relevant inner products, because (taking
transposes, for any fields Z, Z̃, Ỹ, Y)

⟨Z̃,LG
vZ⟩E = Z̃⊤ ·M⊤GM · Z =Z⊤ ·M⊤GM · Z̃ = ⟨Z,LG

v Z̃⟩E, (3.6a)

⟨Ỹ,LG
c Y⟩G = Ỹ⊤GME−1 ·M⊤GY=Y⊤GME−1 ·M⊤GỸ= ⟨Y,LG

c Ỹ⟩G. (3.6b)

In addition, the operators are positive semi-definite because, for any Z, Y,

⟨Z,LG
vZ⟩E = ⟨⟨N⊤,Z⟩E, ⟨N⊤,Z⟩E⟩G ≥ 0, ⟨Y,LG

c Y⟩E = ⟨⟨N,Y⟩G, ⟨N,Y⟩G⟩E ≥ 0. (3.7)

The operators also satisfy NE ·LG
v =LG

cNE· and N⊤GLG
c =LG

vN
⊤G. In summary, as illustrated in

Fig. 1, the gradient operator ⟨N, ·⟩G (the matrix operator E−1M⊤G) maps areas and perimeters
to vertex displacements; the divergence operator ⟨N⊤, ·⟩E (the matrix operator M⊤·) sums vertex
displacements over cells to give changes in areas and perimeters. The combinations div ◦ grad and
grad ◦ div in (3.4) form scalar (cell) and vector (vertex) Laplacians LG

c and LG
v respectively. The left- and

right-singular vectors are the eigenvectors of LG
c and LG

v respectively; the two families of eigenmodes
can be related to each other via (3.2a). The zero modes of the two operators (3.2) are not directly related



10to each other (for example, translation and rotation modes will be among the zero modes of LG
v but do

not have an analogue in LG
c ). For a monolayer with symmetries, we can expect some singular values

to be repeated.
Equivalently, we can also define Laplacians associated with dissipation due to area and perimeter

changes

LH
v =N⊤HNE·= E−1M⊤HM· , LH

c =NE ·N⊤H=ME−1 ·M⊤H, (3.8)

which again will share non-zero eigenvalues, and which satisfy NE ·LH
v =LH

c NE· and N⊤HLH
c =

LH
vN

⊤H.
A dual formulation using N† ≡M⊤G=

∑q
p=1 σpWpX

⊤
p maps pressure and tension variations

Xp ∈ T X to force variationsWp ∈ T W , via the gradient ⟨N†⊤, ·⟩G−1 =M⊤ and divergence ⟨N†, ·⟩E−1 =

GME−1·, yielding Laplacians acting respectively on forces and pressures plus tensions (see Fig. 1):

LG†
v =N†G−1N†⊤E−1· =M⊤GME−1· , LG†

c =N†⊤E−1 ·N†G−1 =GME−1 ·M⊤ ≡GL. (3.9)

The evolution equation for the monolayer (2.10) can then be written in terms of forces f (satisfying
ḟ =Eṙ ) as

ḟ +LH†
v ḟ =−⟨N†⊤, g⟩G−1 , (3.10a)

again illustrating the gradient-flow structure of the evolution.
Applying ⟨N†, ·⟩E−1 to (3.10a) recovers (2.12) in its dual form

ġ + GLH
c G

−1ġ=−LG†
c g. (3.10b)

Pressures and tensions evolve under the operator LG†
c , which has q degrees of freedom but which is

determined by the larger number (2Nv) of vertices. Eq. (3.10a) generalises to 2D the 1D Lagrangian
evolution equation derived in [20]: the evolving force field (dual to the velocity field) balances a
pressure (and tension) gradient plus a viscous term penalising stretching; the associated kinematic
relation (3.10b) suggests diffusive dynamics. However we must again recognise that area and pressure
changes can arise from dynamic changes in the operator LG†

c .

(a) Spectral contributions of geometric and material stiffness
Having set the model in an SVD framework, we now identify the contributions of Laplacians to the
overall dynamics. An equilibrium state (denoted with a bar) satisfies M̄⊤ḡ= 0 (see (2.18)), placing

Ḡ−1ḡ in the kernel of ⟨N̄, ·⟩Ḡ and making ḡ a harmonic function with respect to LḠ†
c . Thus

Ḡ−1ḡ=
∑2Nc

p=q+1γpȲp (3.11)

for some coefficients γp.
We require that q≤ 2Nc − 1, to allow the existence of at least one zero mode of L̄G

c (a state of self-
stress) that can accommodate an equilibrium solution.

Consider small disturbances
r̂ and ŝ= ⟨N̄⊤, r̂⟩Ē to the equilibrium. We Taylor expand N so that N = N̄ + ⟨N̄′, r̂⟩Ē + . . . where

N̄′ = Ē−1M′Ē−1.
Assuming dissipation via the substrate dominates that in the cells, (2.18) and (2.20) become

0 = ⟨N̄, Ḡ−1ḡ⟩Ḡ, (3.12a)

˙̂r =−L̄G
v r̂ − ⟨⟨N̄′, r̂⟩Ē, Ḡ

−1ḡ⟩Ḡ, (3.12b)

˙̂s=−L̄G
c ŝ− ⟨N̄⊤, ⟨⟨N̄′, r̂⟩Ē, Ḡ

−1ḡ⟩Ḡ⟩Ē. (3.12c)

We can map (3.12b) to (3.12c) by applying ⟨N̄⊤, ·⟩Ē. Likewise, ⟨N̄, ŝ⟩Ḡ = L̄G
v r̂ , so that acting on (3.12c)

with ⟨N̄, ·⟩Ḡ recovers L̄G
v acting on (3.12b).

We assume that deformations can be captured in a basis provided by the left- and right-singular
vectors, writing
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r̂ =

∑q
p=1αp(t)Z̄p +

∑2Nv
p=q+1βp(t)Z̄p, ŝ=

∑q
p=1σpαp(t)Ȳp. (3.13)

The q modes in which vertex motions are coupled directly to area and perimeter changes have
amplitudes αp; remaining modes with amplitudes βp lie in the kernel of ⟨N̄⊤, ·⟩Ē, representing vertex
motions that have no direct impact on area and perimeter. Defining

Dpp′ =
〈
Z̄p,

〈
⟨N̄′, Z̄p′⟩Ē, Ḡ

−1ḡ
〉
Ḡ

〉
Ē

(3.14)

and noting that Dpp′ =Dp′p,
we substitute (3.13) into (3.12), project the dynamics onto indivdual modes and exploit

orthogonality to recover (
α̇

β̇

)
=−

(
Dαα + diag(σ2p) Dαβ

Dαβ Dββ

)(
α

β

)
, (3.15)

where (α, β) = (α1, . . . , αq, βq+1, . . . , βNv
), Dαα

pp′ =Dpp′ for 1≤ p, p′ ≤ q, Dαβ
pp′ =Dpp′ for 1≤ p≤ q <

p′ < 2Nv and Dββ
pp′ =Dpp′ for q≤ p, p′ <Nv . Eigenvalues λ(s) of the matrix in (3.15) (D̃, say) recover

the full spectrum of relaxation rates of the vertices. Orthonormal eigenvectors (α(s), β(s))⊤, with

(3.13), recover the associated spatial modes r̂ (s)e−λ(s)t, which are in turn orthonormal under ⟨·, ·⟩Ē:
specifically, using (3.1),

⟨r̂ (s), r̂ (s
′)⟩Ē = ⟨

∑
pα

(s)
p Zp +

∑
pβ

(s)
p Zp,

∑
p′α

(s′)
p′ Zp′ +

∑
p′β

(s′)
p′ Zp′⟩Ē

=
∑

pα
(s)
p α

(s′)
p +

∑
pβ

(s)
p β

(s′)
p = δss′ . (3.16)

Inserting r̂ (s)e−λ(s)t into (3.12b) and then contracting with ⟨r̂ (s), ·⟩Ē gives

λ(s) =
∑

pσ
2
p

[
α
(s)
p

]2
+
∑

p,p′α
(s)
p Dpp′α

(s)
p′ +

∑
p,p′β

(s)
p Dpp′β

(s)
p′ . (3.17)

Eq. (3.17) allows us to evaluate how the decay rate of a given mode is built from eigenvalues of the
Laplacian operators (the terms involving σ2p) and from interaction with the pre-stressed equilibrium
state (the terms involving D, which capture evolution of the operators). The area change associated
with eigenvector r̂ (s) is specified by non-zero components in α(s); the associated first-order energy
change ŝ⊤ḡ is proportional to∑q

p′=1σp′α
(s)
p′ ⟨Ȳp′ , Ḡ−1ḡ⟩Ḡ; λ(s) in (3.17) gives the second variation of the energy in (2.21) for mode

s.
In summary, reformulation of the problem using SVD has revealed the equilibrium Laplacian

operators L̄G
c and L̄G

v that drive the dynamics, while providing spatial bases that connect vertex
dynamics to patterns of cell area and perimeter change. Using (3.17), we can now assess the relative
contributions of material and geometric stiffness to the dynamics, with the former driven by Laplacian
operators and the latter by the coupling between vertex motions and the equilibrium prestress, which
perturbs these operators.

4. Results
Spectra for a symmetric and a disordered monolayer (each in a jammed state, with Γ = 0.5, L0 = 1)
are presented in Figure 2. The q non-zero eigenvalues of the Laplacian operators L̄G

c and L̄G
v overlap:

q= 2Nc − 1 (q=Nc) for the disordered (symmetric) monolayer. For the disordered monolayer, L̄G
c

therefore has a single zero eigenvalue corresponding to the state of self-stress (SSS) associated with
the equilibrium, shown in Fig. 2e; L̄G

v has 2Nv − q= 2Nv − 2Nc + 1 zero modes (for which λ< 10−10

in Fig. 2c). The symmetric monolayer possesses 2Nv −Nc zero modes of L̄G
v and Nc zero modes of

L̄G
c (Fig. 2a). We describe the two branches of L̄G

c evident in Fig. 2(c) as cell shear and cell dilation
modes, for reasons given below; for the symmetric monolayer, the cell shear modes have (effectively)
zero eigenvalue, becoming SSS modes. However the full spectrum of the Hessian (computed using
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Figure 2. (a,b) Spectra for a symmetric configuration of Nc = 127 hexagonal cells, as depicted in the inset; (c,d) spectra for a

disordered monolayer of Nc = 100 cells; Γ = 0.5, L0 = 1, γA = γL = 0 in both cases. (e) shows the corresponding pressure,

tension and isotropic and deviatoric cell stress components Peff,i and ζi in (2.15) of the equilibrium disordered monolayer.

(a,c) compare the eigenvalues λ(n), n= 1, . . . , 2Nv of the Hessian operator (2.20a, black) to the 2Nv eigenvalues of the

vertex Laplacian (3.4, blue) and the q non-zero eigenvalues of the cell Laplacian (3.4, red); Nv = 294 and q=Nc in (a)

and Nv = 228 and q= 2Nc − 1 = 199 in (c); zero modes of L̄G
v have λ(n) < 10−10; translation and rotation modes of the

Hessian are indicated; the Nc zero modes in (a) and single zero mode in (c) of L̄G
c are indicated as states of self-stress (SSS);

cell shear and cell dilation modes are indicated in (c). (b, d) show the Hessian spectrum on an enlarged scale, excluding the

translation and rotation zero modes, decomposed using (3.17) into contributions from material stiffness (green, derived from

LG
c ) and geometric stiffness (orange, derived from prestress).

(2.20a) and via projection of the dynamics onto right-singular vectors (3.17)) hides this structure,
with geometric stiffness dominating the bulk of the spectrum (Fig. 2b,d). This stiffness is provided
by the prestress in the monolayer. Heterogeneities of the isotropic and deviatoric components of cell
stress (Fig. 2e) reflect heterogeneities in cell pressures and tensions. In contrast, cells in the hexagonal
array have zero cell stress, although prestress is still provided by uniform cell pressures and tensions.
Geometric stiffness exploits sums of tensions and differences of pressures across edges (Appendix E),
suggesting that tensions are the dominant source of geometric stiffness in the symmetric case. In both
examples, the Hessian has three zero modes (representing two translations and a rotation; Fig. 2a,c). A
plateau in the spectrum of the hexagonal array (Fig. 2b) reflects a symmetry in the associated modes
(which involve motion of internal vertices; a similar plateau was reported in [39]).

The relative contributions of material and geometric stiffness were reported for the vertex model
in [43] in terms of the density of states of the Hessian and its two component matrices (see (2.20a)),
averaged over realisations, assuming periodic boundary conditions. Our results (Fig. 2b,d) are
consistent with these findings, but offer a more finely resolved picture for isolated monolayers, using
instead the decomposition (3.17).

Eigenmodes of the Hessians (Fig. 3) of the disordered and symmetric monolayers involve vertex
displacements that may lead to changes in cell area and perimeter; displacements are typically non-
affine. Moving along the eigenvalue spectrum, the slowest-decaying modes involve deformations over
lengthscales comparable to the size of the monolayer; modes with shorter lengthscales decay more
quickly. For the symmetric monolayer, mode 500 (of 592) illustrates an internal deformation appearing
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Figure 3. A selection of eigenmodes of the Hessian of (a) the hexagonal monolayer and (b) the disordered monolayer shown in

Fig. 2. The corresponding eigenvalues are ranked by index n; arrows show vertex displacements, colours show corresponding

cell area variations, with red and blue indicating variations of opposite signs.

in the plateau of the spectrum shown in Fig. 2(a), for which there is no change in cell area; modes
570 and 588 illustrate how the upturn at the right-hand end of the spectrum is associated with modes
confined to external cells. For the disordered monolayer, rapidly decaying modes (such as 400 and 450,
of 456) are spatially localised.

The spatial structure of the eigenmodes of the underlying scalar Laplacian L̄G
c for the disordered

monolayer are illustrated in Fig. 4. These form two distinct groups, representing cell shear and
cell dilation. Dilation modes relax faster than shear modes (Fig. 2c), with pressure and tension
perturbations having the same sign; shear modes typically have pressure and tension perturbations of
opposite sign (Fig. 4). Labelling these modes with 1≤ n≤ 2Nc, mode n= 1, with eigenvalue zero (the
SSS), has GY1 proportional to g (see (3.11)). Low-order shear modes (e.g. n= 2, 5) have lengthscales
comparable to the whole monolayer, with area and perimeter perturbations of opposite sign. As
the mode number increases towards Nc, the eigenmodes become increasingly localised. Long-wave
cell dilation modes appear for modes Nc + 1= 101, Nc + 2= 102, this time with area and perimeter
perturbations having the same sign. Again, these modes become increasingly localised as the mode
number increases towards 2Nc. The corresponding eigenmodes of L̄G

v (giving more fine-grained vertex
displacements) are readily determined via (3.2a).

It is known [43] that near the jamming transition, L̄G
c (in our notation) may directly determine some

modes of the Hessian. To establish more generally when this may arise, we computed spectra for
different values of Γ and L0 (Figs 5, 6). For extreme values of Γ , the Nc cell dilation modes capture
the most rapidly decaying component of the spectrum (Fig. 5a), indicating that this component of the
dynamics can be described by (2.14a) (with γA = 0 and Γ ≪ 1) or (2.14b) (with γL = 0 and Γ ≫ 1). This
is further demonstrated by the inset to Fig. 5(b), which shows how the most rapidly decaying modes
of the full spectrum are resolved by the discrete approximation of ∇2 (Appendix B) when Γ is small.
(In contrast, cell shear modes do not appear to play such a dominant role in determining the Hessian.)
Thus, for Γ = 10 (Fig. 5a), tension dominates pressure and cells are close to their target perimeter:
dilation modes determine the fastest segment of spectrum via (2.14b) with eigenvalues scaling with
Γ ; remaining modes are dominated by geometric stiffness, but show insenstivity to Γ (Fig. 5b). For
Γ = 0.01 (Fig. 5a), pressure dominates tension and cells are close to their target area: cell dilation modes
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Figure 4. Insets show eigenmodes of the cell Laplacian L̄G
c , for the 100-cell disordered monolayer shown in Fig. 2, with mode

numbers as indicated; colours indicate patterns of relative area and perimeter variation (red and blue show opposite signs).

Shear [dilation] modes (left [right]) are defined to have area and perimeter values of opposite [the same] parity; the categorisation

is clear for the majority of modes, as demonstrated in the scatterplot which counts the number of cells which have the same

sign for their area and perimeter values. Mode n= 1 is the SSS.

determine the fastest segment of spectrum via (2.14a), with eigenvalues of order unity (showing Γ -
independence in Fig. 5b); remaining modes are dominated by geometric stiffness, scaling with (small)
Γ . For intermediate Γ (e.g. Γ = 1), with a balance between tension and pressure, geometric stiffness
influences the entire spectrum. A similar picture emerges for the symmetric monolayer (Fig. 5c). In this
instance, we find that the blocks of L in (2.12) satisfy LL =L⊤

CL−1
A LC and LA =LCL−1

L L⊤
C , ensuring

that shear modes have zero eigenvalue (Appendix D).
Increasing L0 towards a critical value reduces cell tensions towards zero and takes the jammed

monolayer to an unjammed state. The approach to this transition is illustrated in Fig. 6(a). At L0 = 3.5,
the dilation modes are evident, but the eigenvalues of the remaining modes (deriving stiffness from
prestress, particularly via tensions) drop substantially in magnitude, with only (slow) shear modes
remaining once L0 = 3.9 (Fig. 6b). This is indicative of a switch from a jammed to an unjammed
state. The transition takes place at values of L0 broadly consistent with prior studies using similar
constitutive models (e.g. [39]). A similar loss of geometric stiffness is evident for the symmetric
monolayer (Fig. 6c).

Returning to the baseline hexagonal and disordered monolayers illustrated in Fig. 2, we imposed
a 1% stretch on each monolayer over a time interval τ , implemented as described in Appendix F.
Stretch is modelled via a viscous drag imposed on vertices; the amplitude is too small to induce
neighbour exchanges, and the monolayer relaxes to its original equilibrium after the stretch terminates.
The five chosen rates 1/τ span the eigenvalue spectra. Considering first the response of the hexagonal
monolayer (Fig. 7a), fast uniaxial stretch generates a shear stress response that is distributed uniformly
across the monolayer, becoming weaker for slower stretch. At intermediate stretch rates however,
peripheral cells show a different response to those in the bulk: the shear stress response is weakened,
with peripheral cells along the top and bottom boundaries (aligned with the main axis of stretch)
showing evidence of expansion and those along the remaining boundaries showing evidence of
compression. In contrast, fast biaxial loading of the hexagonal monolayer (Fig. 7b) generates uniform
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Figure 5. (a) Spectra for L0 = 1 and Γ = 0.01, 0.1, 1, 10 for realisations of disordered monolayers with Nc = 100, Nv = 228,

showing contributions of geometric (orange) and material (green) stiffness to the full Hessian (black; translation and rotation

modes are not shown). (b) Cell dilation modes collapse for small Γ (blue, purple); the remainder of the spectrum collapses for

large Γ (red, orange). The inset shows how the spectra of A−1
c LA for Γ = 0.001 (purple) and ΓL0L

−1
c LL for Γ = 10 (red)

predict the most rapidly decaying component of the full spectrum (grey). (c) The same as (b) but for a monolayer of hexagons

with Nc = 127, Nv = 294.

cell expansion, as reflected in the isotropic stressPeff ; however at intermediate loading rates, peripheral
cells experience shear stress that appears to be associated with a reduction in the magnitude of the Peff

response.
Similar features are seen in the disordered monolayer, although these are modified by its intrinsic

heterogeneity. The shear stress response to rapid uniaxial stretching (Fig. 7c) is distributed across
the monolayer; slower stretching weakens this response but induces expansion and compression of
peripheral cells, although both patterns are heterogeneous. Rapid biaxial stretching (Fig. 7d) generates
uniform cell expansion but no appreciable shear stress; again, at intermediate stretching rates, the
changes to pressures and tensions in peripheral cells are weaker than those in the interior, although
the peripheral cells now experience some shear stress. Supplementary Movies 1 and 2 show how
pressures and tensions relax after unaxial and biaxial stretch; in the latter case, a largely homogeneous
disturbance relaxes quickly, leaving slower evolution of a more heterogeneous pattern. In both
examples, very slow loading (τ = 10) is too weak to elicit a strong response. In summary, Fig. 7 shows
how patterns of geometric changes (reflected in pressures and tensions) can differ significant from
patterns of stress changes, showing sensitivity to the mode and rate of deformation; furthermore, cells
at the monolayer periphery can experience deformations and stresses that are distinct from those in
the interior.
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Figure 6. (a) Spectra for Γ = 0.5 and L0 = 0.5, 1.5, 2.5, 3.5 for realisations of disordered monolayers with Nc = 100, Nv =

228, showing contributions of geometric (orange) and material (green) stiffness (translation and rotation modes are not shown).

The case L0 = 0.5, Γ = 1 is shown in Fig. 2(d). (b) Cell dilation modes collapse (orange, red) as L0 approaches the critical

value for the rigidity transition. After the rigidity transition (red) the Hessian spectrum completely collapses to the cell Laplacian

spectrum and has 2Nc non-zero eigenmodes.(c) The same as (b) but for a monolayer of hexagons with Nc = 127, Nv = 294.

5. Discussion
Despite being relatively straightforward to formulate and to simulate, the cell vertex model exemplifies
many of the outstanding challenges in multiscale modelling, particularly concerning the relationship
between microscopic and macroscopic mechanics of cellular materials. Here we have used spectral
techniques to investigate the relaxation of a multicellular material to an equilibrium state, as may
arise after an imposed perturbation to a biological tissue. This approach is valuable in capturing
deformations across all lengthscales, avoiding any assumptions of spatial or statistical regularity. Even
in the presence of symmetry, the dynamics can be quite distinct from that expected from conventional
continuum models.

We introduced three variations to the standard vertex model, by (i) modifying dissipation to account
for the size of the region adjacent to each cell vertex undergoing drag as it slides over a substrate,
(ii) incorporating viscous resistance to changes in cell area and perimeter and (iii) introducing a
mechanical energy that incorporates nonlinear pressure-area and tension-length relations, relaxing the
requirement implicit in some conventional models that cell areas and perimeters should be everywhere
close to preferred values. These three features influence metric matrices E, H and G respectively that
appear in discrete differential operators within the model, and therefore influence stress relaxation.
While most of our qualitative observations are insensitive to detailed modelling assumptions, (i)
and (iii) were chosen specifically to highlight how the operator driving cell dilation modes when
cell bulk stiffness dominates cortical stiffness (−A−1

c LA in (2.14a)) approximates the conventional
spatial operator ∇2 (Appendix B). The operator governing cell dilation modes when cortical stiffness
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Figure 7. Changes in cell pressure, tension, isotropic stress Peff and shear stress ζ (2.15) immediately after 1% uniaxial

(a,c) and biaxial (b,d) stretch imposed over five timescales τ to the hexagonal (a,b) and disordered (c,d) monolayers shown in

Fig. 2(c,d). Most cases show relative changes (i.e. relative changes in magnitude) using normalisations as indicated; absolute

changes in Peff and ζ are reported for hexagonal cells. Since Pi < 0 (Ti > 0) because Ai < 1 (Li >L0), an increase in area

(perimeter) under stretch leads to a reduction (increase) in the magnitude of Pi (Ti). Subsequent relaxation of pressure and

tension for τ = 0.1 is illustrated for disordered cells in Supplementary Movies 1 (uniaxial) and 2 (biaxial).

dominates bulk stiffness (−L−1
c LL) is a discrete spatial second derivative with a more nonlocal

structure.
Using the monolayer as a network on which discrete differential operators can be constructed, we

have clarified the relationship between the gradient-flow structure of the vertex model and generalised
gradient and divergence operators (Figure 1) that are used to build Laplacian operators. While
these encompass the operators −A−1

c LA and −L−1
c LL mentioned above, the generalised operators

built from the matrix M and its transpose have a more abstract structure, mapping between vertex
displacements (in R2) and tangent spaces T Y and T X that hold pairs of scalar attributes per cell
(respectively area & perimeter variations, and pressure & tension variations). BecauseM· andM⊤ are
singular (to accommodate an equilibrium SSS, and zero modes for which vertex motions do not change
areas and perimeters), SVD provides a natural framework with which to formally establish properties
of the Laplacian operators LG

c and LG
v and their duals LG†

c and LG†
v , which underpin the model; their

actions are illustrated in Fig. 1(a).
Despite suggesting predominantly diffusive dynamics, the Laplacian operators evolve as the

monolayer deforms, to the extent that geometric stiffness typically dominates material stiffness (Figs 2,
5, 6). Prestress in an equilibrium state can therefore have a important influence on the rate at which
disturbances decay. A consistent exception is the manner in which the cell dilation modes of LG

c capture
the fastest Nc modes of the Hessian for extreme values of Γ (Fig. 5).
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is lost through an increase in L0 (Fig. 6) via the well-studied jamming/unjamming transition [8], with
cell dilation modes (which exhibit resistance to area change, but not to shear) contributing primarily
to monolayer stiffness past the unjamming transition. Rigidity can also be lost through reduction in
Γ towards zero (Fig. 5). Identification of the full spectrum of relaxation times enables us to assess the
impact of transient stretch on an isolated monolayer in the jammed state (Fig. 7). Noting that force
regimes acting on epithelial tissue in vivo can vary widely, it is instructive to consider differences
between fast and slow rates of stretch in terms of cell shape changes (leading to changes in cell pressure
and tension) and cell stress (changing the isotropic cell stress Peff,i and the cell shear stress ζi). Our
results reveal a heterogeneous response to homogeneous loading at intermediate loading rates, with
peripheral cells showing the greatest relative change in tension under uniaxial loading and in shear
stress under biaxial loading (Fig. 5). This distinct peripheral response is lost under fast stretch, and the
response as a whole weakens in magnitude under slow stretch. In the future, it will be of interest
to investigate how these findings relate to the biological mechano-responses (e.g. cell division) of
epithelial tissue to stretch and whether these responses vary according to loading rate.

The vertex model is a gradient flow (Appendix C), but not (typically) in a Euclidean metric.
Nevertheless, motivated by [33], it is instructive to compare the present model with a continuous

gradient-flow model for a distribution function ρ(x, t) identifying particle locations in R2. For
example, noting that cell areas are quadratic and symmetric in r (and ignoring tension effects
temporarily), a kernel K(x;y, z, t) can be used to construct an area-like variable A(x, t) =
1
2

∫∫
K(x;y, z, t)ρ(y, t)ρ(z, t) dy dz. The dependence of K on x encodes the (potentially evolving)

cellular microstructure and we impose K(x;y, z, t) =K(x; z,y, t). Using a suitable convex functional
U [A], which defines a pressure P(x, t) = δU/δA, one can construct an energy U(t) =

∫
U [A(x, t)] dx,

such that
δU

δρ
(x;y, t) =P(x, t)

δA

δρ
(x;y, t),

δA

δρ
(x;y, t) =

∫
K(x;y, z, t)ρ(z, t) dz. (5.1)

Then, for some positive drag functional E[ρ]> 0, kinematics and the analogue of (2.7) give

ρt +∇ · (ρv) = 0, E[ρ(y, t)]v(y, t) =−∇y

∫
δU

δρ
(x;y, t) dx, (5.2)

so that under suitable boundary conditions,

Ut =

∫∫
P(x, t)

δA

δρ
(x;y, t)ρt(y, t) dx dy=−

∫∫
P(x, t)

δA

δρ
(x;y, t)∇y · [ρ(y, t)v(y, t)] dx dy (5.3)

=

∫∫
ρ(y, t)v(y, t) · ∇y

[
P(x, t)

δA

δρ
(x,y, t)

]
dx dy=−

∫
ρE[ρ]v · v dy≤ 0, (5.4)

which recalls (2.11). The evolution equation (5.2) reduces to the system

ρt(y, t) =

∫
P(x, t)∇y ·

(
ρ(y, t)

E[ρ(y, t)]

∫
∇yK(x;y, z, t)ρ(z, t) dz

)
dx, (5.5a)

P(x, t) = U ′
[
1
2

∫∫
K(x;y, z, t)ρ(y, t)ρ(z, t)dydz

]
. (5.5b)

Additional terms could be included to account for tension effects. The resulting nonlocal nonlinear
system falls into the broad category of aggregation-diffusion models [47], and suggests a route to a
continuum representation of force chains [48], non-affine and long-range deformations [49,50] and
related hyperbolic effects [51].

In summary, we have shown how SVD provides a natural framework with which to relate cell-
level and vertex-level dynamics in the relaxation of an isolated epithelial monolayer. Despite a clear
role for scalar Laplacians (identifying 2Nc degrees of freedom related to material stiffness, driving
primarily diffusive dynamics), simulations confirm the central role of geometric stiffness mediated
by 2Nv degrees of freedom in determining the full relaxation spectrum. Considering the model as a
gradient flow (e.g. (5.5)), we have also shown how discrete approximations of some familiar spatial
operators compete with more exotic nonlocal derivatives.
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Appendix

A. Geometric operatorsM andM ′ and the shape tensor Q
To calculate the geometric operatorsM andM′, it is helpful to introduce signed incidence matrices A

and B, which capture the topology of the cell network. We adopt notation used in [36,37]: Ajk = 1 (or
−1) if directed cell edge j points into (out of) vertex k and is zero otherwise; Bij = 1 (or −1) if directed
cell edge j is congruent (anticongruent) with the orientation of the face of cell i, and is zero otherwise.
We define Ajk ≡ |Ajk| and Bij ≡ |Bij |. All cell faces are assigned the same orientation ϵi, which is the
2× 2 matrix representing a π/2 rotation; cell edge orientations are assigned arbitrarily. Edge vectors
are then related to vertex locations by tj =

∑
k Ajkrk. Three useful identities are

∂tj
∂rm

=AjmI2,
∂tj
∂rm

=Ajmťj ,
∂ťj
∂rm

=Ajm
I2 − ťj ⊗ ťj

tj
. (A.1)

Here a check denotes a unit vector, so that ťj = tj/tj . We define nij =−Bijϵitj to be the outward
normal to cell i at edge j and cj =

1
2

∑
k Ajkrk to be the centroid of edge j. The link sik in cell i

between adjacent edge centroids at vertex k (Fig. 8a) and its normal nik pointing into the cell satisfy

sik =
∑

j
1
2BijtjAjk, nik ≡ ϵisik =− 1

2

∑
jAjknij . (A.2)

Integrating over cell iwith areaAi, I2Ai =
∫
i ∇⊗ x dA=

∮
i ň⊗ x ds=

∑
j ňij ⊗

∮
xds=

∑
j nij ⊗

cj =−
∑

j Bijϵitj ⊗ cj . Thus small variations in area are related to small changes in vertex locations
by via

I2 δAi =
∑

j,k

{
− 1

2

∑
k′BijAjkAjk′ϵiδrk ⊗ rk′ − 1

2BijAjkϵitj ⊗ δrk
}
. (A.3)

The identity ∑
jBijAjk′Ajk =−

∑
jBijAjk′Ajk (A.4)

gives

I2 δAi =
∑

j,k

{
1
2

∑
k′BijAjkAjk′ϵiδrk ⊗ rk′ − 1

2BijAjkϵitj ⊗ δrk
}

=
∑

j,k
1
2BijAjk

{
ϵiδrk ⊗ tj − ϵitj ⊗ δrk

}
. (A.5)

Taking the trace,

2δAi =
∑

j
1
2BijAjk

{
(ϵiδrk)

T tj − (ϵitj)
T δrk

}
=
∑

j
1
2BijAjk

{
−δrTk ϵitj − δrTk ϵitj

}
(A.6)

implying (using (A.2))

∂Ai

∂rk
=− 1

2

∑
jBijAjkϵitj ≡ 1

2

∑
jAjknij =−nik. (A.7a)

Noting that Li =
∑

j Bijtj , we use (A.1) to give

∂Li

∂rk
=
∑

jBijAjk ťj . (A.7b)

We use (A.7) to construct the elements Mαk of M. It also allows us to express the vertex evolution
equation (2.7) using incidence matrices as

Ek ṙk =
∑

i,j

(
1
2PiBijϵitjAjk − TiBij ťjAjk

)
. (A.8)
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<latexit sha1_base64="r8hDVjQVYrSYWGHoJEX03BmQV7Y=">AAACAHicbZDLSsNAFIZP6q3WW9SFCzeDRXBVklLUZUEQFy4q2Au0IUymk3bo5MLMRCghG1/FjQtF3PoY7nwbJ20Qbf1h4OM/5zDn/F7MmVSW9WWUVlbX1jfKm5Wt7Z3dPXP/oCOjRBDaJhGPRM/DknIW0rZiitNeLCgOPE673uQqr3cfqJAsCu/VNKZOgEch8xnBSluueTQIsBoTzNPbzP3h68w1q1bNmgktg11AFQq1XPNzMIxIEtBQEY6l7NtWrJwUC8UIp1llkEgaYzLBI9rXGOKASiedHZChU+0MkR8J/UKFZu7viRQHUk4DT3fmK8rFWm7+V+snyr90UhbGiaIhmX/kJxypCOVpoCETlCg+1YCJYHpXRMZYYKJ0ZhUdgr148jJ06jX7vNa4a1Sb9SKOMhzDCZyBDRfQhBtoQRsIZPAEL/BqPBrPxpvxPm8tGcXMIfyR8fENVCeW1w==</latexit>LF

<latexit sha1_base64="wkKfwlFB9/ey+ROXQFF6Ib71vvw=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3BPUY8OIxonlAsoTZSW8yZHZ2mZkVQsgnePGgiFe/yJt/4yTZgyYWNBRV3XR3BYng2rjut5Pb2Nza3snvFvb2Dw6PiscnLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb+d++wmV5rF8NJME/YgOJQ85o8ZKD+Xgsl8suRV3AbJOvIyUIEOjX/zqDWKWRigNE1Trrucmxp9SZTgTOCv0Uo0JZWM6xK6lkkao/eni1Bm5sMqAhLGyJQ1ZqL8npjTSehIFtjOiZqRXvbn4n9dNTXjjT7lMUoOSLReFqSAmJvO/yYArZEZMLKFMcXsrYSOqKDM2nYINwVt9eZ20qhXvqlK7r5Xq1SyOPJzBOZTBg2uowx00oAkMhvAMr/DmCOfFeXc+lq05J5s5hT9wPn8AiE6NRA==</latexit>

(b)
<latexit sha1_base64="Kc42uLswUCbIspct1hXVY6ND0UY=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3BPUY8OIxonlAsoTZSW8yZHZ2mZkVQsgnePGgiFe/yJt/4yTZgyYWNBRV3XR3BYng2rjut5Pb2Nza3snvFvb2Dw6PiscnLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb+d++wmV5rF8NJME/YgOJQ85o8ZKD2V62S+W3Iq7AFknXkZKkKHRL371BjFLI5SGCap113MT40+pMpwJnBV6qcaEsjEdYtdSSSPU/nRx6oxcWGVAwljZkoYs1N8TUxppPYkC2xlRM9Kr3lz8z+umJrzxp1wmqUHJlovCVBATk/nfZMAVMiMmllCmuL2VsBFVlBmbTsGG4K2+vE5a1Yp3Vand10r1ahZHHs7gHMrgwTXU4Q4a0AQGQ3iGV3hzhPPivDsfy9ack82cwh84nz+GyY1D</latexit>

(a)

<latexit sha1_base64="DgXDN1Gm4EaMpVFwcNMop2QNz5Y=">AAAB83icbVBNS8NAFHypX7V+VT16WSyCp5KUoh4LXjxWsK3QlLLZbtqlm03YfRFK6N/w4kERr/4Zb/4bN20O2jqwMMy8x5udIJHCoOt+O6WNza3tnfJuZW//4PCoenzSNXGqGe+wWMb6MaCGS6F4BwVK/phoTqNA8l4wvc393hPXRsTqAWcJH0R0rEQoGEUr+X5EcRKEmZ4Pp8Nqza27C5B14hWkBgXaw+qXP4pZGnGFTFJj+p6b4CCjGgWTfF7xU8MTyqZ0zPuWKhpxM8gWmefkwiojEsbaPoVkof7eyGhkzCwK7GSe0ax6ufif108xvBlkQiUpcsWWh8JUEoxJXgAZCc0ZypkllGlhsxI2oZoytDVVbAne6pfXSbdR967qzftmrdUo6ijDGZzDJXhwDS24gzZ0gEECz/AKb07qvDjvzsdytOQUO6fwB87nD3c8ke0=</latexit>rk
<latexit sha1_base64="hRvLRtsqYj9ctFCtwqwcgLdKDEs=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsyUoi4LblxWsA/oDCWTZtrYTDIkGaEM/Q03LhRx68+482/MtLPQ1gOBwzn3ck9OmHCmjet+O6WNza3tnfJuZW//4PCoenzS1TJVhHaI5FL1Q6wpZ4J2DDOc9hNFcRxy2gunt7nfe6JKMykezCyhQYzHgkWMYGMl34+xmYRRRubDx2G15tbdBdA68QpSgwLtYfXLH0mSxlQYwrHWA89NTJBhZRjhdF7xU00TTKZ4TAeWChxTHWSLzHN0YZURiqSyTxi0UH9vZDjWehaHdjLPqFe9XPzPG6QmugkyJpLUUEGWh6KUIyNRXgAaMUWJ4TNLMFHMZkVkghUmxtZUsSV4q19eJ91G3buqN++btVajqKMMZ3AOl+DBNbTgDtrQAQIJPMMrvDmp8+K8Ox/L0ZJT7JzCHzifP17Pkd0=</latexit>cj

<latexit sha1_base64="kzQqNXgOoa6I4H7P4TEwkh1J+Y0=">AAAB+HicbVDLSsNAFL3xWeujUZduBovoqiSlqMuCG5cV7APaECbTSTt2MgkzE6GGfokbF4q49VPc+TdO2iy09cDA4Zx7uWdOkHCmtON8W2vrG5tb26Wd8u7e/kHFPjzqqDiVhLZJzGPZC7CinAna1kxz2kskxVHAaTeY3OR+95FKxWJxr6cJ9SI8EixkBGsj+XZlEGE9DsKMzPzs4Xzm21Wn5syBVolbkCoUaPn212AYkzSiQhOOleq7TqK9DEvNCKez8iBVNMFkgke0b6jAEVVeNg8+Q2dGGaIwluYJjebq740MR0pNo8BM5jHVspeL/3n9VIfXXsZEkmoqyOJQmHKkY5S3gIZMUqL51BBMJDNZERljiYk2XZVNCe7yl1dJp15zL2uNu0a1WS/qKMEJnMIFuHAFTbiFFrSBQArP8Apv1pP1Yr1bH4vRNavYOYY/sD5/AAilk0s=</latexit>cj0

<latexit sha1_base64="CX8HCbLEu9Ux2Gra9lj0AjP8Pf8=">AAAB+XicbVDLSsNAFL3xWesr6tLNYJG6Kkkp6rLgxmUF+4A2hMl00o6dTMLMpFBC/8SNC0Xc+ifu/BsnbRbaemDgcM693DMnSDhT2nG+rY3Nre2d3dJeef/g8OjYPjntqDiVhLZJzGPZC7CinAna1kxz2kskxVHAaTeY3OV+d0qlYrF41LOEehEeCRYygrWRfNseRFiPgzAjcz97qlbnvl1xas4CaJ24BalAgZZvfw2GMUkjKjThWKm+6yTay7DUjHA6Lw9SRRNMJnhE+4YKHFHlZYvkc3RplCEKY2me0Gih/t7IcKTULArMZJ5TrXq5+J/XT3V462VMJKmmgiwPhSlHOkZ5DWjIJCWazwzBRDKTFZExlphoU1bZlOCufnmddOo197rWeGhUmvWijhKcwwVcgQs30IR7aEEbCEzhGV7hzcqsF+vd+liObljFzhn8gfX5A26bk3w=</latexit>cj00
<latexit sha1_base64="vIW7gZV5HMz+CNC1nc5bEkAv/+U=">AAAB+HicbVBNS8NAFHypX7V+NOrRy2IRPJWkFPVY8OKxgm2FNoTNdtMu3WzC7kaoIb/EiwdFvPpTvPlv3LQ5aOvAwjDzHm92goQzpR3n26psbG5t71R3a3v7B4d1++i4r+JUEtojMY/lQ4AV5UzQnmaa04dEUhwFnA6C2U3hDx6pVCwW93qeUC/CE8FCRrA2km/XRxHW0yDMVO5nbJb7dsNpOgugdeKWpAElur79NRrHJI2o0IRjpYauk2gvw1IzwmleG6WKJpjM8IQODRU4osrLFsFzdG6UMQpjaZ7QaKH+3shwpNQ8CsxkEVOteoX4nzdMdXjtZUwkqaaCLA+FKUc6RkULaMwkJZrPDcFEMpMVkSmWmGjTVc2U4K5+eZ30W033stm+azc6rbKOKpzCGVyAC1fQgVvoQg8IpPAMr/BmPVkv1rv1sRytWOXOCfyB9fkDhxOTng==</latexit>sik

<latexit sha1_base64="DJgRRd+kgcc+sJDuS17kXOS41sU=">AAAB+XicbVDLSsNAFL3xWesr6tLNYBFdlaQUdVlw47KCfUAbwmQ6aYdOJmFmUighf+LGhSJu/RN3/o2TNgttPTBwOOde7pkTJJwp7Tjf1sbm1vbObmWvun9weHRsn5x2VZxKQjsk5rHsB1hRzgTtaKY57SeS4ijgtBdM7wu/N6NSsVg86XlCvQiPBQsZwdpIvm0PI6wnQZip3M/Y1TT37ZpTdxZA68QtSQ1KtH37aziKSRpRoQnHSg1cJ9FehqVmhNO8OkwVTTCZ4jEdGCpwRJWXLZLn6NIoIxTG0jyh0UL9vZHhSKl5FJjJIqda9QrxP2+Q6vDOy5hIUk0FWR4KU450jIoa0IhJSjSfG4KJZCYrIhMsMdGmrKopwV398jrpNuruTb352Ky1GmUdFTiHC7gGF26hBQ/Qhg4QmMEzvMKblVkv1rv1sRzdsMqdM/gD6/MH7RiTzw==</latexit>si0k<latexit sha1_base64="fZJNdemMdKIgn4614IxjeCiTXQU=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBapq5KUoi4LblxWsA9oQ5hMJ+3QyYOZiVJiPsWNC0Xc+iXu/BsnbRbaemDgcM693DPHizmTyrK+jdLG5tb2Tnm3srd/cHhkVo97MkoEoV0S8UgMPCwpZyHtKqY4HcSC4sDjtO/NbnK//0CFZFF4r+YxdQI8CZnPCFZacs3qKMBq6vmpzNyU1euzzDVrVsNaAK0TuyA1KNBxza/ROCJJQENFOJZyaFuxclIsFCOcZpVRImmMyQxP6FDTEAdUOukieobOtTJGfiT0CxVaqL83UhxIOQ88PZkHlateLv7nDRPlXzspC+NE0ZAsD/kJRypCeQ9ozAQlis81wUQwnRWRKRaYKN1WRZdgr355nfSaDfuy0bpr1drNoo4ynMIZXIANV9CGW+hAFwg8wjO8wpvxZLwY78bHcrRkFDsn8AfG5w9TVZQA</latexit>si00k

<latexit sha1_base64="xVp1XazMC0Ded1PkC8XeHoNVDEk=">AAACAHicbVC7TsMwFHV4lvIKMDCwWFRITFVSVcBYiYWxSPQhNVHkOE5r1bEj20Gqoiz8CgsDCLHyGWz8DU6bAVqOZPnonHt17z1hyqjSjvNtra1vbG5t13bqu3v7B4f20XFfiUxi0sOCCTkMkSKMctLTVDMyTCVBScjIIJzelv7gkUhFBX/Qs5T4CRpzGlOMtJEC+9QLBYvULDFf7pFUUSZ4EdDAbjhNZw64StyKNECFbmB/eZHAWUK4xgwpNXKdVPs5kppiRoq6lymSIjxFYzIylKOEKD+fH1DAC6NEMBbSPK7hXP3dkaNElTuaygTpiVr2SvE/b5Tp+MbPKU8zTTheDIozBrWAZRowopJgzWaGICyp2RXiCZIIa5NZ3YTgLp+8SvqtpnvVbN+3G51WFUcNnIFzcAlccA064A50QQ9gUIBn8ArerCfrxXq3Phala1bVcwL+wPr8AeMPlzM=</latexit>✏i

<latexit sha1_base64="ixwMttrgdlYtDxeZ/YsCxlg7hXI=">AAACA3icbVDLSsNAFJ3UV62vqDvdDBbRVUlKUZcFNy4r2FpoQphMJu3QyUyYmQglFNz4K25cKOLWn3Dn3zhps9DWA8MczrmXe+8JU0aVdpxvq7Kyura+Ud2sbW3v7O7Z+wc9JTKJSRcLJmQ/RIowyklXU81IP5UEJSEj9+H4uvDvH4hUVPA7PUmJn6AhpzHFSBspsI+8ULBITRLz5R5JFWWCT4Ocnk0Du+40nBngMnFLUgclOoH95UUCZwnhGjOk1MB1Uu3nSGqKGZnWvEyRFOExGpKBoRwlRPn57IYpPDVKBGMhzeMaztTfHTlKVLGmqUyQHqlFrxD/8waZjq/8nPI004Tj+aA4Y1ALWAQCIyoJ1mxiCMKSml0hHiGJsDax1UwI7uLJy6TXbLgXjdZtq95ulnFUwTE4AefABZegDW5AB3QBBo/gGbyCN+vJerHerY95acUqew7BH1ifPyP1mHA=</latexit>✏i0
<latexit sha1_base64="1cc6MxbImC2tLg4hgssVQL9hLR4=">AAACBHicbVC7TsMwFHXKq5RXgLFLRIXKVCVVBYyVWBiLRB9SE0WO47RWHTuyHaQqysDCr7AwgBArH8HG3+C0GaDlSJaPzrlX994TJJRIZdvfRmVjc2t7p7pb29s/ODwyj08GkqcC4T7ilItRACWmhOG+IoriUSIwjAOKh8HspvCHD1hIwtm9mifYi+GEkYggqLTkm3U34DSU81h/mYsTSShnuZ+RZjP3zYbdshew1olTkgYo0fPNLzfkKI0xU4hCKceOnSgvg0IRRHFec1OJE4hmcILHmjIYY+lliyNy61wroRVxoR9T1kL93ZHBWBZ76soYqqlc9QrxP2+cqujaywhLUoUZWg6KUmopbhWJWCERGCk61wQiQfSuFppCAZHSudV0CM7qyetk0G45l63OXafRbZdxVEEdnIEL4IAr0AW3oAf6AIFH8AxewZvxZLwY78bHsrRilD2n4A+Mzx+OuJih</latexit>✏i00

<latexit sha1_base64="nMKbLitdJ0gwoF92/gZ39LTgdeo=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB4DXjxGMImQLGF20kmGzD6Y6RXCko/w4kERr36PN//GSbIHTSxoKKq66e4KEiUNue63U9jY3NreKe6W9vYPDo/KxydtE6daYEvEKtaPATeoZIQtkqTwMdHIw0BhJ5jczv3OE2oj4+iBpgn6IR9FcigFJyt1egES78t+ueJW3QXYOvFyUoEczX75qzeIRRpiREJxY7qem5CfcU1SKJyVeqnBhIsJH2HX0oiHaPxsce6MXVhlwIaxthURW6i/JzIeGjMNA9sZchqbVW8u/ud1Uxre+JmMkpQwEstFw1Qxitn8dzaQGgWpqSVcaGlvZWLMNRdkEyrZELzVl9dJu1b1rqr1+3qlUcvjKMIZnMMleHANDbiDJrRAwASe4RXenMR5cd6dj2VrwclnTuEPnM8fP1uPeQ==</latexit>

�i

<latexit sha1_base64="D6wM80V61aaXbQbOVt1kQljKmkM=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1hEVyUpRV0W3LisYB/QhjCZTtqhk0mYmQg19EvcuFDErZ/izr9x0mahrQcGDufcyz1zgoQzpR3n2yptbG5t75R3K3v7B4dV++i4q+JUEtohMY9lP8CKciZoRzPNaT+RFEcBp71gepv7vUcqFYvFg54l1IvwWLCQEayN5NvVYYT1JAgzOfez6cXct2tO3VkArRO3IDUo0Pbtr+EoJmlEhSYcKzVwnUR7GZaaEU7nlWGqaILJFI/pwFCBI6q8bBF8js6NMkJhLM0TGi3U3xsZjpSaRYGZzGOqVS8X//MGqQ5vvIyJJNVUkOWhMOVIxyhvAY2YpETzmSGYSGayIjLBEhNtuqqYEtzVL6+TbqPuXtWb981aq1HUUYZTOINLcOEaWnAHbegAgRSe4RXerCfrxXq3PpajJavYOYE/sD5/ACFBk1s=</latexit>rk0

<latexit sha1_base64="xEb0TIyEO/vwTo4yBxHb48F/DX4=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovUVUlKUZcFNy4r2Ae0IUymk3boZBJmJoUS+iduXCji1j9x5984abPQ1gMDh3Pu5Z45QcKZ0o7zbZW2tnd298r7lYPDo+MT+/Ssq+JUEtohMY9lP8CKciZoRzPNaT+RFEcBp71gep/7vRmVisXiSc8T6kV4LFjICNZG8m17GGE9CcJMLvxsWqstfLvq1J0l0CZxC1KFAm3f/hqOYpJGVGjCsVID10m0l2GpGeF0URmmiiaYTPGYDgwVOKLKy5bJF+jKKCMUxtI8odFS/b2R4UipeRSYyTynWvdy8T9vkOrwzsuYSFJNBVkdClOOdIzyGtCISUo0nxuCiWQmKyITLDHRpqyKKcFd//Im6Tbq7k29+disthpFHWW4gEu4BhduoQUP0IYOEJjBM7zCm5VZL9a79bEaLVnFzjn8gfX5A4dHk4w=</latexit>rk00

<latexit sha1_base64="4a9Z2keuCsZAY8nTIi7NDNctY7A=">AAAB+XicbVDLSsNAFL2pr1pfUZduBosgLkpSirosuHFZwT6gjWUynbRDJ5MwMymUkD9x40IRt/6JO//GSZuFth4YOJxzL/fM8WPOlHacb6u0sbm1vVPereztHxwe2ccnHRUlktA2iXgkez5WlDNB25ppTnuxpDj0Oe3607vc786oVCwSj3oeUy/EY8ECRrA20tC2ByHWEz9IZTZMp09X2dCuOjVnAbRO3IJUoUBraH8NRhFJQio04VipvuvE2kux1IxwmlUGiaIxJlM8pn1DBQ6p8tJF8gxdGGWEgkiaJzRaqL83UhwqNQ99M5nnVKteLv7n9RMd3HopE3GiqSDLQ0HCkY5QXgMaMUmJ5nNDMJHMZEVkgiUm2pRVMSW4q19eJ516zb2uNR4a1Wa9qKMMZ3AOl+DCDTThHlrQBgIzeIZXeLNS68V6tz6WoyWr2DmFP7A+fwDfoJPG</latexit>rk⇤

<latexit sha1_base64="qbh0pHGhd3sf49e4nGwYO5LWRe0=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBZBPJSkFPVY8OKxgq2FJpbJdtsu3WzC7kYooX/DiwdFvPpnvPlv3LY5aOuDgcd7M8zMCxPBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFWUtGotYdULUTHDJWoYbwTqJYhiFgj2E45uZ//DElOaxvDeThAURDiUfcIrGSr6PIhlhLxs/Xkx75Ypbdecgq8TLSQVyNHvlL78f0zRi0lCBWnc9NzFBhspwKti05KeaJUjHOGRdSyVGTAfZ/OYpObNKnwxiZUsaMld/T2QYaT2JQtsZoRnpZW8m/ud1UzO4DjIuk9QwSReLBqkgJiazAEifK0aNmFiCVHF7K6EjVEiNjalkQ/CWX14l7VrVu6zW7+qVRi2PowgncArn4MEVNOAWmtACCgk8wyu8Oanz4rw7H4vWgpPPHMMfOJ8/8++Rlw==</latexit>↵k⇤

<latexit sha1_base64="cT4fgBorCTM5NHUuMV0SCHUIGUg=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvUU0lKUY8FLx4r2FpoQplst+3SzWbZ3Qgl9G948aCIV/+MN/+N2zYHbX0w8Hhvhpl5keRMG8/7dgobm1vbO8Xd0t7+weFR+fiko5NUEdomCU9UN0JNORO0bZjhtCsVxTji9DGa3M79xyeqNEvEg5lKGsY4EmzICBorBQFyOcZ+NqlWZ/1yxat5C7jrxM9JBXK0+uWvYJCQNKbCEI5a93xPmjBDZRjhdFYKUk0lkgmOaM9SgTHVYba4eeZeWGXgDhNlSxh3of6eyDDWehpHtjNGM9ar3lz8z+ulZngTZkzI1FBBlouGKXdN4s4DcAdMUWL41BIkitlbXTJGhcTYmEo2BH/15XXSqdf8q1rjvlFp1vM4inAG53AJPlxDE+6gBW0gIOEZXuHNSZ0X5935WLYWnHzmFP7A+fwBm5aRXQ==</latexit>↵k00

<latexit sha1_base64="uwKlE0zUe0Ss+kECGqdBJmaBdh8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FETxWtLXQhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRW8epYthisYhVJ6AaBZfYMtwI7CQKaRQIfAzG1zP/8QmV5rF8MJME/YgOJQ85o8ZK9zf9cb9ccavuHGSVeDmpQI5mv/zVG8QsjVAaJqjWXc9NjJ9RZTgTOC31Uo0JZWM6xK6lkkao/Wx+6pScWWVAwljZkobM1d8TGY20nkSB7YyoGellbyb+53VTE175GZdJalCyxaIwFcTEZPY3GXCFzIiJJZQpbm8lbEQVZcamU7IheMsvr5J2repdVOt39UqjlsdRhBM4hXPw4BIacAtNaAGDITzDK7w5wnlx3p2PRWvByWeO4Q+czx8UBI2g</latexit>

Ek
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Figure 8. (a) Cell vertices (red circles) are connected by edges (black lines); edge centroids (green circles) are connected by

links (blue lines) defined by (A.2) with normals nik defining ∂Ai/∂rk via (A.7a). Areas Ek around vertices and βi within cells

are shaded. Two types of peripheral vertex are illustrated, labelled as rk′′ and rk∗ ; Ek∗ and Ek′′ are shaded. The orientation

ϵi assigned to cell faces is here chosen to be clockwise in every cell. (b) Operators on the edge-centroid network. grad is

defined by (B.3), its adjoint −div by (B.4) and the Laplacian over faces by (B.10). Curls are defined by (B.7). Exact sequences

(B.9) are arranged vertically. (c) A small distortion of the network (from thin to thick edges) leads to changes n̂ik to the normals

orthogonal to sik , directed towards vertex k, along which pressures P̄i act; changes to edges t̂j include rotation of unit vectors

(purple arrows), along which tensions of adjacent cells T̄i + T̄i′ act.

Cell stress is constructed from the first moments ofM which, from (A.7), are∑
krk ⊗ ∂Ai

∂rk
=
∑

j,k
1
2Ajkrkn

T
ij =

∑
jcj ⊗ nij = I2Ai, (A.9a)

∑
krk ⊗ ∂Li

∂rk
=
∑

j,kBijAjkrk ť
T
j =

∑
jBijtj ⊗ ťj ≡QiLi. (A.9b)

The shape tensor Qi is defined in (A.9b) and satisfies Tr(Qi) = 1.
To buildM′ we differentiate (A.7), giving

∂2Ai

∂rk∂rm
=− 1

2

∑
jBijAjkAjmϵi,

∂2Li

∂rkrm
=
∑

jBijAjkAjm
ňij ⊗ ňij

tj
, (A.10)

noting that ňij ⊗ ňij = I− ťj ⊗ ťj for cell i neighbouring edge j. It follows that ∂2Ai/∂r
2
k = 0

(because BA= 0). For vertices k neighbouring vertex m, with both neighbouring cell i and m ̸= k,
∂2Ai/∂rm∂rk =± 1

2ϵi, with values decreasing in the direction of ϵi; for such vertices, ∂2Li/∂rkrm
takes the value −ňij ⊗ ňij/tj , where j is the edge connecting k and m.

B. Discrete spatial derivatives
We consider how operators emerging from the vertex model relate to discrete approximations of
conventional spatial derivaties over the network of links sik connecting adjacent edge centroids (see
(A.2) and Fig. 8a). Following the scheme illustrated in Fig. 8(b), we build the operators and their
adjoints in terms of suitable inner products on V ⊂RNv × R2 (the vector space of vector-valued fields
defined on vertices, equivalent to T Z in Fig. 1) and F ⊂RNc (the vector space of scalars defined on
cell faces; this is distinct from T Y in Fig. 1 in holding a single attribute per cell), such that for all v ∈ V ,
ϕ∈F and ψ ∈F

⟨gradϕ, v⟩E = ⟨ϕ,−div v⟩F , ⟨curlψ, v⟩E = ⟨ψ, c̃url v⟩F . (B.1)



21⟨·, ·⟩E is defined in (2.4a), in terms of the areaEk of the triangle at vertex k bounded by links between
adjacent edge centroids (Fig. 8a). ⟨·; ·⟩F is equivalent to the component of ⟨·, ·⟩G−1 acting on pressure
variations, so that ⟨f, g⟩F =

∑
iAifigi.

At internal vertex k, the three adjacent sik form a closed triangle, with vertices at the edge centroids
cj , circulating in the orientation congruent to ϵk (Fig. 8a). For fixed k, the vectors nik = ϵisik form the
three outward normals to the triangle surrounding vertex k. For the three edge centroid links shown
in Fig. 8(a), ϵisik · si′k =−2Ek and ϵisik · si′′k = 2Ek, which can be expressed more generally as

ϵisik · si′k = 2Ek
∑

jAjkBijBi′j . (B.2)

Applying the identity [52]∫
∇ϕ dA=

∮
ϕť× ňds

to the triangle, we can define for a field ϕ∈F the discrete operator grad approximating ∇ via

{gradϕ}k =
1

Ek

∑
iϵisikϕi =

1

Ek

∑
i,j

1
2ϕiBijϵitjAjk =− 1

Ek

∑
i
∂Ai

∂rk
ϕi, (B.3)

using (A.7a). This shows how −gradP arises in the force balance (A.8).
From (B.1), the adjoint operator to grad is, for all v ∈ V ,

{−div v}i =
1

Ai

∑
kϵisik · vk =− 1

Ai

∑
k
∂Ai

∂rk
· vk. (B.4)

We can verify that div is exact for linear functions of position, namely that

div (K · rk + J) =Tr (K) (B.5)

for a constant tensor K and vector J, as follows.
∑

k −ϵisik ⊗ rk can be viewed as a line integral around
the polygon within cell i bounded by links between edge centroids. Since rk is constant along each link,
we can write the outward normal to each link as the sum of outward normals to half-edges adjacent to
vertex k using (A.2), making the integral one around the periphery of cell i, so that

−
∑

kϵisik ⊗ rk =−
∑

j,k
1
2ϵiBijtjAjk ⊗ rk =−

∑
j
1
2ϵiBijtj ⊗ cj =

∑
jnij ⊗ cj =AiI (B.6)

where nij and cj are as defined in Appendix A. This ensures that div satisfies (B.5), so that div r = 2

(which can be compared to (2.16)).
We define complementary curls around vertices and faces as

{curl f}k =
1

Ek

∑
isikfi,

{
c̃url v

}
i
=

1

Ai

∑
ksik · vk. (B.7)

Multiplying (B.6) by ϵi and taking the trace confirms that c̃url r = 0. To demonstrate that sequences
in Fig. 8(b) are exact, the identity (B.2) implies that, when evaluating −div ◦ curl at cell i, the sum
includes −2fi′ from vertex k and 2fi′ from vertex k′, leading to cancellation:

{−div ◦ curl f}i =
1

Ai

∑
i′,k

ϵisik · si′k
Ek

fi′ =
2

Ai

∑
i′,j,kAjkBijBi′jfi′ = 0 (B.8)

because
∑

k Ajk = 0. Thus

−div ◦ curl = 0, c̃url ◦ grad = 0. (B.9)

We can therefore define a scalar Laplacian over faces as

{LF f}i ≡ {−div ◦ grad f}i =
1

Ai

∑
i′,k

(ϵisik) · (ϵi′si′k)
Ek

fi′ =
1

Ai

∑
i′,k

sik · si′k
Ek

fi′ . (B.10)

We recognise LF as A−1
c LA; recall LA is the first block of L in (2.12) and therefore LF is the first

block of GL≡LG†
c in (2.13) and (3.10b). LF has the form A−1

c BFB⊤ where Ac =diag(A1, . . . , ANc
)

and F is diagonal, with elements defined along edges. Its spectrum is illustrated in the inset to
Fig. 5(b). Analogously, c̃url ◦ curl =LF , as illustrated in Fig. 8(a), while the associated vector Laplacian
mapping V →V is LF ≡−grad ◦ div + curl ◦ c̃url . This system also admits a set of dual operators
mapping scalars defined over vertices to vectors defined over faces.



22Having identified the force due to pressure on a vertex with grad P, where grad mimics ∇, let us
consider the corresponding force due to tension in (A.8). We define a new gradient operator mapping
scalar fields on cells to vector fields on vertices,

{gradT}k =− 1

Ek

∑
j ťjAjkBijTi. (B.11)

This gives the vector sum of tensions acting along each edge radiating outward from vertex k. Now
defining ⟨f, g⟩F ≡

∑
j Lifigi (consistent with (2.3)), then under inner products ⟨·, ·⟩E and ⟨·, ·⟩F we

can define the adjoint operator as

{−divv}i =− 1

Li

∑
j,kBijAjk ťj · vk. (B.12)

Summing over the vertices k of cell i, this sums components of vk pointing outwards from the cell.
The operator −div ◦ grad is a scalar Laplacian with element ii′ being

1

Li

∑
j,j′,kBijAjk

ťj · ťj′
Ek

Aj′kBi′j′ . (B.13)

We recognise (B.13) as L−1
c LL, where LL is the final block of L in (2.12), making (B.13)) equivalent to

the final block of GL≡LG†
c in (2.13) and (3.10b). Fig. 5(b) shows how the spectrum of (B.13) captures

cell dilation modes when Γ is large.

C. Gradient flow formulation
Here we follow formalism presented by Peletier [53]. The state space Z =RNv × R2 has elements r(t)
(in the sense that the evolution at any instant is determined entirely by vertex locations, for a given
network topology). Its tangent space T Z at r has elements v(t), representing vertex velocities, so that
ṙ ∈ T Z . The energy U is a map from Z to R, when we consider U =U(r). The (dual) cotangent space
T W has elements f representing forces on vertices; we combine elements of the tangent and cotangent
spaces via the scalar product (a bilinear form) f ⊤ · v ≡ v⊤ · f . The Fréchet derivative Ur of the energy
with respect to vertex displacements is defined via

lim
s→0

U(r + sv)− U(r)

s
=U⊤

r · v for all v ∈ T Z. (C.1)

Thus Ur (r)≡M⊤g ∈ T W and U̇ ≡ (Ur (r))
⊤ · ṙ = (M⊤g)⊤ · ṙ = g⊤M · ṙ .

We write the evolution (2.10) in canonical form as D(r)ṙ =−Ur (r). The dissipation operator D maps
elements of T Z to elements of T W . Defining the bilinear form

(v1, v2)D,r = v
⊤
1 ·
(
E⊗ I2 +M⊤HM

)
· v2, (C.2)

we can write (2.11) as U̇ =−(ṙ , ṙ)D,r ≤ 0. Treating (C.2) as an inner product (it is symmetric, bilinear
and positive definite), we can write (2.10) as ṙ =−gradD U ∈ TrZ . In other words,

(v , ṙ)D,r =−(v , gradD U)D,r ≡−v⊤ · Ur for all v ∈ T Z. (C.3)

This definition of gradDU shows how it is the Riesz representation of the Fréchet derivative Ur , and is
determined by the dissipation inner product.

D. Distinguishing cell shear and cell dilation modes
We write (2.13) in block form as(

INc
+ γAA−1

c LAAc A−1
c LCLc(γL/ΓL0)

L−1
c L⊤

CAcγAΓL0 INc
+ γLL

−1
c LLLc

)(
Ṗ

Ṫ

)
=−

(
A−1
c LA A−1

c LC

ΓL0L
−1
c L⊤

C ΓL0L
−1
c LL

)(
P

T

)
. (D.1)

For Γ ∼ γL ≪ 1, cell dilation modes are recovered by setting T= Γ T̂ in (D.1) and discarding terms of
O(Γ ), to give (2.14a) with T≈ ΓL0L

−1
c L⊤

CL−1
A AcP (tensions are weak and are slaved to pressures).



23Slower cell shear modes are recovered by setting t= τ/Γ in (D.1), to give (at leading order in Γ )
strong coupling between pressure and tension (but with opposite parity to cell dilation modes),
P≈−L−1

A LCT , with Ṫ≈−ΓL0L
−1
c (LL − L⊤

CL−1
A LC)T (that is, the modes have the spectrum of the

Schur complement GL/(A−1
c LA)).

For Γ ∼ γ−1
A ≫ 1, cell dilation modes are recovered by setting t= τ/Γ and P = P̂ /Γ in (D.1), to

give (2.14b) at leading order in 1/Γ with P≈A−1
c LCL−1

L LcT/(Γ0L0) (now, pressures are weak and
are slaved to tensions). Slower cell shear modes are recovered by taking dominant terms in (D.1) for
large Γ , giving T≈−L−1

L L⊤
CP (strong coupling, with opposite parity to cell dilation modes) with

Ṗ≈−A−1
c (LA − LCL−1

L L⊤
C)P (the spectrum is that of the Schur complement GL/(ΓL0L

−1
c LL)).

E. Connecting prestress to stiffness
Referring to Fig. 8(c), (2.20a) and (A.10), we can write the restoring force exerted on vertex k by network
prestress, under a small distortion of the network, as

−
{
Ē−1ḡ⊤M̄′ · r̂

}
k
=− 1

Ēk

[
P̄in̂ik + P̄i′ n̂i′k + P̄i′′ n̂i′′k

]
− ňij

ňij · t̂j
tj

[T̄i + T̄i′ ]− ňi′j′
ňi′j′ · t̂j′

tj′
[T̄i′ + T̄i′′ ]− ňi′′j′′

ňi′′j · t̂j′′
tj′′

[T̄i′′ + T̄i]. (E.1)

Recall nik is normal to sik, the link in cell i between adjacent edge centroids at vertex k, satisfying
(A.2).

Pressure of cell i on vertex k acts along nik = ϵisik; distortion of the network changes the orientation
of the normal as indicated by n̂ik. The distorted normals sum to zero (

∑
i n̂ik = 0), indicating that the

restoring force due to pressure vanishes if P̄i = P̄i′ = P̄i′′ . An alternative expression for the pressure
terms in (E.1) is, using (A.4),

1

Ek
ϵi
[
(P̄i′ − P̄i)ĉj + (P̄i′′ − P̄i′)ĉj′ + (P̄i − P̄i′′)ĉj′′

]
(E.2)

showing how pressure differences between cells act in the direction orthogonal to edge centroid
displacements. Tensions of the cells i and i′ adjacent to edge j act together along the unit vector
pointing away from vertex k; distortion of the network rotates the unit vector, generating a force
orthogonal to edge j.

F. Stretch
Consider a monolayer sitting on a membrane that undergoes a prescribed deformation. We model
adhesion between cells and the membrane by modifying the drag at vertices. In a reference
configuration, suppose the monolayer and membrane are in equilibrium with vertex locations rk.
These identify locations Rk on the membrane. The membrane then undergoes biaxial stretch, mapping
R to Λ · R, where Λ≡ INv

⊗ (Λ1(t)e1e
T
1 + Λ2(t)e2e

T
2 ). Here e1 and e2 are fixed orthogonal axes in the

plane of the membrane and Λ1 and Λ2 are stretches. The force balance (2.7) then becomes
E(ṙ − Λ̇ · R) =−M⊤g,
penalising increasing displacements between r and Λ · R, dragging each vertex towards its

counterpart on the membrane whenever there is membrane motion. In this model, rapid membrane
stretching promotes strong deformation of the monolayer. Assuming that the membrane does not
interfere with dissipation associated with area and perimeter changes, this leads to a forcing term
EΛ̇ · R on the right-hand side of (2.10). Areas and perimeters then evolve according to a modified
form of (2.12),

(I2Nc
+ LH) ṡ=−Lg +M · Λ̇ · R, g= G(s; s0, Γ ). (F.1)

In Fig. 7 we impose Λ̇1 =±Λ̇2 = 10−2 for 0< t< τ , and zero thereafter, for uniaxial (−) and biaxial (+)
stretch.



24References
1. Nagai T, Honda H. 2001 A dynamic cell model for the formation of epithelial tissues. Phil. Mag. B

81, 699–719.
2. Farhadifar R, Röper JC, Aigouy B, Eaton S, Jülicher F. 2007 The influence of cell mechanics, cell-cell

interactions, and proliferation on epithelial packing. Curr. Biol. 17, 2095–2104.
3. Alt S, Ganguly P, Salbreux G. 2017 Vertex models: from cell mechanics to tissue morphogenesis.

Phil. Trans. R. Soc. B 372, 20150520.
4. Fletcher AG, Cooper F, Baker RE. 2017 Mechanocellular models of epithelial morphogenesis. Phil.

Trans. R. Soc. B 372, 20150519.
5. Guillot C, Lecuit T. 2013 Mechanics of epithelial tissue homeostasis and morphogenesis. Science

340, 1185–1189.
6. Nestor-Bergmann A, Johns E, Woolner S, Jensen OE. 2018 Mechanical characterization of

disordered and anisotropic cellular monolayers. Phys. Rev. E 97, 052409.
7. Tong S, Singh NK, Sknepnek R, Košmrlj A. 2022 Linear viscoelastic properties of the vertex model

for epithelial tissues. PLoS Comp. Biol. 18, e1010135.
8. Bi D, Lopez J, Schwarz J, Manning ML. 2015 A density-independent rigidity transition in biological

tissues. Nature Phys. 11, 1074.
9. Koride S, Loza AJ, Sun SX. 2018 Epithelial vertex models with active biochemical regulation of

contractility can explain organized collective cell motility. APL Bioeng. 2.
10. Brodland GW, Veldhuis JH, Kim S, Perrone M, Mashburn D, Hutson MS. 2014 CellFIT: a cellular

force-inference toolkit using curvilinear cell boundaries. PloS One 9, e99116.
11. Kursawe J, Baker RE, Fletcher AG. 2018 Approximate Bayesian computation reveals the

importance of repeated measurements for parameterising cell-based models of growing tissues.
J. Theor. Biol. 443, 66–81.

12. Noll N, Streichan SJ, Shraiman BI. 2020 Variational method for image-based inference of internal
stress in epithelial tissues. Phys. Rev. X 10, 011072.

13. Roffay C, Chan CJ, Guirao B, Hiiragi T, Graner F. 2021 Inferring cell junction tension and pressure
from cell geometry. Development 148, dev192773.

14. Ogita G, Kondo T, Ikawa K, Uemura T, Ishihara S, Sugimura K. 2022 Image-based parameter
inference for epithelial mechanics. PLoS Comp. Biol. 18, e1010209.

15. Benham-Pyle BW, Pruitt BL, Nelson WJ. 2015 Mechanical strain induces E-cadherin–dependent
Yap1 and β-catenin activation to drive cell cycle entry. Science 348, 1024–1027.

16. Wyatt TPJ, Harris AR, Lam M, Cheng Q, Bellis J, Dimitracopoulos A, Kabla AJ, Charras GT,
Baum B. 2015 Emergence of homeostatic epithelial packing and stress dissipation through divisions
oriented along the long cell axis. Proc. Nat. Acad. Sci. 112, 5726–5731.

17. Gudipaty SA, Lindblom J, Loftus PD, Redd MJ, Edes K, Davey CF, Krishnegowda V, Rosenblatt J.
2017 Mechanical stretch triggers rapid epithelial cell division through Piezo1. Nature 543, 118–121.

18. Nestor-Bergmann A, Stooke-Vaughan GA, Goddard GK, Starborg T, Jensen OE, Woolner S. 2019
Decoupling the roles of cell shape and mechanical stress in orienting and cueing epithelial mitosis.
Cell Rep. 26, 2088–2100.

19. Donker L, Houtekamer R, Vliem M, Sipieter F, Canever H, Gomez-Gonzalez M, Bosch-Padros
M, Pannekoek WJ, Trepat X, Borghi N, Gloerich M. 2022 A mechanical G2 checkpoint controls
epithelial cell division through E-cadherin-mediated regulation of Wee1-Cdk1. Cell Rep. 41.

20. Fozard JA, Byrne HM, Jensen OE, King JR. 2010 Continuum approximations of individual-based
models for epithelial monolayers. Math. Med. Biol. 27, 39–74.

21. Barry R, Hill N, Stewart P. 2022 Continuum soft tissue models from upscaling of arrays of
hyperelastic cells. Proc. Roy. Soc. A 478, 20220065.

22. Murisic N, Hakim V, Kevrekidis I, Shvartsman S, Audoly B. 2015 From Discrete to Continuum
Models of Three-Dimensional Deformations in Epithelial Sheets. Biophys. J. 109, 154 – 163.

23. Grossman D, Joanny JF. 2022 Instabilities and geometry of growing tissues. Phys. Rev. Lett. 129,
048102.

24. Ishihara S, Marcq P, Sugimura K. 2017 From cells to tissue: A continuum model of epithelial
mechanics. Phys. Rev. E 96, 022418.

25. Duclut C, Paijmans J, Inamdar MM, Modes CD, Jülicher F. 2021 Nonlinear rheology of cellular
networks. Cells & Development 168, 203746.

26. Fielding SM, Cochran JO, Huang J, Bi D, Marchetti MC. 2023 Constitutive model for the rheology
of biological tissue. Phys. Rev. E 108, L042602.



2527. Moshe M, Bowick MJ, Marchetti MC. 2018 Geometric frustration and solid-solid transitions in
model 2D tissue. Phys. Rev. Lett. 120, 268105.

28. Hernandez A, Staddon MF, Bowick MJ, Marchetti MC, Moshe M. 2022 Anomalous elasticity of a
cellular tissue vertex model. Phys. Rev. E 105, 064611.

29. Huang J, Cochran JO, Fielding SM, Marchetti MC, Bi D. 2022 Shear-driven solidification and
nonlinear elasticity in epithelial tissues. Phys. Rev. Lett. 128, 178001.

30. Kim K, Zhang T, Schwarz JM. 2023 Mean field elastic moduli of a three-dimensional cell-based
vertex model. arXiv:2308.12892.

31. Kupferman R, Maman B, Moshe M. 2020 Continuum mechanics of a cellular tissue model. J. Mech.
Phys. Solids 143, 104085.

32. Staddon MF, Hernandez A, Bowick MJ, Moshe M, Marchetti MC. 2023 The role of non-affine
deformations in the elastic behavior of the cellular vertex model. Soft Matter 19, 3080–3091.

33. Natale A. 2023 Gradient flows of interacting Laguerre cells as discrete porous media flows.
arXiv:2304.05069.

34. Satake M. 1993 New formulation of graph-theoretical approach in the mechanics of granular
materials. Mech. Materials 16, 65–72.

35. DeGiuli E, McElwaine J. 2011 Laws of granular solids: Geometry and topology. Phys. Rev. E 84,
041310.

36. Jensen OE, Revell CK. 2022 Couple stresses and discrete potentials in the vertex model of cellular
monolayers. Biomech. Mod. Mechanobiol. 22, 1465–1486.

37. Jensen OE, Johns E, Woolner S. 2020 Force networks, torque balance and Airy stress in the planar
vertex model of a confluent epithelium. Proc. Roy. Soc. A 476, 20190716.

38. Fruleux A, Boudaoud A. 2021 Cellular Fourier analysis for geometrically disordered materials.
Phys. Rev. Res. 3, 023036.

39. Tong S, Sknepnek R, Košmrlj A. 2023 Linear viscoelastic response of the vertex model with internal
and external dissipation: Normal modes analysis. Phys. Rev. Res. 5, 013143.

40. Nestor-Bergmann A, Goddard G, Woolner S, Jensen OE. 2018 Relating cell shape and mechanical
stress in a spatially disordered epithelium using a vertex-based model. Math. Med. Biol. 35 (Suppl
1), 1–27.

41. Guest S. 2006 The stiffness of prestressed frameworks: a unifying approach. Int. J. Solids Struct. 43,
842–854.

42. Damavandi OK, Hagh VF, Santangelo CD, Manning ML. 2022a Energetic rigidity. I. A unifying
theory of mechanical stability. Phys. Rev. E 105, 025003.

43. Damavandi OK, Hagh VF, Santangelo CD, Manning ML. 2022b Energetic rigidity. II. Applications
in examples of biological and underconstrained materials. Phys. Rev. E 105, 025004.

44. Revell CK, Jensen OE. 2022 VertexModel.jl. https://github.com/chris-revell/VertexModel.
45. Revell CK, Jensen OE. 2023 DiscreteCalculus.jl. https://github.com/chris-revell/

DiscreteCalculus.
46. Pellegrino S. 1993 Structural computations with the singular value decomposition of the

equilibrium matrix. Int. J. Solids and Struct. 30, 3025–3035.
47. Carrillo JA, Craig K, Yao Y. 2019 Aggregation-diffusion equations: dynamics, asymptotics, and

singular limits. Active Particles, Volume 2: Advances in Theory, Models, and Applications pp. 65–108.
48. Liu K, Kollmer JE, Daniels KE, Schwarz JM, Henkes S. 2021 Spongelike rigid structures in frictional

granular packings. Phys. Rev. Lett. 126, 088002.
49. Bose A, Vermeulen MFJ, Storm C, Ellenbroek WG. 2019 Self-stresses control stiffness and stability

in overconstrained disordered networks. Phys. Rev. E 99, 023001.
50. Lerner E, Bouchbinder E. 2023 Anomalous linear elasticity of disordered networks. Soft Matter 19,

1076–1080.
51. Blumenfeld R. 2004 Stresses in isostatic granular systems and emergence of force chains. Phys. Rev.

Lett. 93, 108301.
52. De Goes F, Butts A, Desbrun M. 2020 Discrete differential operators on polygonal meshes. ACM

Trans. Graphics 39, 110–1.
53. Peletier MA. 2014 Variational modelling: Energies, gradient flows, and large deviations.

arXiv:1402.1990.


	1 Introduction
	2 The vertex model
	(a) Evolution equations for vertices and cells
	(b) Cell stress
	(c) Linearized dynamics
	(d) Simulations

	3 Singular-value decomposition
	(a) Spectral contributions of geometric and material stiffness

	4 Results
	5 Discussion
	A Geometric operators M and M' and the shape tensor Q
	B Discrete spatial derivatives
	C Gradient flow formulation
	D Distinguishing cell shear and cell dilation modes
	E Connecting prestress to stiffness
	F Stretch
	References

