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Abstract

Identifying local structural motifs and packing patterns of molecular solids is a chal-

lenging task for both simulation and experiment. We demonstrate two novel approaches

to characterize local environments in different polymorphs of molecular crystals using

learning models that employ either flexibly learned or handcrafted molecular represen-

tations. In the first case, we follow our earlier work on graph learning in molecular
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crystals, deploying an atomistic graph convolutional network, combined with molecule-

wise aggregation, to enable per-molecule environmental classification. For the second

model, we develop a new set of descriptors based on symmetry functions combined with

a point-vector representation of the molecules, encoding information about the positions

as well as relative orientations of the molecule. We demonstrate very high classifica-

tion accuracy for both approaches on urea and nicotinamide crystal polymorphs, and

practical applications to the analysis of dynamical trajectory data for nanocrystals and

solid-solid interfaces. Both architectures are applicable to a wide range of molecules and

diverse topologies, providing an essential step in the exploration of complex condensed

matter phenomena.

1 Introduction

Elucidation of the microscopic structure of molecular materials is key to predicting and engi-

neering their properties. Despite significant advances in experimental techniques, following

structural transformations in condensed-phase systems with atomistic resolution remains a

challenge due to the time- and length-scales involved. Computational approaches, such as

molecular dynamics (MD) simulations, have become an invaluable tool to provide such mi-

croscopic insight, but characterizing the structural features of a molecular system from the

simulation data is, in general, nontrivial. However, following the dynamical evolution of

local structural environments is essential when studying polymorphic transitions, especially

regarding the complex atomistic processes that govern nucleation and growth.

A number of descriptors have been developed over the years to capture local or global

structural features, including Steinhardt order parameters,1,2 common neighbor analysis,3–5

entropy based fingerprints,6 smooth overlap of atomic positions,7 and atom-centred sym-

metry functions8 (see also9–16 for further overviews and examples). More recently, machine

learning has been utilized to classify local environments with both supervised and unsuper-

vised approaches.17–28 These machine learning models for local structure classification fall
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into two broad categories: models that use handcrafted structural features or descriptors to-

gether with a simple classification model, and models that use only very general information,

such as atom types and distances, and letting the model learn the structural representation

and intermolecular correlations simultaneously. The former approach is attractive in its os-

tensible simplicity but relies on the development of high-quality descriptors, while the latter

requires a more complex model architecture but less intuition about the system and is more

generally applicable. Here, graph neural-network (GNN) approaches are attractive in their

generality, allowing one to use a single flexible model for most systems. GNNs have also

been used to describe condensed-phase systems, wherein the relevant features are learned in

a ‘ground up’ fashion from basic atomistic information.26,27,29–36

The structure characterization methods discussed above have primarily been established

in the context of atomistic condensed-matter systems. In molecular systems, additional

challenges arise since not only the positions of the molecules but also their relative orientation

as well as conformational changes need to be accounted for. One idea is to include this

information via a point-vector representation of the molecules where, for example, the center

of mass denotes the molecule position, and vectors denote the absolute orientation of a given

molecule, which can then be combined into suitable descriptors.37,38

In this work, we advance the state of the art of machine learning classification of local

environments to capture the complex structural features in molecular solids. We present two

parallel approaches, one based on handcrafted descriptors and the other on learned feature

embeddings. The handcrafted descriptors extend our previous work on atomistic systems19

to molecular symmetry functions (SF) by combining the SFs with a point-vector represen-

tation of the molecules. For the learned embeddings, we utilize our recently introduced

molecular crystal graph model MXtalNet39 and augment the architecture with a classifica-

tion task. The trained models are able to distinguish different local environments in various

polymorphs of complex molecular solids with high accuracy. Furthermore, both approaches

are applicable to a wide range of systems, including clusters and interfaces, and can pro-
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vide time-resolved information regarding melting transitions or solid-solid transformations.

The potential of our classification models is exemplified for urea and nicotinamide but the

methods are easily extended to arbitrary molecules. The approaches presented introduce an

essential and valuable component in the analysis and interpretation of simulation data for

molecular solids.

2 Model architectures and training

Figure 1: The workflow of the GNN and SF classifiers on top and bottom, respectively,
including molecule representation, local embedding, and classification. The GNN learns the
features g used in the classification task, while for the SF classifier the features g are given
by the handcrafted molecular SFs.

The general idea of our two model architectures is schematically illustrated in Fig. 1. The

classification is performed for each molecule to characterize its local structural environment.

An appropriate model should be invariant to permutations of atoms of the same types, as well

as global translations, rotations, and inversions of the atomic coordinates, focusing only on

the structural correlations which define the respective polymorphs. For the learned feature

embedding, the positions and atom types of a given molecule and its neighbors comprise

the input to a graph neural network (GNN) coupled with a multilayer perceptron (MLP)

to perform classification on the final embedding. For the handcrafted features, the atomic

positions are used to construct a point-vector representation for each molecule which is then

employed to compute a set of molecular symmetry functions as input to the classification

MLP. Details of the model architectures and training protocols are given in the following.
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2.1 Molecular crystal graph network

For the molecular GNN, we used a relatively straightforward graph neural network, simi-

lar in geometric complexity to SchNet,40 taking interatomic distances and atom types as

inputs. This GNN encodes pairwise interatomic distances to edge embeddings, atom types

to node embeddings, and performs graph convolutions via the TransformerConv operator41

implemented in the Torch Geometric package.42

The GNN parses a single sample in the following way, starting with embedding of the

input nodes atom types zi,

f0i = EMB(zi) , (1)

with EMB as a learnable discrete embedding function, followed by a fully-connected layer.

The edge embedding is

eij = Bessel(|rij|) , (2)

where |rij| is the distance between nodes i and j, and Bessel is the radial embedding func-

tion from DimeNet43 with cutoff rc = 6 Å and 32 radial Bessel basis functions. A fully

connected layer is defined as FC(x) = W · x + b, with W and b as learnable parameters.

Messages are passed between nodes, conditioned on node and edge embeddings via Eqs. (3)

for edge→message and (4) for node→message, over N graph convolutions, with GC the

graph convolution operation,

Et
ij = Wt

e→m · eij , (3)

Ft
i = Wt

n→m · f ti , (4)

f t+1
i = Wt

m→n · (GC(Ft
i,F

t
j,E

t
ij)) . (5)

After each graph convolution, the node embeddings are passed through a fully-connected

layer with residual connection,

f ti = f ti + σ
(
D

(
N (FCt

n→n(f
t
i ))

))
, (6)
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with σ being the activation function (here GeLU44), D(x), a dropout function, and N (x),

the graph layer norm operation. The final node features, corresponding to information about

each atom and its local environment, are aggregated into a single embedding vector repre-

senting the entire molecule, and input to a two-layer activated fully-connected network with

layer normalization and dropout, followed by a reshaping to the number of possible classes.

Though there are currently many powerful graph aggregators, we find max aggregation, that

is, selecting the maximum value from each feature channel, k, across the final atomic node

embeddings in each molecule, is simple and efficient for learning the desired functions, with

g = MAXk({fN}) (7)

and

y = MLP(g) , (8)

with MLP a multilayer perceptron. The class probabilities for a molecule I being in a

particular environment q are computed via the softmax activation function

p(envI = q) =
exp(yq)∑C
k exp(yk)

, (9)

with C the number of possible environments.

We found one or two graph convolutions gave similar performance, though more convo-

lutions result in a larger volume for what the model considers as a ‘local environment’. The

number of convolutions depends on the user’s desired sensitivity to longer-range structural

correlations, but in the current examples, more than two convolutions resulted in training

instability and overall poor convergence. For other hyperparameters, optimal performance

was obtained with a relatively deep embedding (256 for node and graph embeddings, 128

for messages), aggressively regularized with layer norm and dropout of 0.25 in graph con-

volutions, nodewise fully-connected layers, and the embedding-to-output network. With
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these settings, the model converged via the Adam optimizer to a the test minimum very

quickly, usually within a few tens of epochs. Smaller models could certainly be explored,

although we generally found convergence properties to be poorer in that regime. For further

details of model construction, see the supplementary information (SI) and our accompanying

codebase.45

2.2 Molecular symmetry functions

Figure 2: Point-vector representation for urea (top panels) and nicotinamide (bottom panels)
in two different polymorphs, respectively. The turquoise circles indicate the positions of the
molecules rI , and the green and orange vectors, vI;1 and vI;2, characterize their relative
orientations.

Our second model derives a set of descriptors for each molecule based on the Behler-

Parrinello symmetry functions8 in combination with a point-vector representation37,38 of

the molecules. The point-vector representations for urea and nicotinamide are illustrated

in Fig. 2, where the position rI of molecule I is represented by a selected atom (indicated

by a turquoise circle in Fig. 2). Vectors vI;s are defined between two selected atoms in

the molecule, such that they can capture relative orientations of the molecules (indicated in

orange, vI;1, and green, vI;2, in Fig. 2). We utilize four different types of molecular symmetry
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functions SI . Two are akin to radial symmetry functions for atomistic systems but using the

molecule positions rI ,

SI
1(r) =

∑

J

e−η (|rIJ |−Rs)2fc(rIJ) , (10)

and

SI
2(r) =

∑

J

cos(κ|rIJ |)fc(rIJ) , (11)

where the sum runs over all other molecules, rIJ = rJ − rI , fc is a cutoff function (see SI for

details), and η, Rs, and κ are tunable parameters. The other two types of molecular sym-

metry functions use the molecule vectors to characterize the relative orientation of molecule

I with respect to its neighbours J ,

SI
3(r,v;s) =

∑

J

exp
(
−η (cos θvI;svJ;s

− cos θS)
2
)
fc(rIJ) , (12)

and

SI
4(r,v;s) =

∑

J

cos
(
κ cos θvI;svJ;s

)
fc(rIJ), (13)

where θvI;svJ;s
is the angle between vectors v;s on molecules I and J , and cos θS is another

tunable parameter. The total number of molecular symmetry functions is 24 for both urea

and nicotinamide. Details regarding the selected molecular symmetry functions and corre-

sponding values of the tunable parameters are given in the SI.

To perform classification of molecule environments, the molecular symmetry function

descriptors are input to a rather small MLP with two hidden layers, 25 nodes each, and the

softmax activation in Eq. (9) for the output layer. A larger MLP with more hidden layers

and nodes would provide greater flexibility but due to the simplicity of the classification task,

a small network was sufficient for our applications, making both the training and evaluation

rather fast. For further implementation details, see the SF classifier codebase.46
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2.3 Training the models

Training data were generated by molecular dynamics (MD) simulations of all crystal poly-

morphs and the melt for urea and nicotinamide. Simulations were performed using the

lammps MD package47 with a general Amber force field (GAFF).48 We briefly summarize

here the protocol for training the classification models. Further details regarding the MD

simulations and training are given in the SI.

The graph classifier was trained on a mix of trajectory snapshots of periodic bulk cells

approximately 20× 20× 20 Å3 and gas phase spherical clusters with a diameter of ∼ 30 Å

to give the effect of a ‘surface’. Molecules are identified as being on the surface if their local

coordination number, CNI , is smaller than 20, with CNI =
∑

J θ(−(|rIJ | −RC)), where θ is

the Heaviside function and Rc the molecule radius plus the graph convolution cutoff. The

symmetry function classifier was trained on periodic bulk samples only.

We train the classification models on stable, low-temperature snapshots of the known

polymorphs of each molecular crystal, as well as a higher temperature melt state. We

test the models’ generalization performance on configurations from higher temperature MD

simulations, with adaptation to thermal noise standing as a proxy for overall generalization.

The specific temperatures for each of the studied systems are discussed together with the

results below.

The graph classifier was trained until the test loss began to increase, and the model

checkpoint at test loss minimum was used for evaluation. Repeated retraining over several

random seeds found variation in test loss minimum of only a few percent between runs.

We used a combined cross entropy loss including both the loss for the local polymorph

classification for each molecule and the molecule topology, that is ‘surface’ vs ‘bulk’.

The symmetry function classifier was trained until the training loss converged which,

generally, resulted in very small test losses.
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3 Classification of local environments

3.1 Bulk polymorphs of urea and nicotinamide

Figure 3: Confusion matrix for the graph classifier on (a) the polymorphs and (b) topologies
of urea at 200K for crystals and 350K for melt. Micro F1 scores=0.969, 0.960.

We initially trained and applied our classification models to two different systems, urea

and nicotinamide. Urea is a relatively small and rigid molecule, which is also significantly

polymorphic, having six distinct crystal structures with unique intermolecular packing char-

acter49–52 (see the SI for a visualization of the respective polymorphs). The models were

trained on T = 100 K crystal samples and T = 350 K melts, and evaluation metrics were

computed on samples at 200 K for the crystal polymorphs and 350 K for the melt. At low

temperatures, the graph classifier achieves perfect accuracy for both polymorphs and local

topologies. This means that the GNN learns an embedding where the different molecule

environments are clearly separated without overlap. This is expected as the graph model

is rather expressive and in all the thousands of individual molecular environments, the lo-

cal structure seen by the model should be quite similar within each polymorph. The graph

model also generalizes well to higher temperature samples at T = 200 K, as evidenced by the

confusion matrix shown in Fig. 3, meaning that larger thermal fluctuations can be captured

within the trained model. Only urea form A shows a slighter larger classification error, with

about 9% of the samples being identified as ‘melt’, which might be due to the lower stability
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of form A. The symmetry function classifier also demonstrated excellent performance on

urea, achieving comparable or better performance at polymorph classification (F1 ≳ 0.98)

to the GNN model in training and evaluation while being lightweight and fast to run at

inference. The corresponding confusion matrix can be found in the SI.

Figure 4: Confusion matrix for the graph classifier on (a) the polymorphs and (b) topologies
of nicotinamide at 350 K. Micro F1 scores=0.875, 0.922.

As a second example, we chose nicotinamide as a more challenging molecule. Nicoti-

namide is larger than urea and more flexible with internal degrees of freedom that allow for

polymorphs consisting of different conformers of the molecule. Nine polymorphs of nicoti-

namide have been experimentally crystallized53,54(see the SI for a visualization of the re-

spective polymorphs). Despite this significant added complexity in the molecular system,

the performance of our classification models is again very good. As with urea, the training

samples, both crystal polymorphs at 100 K and melts at 350 K, are essentially perfectly

learned, and the model generalizes well to the high temperature test samples at 350 K. The

corresponding confusion matrix for the GNN classifier is shown in Fig. 4. The F1 score for

nicotinamide at high temperatures is slightly worse than for urea, 0.875 compared to 0.969,

which reflects the increased flexibility in the thermal fluctuations at this even higher tem-

perature. This is, however, not a fundamental limit of the model, as, when retrained across

the full range of temperatures, the accuracy again approaches 100%.

We see that the generality and high capacity of the GNN model allow it to classify
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each polymorph and local topology, without the need for model customization of any kind.

Likewise, the symmetry function classifier performs excellently on the nicotinamide poly-

morphs (see the SI for the corresponding confusion matrices). This indicates that the chosen

set of molecular symmetry function provides suitable descriptors to capture the additional

complexity and flexibility in nicotinamide crystal polymorphs and melt.

One interesting point is that the GNN classifier exhibits a somewhat lower performance

on the nicotinamide high temperature samples compared to the SF classifier, when both are

trained on low temperature crystals and high temperature melts only. From the confusion

matrix in Fig. 4 it becomes clear that the accuracy loss of the graph classifier is primarily

due to over-prediction of the melt state. For a model trained only at 100 K and evaluated at

350 K, this should perhaps not be surprising. The larger thermal fluctuations in inter- and

intramolecular degrees of freedom increase the general similarity of bulk crystals to the melt,

and they are interpreted as such by the model. That we do not see this effect as strongly

in the SF classifier results indicates that the handcrafted descriptors are quite robust to

fluctuations, yet sensitive enough to achieve high classification accuracy.

Figure 5: The t-distributed stochastic neighbor embedding (t-SNE) of urea samples from
(a) the 256-dimensional graph embedding (output of (7)), (b) 256-dimensional final layer
activation, (c) 24 symmetry functions, and (d) 25-dimensional SFC final layer activation;
samples are taken from three different temperatures of 100 K, 200 K, and 350 K.

To get a better understanding of the learned and handcrafted features in our molec-
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ular graph and symmetry function classifiers, respectively, we compare the corresponding

embedding spaces. In Fig. 5, the embedding spaces of the representations and final layer

activations for urea are visualized using the t-distributed stochastic neighbor embedding

(t-SNE).55 Fig.5(a) shows that the molecular representation learned by the GNN already

separates the different polymorphs of urea reasonably well. The quality of the handcrafted

symmetry functions is obvious when examining the t-SNE of the symmetry function inputs

in Fig. 5(c), which cluster essentially perfectly before applying any learned transformations.

Figs.5(b) and (d) show the t-SNE of the final layer activations for the GNN and symmetry

function classifier, respectively. The class separation is excellent, as expected from the very

high classification accuracy observed for both models.

Figure 6: t-SNE of nicotinamide samples from (a) the graph embedding (output of 7),
(b) final layer activation, (c) symmetry functions, and (d) SFC final layer activation, at
temperatures of 100 K and 350 K. Embedding dimensionality is the same as in Figure 5.

The t-SNE visualization of the embedding spaces for nicotinamide are shown in Fig. 6.

Both the learned and handcrafted embedding spaces in Figs. 6(a) and (c) show imperfect

classwise separation between the various polymorphs in nicotinamide. This again under-

scores the increased challenge in characterizing structural environments in more complex

and flexible systems. In particular, samples from the melt seem to cover a wide range and

are less clustered in the embedding spaces. We also see greater separation of samples from
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the same crystalline polymorphs in Figs. 6(a)-(b), including bifurcation of some classes,

corresponding to the different sampled temperatures and topologies. The overlap between

the melt and crystal embeddings visible in Figs. 6(a)-(b) is also consistent with the GNN

classifier confusing some crystalline polymorphs mainly with the melt, as seen in Fig. 4.

Nevertheless, the final learned representations in Figs. 6(b) and (d) show again a very good

separation between the different polymorph classes, even for the high-temperature samples.

3.2 Analyzing molecular simulations

Being able to reliably characterize local environments in unknown structures will be partic-

ularly useful when analyzing and interpreting trajectory data from molecular simulations.

In the following, we discuss two examples: the stability of gas phase nanocrystals at differ-

ent temperatures and the migration of an interface during a solid-solid transformation in a

molecular crystal.

3.2.1 Dynamical structure characterization of molecular clusters

The GNN classifier trained on the bulk polymorphs of nicotinamide is used to identify the

local environments of nicotinamide molecules in small nanocrystals. We set up spherical

clusters of nicotinamide form I with a diameter of 34 Å containing 148 molecules. Molecular

dynamics simulations for the clusters in vacuum are run at T = 100 K and 350 K (further

simulation details are given in the SI). In Fig. 7, the structural evolution of the nicotinamide

nanoclusters at these two temperatures is shown, obtained using the graph classifier. Since

the classifier provides information for each molecule individually, we can separate our analysis

for molecules that are in the core region of the clusters, Fig. 7(a) and (c), and at their surfaces,

Fig. 7(b) and (d). At 100 K, the nanocluster clearly keeps its crystalline structure over the

entire simulation time. While the majority of molecules in the core region are identified as

nicotinamide form I, molecules at the surface are partially classified as melt or others, which

is expected since the structural environment at the surface is significantly different from the

14



Figure 7: Time evolution of the number of molecules classified as form I, melt, or other,
(a)-(b) at 100 K and (c)-(d) at 350 K. The analysis is shown separately for high-coordination
‘core’ molecules in (a) and (c) and low-coordination ‘surface’ molecules in (b) and (d). Ver-
tical dashed lines identify the time points for the cluster snapshots, with molecules coloured
according to their most probable form. Snapshots were visualized using ovito56
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bulk. At 350 K, the crystalline cluster quickly melts starting from the surface. Within a

few picoseconds, molecules at the surface are identified as liquid with a handful labeled as

others. The core region melts a little more slowly with a few molecules initially remaining as

form I and others. After approximately 500 ps, the cluster appears to be completely melted

with only a small number of core molecules identified as others.

Despite not having been trained on clusters in vacuum or mixtures of polymorphs, the

performance of our graph classifier in the analysis of the simulation data is sensible and

very informative, allowing to evaluate the structural stability and the onset of melting as a

function of temperature.

3.2.2 Time evolution of solid-solid phase boundaries

Pushing our analysis tools even further, we apply our classification models to track the

position of the interface between two different polymorphs of urea during a solid-solid trans-

formation. A semi-coherent interface between form I and IV of urea is set up by pairing

both phases along the [001] direction. The xy-dimensions parallel to the interface are fixed

resulting in 1.7% compression in x and 1.4% strain in y of urea I and 2.8% compression in

x and 0.8% strain in y of urea IV, respectively. Periodic boundary conditions are applied in

all dimensions, keeping molecules at one of the interfaces fixed and simulations are run in

the NVAPz ensemble at T = 100 K (further simulation details are given in the SI).

In Fig. 8, the analysis of the structural transformation using the graph classifier is shown.

Initially, the system is mainly composed of urea form I (green molecules) in the top half of the

simulation cell with some form IV at the bottom. Molecules at the interface between the two

polymorphs are primarily identified as ‘others’ due to deviations of their local environments

from the pure bulk polymorphs. Since within the chosen setup form I is rather unfavourable,

transformation to form IV rapidly takes place over a few hundred femtoseconds, which is

indicated by the continued increase of molecules identified as form IV and decrease of form

I in the top graph of Fig. 8.
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Figure 8: Time series of the molecule-wise composition of a system with a moving interface
between form I and IV of urea. In the top graph, only molecules in the central region of the
simulation cell, highlighted in bold in the snapshots below, are included. Vertical dashed
lines correspond to the time points from which the snapshots were sampled, with molecules
coloured according to their assigned polymorph. Snapshots were visualized using ovito.56
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Here again, the utility of accurate local environment classification is clearly evidenced, as

subtle changes in local spacing and orientations of molecules can be seen to correspond to the

transformation between distinct polymorphs, in this case form I and IV of urea. Interestingly,

we also see that the conversion from form I to IV is not perfect, as some defects are left in

the wake of the phase boundary as it moves upward through the sample.

4 Conclusions

We have introduced two machine learning based approaches for the classification of local

structural environments in molecular solids. Both the GNN classifier with learned feature

embeddings and the SF classifier with handcrafted descriptors identify molecular environ-

ments in various bulk polymorphs with high accuracy. While the performance of the two

machine learning models is comparable for the studied systems, there are differences in their

practical application.

The GNN model can be used for most molecular systems ‘out of the box’ with minimal

customization but may require hyperparameter tuning to achieve good generalization. Due

to its flexibility and expressive power, with the model presented here containing 356k pa-

rameters, the GNN classifier is somewhat sensitive to overfitting the training data. Again,

one could train a smaller GNN model, at the empirically observed cost of slower convergence

to inferior evaluation minima. Still, the model evaluates relatively quickly, at 35 training

iterations, each comprising some hundreds of molecules, per second on V100 GPU compute

and ∼1 per second on a single CPU. During evaluation, the performance bottleneck is more

often the conversion from MD trajectory output files into the appropriate data format for the

GNN model than the model forward pass itself, with 500 trajectory frames of 20 Å3 bulk

systems taking usually only several minutes to analyse. For sufficiently complex problems, a

GNN classifier could in the future be upgraded with more sophisticated geometric features,

convolutional methods or global aggregators, to efficiently capture longer-range intra- and
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inter-molecular dependencies within a particular system. Today, such architectural improve-

ments are relatively well understood and adoptable ‘off the shelf’.

The performance of the SF classifier strongly depends on the handcrafted input features.

The molecular symmetry functions proposed here do provide the flexibility to capture com-

plex environments in molecular solids but need to be carefully chosen for each new system.

This includes both the point-vector representation of the respective molecule as well as the

tunable parameters of the symmetry function. For larger and more flexible molecules, it

might be necessary to expand the molecular symmetry functions to explicitly account for

conformational changes, for example, by introducing symmetry functions that depend on

different vectors in the same molecule. It is, however, desirable to keep the number of molec-

ular SFs small since calculating the input descriptors is the main computational cost when

evaluating the SF classifier.

Both models are trivially parallelizable as they only require the information for a given

molecule and its environment. They are also applicable to multi-component systems, such

as co-crystals, or can be used to identify defects, such as impurities, vacancies, surfaces, or

interfaces. The main challenge in these more complex scenarios is the preparation of labeled

training data for the supervised learning task.

The two classification models presented in this study provide a general approach for

the analysis and interpretation of simulation data in molecular solids. This will be partic-

ularly useful for the study of structural transformations, including nucleation and growth.

Additionally, information about the local environment can also be used to construct collec-

tive variables used in enhanced sampling of structural transformations, as we have shown

previously for atomistic systems.19,20 We expect that the characterization of local structural

motifs using classification models will become an essential tool in the simulation of molecular

solids, as these models are easy to train and extremely versatile.
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I. CRYSTAL STRUCTURES OF UREA AND NICOTINAMIDE POLYMORPHS

Figs. 1 and 2 visualize the different polymorphs of urea and nicotinamide, respectively. These structures have been
visualized using Ovito [1].

FIG. 1: Crystal structures of six urea polymorphs used in this study viewed along the [100] direction, including the
experimentally crystallized forms I, III, and IV, as well as computationally proposed forms A, B, and C.
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FIG. 2: Crystal structure of nine nicotinamide polymorphs used in this study. Form I, IV, V, VII, and VIII are
viewed along the [100] direction, and Form II, III, VI, and IX along [010].
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II. MOLECULAR SYMMETRY FUNCTIONS AND TRAINING

The cutoff function used in the molecular symmetry functions has the following form [6]

fc(rIJ) =





1 if |rIJ | < rmin

1
2

(
cos

[
(|rIJ |−rmin)

rc−rmin
π
]
+ 1

)
if rmin < |rIJ | ≤ rc

0 if |rIJ | > rc

(1)

where |rIJ | is the distance between molecule I and J . The cutoff radii are set to rmin = 9.8 Å and rc = 10.0 Å for
urea and rmin = 6.8 Å and rc = 7.0 Å for nicotinamide. A set of input function was carefully selected by computing
the distributions of symmetry function values for a series of the tunable parameters Rs, cos θS , η, and κ. The overlap
of distributions for different polymorphs were compared and parameters resulting in small overlaps were selected. In
total, 24 molecular symmetry functions were selected for both urea and nicotinamide. The corresponding values for
the parameters are given in Tab. I for urea and Tab. II for nicotinamide.

TABLE I: Parameters of the molecular symmetry functions used for urea.

symmetry function Rs cos θS η κ vector
SI
1

1 6.16 - 2.44 - -
2 6.28 - 2.68 - -
3 6.76 - 1.00 - -
4 6.88 - 1.00 - -
SI
2

5 - - - 2.50 -
6 - - - 4.54 -
7 - - - 4.90 -
8 - - - 6.22 -
SI
3

9 - 0.368 1.00 - C-O
10 - 0.08 1.00 - C-O
11 - 0.36 1.12 - C-O
12 - 0.28 6.76 - C-O
13 - -0.64 3.28 - N-N
14 - -0.36 3.28 - N-N
15 - 0.88 3.28 - N-N
16 - 1.00 3.28 - N-N
SI
4

17 - - - 2.50 C-O
18 - - - 3.58 C-O
19 - - - 4.78 C-O
20 - - - 8.26 C-O
21 - - - 2.50 N-N
22 - - - 8.12 N-N
23 - - - 8.24 N-N
24 - - - 8.36 N-N

The parameters for symmetry functions were adjusted by comparing the histograms of symmetry functions with
different parameters. The overlap of the histogram was calculated for each polymorph, and eight parameters each
from the point, first point-vector, and second point-vector were selected as descriptors. These symmetry functions
were applied to trajectory of each bulk system, and the resulting calculations from each molecule at each snapshot
were stored for use in the classification NN.

To train the classification NN with these sets of descriptors, 5,000 and 10,000 training samples were used for urea
and nicotinamide, respectively.
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TABLE II: Parameters of the molecular symmetry functions used for nicotinamide.

symmetry function Rs cos θS η κ vector
SI
1

1 3.75 - 1.26 - -
2 5.25 - 0.01 - -
3 4.9 - 0.1 - -
4 5.9 - 0.016 - -
SI
2

5 - - - 1.06 -
6 - - - 0.51 -
7 - - - 1.03 -
8 - - - 2.41 -
SI
3

9 - 0.01 0.66 - C-C
10 - 1.66 0.01 - C-C
11 - 2.9 0.9 - C-C
12 - 1.69 4.0 - C-C
13 - 0.56 3.0 - O-N
14 - 0.66 0.01 - O-N
15 - 1.18 17.2 - O-N
16 - 1.15 2.2 - O-N
SI
4

17 - - - 0.13 C-C
18 - - - 0.33 C-C
19 - - - 5.05 C-C
20 - - - 3.2 C-C
21 - - - 1.05 O-N
22 - - - 0.57 O-N
23 - - - 2.36 O-N
24 - - - 13.22 O-N



5

III. GRAPH MODEL HYPERPARAMETERS AND TRAINING

The graph neural network classifier was constructed with one convolutional layer, a nodewise fully-connected layer,
followed by two fully-connected layers after graph aggregation. The graph convolution cutoff was 6 Å. The feature
depth was 256 throughout, except for during message passing where it was bottlenecked down to 128. Regularization
was added with a dropout probability of 0.5 on all fully-connected layers, graphwise layernorm on the graph nodes,
and standard layernorm on the graph embedding. We used the Adam optimizer [7] with a constant learning rate of
10−4, and a batch size of 5, synthesized via gradient accumulation over 5 MD snapshots.

The train and test datasets were comprised of 1050 and 250 MD snapshots, respectively, sampled at randomly
spaced time intervals, containing on average 370 molecules each, adding up to approximately 390k total molecular
environments. Convergence studies showed similar convergence on as little as 10% of this data, which is unsurprising,
since at low temperature, most local molecular environments for a given polymorph should be very similar.

IV. DATASET PREPARATION

Bulk periodic molecular dynamics trajectories of the known polymorphs of urea and nicotinamide were undertaken
under the following conditions. Simulations were undertaken using the lammps [8] molecular dynamics program.
Simulations were run for 1 ns with a time step ∆t = 1 fs in the NPT ensemble using a Nosé-Hoover thermostat and
barostat implemented in lammps [9–12].

In this work, we employed the AMBER force field for urea and nicotinamide which relies on second generation of
Generalized Amber Force Field (gaff2) [13]. Partial charges for urea were taken from OPLS [14] and for nicotinamide
using RESP-charges from PBE calculations [15].

Simulation box sizes were set as the minimum number of unit cell replicas in each cell direction to achieve at least
the desired box length, where box lengths of 20 Å and 40 Å were used. The 20 Å samples were used in the GNN
model for training on periodic bulk structures. The 40 Å boxes were used to carve out spheres with a 30 Å diameter to
create molecular environments on a surface. Surface molecules were identified as having intermolecular coordination
numbers less than 20, with that value identified via coordination number histograms within several test clusters, and
visually confirmed by inspection of the clusters themselves. Initial configurations of nicotinamide gas phase clusters
used were generated in the same way and placed in large periodic boxes to simulate vacuum.

Trajectories were run at temperatures of 100 K and 200 K for urea crystal polymorphs, and 350 K for melts, and
at 100 K and 350 K for nicotinamide crystal polymorphs and 350 K for melts. These temperatures were chosen to
ensure that sample structures were clearly melted or crystalline for each molecule.

Melt structures were prepared starting from a stable crystal. After relaxing the system, we gradually increased the
temperature from 350 K to 2,000 K over a duration of 10 picoseconds to melt the system. Subsequently, we reduced
the temperature of the system back to 350 K on the same timescale. A simulation was then run for 1 nanosecond,
and the resulting data was used to characterize the molten structure.

The interface structure was prepared using form I and IV urea structures. To minimize the mismatch within the
system, we oriented both structures along the [001] plane, resulting in 1.7% compression in x and 1.4% strain in y
of urea I and 2.8% compression in x and 0.8% strain in y of urea IV, respectively. . To avoid having two moving
interfaces, we fixed one of the interface of form I and IV in the z-dimensions, then proceeded to relax the system
using MD simulation.

The collected data were randomly divided into testing and training sets. Various sizes of training data, ranging
from N = 100 to N = 50,000 unique molecular environments, were used.

V. SYMMETRY FUNCTION CLASSIFIER ACCURACY

Figs. 3-4 show the evaluation accuracy of the SF classifier on high temperature samples of urea and nicotinamide,
respectively. The overall accuracy is nearly perfect in both cases. Note that the SF classifier was only trained on bulk
samples, therefore surface vs. bulk classification performance is ommited in this analysis.
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FIG. 3: Confusion matrix for the symmetry function classifier on the polymorphs of urea at 200 K for crystals and
350 K for melt. Micro F1 score=1.0.

FIG. 4: Confusion matrix for the symmetry function classifier on the polymorphs of nicotinamide at 350 K. Micro
F1 score=0.986.
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