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Abstract

We study the estimation of treatment effects of a binary policy in environments with a
staggered treatment rollout. We propose a new estimator – Sequential Synthetic Difference
in Difference (Sequential SDiD) – and establish its theoretical properties in a linear model
with interactive fixed effects. Our estimator is based on sequentially applying the original
SDiD estimator proposed in Arkhangelsky et al. (2021) to appropriately aggregated data.
To establish the theoretical properties of our method, we compare it to an infeasible OLS
estimator based on the knowledge of the subspaces spanned by the interactive fixed effects.
We show that this OLS estimator has a sequential representation and use this result to show
that it is asymptotically equivalent to the Sequential SDiD estimator. This result implies
the asymptotic normality of our estimator along with corresponding efficiency guarantees.
The method developed in this paper presents a natural alternative to the conventional DiD
strategies in staggered adoption designs.
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1 Introduction

An increasingly large share of empirical research in economics and social sciences more broadly

is built around event studies – situations where specific units are assigned to a treatment of

interest, and we observe these units before and after the start of the treatment along with

a comparison group that is not affected by the treatment (see Currie et al. (2020) for the

empirical evidence on this). Estimation of treatment effects in such applications is routinely

done using the difference-in-differences (DiD) approach (Card, 1990, 1994; Bertrand et al.,

2003; Angrist and Pischke, 2008). The fundamental assumption behind this method requires

the counterfactual outcomes for the treated units to evolve in parallel to those of the comparison

units. In applications, units often adopt the treatment sequentially in a staggered fashion,

allowing researchers to use more sophisticated methods (see Arkhangelsky and Imbens (2023)

for a recent review). Notably, most of these methods are still based on the same identification

assumption. In this paper, we propose a new estimator for applications with the staggered

treatment assignment that shares the attractive features of the DiD estimator – namely, its

transparency and flexibility – and delivers valid results even if the conventional parallel trends

assumption fails.

Our proposal adapts the Synthetic DiD (SDiD) estimator introduced in Arkhangelsky et al.

(2021) to sequential settings. The SDiD estimator combines the Synthetic Control (SC) ideas

introduced in Abadie and Gardeazabal (2003); Abadie et al. (2010) with the DiD logic by using

a weighted average of relevant comparison units and pretreatment periods with data-driven

weights that enforce the parallel trends assumption in-sample. Our estimator, which we call

Sequential SDiD, solves the same problem sequentially, iterating between the construction of

weights and imputation. We establish the statistical properties of our estimator, showing that

it is asymptotically normal and unbiased and has certain efficiency guarantees. To our knowl-

edge, this paper is the first to establish statistical efficiency results for the SC-type estimators.

The new estimator and the derived statistical guarantees for it constitute the main contribution

of this paper.

Our method proceeds in several steps. As a preliminary step, we average all outcomes in a

given period for units that share the same adoption date. We fix a particular adoption time and
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use the average pretreatment outcomes for units with this adoption time, along with average

outcomes for units with later adoption times, to estimate the contemporaneous treatment effect

with the SDiD estimator. We then use the resulting estimate to impute the missing average

counterfactual outcome for the treated units. We repeat this exercise for all adoption times

and then move one step forward to estimate the average treatment effect one period after

the adoption. We proceed sequentially, using the estimates to impute the missing average

counterfactuals. The key feature of our method is that at each step, we use the previously

constructed estimates to build the new ones.

We analyze the properties of our estimator in a model with interactive fixed effects, which

has a long tradition in econometrics of panel data (Holtz-Eakin et al., 1988; Chamberlain,

1992; Arellano and Bonhomme, 2011; Pesaran, 2006; Bai, 2009; Freyberger, 2018) and has

been routinely used to establish statistical properties for the SC-type estimators (Abadie et al.,

2010; Arkhangelsky et al., 2021; Ben-Michael et al., 2021, 2022; Ferman and Pinto, 2019,

2021). Importantly, in contrast to the standard approach in the SC literature, we analyze the

properties of our estimator in the asymptotic regime with a fixed number of periods and an

increasing number of units. This allows us to connect the SC literature to the results from the

econometrics panel data literature, particularly to (Chamberlain, 1992).

The key assumption that underlies our analysis is the independence of idiosyncratic errors

across units. As discussed above, the first step in our estimation approach reduces the data to a

set of averages. By averaging the idiosyncratic errors, we effectively reduce the noise level in the

problem. This step allows us to establish the statistical results in the regime with a constant

number of periods. This approach is directly related to the statistical results established in

Hirshberg (2021) for the standard SC estimator in what he calls the “low-noise” regime. Our

analysis extends this idea to sequential settings, where previously constructed estimates are

used to transform the outcomes.

To analyze the properties of our method, we connect it to an infeasible “oracle” estimator,

which has access to the part of the data that we, as analysts, do not observe. In particular, we

look at the oracle that knows the subspaces spanned by interactive fixed effects and uses them to

construct the standard OLS estimator. In practice, this amounts to estimating a linear regression

3



where, in addition to standard unit and period-specific fixed effects, the researcher includes

unit and period-specific controls that enter the regression with unrestricted period and unit-

specific coefficients, respectively. Versions of such regressions are common in empirical practice,

e.g., researchers often include unit-specific trends and interact time fixed effects with observed

unit-specific variables in their regression specifications. The oracle estimator we consider has

the same structure, using the correct interactions, that we, as analysts, do not know.

As our first result, we derive an alternative representation of the oracle linear regression. We

show that it can be implemented using a sequential algorithm, where at each step, the oracle

constructs a weighted DiD estimator with the weights that depend on the subspaces spanned

by the interactive fixed effects and uses the results for imputations. This representation result

serves as an intermediate block for the analysis of the Sequential SDiD estimator but is also

interesting on its own. In particular, it demonstrates that the imputation method proposed in

(Borusyak et al., 2021) for standard two-way models can be implemented sequentially using

standard DiD estimators, providing additional intuition behind the mechanics of that proce-

dure. More broadly, this representation opens other possibilities for developing methods that

relax the standard DiD assumptions. In this work, we focus on one such relaxation, which al-

lows for interactive fixed effects, but there are other options, such as relaxation of underlying

selection assumptions.

We use the sequential representation of the oracle OLS estimator to connect it to our esti-

mator, which has a similar structure. In particular, we show that the Sequential SDiD estimator

is asymptotically equivalent to the oracle under mild technical assumptions. This result imme-

diately implies that our estimator is asymptotically normal and unbiased and can be used as the

basis for conventional asymptotic inference. This result also implies efficiency guarantees for

our proposal. In particular, in environments where errors are independent over time, the OLS

estimator has minimal variance among all unbiased estimators, and our proposal has the same

property asymptotically. Even if the errors are not independent over time, the OLS estimator

still minimizes an upper bound on the variance, and the same holds for the Sequential SDiD.

Importantly, we establish the previous result in the environments where interactive fixed

effects can be “weak”, i.e., they only explain a small portion of the total variance in the out-
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comes. Simulations in Arkhangelsky et al. (2021) demonstrate that this situation is common in

applications with aggregated data, where the two-way fixed effects often explain a ten times

larger share of variation compared to the interactive fixed effects. The latter still explains more

variation than the noise, thus creating a challenge for inference. This makes our results that

allow the factors to explain a share of the variation that is only slightly above the noise level

particularly relevant for empirical applications.

We investigate the performance of our proposal using data from (Bailey and Goodman-

Bacon, 2015). We start by replicating the results in the paper and comparing them with those

produced by our estimator. We view this exercise as a proof of concept because the underlying

data closely follows the two-way model, and our theory implies that our estimator should

produce results that are relatively close to the original ones. This is indeed what we find. We

then use this data to build a simulation in which we vary the strength of the underlying factors

compared to the noise. We use this simulation to demonstrate that our estimator delivers

valid inference results regardless of the presence of the interactive fixed effects while using the

standard DiD estimator leads to invalid inference.

This paper contributes to different strands of the literature. On the one hand, it delivers

a new SC-type method for event studies. Compared to other proposals in the literature (e.g.,

Ben-Michael et al., 2022; Cattaneo et al., 2021), our approach is based on analyzing the data

sequentially with estimates constructed for the early adopters being used as building blocks

to construct estimates for later cohorts. The sequential nature of our algorithm is attractive

both practically, allowing users to implement it online, and theoretically because it opens new

possibilities for extensions.

Our theoretical results contribute to the broad understanding of the properties of the SC

method. One common critique of the SC approach is that its theoretical properties are rou-

tinely derived using a factor model, thus raising the question of whether one should directly

estimate such a model instead. Our statistical results show that the SC estimator is asymp-

totically equivalent to estimating this model, with certain efficiency guarantees. To the best

of our knowledge, these types of results were previously unavailable in the SC literature, and

they complement the optimal regret properties of the SC method under adversarial sampling
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derived in (Chen, 2023).

Finally, our results contribute to the literature on event studies. Recent proposals in this lit-

erature focused on developing methods that are valid in the two-way models with unrestricted

heterogeneity in treatment effects (Borusyak et al., 2021; Callaway et al., 2021; De Chaise-

martin and d’Haultfœuille, 2020; Sun and Abraham, 2020). Our method also has the same

property, but crucially, it remains valid even if the underlying model is more complicated and

includes interactive fixed effects. Importantly, our method can be used the same way as the

traditional ones; in particular, one can use it to validate the underlying assumptions by analyz-

ing pretrends. Moreover, our intermediate results on the sequential representation of the OLS

estimator have practical value even if the underlying model has a two-way structure.

Our analysis has its limitations. In particular, we focus on environments where each adop-

tion cohort is relatively large. This allows us to establish statistical results under relatively mild

assumptions. We believe this setup provides a reasonable approximation for many applications

of interest. Another limitation of our approach is that we assume that the idiosyncratic errors

are independent across units. This assumption can be relaxed to a certain extent, allowing for

weak dependence, but fundamentally, our analysis relies on the concentration of these errors.

Historically, applied researchers assumed that some part of the error survives aggregation, e.g.,

this type of analysis was conducted in Bertrand et al. (2003). While there are economic reasons

for this to be the case, the empirical analysis in Arkhangelsky et al. (2021) shows that often,

the aggregate errors can be explained by the interactive fixed effects, with the remaining error

being much smaller. Of course, there are applications in which this does not hold, and thus,

our statistical results are not applicable.

The rest of the paper proceeds as follows: in Section 2, we discuss the underlying econo-

metric setup, define our estimator, and discuss how to use it for inference. In Section 3, we

establish the theoretical results by connecting our estimator to the oracle estimator and also

deriving a sequential representation of the OLS estimator. In Section 4, we discuss the role of

covariates. Section 5 demonstrates the performance of our estimator in the empirical applica-

tion and simulations, and, finally, Section 6 concludes.

6



Notation: We use standard notation for expectations and variance operators, E[·] and V[·],

respectively. For a sequence of random variables Xn, Yn we write Xn = op(Yn) if Xn

Yn
converges

to zero in probability. For two sequences an and bn we write an ≲ bn if an
bn
is bounded, and

an ≪ bn if an
bn
converges to zero. We write an ∼ bn if an ≲ bn and bn ≲ an. We use the same

notation with subscript p for the corresponding concepts for random sequences.

2 Methodology

2.1 Setup

We observe n units over periods T periods, with i being a generic unit and t being a generic

period. In our theoretical analysis, we treat T as fixed and n as going to infinity – the asymptotic

regime that provides a reasonable approximation for a large class of empirical applications. For

each unit i and period t, we observe a real-valued outcome Yi,t ∈ R and a binary treatment

indicatorWi,t ∈ {0, 1}. Following most of the applied work, we focus on settings with staggered

adoption, thus assuming Wi,t ≥ Wi,t−1.

We formalize causality by interpreting the observed outcomes using potential outcomes

(Neyman, 1990; Rubin, 1974; Imbens and Rubin, 2015).

Assumption 2.1. (No-anticipation)

For each i and t there exist a (potentially random) function Yi,t(·) : {0, 1}t → R such that

Yi,t = Yi,t(W
t
i ),

where W t
i := (Wi1, . . . ,Wi,t).

This assumption incorporates two separate restrictions. The first one is no anticipation –

only treatments realized by period t can affect the outcomes in that period. The second one is

the absence of cross-unit spillovers – potential outcomes only vary with the unit’s i treatment

assignment. See (Arkhangelsky and Imbens, 2023) for a discussion of these assumptions.

Given our focus on the staggered adoption designs, we also consider a different represen-

tation of the potential outcomes. Consider set W := {w ∈ {0, 1}T : wt ≥ wt−1}, then for any
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w ∈ W define a(w) := inf{t : wt = 1}. This mapping defines a one-to-one correspondence

between sets A := {1, . . . , T,+∞} andW. We denote by wt(a) the first t components ofw that

correspond to a ∈ A and define for all i and t:

Yi,t(a) := Yi,t(w
t(a)).

For each unit i, we define an observed event time:

Ai := inf{t ≤ T : Wi,t = 1},

and write the observed outcomes as a function of the potential outcomes at the observed event

time:

Yi,t = Yi,t(Ai).

We stress that while this representation is standard in both theoretical and applied work, its

internal consistency relies on Assumption 2.1. In what follows, we use both representations

interchangeably.

For each unit i and adoption period a, we consider a path of treatment effects as a function

of time since adoption. Formally, we define for any horizon k ≥ 0,

τi,a,k := Yi,a+k(a)− Yi,a+k(∞).

Weighted averages of these objects (over units and periods) are commonly reported in the

applied work and will be the focus of our analysis.

Our next assumption describes the statistical model behind the observed data.

Assumption 2.2. (Factor model)

For all i and t we have

Yi,t = αi + βt + θ⊤i ψt +
∑
k≥0

τi,a,k1{Ai = a, k = t− Ai}+ ϵi,t, (2.1)

where θi ∈ Rr for some r ≥ 0, E[ϵi,t|{Ai}ni=1,γ] = 0, and ϵi := (ϵi1, . . . , ϵi,T ) are independent over
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i conditionally on ({Ai}ni=1,γ), where γ := {αi, θi, βt, ψt, τi,a,k}i,t,a,k.

The interpretation of Assumption 2.2 depends on the underlying model, sampling scheme,

and the treatment assignment protocol. We now discuss two different scenarios that justify

this assumption.

Example 1: Suppose that {Yi, Ai}ni=1 represent n i.i.d. samples from some underlying popu-

lation. Also, suppose that for each unit, there is a characteristic Ui such that the unconfound-

edness assumption holds:

{Yi(w)}w∈W ⊥⊥ Ai |Ui. (2.2)

Finally, suppose potential outcomes satisfy

Yi,t(a) = α(Ui) + βt + θ⊤(Ui)ψt + 1{a ≤ t}τa,k(Ui) + ϵi,t(a), E[ϵi,t(a)|Ui] = 0.

Define αi := α(Ui), θi := θ(Ui), and τi,a,k := τa,k(Ui), ϵi,t := ϵi,t(Ai). It is straightforward to see

that Assumption 2.2 is satisfied.

This setup is common in econometric panel data literature (e.g., Arellano, 2003) and is

natural for environments where units of observation correspond to economic agents, such as

individuals or firms, who make adoption decisions independently. The latent unconfounded-

ness restriction (2.2) is equivalent to strict exogeneity of these decisions: once the unobserved

characteristic Ui is fixed, the adoption date is as good as randomly assigned. Strict exogeneity

has a long tradition in panel data literature (Chamberlain, 1984) and underlies the common

analysis based on “parallel trends” assumptions (see Ghanem et al., 2022 for a discussion).

Example 2: We observe a random sample of units from a population of interest. In each

period t, all units are exposed to unobserved aggregate shocks Ht ∈ H. For each unit i the

treatment path is constructed using a deterministic rule:

Wi,t = Wt(Ui,H
t),
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where Ui is an unobserved unit-specific characteristic, andH t := (H1, . . . , Ht). With this struc-

ture in mind, we view H := (H1, . . . , HT ) as a sequence of exogenous aggregate shocks that

are independent of all unit-level potential outcomes.

Given a potential adoption time a and a potential history of unobserved shocksht = (h1, . . . , ht)

the potential outcomes satisfy:

Yi,t(a,h
t) = α(Ui) + β(ht) + θ⊤(Ui)ψ(h

t) + 1{a ≤ t}τa,t−a(Ui,h
t) + ϵi,t(a,h

t),

E[ϵi,t(a,ht)|Ui] = 0.

We next consider random potential outcomes Yi,t(a) := Yi,t(a,H
t) evaluated at the realized

historyH t:

Yi,t(a) = α(Ui) + β(H t) + θ⊤(Ui)ψ(H
t) + 1{a ≤ t}τa,t−a(Ui,H

t) + ϵi,t(a),

E[ϵi,t(a)|Ui] = 0,

where ϵi,t(a) := ϵi,t(a,H
t). Observe that the mean-independence condition for ϵi,t(a) follows

from the fact that we treat aggregate shocks as independent of the unit-level potential out-

comes. Define βt := β(H t), ψt := ψ(H t); αi := α(Ui), θi := θ(Ui), τi,a,k := τa,k(Ui,H
t), and

ϵi,t = ϵi,t(Ai). Assumption 2.2 is then satisfied conditionally on the realized history of aggregate

shocksH and realized unobserved characteristics {Ui}ni=1.

This example might look less familiar than the first one, but it captures several features that

are common in applications. First, it allows the treatment trajectories to be correlated across

individuals because they are determined by the same aggregate shocks. Moreover, units with

the same value of Ui adopt treatment at the same period. For example, suppose units belong

to non-overlapping groups (e.g., geographic locations), with Gi ∈ G denoting the group unit

i belongs to. Suppose Gi = Gj ⇒ Ui = Uj, i.e., all units in the same group have the same

exposure to aggregate shocks. In this case, Example 2 implies that all units in the group will

adopt the treatment at the same time. The key restriction in this example is the limited way

the unobserved shocks enter the potential outcomes. In particular, θi captures the systematic
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variation in the exposure to H t that is correlated with W t
i . The projection errors ϵi,t can ex-

hibit aggregate dependence because they explicitly depend on H t, but this correlation is not

systematic, i.e., it is uncorrelated withW t
i .

The key difference between the two examples is the nature of the adoption process. In

the first example, the adoption is independent across units, while in the second example, the

adoption decisions are correlated due to the aggregate shocks. Importantly, the errors {ϵi}ni=1

are independent over units in both examples (conditionally, in the second example). This im-

plies that once we average enough units with the same adoption date, the idiosyncratic noise

becomes small in magnitude.

In the rest of the paper, we will develop a new estimator and demonstrate that it has desir-

able asymptotic properties. The independence of errors plays a key role in establishing these

results. At the same time, the independence of the errors has important implications for un-

certainty quantification because it implies that we can “cluster at the unit level” to construct

standard errors. We return to this discussion in the future sections.

Remark 2.1. In both examples we assumed that the data form a random sample from the

population of interest. However, given that our analysis is conditional on ({Ai}ni=1,γ), we can

consider more complicated sampling schemes, e.g., allowing for sampling weights that depend

on Ui. The key sampling restriction that we maintain is independence over units.

2.2 Estimator

In this section, we introduce the new estimator, which we call Sequential SDiD. As the name

suggests, it is based on sequential application of a version of the SDiD estimator introduced

in (Arkhangelsky et al., 2021). The key difference, though, is that we apply SDiD principles

to aggregated data. Let A be the support of Ai; for each adoption cohort a ∈ A, we define

aggregate outcomes:

Ya,t :=

∑
i:Ai=a Yi,t

na

,
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where na :=
∑n

i=1{Ai = a} is the total number of units in cohort a. We also define the

corresponding shares, πa := na

n
. Assumption 2.2 guarantees:

Ya,t = αa + βt + θaψt + 1{a ≤ t}τa,t−a + ϵa,t, (2.3)

where ϵa,t :=
∑

i:Ai=a ϵi,t

na
, and other variables are defined accordingly. Representation (2.3) is

key for our algorithm and its analysis in the next section.

Our algorithm estimates τa,k sequentially, and in the process of doing so it also updates the

aggregate outcomes Ya,t. We describe it formally in Algorithm 1. To discuss the underlying

intuition, we focus on the first step of the algorithm, with later iterations following the same

logic. To this end, we fix k = 0 and consider a particular adoption time a ∈ {amin, . . . , amax}.

Here, (amin, amax) are user-specified parameters which we discuss in detail below. We then con-

struct unit and time weights, ω̂(a,0) and λ̂(a,0), respectively by solving the following optimization

problems:

ω̂(a,0) := arg min∑
j>a ωj=1

∑
l<a

(∑
j>a

ωjYj,l − ω0 − Ya,l

)2

+ η2
∑
j>a

ω2
j

πj

 ,

λ̂(a,0) := arg min∑
l<a λl=1

∑
j>a

(∑
l<a

λlYj,l − λ0 − Yj,a

)2

+ η2
∑
l<a

λ2l

 .

(2.4)

We use the constructed weights to construct the estimator using the double-differencing ap-

proach:

τ̂SSDiD
a,0 :=

(
Ya,a −

∑
j>a

ω̂
(a,0)
j Yj,a

)
−
∑
l<a

λ̂
(a,0)
l

(
Ya,l −

∑
j>a

ω̂
(a,0)
j Yj,l

)
. (2.5)

As a final step, we adjust the aggregate outcomes:

Ya,a := Ya,a − τ̂a,0.

We repeat this exercise for all a ∈ {amin, . . . , amax} and then proceed iteratively by constructing

τ̂SSDiD
a,1 , updating the outcomes, and so on. The algorithm stops after K + 1 steps, delivering

{τ̂SSDiD
a,k }k∈{0,...,K}

a∈{amax,...,amin}, where K is another user-specified parameter.
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Algorithm 1: Sequential SDiD
Data: Aggregated data, amin, amax, K, η
Result: {τ̂SSDiD

a,k }k∈{0,...,K}
a∈{amax,...,amin}

1 for k ∈ {0, . . . , K} do
2 for a ∈ {amin, . . . , amax} do
3 Construct the weights:

ω̂(a,k) := arg min∑
j>a ωj=1

∑
l<a+k

(∑
j>a

ωjYj,l − ω0 − Ya,l

)2

+ η2
∑
j>a

ω2
jπj

 ,

λ̂(a,k) := arg min∑
l<a+k λl=1

∑
j>a

(∑
l<a+k

λlYj,l − λ0 − Yj,a

)2

+ η2
∑
l<a+k

λ2l

 ,

4 Construct the estimator:

τ̂SSDiD
a,k :=

(
Ya,a+k −

∑
j>a

ω̂
(a,k)
j Yj,a+k

)
−
∑
l<a+k

λ̂
(a,k)
l

(
Ya,l −

∑
j>a

ω̂
(a,k)
j Yj,l

)

5 Define Ya,a+k := Ya,a+k − τ̂SSDiD
a,k

6 end
7 end

For each a and k, the estimator τ̂SSDiD
a,k is constructed by applying a version of the SDiD

estimator introduced in Arkhangelsky et al. (2021) to a specific subset of aggregate outcomes

Ya,t. In particular, to construct unit weights ω̂(a,k), we use outcomes for cohorts with adoption

times greater than a, focusing on periods prior to a+k. We use the same outcomes to construct

time weights λ̂(a,k). One difference between the procedure described in Algorithm 1 and the

original SDiD estimator is that we do not impose the non-negativity constraint on the weights.

The sequential nature of our estimator is reflected in Step 5 of Algorithm 1, which updates

the corresponding outcomes at each iteration. This step has a straightforward intuition: by

subtracting the estimated treatment effect, we impute the missing (average) counterfactual

outcome, which we later use to construct the weights for larger values of k.

Our algorithm has three user-specified parameters: η, K, and (amin, amax). The first one

is the regularization parameter for the weights, and we discuss its role in more detail in the

next section, where we analyze the theoretical properties of our procedure. The second pa-
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rameter, K, describes the maximal horizon for which we construct the estimates. Finally, the

last parameter (amin, amax) describes the range of adoption times we focus on. The last two

parameters need to agree with each other and the overall dimensions of the problem. In par-

ticular, amax + K ≤ T , because in order to construct τ̂amax,K we need to observe the outcome

Yamax,amax+K .

We use the estimated effects to construct an average effect across adoption times:

τ̂SSDiD
k (µ) =

∑
a∈{amin,...,amax}

µaτ̂
SSDiD
a,k (2.6)

where the weights µ are user-specified. In our analysis, we use the weights that are propor-

tional to the shares πa, i.e., set µa = πa∑
a∈{amin,...,amax} πa

, and use τ̂SSDiD
k to denote the resulting

estimator.

Remark 2.2. Algorithm 1 constructs K + 1 estimates for each adoption time, which, as we

discussed above, is feasible only if we set amax + K ≤ T . In principle, users can relax this

constraint by making horizon K adoption-time specific and adjusting Algorithm 1 accordingly.

While this allows users to estimate a larger number of treatment effects, there are at least

two reasons for implementing a more restrictive version described in the text. The first one is

practical: if users report a weighted average effect across adoption cohorts for each k, then for

these effects to be comparable across k, the averages should be computed in the same way. The

second reason is theoretical: as we will see in the next section, some of the treatment effects

might be unidentified.

Remark 2.3. An important feature of the Sequential SDiD is that if we set η = ∞, then it

is equivalent to the sequential DiD estimator, where different cohorts are weighted inversely

proportional to their shares. As we will see in the next section, this estimator has a direct

connection to recent proposals in the event-study literature, in particular (Borusyak et al.,

2021). In our simulations, we use this estimator as a comparison and denote the (appropriate

aggregated) version of it by τ̂DiD
k .
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2.3 Inference and validation

To conduct inference, we rely on Bayesian bootstrap (Rubin et al., 1981; Chamberlain and

Imbens, 2003). In particular, let ξ := {ξi}ni=1 be a collection of independent random variables,

where each ξi ∼ Exp(1). We use these variables to construct weighted analogs of Ya,t from the

previous section:

Ya,t(ξ) :=

∑
i:Ai=a Yi,tξi∑
i:Ai=a ξi

,

and use these outcomes to construct the estimator τ̂SSDiD
k (µ, ξ) applying Algorithm 1 to Ya,t(ξ).

We then compute the variance of this quantity over ξ and define:

σ̂(τ̂SSDiD
k (µ)) :=

√
Vξ [τ̂SSDiD

k (µ, ξ)],

where we use subscript ξ to emphasize that the variance is computed with respect to ξ, holding

other quantities fixed. In practice, we approximate this computation by simulating ξ. We use

σ̂(τ̂SSDiD
k (µ)) to conduct the conventional normal-based inference:

τ̂SSDiD
k (µ)± σ̂(τ̂SSDiD

k (µ))qα/2

where qα/2 is a α
2
quantile of the standard normal distribution. As we show in the next section,

this interval has asymptotic coverage 1− α.

We also apply Algorithm 1 for placebo validation in the same way as it is typically done in

the standard DiD analysis. In particular, we shift all adoption times by a fixed amount P :

Ai := Ai − P.

We then use these redefined adoption times to construct aggregate outcomes Ya,t and apply

Algorithm 1 to these data with K = P − 1. We then use the resulting estimates to validate the

model, which is analogous to the conventional testing for parallel trends.

Remark 2.4. Users can use the shifted adoption times to estimate actual, rather than placebo,

treatment effects by setting K > P − 1. This approach has the advantage of producing valid
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estimators if the no-anticipation part of Assumption 2.1 is violated, but instead, an analog of

the limited anticipation assumption (Callaway et al., 2021) holds.

3 Theoretical Analysis

In this section, we describe the theoretical properties of our estimator. We do that in a some-

what nonlinear way by first introducing an oracle OLS estimator and then connecting our pro-

posal to that oracle. We do this for two separate reasons. First, the oracle estimator we consider

is sufficiently close to the established empirical practice that we believe the connection between

the two procedures has immediate value for applied researchers. Second, the analysis for the

oracle estimator reveals new algorithmic properties of the OLS procedures in the staggered

adoption settings, which has a separate value. All proofs are collected in the Appendix.

3.1 Sequential OLS

We start our theoretical analysis by looking at an oracle OLS estimator constructed using ag-

gregate data Ya,t. In particular, we consider the solution to the following optimization problem:

{α̂OLS
a , β̂OLS

t , ϕ̂OLS
t , ν̂OLS

a , τ̂OLS
a,k }a,t,k ∈

argmin
{αa,βt,ϕt,νa,τa,k}a,t,k

∑
a,t

πa
(
Ya,t − αa − βt − θ⊤a ϕt − νaψt − {a ≤ t}τa,t−a

)2 (3.1)

Optimization in (3.1) treats θa and ψt as known, but interacts them with unknown period and

cohort-specific parameters ϕt and νa. One can view this optimization problem as a linearization

of the nonlinear interactive fixed effects OLS problem that would optimize over θ⊤a ψt. The

solution to this problem is connected to the SSDiD estimator introduced in the previous section.

It is a priori unclear whether τ̂OLS
a,k in (3.1) is uniquely defined. In the standard two-way

model, the requirements for that are straightforward – the corresponding OLS estimator is

uniquely defined as long as there exist j and l such that ∞ ≥ j > a + k and 1 ≤ l < a with

Yj,a+k observed. In particular, for any a, there exists the longest horizon such that all effects

prior to that are uniquely estimable by the OLS.
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The situation is more challenging for problem (3.1). In principle, for l > k, it is possible for

τ̂OLS
a,l to be uniquely defined even if τ̂OLS

a,k is not. Our next assumption guarantees that this does

not happen, at least for certain adoption times and horizons.

Assumption 3.1. There exists a⋆ and t⋆ such that a⋆ ≥ t⋆ and systems {θj}j>a⋆ and {ψl}l<t⋆

affinely span Rr.

Assumption 3.1 has a natural interpretation for {ψt}Tt=1: it requires the future time-specific

factors to be perfectly predictable as long as the past information is rich enough, in particular,

it requires ψt to belong to the affine hull of the past for all t ≥ t⋆. The requirement for θa is

similar: the parameters for all early adopters are typical in the sense that they belong to the

affine hull of the parameters for the sufficiently late adopters.

Assumption 3.1 allows us to state our first result, which plays an important role in our

theoretical analysis later but also has an independent interest.

Proposition 3.1. Suppose Assumption 3.1 holds, then for any (a, k) such that a⋆ ≥ a + k ≥ t⋆

the OLS estimator τ̂OLS
a,k is uniquely defined and can be computed using Algorithm 2.

Proposition 3.1 shows that τ̂OLS
a,k is uniquely defined for certain a and k, but more impor-

tantly, it provides an explicit algorithm for the computation of these estimates. The key feature

of Algorithm 2 is its sequential nature and the underlying structure of the estimators, which

mirrors Algorithm 1. In particular, for each (a, k) the algorithm constructs unit and time-specific

weights ω̃(a) and λ̃(a,k), similar to Algorithm 1. Moreover, the OLS estimator τ̂OLS
a,k is constructed

using the same weighted DiD approach. Finally, the algorithm concludes by redefining the out-

comes and then proceeds sequentially, analogously to Algorithm 1.

Results in the next section show that there is a tight statistical connection between the OLS

estimator and the SSDiD estimator, and the representation of τ̂OLS
a,k through Algorithm 2 is key

for establishing this relationship. At the same time, Algorithm 2 and Proposition 3.1 present

some interest on their own, expressing the underlying mechanics of the OLS procedure. Sup-

pose that θa ≡ ψl ≡ 0 so that the OLS procedure (3.1) reduces to the estimation of the standard

two-way model. In this case, Assumption 3.1 trivially holds, and we can apply Proposition 3.1

with a⋆ = ∞ and t⋆ = 1. The OLS estimator 3.1 then corresponds to the procedure proposed
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Algorithm 2: Sequential OLS
Data: D, a⋆, t⋆
Result: {τ̂OLS

a,k }a⋆≥a+k≥t⋆

1 for k ∈ {0, . . . , a⋆ − t⋆} do
2 for a ∈ {t⋆, . . . , a⋆ − k} do
3 Construct the weights:

ω̃(a) := argmin
ω

{∑
j>a

ω2
j

πj

}
subject to:

∑
j>a

ωj = 1,
∑
j>a

θjωj = θa;

λ̃(a,k) := argmin
λ

{∑
l<a+k

λ2l

}
subject to:

∑
l<a+k

λl = 1,
∑
l<a+k

λlψl = ψa+k;

4 Construct the estimator:

τ̂OLS
a,k :=

(
Ya,a+k −

∑
j>a

ω̃
(a)
j Yj,a+k

)
−
∑
l<a+k

λ̃
(a,k)
l

(
Ya,l −

∑
j>a

ω̃
(a)
j Yj,l

)

5 Define Ya,a+k := Ya,a+k − τ̂OLS
a,k

6 end
7 end

in Borusyak et al. (2021) (with constant πa). Algorithm 2 provides an explicit, sequential im-

plementation of that procedure. In particular, given that θa ≡ ψl ≡ 0 the optimal weights in

Algorithm 2 are uniform for λ̃(a,k) and inversly proportional to πj for ω̃(a)
j . In the case with

constant πa, the resulting estimator reduces to sequential computation of the standard DiD

estimators on the adjusted data.

Another important feature of Algorithm 2 is its sequential nature, which shows that τ̂OLS
a,k

can, in principle, be computed online – the computation uses only the information available at

period a + k. This property is less important for small-scale problems we focus on, for which

quadratic optimization problem (3.1) is straightforward, but it can be useful in other contexts,

in particular in applications with large-scale data that are common in industry applications.
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Finally the representation of the OLS estimator through Algorithm 2, opens several paths

for natural generalizations of the OLS estimator, with Algorithm 1 being only one possible

option. Other attractive routes include additional regularization of the weights, such as the

introduction of the simplex constraint or procedures that further restrict the information used

to construct the estimator, potentially allowing for weaker exogeneity assumptions.

Remark 3.1. The representation we derive in Proposition 3.1 is not the only possible one. In

(Aguilar, 2023), the author derives a non-sequential representation of the OLS estimator for

a model without θa and ψt. For the reasons described above, we believe that the sequential

representation we use has its advantages.

3.2 Sequential SDiD vs. Sequential OLS

In this section, we connect feasible Algorithm 1 to oracle Algorithm 2. As we discussed in

the previous section, both algorithms share many similarities, so the statistical relationship

we establish should be expected. Still, to guarantee this result, we need to impose additional

restrictions on the underlying data-generating process.

We start with a mild restriction on the aggregate errors ϵa := (ϵa,1, . . . , ϵa,T ).

Assumption 3.2. For all a ∈ A we have nV[ϵa] → Σa, where Σa is finite and non-generate.

Recall that each ϵa,t is an average of the underlying ϵi,t over the units with the same adoption

period. The total number of such units is na, which, depending on the underlying sample

scheme, can be either a deterministic or random quantity. Assumption 3.2 guarantees that

the share of each adoption cohort is non-vanishing in the limit, thus describing the type of

asymptotic analysis we focus on. It also imposes a mild non-degeneracy assumption, which we

expect to hold generically.

To state our main result we need to introduce additional notation. For each (a, k) such that

a⋆ ≥ a+ k ≥ t⋆ we define a rectangular matrix with entries given by

(L(a,k))j,l :=
(
θj − θ

(a)
)⊤ (

ψl − ψ
(k)
)
,
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for j > a and l < a+k, where θ(a) is the average of θj for all j > a, and ψ(k) is the average of all

ψl for l < a+k. Visually, each matrix L(a,k) corresponds to the upper-left block of the demeaned

interactive fixed effects matrix that describes all cohorts/periods. Assumption 3.1 guarantees

that for relevant (a, k)matrix L(a,k) has full rank r. We use σ̃(a,k) to denote the minimal singular

value of matrix L(a,k) (among the positive ones).

Theorem 3.1. Suppose Assumptions 2.1 - 2.2, 3.1 - 3.2 hold; suppose for a⋆ ≥ a + k ≥ t⋆

nV[τ̂OLS
a,k |γ, {Ai}ni=1] ≲ 1; suppose σ̃a,k ≫p

1√
n
. Then, as long as

(
n− 1

2 σ̃3
a,k

) 1
4 ≫ η ≫ n− 1

2 , we have

τ̂SSDiD
a,k = τ̂OLS

a,k + op

(
1√
n

)
.

Apart from already discussed Assumptions 3.1 - 3.2, Theorem 3.1 imposes restrictions on

the asymptotic variance of τ̂OLS
a,k , requiring it to be finite. We focus on this regime because we

want to compare our estimator to the infeasible OLS estimator in situations where the latter

is well-behaved. Another key restriction we impose is the behavior of the minimal singular

value, requiring it to be larger than 1√
n
. This is a relatively mild restriction, and we explain

why we believe it is important below. Finally, the theorem requires that we regularize at the

appropriate rate.

As long as the conditions of Theorem 3.1 hold, it guarantees that the Sequential SDiD esti-

mator is asymptotically equivalent to the OLS. Importantly, the rate restriction on the factors in

Theorem 3.1 is relatively mild; in particular, it is trivially satisfied if the factors are strong. It is

known that weak factors can lead to problematic behavior of the estimators in the interactive

fixed effects models, potentially creating problems for inference. At the same time, in many

aggregated datasets, the interactive fixed effects explain a much smaller proportion of the vari-

ance compared to the standard two-way fixed effects (e.g., see the experiments in Arkhangel-

sky et al., 2021). As a result, it is important to allow the singular values to be relatively small,

making the result in Theorem 3.1 especially appealing because it essentially allows the weakest

factor to be only marginally above the noise level. This is exactly the type of behavior we often

observe in applications.

Remark 3.2. We conjecture that the analog of Theorem 3.1 also holds in the asymptotic regime

where all factors are very weak, i.e., the maximal singular value of L(a,k) is vanishing fast, if
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we connect the estimator to the oracle that ignores the factors that are below the noise level.

In particular, if this singular value is zero, which implies that interactive fixed effects are not

present in the model, then it is straightforward to show that the Sequential SDiD estimator is

asymptotically equivalent to the OLS. However, a full investigation of this problem requires a

more nuanced analysis of the structure of τ̂SSDiD
a,k , which we currently do not attempt.

3.3 Efficiency

The connection established in the previous section allows us to discuss the asymptotic efficiency

of τ̂SSDiD
a,k . Theorem 3.1 guarantees that our estimator is first-order equivalent to the OLS

estimator and thus has the same claims to efficiency. As a result, we can frame the discussion

in terms of the discussion of the efficiency of the OLS estimator.

The first immediate result we can rely on is the minimum variance property of the OLS. In

particular, suppose V[ϵa|na] =
σ2

nπa
IT , i.e., the aggregate errors are homoskedastic. Then the

estimator (3.1) satisfied the conditions of the Gauss-Markov theorem and thus has minimal

variance among all unbiased linear estimators. This efficiency guarantee is analogous to the

one established in (Borusyak et al., 2021) for the imputation procedure they propose. Our

results then extend the same guarantee to the Sequential SDiD estimator, providing, to the best

of our knowledge, the first efficiency result for the SDiD-type estimator and, more broadly, for

the SC-type procedure.

It appears that the connection to the OLS oracle has more fundamental implications for effi-

ciency. We do not establish this result formally but conjecture that the relevant limit experiment

for estimating τa,k is equivalent to the normal model with the means that have the structure

captured by (3.1). In the normal model, the OLS has the familiar optimal decision-theoretic

properties, implying the same asymptotic optimality properties for the Sequential SDiD.

4 Covariates

So far, we have ignored covariates, assuming that the researcher only observes {Yi,t,Wi,t}i,t. In

practice, users commonly have access to covariates, which tend to take two different forms.
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We denote the first type of covariates by Xi and assume that it belongs to a finite set X .

These discrete time-invariant covariates are commonly used in empirical practice to construct

(Xi × time)-specific fixed effects. The second type of covariates, which we denote by Zi,t, vary

over time and typically enter the empirical specifications linearly.

In our analysis below, we focus only on the discrete time-invariant covariates. This choice

is motivated by two considerations: one is practical, and the other one is theoretical. First, in

applications, we expect (Xi × time)-specific fixed effects to explain a relatively larger share of

variation in outcomes and potentially have a non-negligible effect on the resulting estimates.

At the same time, we expect time-varying controls to have limited prediction power and not

affect the estimates a lot.1

Of course, the argument above is not universal, and there are applications where time-

varying covariates have a first-order effect in terms of explaining the outcome or in terms of

affecting the estimates. However, this fact itself presents a theoretical challenge: if Zi,t plays a

key important role in the empirical analysis, then what makes it different from Wi,t, i.e., why

should we treat it as a covariate rather than another treatment? The latter option substantially

complicates the analysis unless researchers are willing to assume that the treatment effects of

Zi,t are fully homogenous and static. See De Chaisemartin and D’haultfœuille (2023) for the

corresponding analysis of the two-way models with multiple treatment variables. Analysis of

such models is beyond the scope of this paper.

With time-invariant covariates present, we can update Assumption 2.2 and directly incor-

porate Xi into the model:

Yi,t = αi + βt(Xi) + θ⊤i ψt(Xi) +
∑
k≥0

τi,a,k{Ai = a, k = t− Ai}+ ϵi,t, (4.1)

where now ϵi,t satisfies Assumption 2.2 conditionally on ({Ai, Xi}ni=1,γ). With Xi being dis-

crete, we can define the generalizations of the average outcomes we considered before, which
1This occurs in the empirical example we analyze in the next section, and at least in our experience, this

situation is very common in applications.
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are now specific for each possible x ∈ X :

Ya,t(x) = αa(x) + βt(x) + θ⊤a (x)ψt(x) +
∑
k≥0

τa,k(x) + ϵa,t(x),

and proceed with the same analysis as before, applying the results derived in the previous

section separately for each value of x. This approach is conceptually straightforward but can

be impractical. The set X while finite can be large relative to the sample size, leading to

noisy averages Ya,t(x). Theoretically, it creates a problem for our asymptotic argument which

relies on the sizes of the groups being large. Practically, it could make the resulting estimator

unstable. As a result, we do not recommend this approach unless the size of the smallest of the

(a× x)-specific groups is relatively large.

Instead, we make a simplifying assumption and focus on the following model:

Yi,t = αi + βt(Xi) + θ⊤i ψt +
∑
k≥0

τi,a,k{Ai = a, k = t− Ai}+ ϵi,t (4.2)

Compared to (4.1), this specification makes ψt common across all units. Equation (4.2) is

clearly more restrictive, but it is still more general than the standard model in empirical litera-

ture based on the conditional parallel trends (e.g., Abadie, 2005; Sant’Anna and Zhao, 2020).

Equation (4.2) is also natural if we view ψt as unobserved aggregate shocks that affect units

differentially, as in Example 2 in Section 2.1.

One practical advantage of the model (4.2) compared to (4.1) is that the former behaves

well under aggregation over x. To see this, we again consider (a× x)-specific averages, which

now have the following form:

Ya,t(x) = αa(x) + βt(x) + θ⊤a (x)ψt +
∑
k≥0

τa,k(x) + ϵa,t(x). (4.3)

Suppose, for each a, we further aggregate these averages using some common distribution over

x. The resulting aggregates will then have exactly the same form as before in (2.3), allowing

us to use all the results derived in the previous section. Importantly, this strategy is completely

robust to any heterogeneity in the treatment effects, delivering meaningful a-specific average
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treatment effects. This is the approachwe recommend using in practice, with additional caveats

discussed before.

The proposal described above treats all adoption cohorts equally. However, the cohort of

never-adopters, a = ∞, is special because we do not need to estimate any treatment effects for

it. As a result, we can aggregate Y∞,t(x) with arbitrary weights over x. In practice, we suggest

constructing data-driven weights by explicitly including averages Y∞,t(x) in the algorithm from

the previous section, as long as the size of the smallest (∞×x)-specific group is relatively large.

The latter holds in our empirical example, and we expect it to be common in applications where

the cohort of the never-adopters is large.

5 Empirical illustration and simulations

5.1 Empirical example

We apply our method to reevaluate findings from Bailey and Goodman-Bacon (2015). The

original dataset contains 96185 observations by county-year level. We exclude observations

with county IDs 36061, 6037, and 17031 that correspond to the most populous counties in

the dataset, all of which adopted the treatment in 1966. We categorize counties by the level of

their percent of the urban population in 1960, rounded to values 0, 25, 50, 75, and 100. We

then exclude all observations after the year 1988 due to limited data on those observations.

The remained observations are from 1959 to 1988.

The main outcome of interest is the adjusted mortality rate, Yi,t, whereas the treatment of

interest is the staggered rollout of Community Health Centers (CHCs),Wi,t. For each county we

also observe its population in 1960. To construct Ya,t, we calculate weighted means for every

cohort, where weights are given by the county population population. For treated counties,

cohorts are given by adoption date. We split the counties where the CHCs were not introduced

into 5 subcohorts according to the percentage of the urban population. This is analogous to

the procedure described in Section 4, with the percentage of the urban population playing the

role of Xi.

To construct the estimates, we apply Algorithm 1 with η2 = σ2

n0.9 , where σ2 is a preliminary
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Figure 1: Distribution of t-statistics for τ0
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Notes: Each point corresponds to τ̂k, with corresponding estimates constructed using standard DiD and Sequential
SDiD as described in Algorithm 1. The grey dotted lines correspond to 95% confidence intervals constructed using
Bayesian bootstrap described in Section 2 with 1000 simulations.

variance estimator based on the two-way model. After this, the matrix of cohort-year treatment

effects τ̂SSDiD
a,k is averaged to the k level as described in Section 2, weighted by the population

of counties. We also do the same with DiD estimates that are constructed using Algorithm 1

with regularization set to infinity. We produce standard errors using the Bayesian bootstrap

discussed in Section 2 with 1000 replications.

Figure 1 reports the results for both estimators along with 95% bootstrap confidence inter-

vals for τ̂SSDiD
k . We can see that the Sequential SDiD estimator closely mimics the standard

DiD estimator, which should not be surprising given that the two-way model fits the data well

in this case and, in particular, is not rejected based on the analysis of pretrends. We view these

results as a proof of concept that our approach produces reasonable estimates in applications

where we expect the standard methods to perform well.
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Figure 2: Distribution of t-statistics for τ0
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Notes: Each point corresponds to τ̂5, with corresponding estimates constructed using standard DiD and Sequential
SDiD as described in Algorithm 1. The grey dotted lines correspond to 95% confidence intervals constructed using
Bayesian bootstrap described in Section 2 with 1000 simulations.

5.2 Experiments

To construct the simulation, we use the original data from Bailey and Goodman-Bacon (2015).

We apply the matrix completion method developed in Athey et al. (2021) to impute the missing

unit-level counterfactual outcomes, Yi,t(∞). From the resulting matrix of counterfactuals, we

extract the two-way fixed effects and the matrix of interactive fixed effects (which has a rank

equal to 5 in our case). We normalize the size of the estimated interactive fixed effects to one,

by rescaling it by the Frobenius norms. In simulations, we vary the signal-to-noise ratio from

80%, with the noise level being four times lower than the size of the interactive fixed effects

component, to 0%, i.e., no interactive fixed effects.

To increase the original sample size, we repeat each row in the matrix of extracted interac-

tive fixed effects 4 times, keeping its original treatment status and population share. In each

simulation, we generate random normal noise and apply our estimator and the standard DiD

estimator to the resulting data using the same implementation as the one described in the pre-

vious section. For each simulation, we use 100 bootstrap replications to construct the standard
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Figure 3: Distribution of t-statistics for τ4
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Notes: Each point corresponds to τ̂4, with corresponding estimates constructed using standard DiD and Sequential
SDiD as described in Algorithm 1. The grey dotted lines correspond to 95% confidence intervals constructed using
Bayesian bootstrap described in Section 2 with 1000 simulations.

error and the corresponding t-statistic. We repeat this exercise 1000 times, varying the strength

of the signal.

Figure 2 reports the results for the distributions of the t-statistic for the first lag. We can

see that in 0%-signal simulation, the DiD estimator performs perfectly, as expected. While the

distribution of the t-statistic based on τ̂SSDiD
0 is more concentrated, suggesting that the standard

inference is somewhat conservative. Once we increase the strength of the signal to 80%, the

DiD estimator is extremely biased, with the majority of t-statistics being below −3, implying

near zero coverage. In contrast, the bias of our estimator is negligible from the inferential

perspective.

We then repeat the same exercise, but now focusing on τ̂SSDiD
4 and τ̂DiD

4 , i.e., the effect

4 years after the adoption of the treatment. Figure 3 reports these results, and we can see

that, again, our estimator performs reasonably well in both scenarios. The DiD estimator now

performs better for 80% signal, which is explained by the fact that estimation of these effects

is harder because of the accumulation of the noise.
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6 Conclusion

We propose a new method for estimating treatment effects in event studies with sequential

treatment rollout, which we call Sequential SDiD. Our proposal is based on applying the orig-

inal SDiD estimator sequentially to aggregated data, where the results of each step are used

to construct estimators at the next step. We connect this estimator to an oracle OLS estima-

tor, showing that the two are asymptotically equivalent under relatively mild assumptions. We

evaluate the performance of our estimator using an empirical application and data-based simu-

lations, showing that it is competitive with the DiD estimator in environments where the latter

works well and is superior in environments where the DiD estimator fails.
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A Proofs

A.1 OLS

Proof of Proposition 3.1:

Proof. We split the proof into three steps. First, we explain why the OLS estimators are uniquely

defined. Second, we show the result for the first ‘diagonal”, i.e., derive the representation for

τ̂OLS
a,0 . Finally, we prove the induction step to extend this argument to arbitrary τ̂OLS

a,k .

1. The argument for existence of τ̂OLS
a,k follows from the fact that Assumption 3.1 guarantees

that the solution to all balancing problems in Algorithm 2 exist. As a result, we know

that it is possible to construct an unbiased estimator. Since the OLS estimator optimizes

over the set of all unbiased estimators, it follows that the solution to the OLS problem

also exists, and has to be unique.

2. Fix a and consider τ̂OLS
a,0 , which has the representation:

τ̂ ora,a =
∑
j,l

ω̂OLS
j,l Yj,l,

where by the standard OLS arguments the weights ω̂OLS(a, a) solve the following opti-

mization problem:

ω̂OLS = argmin
ω

∑
j,l

ω2
j,l

πj

subject to:
∑
j

ωj,l = 0,
∑
l

ωj,l = 0

∑
j

ωj,lθj = 0,
∑
l

ωj,lψl = 0

ωa,a = 1

ωj,l = 0 for∞ > j ≥ l, (j, l) ̸= (a, a)

(A.1)

Define weights ω̃j,l = ({j = a} − {j ̸= a}ω̃(a)
j ({l = a} − {l ̸= a}λ̃(a,0)l and observe that

they satisfy the constraints in (A.1). For j < l, (j, l) ̸= (a, a) and j = ∞ the first order
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conditions for problem (A.1) have the following form:

ω̂j,l

πj
= µ0,j + γ0,l + (µ1,l)

⊤θj + (γ1,j)
⊤ψl

By taking the first-order conditions for the balancing problems in Algorithm 2, we have:

ω̃
(a)
j

πj
= µ0 + (µ1)

⊤θj

λ̃
((a,0)
l = γ0 + (γ1)

⊤ψl

Consider (j, l) such that j ̸= a and l ̸= a. Then we have that

ω̃j,l

πj
=
ω̃
(a)
j λ

(a,0)
l

πj
= µ0γ0 + (µ0γ1)

⊤ψl + (γ0µ1)
⊤θj + θ⊤j (µ1γ

⊤
1 )ψl.

Next consider j = a but l ̸= a; we then have:

ω̃j,l

πj
=

−γ0 − γ⊤1 ψl

πj
,

and similarly for j ̸= a and l = a:

ω̃j,l

πj
= −µ0 − µ⊤

1 θj,

It then follows:
ω̃j,l

πj
= µ̃0,j + γ̃0,j + µ̃⊤

1,jθj + γ̃⊤1,jψl,

where

µ̃0,j = −γ0
πa

{j = a}+ (µ0γ0 + (γ0µ1)
⊤θj){j > a}

γ̃0,l = −µ0{l = a}+ ((µ0γ1)
⊤ψl){l < a}

γ̃1,j = (−γ1
πa

){j = a}+ (γ1µ
⊤)θj{j > a}

µ̃1,l = (−µ1){l = a}
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It follows that ω̃j,l satisfies the first-order conditions, and since the optimization problem

is strictly convex, it implies that the weights ω̃j,l are optimal.

3. Next, suppose we have shown the result for a given value of k0, and want to extend it to a

k0+1. To this end, observe that the OLS estimator for τ̂OLS
a,k is equivalent to the following

optimization problem:

{α̂OLS
a , β̂OLS

t , ϕ̂OLS
t , ν̂OLS

a , τ̂OLS
a,k }a,t,k,k>k0 ∈

argmin
{αa,βt,ϕt,νa,τa,k}a,t,k

∑
a,t

πa

(
Ya,t − {a ≤ t, t− a ≤ k0}τ̂OLS

a,t−a−

−αa − βt − θ⊤a ϕt − νaψt − {a ≤ t, t− a > k0}τa,t−a

)2

This problem has the same structure as the one previous one as soon as we appropriately

redefine the outcomes. As a result, we can repeat the same argument as before to prove

the induction step.
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A.2 Abstract quadratic balancing problems

A.2.1 Connection I

Consider two optimization problems:

x⋆ = argmin
x∈L

∥Ax− b∥22 + η2∥x∥22,

x̂ = argmin
x∈L

∥Âx− b∥22 + η2∥x∥22

where L is a convex set. Optimality conditions for the first problem guarantee:

(Aδ)⊤(Ax⋆ − b) + 2η2δ⊤x⋆ ≥ 0

for any δ ∈ L− x⋆.

Let E := Â− A and δ̂ := x̂− x⋆, then we have from the optimality of x̂:

0 ≥ ∥Âx̂− b∥22 − ∥Âx⋆ − b∥22 + η2(∥x̂∥22 − ∥x⋆∥22) =

∥Âδ̂∥22 + 2(Âδ̂)⊤(Âx⋆ − b) + η2
(
∥δ̂∥22 + 2δ̂⊤x⋆

)
≥

∥Aδ̂∥22 + ∥Eδ̂∥22 + 2(Eδ̂)⊤Aδ̂ + 2(Aδ̂)Ex⋆ + 2(Eδ̂)(Ax⋆ − b) + 2(Eδ̂)⊤Ex⋆ + η2∥δ̂∥22 ≥

∥Aδ̂∥22 − 2∥E∥op∥δ̂∥2∥Aδ̂∥2 + η2∥δ̂∥22 − 2∥Aδ̂∥∥E∥op∥x⋆∥(
∥Eδ̂∥2 − (∥Ax⋆ − b∥2 + ∥E∥op∥x⋆∥2)

)2
− (∥Ax⋆ − b∥2 + ∥E∥op∥x⋆∥2)2 .

We also have the following inequality:

1

4
∥Aδ̂∥22 − 2∥E∥op∥δ̂∥2 + 4∥E∥2op∥δ̂∥22 =

(
1

2
∥Aδ̂∥2 − 2∥E∥op∥δ̂∥2

)2

≥ 0 ⇒

∥Aδ̂∥22 − 2∥E∥op∥δ̂∥2∥Aδ̂∥2 + η2∥δ̂∥22 − 2∥Aδ̂∥∥E∥op∥x⋆∥ ≥
3

4
∥Aδ̂∥22 − 2∥Aδ̂∥∥E∥op∥x⋆∥2 + (η2 − 4∥E∥2op)∥δ̂∥22 =

3

4

(
∥Aδ̂∥2 −

4

3
∥E∥op∥x⋆∥2

)2

− 4

3
∥E∥2op∥x⋆∥22 + (η2 − 4∥E∥2op)∥δ̂∥22.
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Combining all these pieces together, we get:

3

4

(
∥Aδ̂∥2 −

4

3
∥E∥op∥x⋆∥2

)2

+ (η2 − 4∥E∥2op)∥δ̂∥22+(
∥Eδ̂∥2 − (∥Ax⋆ − b∥2 + ∥E∥op∥x⋆∥2)

)2
≤ (∥Ax⋆ − b∥2 + ∥E∥op∥x⋆∥2)2 +

4

3
∥E∥2op∥x⋆∥22.

As a result, on the event η2 − 8∥E∥2op > 0 we get the following implication:

∥Aδ̂∥2 ≲ ∥E∥op∥x⋆∥2 + ∥Ax⋆ − b∥2,

∥Eδ̂∥2 ≲ ∥E∥op∥x⋆∥2 + ∥Ax⋆ − b∥2,

∥δ̂∥2 ≲
∥E∥op∥x⋆∥2 + ∥Ax⋆ − b∥2

η

A.2.2 Connection II

Consider two optimization problems:

xor = argmin
x∈L

∥Ax− bor∥22 + η2∥x∥22,

x⋆ = argmin
x∈L

∥Ax− b∥22 + η2∥x∥22

where L is a convex set. Optimality conditions for the first problem guarantee:

(Aδ)⊤(Axor − bor) + 2η2δ⊤xor ≥ 0

for any δ ∈ L − xor. Denote ϵ := b − bor and δ⋆ := x⋆ − xor. Using optimality for the second

problem, and the optimality conditions for the second problem we get:

0 ≥ ∥Ax⋆ − b∥22 − ∥Axor − b∥22 + η2(∥x⋆∥22 − ∥xor∥22) =

∥Aδ⋆∥2 + 2(Aδ⋆)⊤(Axor − b) + η2(∥δ⋆∥22 + 2(δ⋆)⊤xor) ≥

∥Aδ⋆∥2 − 2(Aδ⋆)⊤ϵ+ η2∥δ⋆∥22 ≥

∥Aδ⋆∥2 − 2∥Aδ⋆∥2∥ϵ∥2 + η2∥δ⋆∥22
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It then follows:

∥Aδ⋆∥2 ≲ ∥ϵ∥2, ∥δ⋆∥2 ≲
∥ϵ∥2
η

Combining the results of the two problems together, we can conclude that on the event η2 −

8∥E∥2op > 0, we get the following bounds

∥A(x̂− xor)∥2 ≲ ∥E∥op
(
∥xor∥2 +

∥ϵ∥2
η

)
+ ∥Axor − bor∥2 + ∥ϵ∥2

∥x̂− xor∥2 ≲
∥E∥op

(
∥xor∥2 + ∥ϵ∥2

η

)
+ ∥Axor − bor∥2 + ∥ϵ∥2
η

A.2.3 Connection III

Consider a vector y that satisfies:

Ay = bor, c⊤y = 1.

We use c⊤y = 1 in place of L in the previous discussion and write

xor := arg min
c⊤x=1

{
∥Ax− bor∥22 + η2∥x∥22

}
.

Using strong duality, we get the following equivalence:

min
c⊤x=1

{
∥Ax− bor∥22 + η2∥x∥22

}
= min

x,t
max

∥β∥2≤1,β0,λ≥0

{
λ(β⊤(Ax− bor)− t) + t2 + η2∥x∥22+

β0(c
⊤x− 1)

}
= max

β,β0

min
x

{
β⊤(Ax− bor)− ∥β∥22

4
+ η2∥x∥22 + β0(c

⊤x− 1)
}
=

− η2min
β,β0

{∥∥A⊤β + β0c
∥∥2
2
+ η2∥β∥22 − 2

(
A⊤β + β0c

)⊤
y
}
=

− η2min
β,β0

{∥∥y − A⊤β − β0c
∥∥2
2
+ η2∥β∥22 − ∥y∥22

}
,
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where the solution to the primal problem satisfies

(β⋆, β⋆
0) = argmin

β,β0

{∥∥y − A⊤β − β0c
∥∥2
2
+ η2∥β∥22

}
,

xor = A⊤β⋆ + β0c
⋆.

Using the first-order conditions for the dual problem, we get:

bor − Axor = A(y − xor) = A(y − A⊤β⋆ − β⋆
0c) = η2β⋆ ⇒ ∥bor − Axor∥2 = η2∥β⋆∥2

This implies that the imbalance ∥b − Axor∥2 is of the order of η2 as long as ∥β⋆∥2 is bounded.

Observe that this bound is much better than the trivial bound

∥Axor − bor∥22 ≤ η2∥y∥22,

which we get directly from the optimality of xor and properties of y.

Observe that the result above holds for any y that satisfies the equations. To bound β⋆ we

consider a least-norm solution:

yor := argmin
y

∥y∥22

subject to: Ay = bor, c⊤y = 1.

Solution to this problem has the form yor = A⊤βor + cβor
0 , and by construction ∥βor∥2 ≥ ∥β⋆∥2.

As a result, we can bound the imbalance

∥bor − Axor∥2 ≤ η2∥βor∥2.

We also have ∥xor∥2 ≤ ∥yor∥2. We also use the following bound

∥yor∥2 = ∥A⊤βor + cβor
0 ∥2 ≥ ∥Pc⊥A

⊤βor∥2 ≥ ∥Pc⊥A∥min∥βor∥2 ⇒

∥βor∥2 ≤
∥yor∥2

∥Pc⊥A∥min

,
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where Pc⊥ is the orthogonal projector on the complement of c and ∥Pc⊥A∥min is the smallest

singular value of ∥Pc⊥A∥min. The last result relies on the fact that βor has no component in the

kernel of the matrix A⊤. This is without loss of generality because if such components exist,

then we can drop it and redefine βor without changing the results. The argument also relies on

∥Pc⊥A∥min being non-zero, but this is also without loss of generality, because if it is zero, then

we can set βor to zero as well. We also have:

∥Aδ⋆∥2 ≥ ∥A∥min∥δ⋆∥2 ⇒ ∥δ⋆∥2 ≤
η2

∥A∥min∥Pc⊥A∥min

≤ η2

∥Pc⊥A∥2min

,

where we used the fact that δ⋆ belongs to the image of A⊤.

Combining these results with our previous discussion, we can conclude that on the event

η2 − 8∥E∥2op > 0, we get the following bounds:

∥A(x̂− yor)∥2 ≲ ∥E∥op
(
∥yor∥2 +

∥ϵ∥2
η

)
+

η2∥yor∥2
∥Pc⊥A∥min

+ ∥ϵ∥2

∥x̂− xor∥2 ≲
∥E∥op

(
∥yor∥2 + ∥ϵ∥2

η

)
+ η2∥yor∥2

∥P
c⊥A∥min

+ ∥ϵ∥2
η

+
η2∥yor∥2
∥Pc⊥A∥2min
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A.3 Sequential SDiD

Proof of Theorem 3.1: The argument relies on applying the results established in the previ-

ous section. First, we define an error matrix E such that.

Ej,k = ϵj,l

We also define E(a,k) – the top-left corner of matrix E that corresponds to periods t < a+k and

adoption times j > a. We also defineE(a,k)
a. = (εa,1, . . . , εa,a+k−1) andE(a,k)

.k = (εa+1,a+k, . . . , ε∞,a+k)
⊤.

Assumption 3.2 guarantees that ∥E(a,k)∥op = Op

(
1√
n

)
via Markov inequality for all (a, k) and

the same hols for E(a,k)
.k and E(a,k)

a. .

The proof is based on the induction argument. We start by analyzing the difference

τ̂SSDID
a,a − τ̂OLS

a,a ,

establish the rate for this difference, assume that the same rate holds for τ̂SSDID
a,a+k − τ̂OLS

a,a+k and

finally prove the induction step by showing that it implies the same rate for τ̂SSDID
a,a+k+1 − τ̂OLS

a,a+k+1.

1. We start with the expansion:

τ̂SSDID
a,a − τ̂OLS

a,a =
(
Ya,a −

(
Y (a,a)
a.

)
λ̂(a,0)

)
−
(
(ω̂(a,a))⊤Y

(a,a)
.0 − (ω̂(a,a))⊤Y (a,a)λ̂(a,0)

)
−
(
Ya,a −

(
Y (a,a)
a.

)
λ̃(a,0)

)
+
(
(ω̃(a))⊤Y

(a,a)
.0 − (ω̃(a))⊤Y (a,a)λ̃(a,0)

)
= (δ̂(a,a)ω )⊤Y (a,a)δ̂

(a,a)
λ + (ω̃(a))⊤Y (a,a)δ̂

(a,a)
λ + (δ̂(a,a)ω )⊤Y (a,a)λ̃(a,0) − Y (a,a)

a. δ̂
(a,a)
λ − (δ̂(a,a)ω )⊤Y

(a,a)
.0 =

= (δ̂(a,a)ω )⊤L(a,a)δ̂
(a,a)
λ + (ω̃(a))⊤L(a,a)δ̂

(a,a)
λ + (δ̂(a,a)ω )⊤L(a,a)λ̃(a,0) − L(a,a)

a. δ̂
(a,a)
λ − (δ̂(a,a)ω )⊤L.0+

(δ̂(a,a)ω )⊤E(a,a)δ̂
(a,a)
λ + (ω̃(a))⊤E(a,a)δ̂

(a,a)
λ + (δ̂(a,a)ω )⊤E(a,a)λ̃(a,0) − E(a,a)

a. δ̂
(a,a)
λ − (δ̂(a,a)ω )⊤E

(a,a)
.0 ≤

(δ̂(a,a)ω )⊤L(a,a)δ̂
(a,a)
λ +

∥E(a,a)∥op∥∥δ̂(a,a)ω )∥2∥δ̂(a,a)λ ∥2 + ∥E(a,a)∥op∥δ̂(a,a)ω )∥2∥λ̃(a,0)∥+ ∥E(a,a)∥op∥ω̃(a)∥2∥δ̂(a,a)λ ∥2+

∥δ̂(a,a)λ ∥2∥E(a,a)
.0 ∥2 + ∥δ̂(a,a)λ ∥2∥E(a,a)

a. ∥2

Where we used the fact L(a,a)λ̃(a,0) = L
(a,a)
a. and similarly (ω̃(a))⊤L(a,a) = L

(a,a)
.0 by the
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definition of the OLS weights. We can also decompose:

|(δ̂(a,a)ω )⊤L(a,a)δ̂
(a,a)
λ | ≤ ∥(δ̂(a,a)ω )⊤L(a,a)∥2∥L(a,a)δ̂

(a,a)
λ ∥2

σ̃a,a
.

We can now apply the abstract balancing bounds established in the previous section to

conclude:

∥L(a,a)δ̂
(a,a)
λ ∥2 ≲p

1√
n

(
∥λ̃(a,0)∥2 +

1√
nη

)
+
η2∥λ̃(a,0)∥2

σ̃a,a
+

1√
n
,

∥δ̂(a,a)λ ∥2 ≲p

1√
n

(
∥λ̃(a,0)∥2 + 1√

nη

)
+ η2∥λ̃(a,0)∥2

σ̃a,a
+ 1√

n

η
+
η2∥λ̃(a,0)∥2

σ̃2
a,a

,

∥(δ̂(a,a)ω )⊤L(a,a)∥2 ≲p
1√
n

(
∥ω̃(a)∥2 +

1√
nη

)
+
η2∥ω̃(a)∥2
σ̃a,a

+
1√
n
,

∥ω̃(a)∥2 ≲p

1√
n

(
∥ω̃(a)∥2 + 1√

nη

)
+ η2∥ω̃(a)∥2

σ̃a,a
+ 1√

n

η
+
η2∥ω̃(a)∥2
σ̃2
a,a

.

By assumption the variance of the OLS estimator is finite, which together with Assumption

3.2 guarantees that ∥ω̃(a)∥2 ∼ 1 and ∥λ̃(a,0)∥2 ∼ 1 (the lower bound follows from the fact

that they sum up to 1). Putting these results together we can conclude:

|τ̂SSDID
a,a − τ̂OLS

a,a | ≲p

(
1√
n
+ η2

σ̃a,a

)2
σ̃a,a

+
1√
n

(
1√
nη

+
η

σ̃a,a

)
≲p

1

nσ̃a,a
+ η

(
η

σ̃a,a

)3

+
1√
n

(
1√
nη

+
η

σ̃a,a

)
≪p n

− 1
2 .

We can then repeat this argument for all feasible a.
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2. We now establish the induction step. We have the following:

τ̂SSDID
a,k − τ̂OLS

a,k =
(
Ya,a −

(
Y (a,a)
a. − τ̂SSDID,(a,k)

a.

)
λ̂(a,0)

)
−(

(ω̂(a,a))⊤(Y
(a,a)
.0 − τ̂

SSDID,(a,k)
.0 )− (ω̂(a,a))⊤(Y (a,a) − τ̂SSDID,(a,k))λ̂(a,0)

)
−

−
(
Ya,a −

(
Y (a,a)
a. − τ̂OLS,(a,k)

a.

)
λ̃(a,0)

)
+(

(ω̃(a))⊤(Y
(a,a)
.0 − τ̂

OLS,(a,k)
.0 )− (ω̃(a))⊤(Y (a,a) − τ̂OLS,(a,k))λ̃(a,0)

)
=

part 1+ part 2+ part 3,

where

part 1 :=(δ̂(a,k)ω )⊤(Y (a,k) − τ (a,k))δ̂
(a,k)
λ + (ω̃(a))⊤(Y (a,a) − τ (a,k))δ̂

(a,k)
λ +

(δ̂(a,k)ω )⊤(Y (a,k) − τ (a,k))λ̃(a,k) − (Y (a,k)
a. − τ (a,k)a. )δ̂

(a,k)
λ − (δ̂(a,k)ω )⊤(Y

(a,k)
.0 − τ

(a,k)
.0 );

part 2 :=(δ̂(a,k)ω )⊤(τOLS,(a,k) − τ (a,k))δ̂
(a,k)
λ + (ω̃(a))⊤(τOLS,(a,k) − τ (a,k))δ̂

(a,k)
λ +

(δ̂(a,k)ω )⊤(τOLS,(a,k) − τ (a,k))λ̃(a,k) − (τOLS,(a,k)
a. − τ (a,k)a. )δ̂

(a,k)
λ − (δ̂(a,k)ω )⊤(τ

OLS,(a,k)
.0 − τ

(a,k)
.0 );

part 3 :=
(
τ̂SSDID,(a,k)
a. − τ̂OLS,(a,k)

a.

)
λ̂(a,0)+(

(ω̂(a,a))⊤(τ̂
SSDID,(a,k)
.0 − τ̂

OLS,(a,k)
.0 )− (ω̂(a,a))⊤(τ̂SSDID,(a,k) − τ̂OLS,(a,k))λ̂(a,0)

)
.

The induction assumption and the fact that the weights are bounded guarantees that

the last terms is op
(
n− 1

2

)
. To establish the bounds for the first two parts we need to

guarantee that we have the same guarantees for the weights error as before. It is easy

to see that this is the case, though, because the OLS etimator has errors of the order 1√
n
,

and the deviations of the Sequential SDiD estimator from the OLS estimator are of the

smaller order by induction assumption. As a result, we get the same bounds as before,

and can guarantee that both parts are of the order 1√
n
, thus concluding the proof.
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