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We introduce the profligacy of a search process as a competition between its expected cost and
the probability of finding the target. The arbiter of the competition is a parameter λ that represents
how much a searcher invests into increasing the chance of success. Minimizing the profligacy with
respect to the search strategy specifies the optimal search. We show that in the case of diffusion
with stochastic resetting, the amount of resetting in the optimal strategy has a highly nontrivial
dependence on model parameters resulting in classical continuous transitions, discontinuous transi-
tions and tricritical points as well as non-standard discontinuous transitions exhibiting re-entrant
behavior and overhangs.

Searching is a task that arises in numerous domains.
In nature, examples range from proteins locating their
binding sites within the cell [1] to foraging by macro-
organisms [2, 3]. In computer science, search algorithms
have long been of fundamental interest [4] and have
gained cultural importance in determining how the large
and unstructured body of data that constitutes the in-
ternet is experienced by users [5]. Crossovers between
these domains also exist, such as biologically-inspired op-
timization algorithms which can be applied to solve many
and varied science and engineering problems [6]. A large
literature has established optimal random search strate-
gies, in the sense of optimizing the efficacy of the search
[7–11].

In this work, we study a feature that is common to
all such search processes, namely that increasing efficacy
typically comes with a cost, for example, the amount of
time or energy that must be invested or the complexity
of the algorithm. A natural question is whether one can
identify a point of diminishing return, i.e., a point beyond
which investing more effort into the search is not com-
pensated by sufficiently increased success. We answer
this question by introducing a quantity called profligacy
that expresses the cost-efficacy trade-off in a manner sim-
ilar to Helmholtz free energy, wherein the search cost
plays the role of energy, the success probability provides
an analog to entropy, and a temperature-like quantity
λ has the units of cost and characterizes how much ef-
fort a searcher is prepared to invest. We will show below
that in the context of even fairly simple diffusive searches
[12–14], the optimal strategy that arises from minimiz-
ing profligacy exhibits a rich phase diagram (presented in
Fig. 2 below). By this we mean that one finds both con-
tinuous and discontinuous transitions between regimes
in which the optimal search strategy switches. More-
over, the phase structure goes beyond what is normally
seen at equilibrium, exhibiting re-entrant behavior and
overhangs, to be detailed below.

We begin by deriving the profligacy ξ. Its origin is most
clearly understood by appealing to an ensemble of K in-
dependent searchers, all of whom are following a strategy
that is controlled by a parameter r. Associated with each
searcher is a non-negative cost C that depends on the
path that they have followed up to the allotted search
time, tf . Meanwhile, the overall efficacy of the search
can be quantified in terms of the fraction of searchers
that have located the target before tf . As K → ∞ this
fraction converges to Ps(r), the success probability for
a single searcher (averaged over all possible search his-
tories). Similarly, the total cost (across the ensemble)
behaves asymptotically as K⟨C(r)⟩, where ⟨C(r)⟩ is the
mean cost for a single searcher (again averaged over all
possible search histories). To implement the trade-off, we
introduce a weighted efficacy Ps(r)ω(r) where the mul-
tiplicative factor ω(r) decreases with the total cost of
the search. A natural choice is the exponential func-
tion ω(r) = exp(−⟨C(r)⟩/λ), since this lies in [0, 1] for
λ ≥ 0, and we can identify the single parameter λ, which
we call the investment, as a characteristic cost that each
searcher is willing to invest. The point of diminishing re-
turn can now be defined as the value of r that maximizes
the cost-weighted efficacy, or equivalently, that minimizes
the profligacy

ξ = ⟨C(r)⟩ − λ lnPs(r) . (1)

It is here that we recognize the structure of a Helmholtz
free energy that was described above, and within which
the variational parameter r relates to the search strategy.

We devote the rest of this work to determining how the
search strategy that minimizes the profligacy changes as
we vary the investment λ, within the framework of diffu-
sive searches under stochastic resetting. In this context
the searcher is modeled as a diffusive particle starting
from the origin, which is reset instantaneously to the
origin with rate r [12]. The search is successful if the
searcher reaches a target located at distance m from the
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origin. Early studies of such processes [12–15] demon-
strated how resetting can allow the target to be found
more quickly than through diffusion alone, replacing an
infinite mean time to locate the target with some finite
value. Moreover, there exists an optimal resetting rate
r∗, which minimizes the mean time to find a target [12]
and the value of r∗ undergoes phase transitions as vari-
ous control parameters are varied [16–29]. We emphasize
that the optimization problem here is different, in that
we seek to minimize the profligacy of a search constrained
to end at a predetermined time tf . Recently, the conse-
quences of associating a cost with each reset, accounting
for the consumption of time, fuel or some other finite re-
source, have been investigated [30–34] and the statistics
of the cost as a function of r have been computed [33].
Here we consider a predetermined cost of the search, for
example, where one purchases a search of duration tf re-
gardless of whether the target is found within that time.
Thus the average cost ⟨C(r)⟩ does not depend on the
target position (see SM [35] for further details). The
resetting rate r furnishes a single key parameter, charac-
terizing the search strategy, with which we may optimize
the profligacy. We will focus on the transitions from a
non-resetting optimal strategy, r = 0, to an non-zero op-
timal value of r.

We consider two classes of resetting models which dif-
fer in what happens at the end time tf , as illustrated
in Fig. 1. In the case of Resetting Brownian Motion
(RBM) [12], the process is simply halted at tf , mean-
ing that searcher can be anywhere in space at time tf .
By contrast, a Resetting Brownian Bridge (RBB) [36]
imposes the additional constraint that a searcher must
return to the origin at time tf . This models such sit-
uations as a rescue helicopter having to return to base
to refuel after a prespecified flight time. The RBB en-
semble is obtained from that of RBM by retaining only
those trajectories that occupy the starting position at
the completion time, tf . In mechanical terms, this con-
ditioning creates a time-dependent drift on the particle
motion along with a resetting rate that diverges as tf is
approached, thereby guaranteeing a return to the origin
[36].

Each reset i contributes a cost ci ≥ 0 which depends
on the distance travelled to the origin in the reset. The
number of resets N that occur up to the fixed time tf
is a random variable and fluctuates from trajectory to
trajectory. The total cost, C, of a trajectory is obtained
by summing over all N resets that occur along it:

C =
N∑

i=1

ci =
N∑

i=1

c(|yi|) (2)

and the cost is zero if there is no reset in the trajectory.
Here, yi = xi/

√
2Dtf is the rescaled (dimensionless) po-

sition just before the reset and the function c(y) is the
cost per reset. Similarly, it is convenient to use dimen-
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FIG. 1: Schematic trajectory for RBM (red) and RBB
(blue). For RBM, the particle diffuses without constraint
while for RBB the particle is constrained to return to the
starting position at the completion time tf . The vertical
arrows represent resetting events. The searcher is con-
sidered to have found the target if it crosses x = m in
any of its excursions before tf .

sionless, rescaled variables R = rtf and M = m/
√

2Dtf ,
which eliminate the values of diffusion constant D and
search time tf from the discussion, and leave R, λ and
M as the control variables. We will compare a linear,
c(y) =

√
2y, and a quadratic, c(y) = 2y2, cost per reset,

since these are the simplest cases for practical applica-
tions, but, as we shall see, yield very different phase di-
agrams. The linear cost can be motivated as the time
required to bring the particle back to the origin at a
constant velocity [30, 31, 37]. Likewise, the quadratic
cost can represent energy consumption, monetary cost or
thermodynamic cost for the particle to reset [34, 38, 39].
Our aim now is to determine the optimal resetting

strategy—that is, the value of R = R∗ that minimizes
the profligacy (1)—for a given combination of target po-
sition M and investment λ. To achieve this, we must
first evaluate the mean cost ⟨C⟩ and the probability of
finding the target Ps. The resetting systems we consider
have the appealing feature that these quantities can be
calculated analytically, following recent progress in lever-
aging renewal properties of the process [33]. The success
probability has been calculated for RBM in [12] and for
RBB in [36]. The mean costs are derived in detail in the
Supplemental Materials [35].
For the case of RBM, the explicit expressions are

⟨C⟩RBM
lin =

e−R

√
π

+
(2R− 1) erf

(√
R
)

2
√
R

(3)

⟨C⟩RBM
quad =

2
(
R+ e−R − 1

)

R
(4)

PRBM
s =

∫

Γ

du

2πi
eu

1

u

R+ u

R+ ueM
√

2(u+R)
(5)

where the subscripts lin and quad refer to the linear and
quadratic cost functions, respectively. The success prob-
ability is expressed as an inverse Laplace transform, de-
noted by an integral over the Bromwich contour Γ. This
form is sufficient to determine the phase diagrams nu-
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(b) RBM Quadratic Cost
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(c) RBB Linear Cost
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FIG. 2: Phase diagrams: heat map of R∗ which minimizes profligacy (ξ) for 4 different cases: (a) RBM with linear
cost (b) RBM with quadratic cost (c) RBB with linear cost and (d) RBB with quadratic cost. The phase boundaries
delineate the boundary between regions of zero and non-zero R∗: a full line indicates a continuous transition and
broken line a discontinuous transition. In (a) the horizontal red line indicates the threshold, MT, above which there
is no transition.

merically using a suitable inversion algorithm [40]. For
RBB, meanwhile, we obtain

⟨C⟩RBB
lin = Rϕ(R) (6)

⟨C⟩RBB
quad = 2− erf(

√
R)√

R
ϕ(R) (7)

PRBB
s = ϕ(R)

∫

Γ

du

2πi

eu
√
u+R

u

R+ ue−M
√
2
√
u+R

R+ ueM
√
2
√
u+R

(8)

where ϕ(R) =
√
π
[
e−R +

√
πR erf

√
R
]−1

.

In Fig. 2 we present the phase diagrams in the λ–M
plane obtained by minimizing the profligacy with respect
to R. We distinguish between the two different types of
search (RBM and RBB) and the two different cost func-
tions (linear and quadratic). In the unshaded regions,
diffusing without resetting is optimal (R∗ = 0), whereas
in the shaded regions, a nonzero resetting rate yields the
least profligate search. Along the solid lines, the optimal
resetting rate R∗ changes continuously across the phase
boundary, whilst along the broken lines the optimal re-
setting rate jumps discontinuously. The nature of the
transition is significant: a continuous transition implies

that a gradual introduction of resetting yields the opti-
mal search strategy whereas a discontinuous transition
implies a sudden switch of strategies to a finite resetting
rate.

As we now discuss, the significant differences in the
topology of the four phase diagrams derive from small
qualitative distinctions in the behavior of ⟨C⟩ and Ps,
i.e. Eqs. (3)–(8).

The easiest phase diagram to understand is that for
RBM and a linear cost per reset (Fig. 2a) for which the
cost (3) increases monotonically with the resetting rate
(see SM Fig. S1). When the target is far from the origin
(large M), the success probability (5) monotonically de-
creases (see SM Fig. S2). Thus for large M , R∗ = 0 is
always the optimal value. However for M below a thresh-
old value MT , the success probability initially increases
with R and has a peak at some intermediate value of
R. This implies that for sufficiently large λ the optimal
resetting rate R∗ is non zero. The transition to an opti-
mal strategy that involves resetting can be understood by
appealing to a Landau-like theory which implies a clas-
sical continuous phase transition into a resetting phase
(R∗ > 0) as λ is increased at fixed M < MT .

We now turn to the case of a quadratic cost per reset,
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FIG. 3: Optimal resetting rate R∗ versus λ for values
of M in the regions where continuous and discontinuous
transitions are in close proximity. Panels (a) and (b)
RBM with quadratic cost: there are two different ranges
of M (see Fig. 2) where on increasing λ, there is first a
continuous transition followed by a discontinuous transi-
tion. The discontinuous jump in R∗ closes at a non-zero
value of R∗ as M is varied and thus is not a usual tri-
critical point. Panel (c) RBB with linear cost: we have
a usual tricritical point where the jump in discontinuity
closes at R∗ = 0. Panel (d) RBB with quadratic cost:
similar to RBM the jump closes at non-zero value of R∗.

for which the mean cost no longer grows without bound
as R → ∞ but approaches a plateau (see SM Fig. S1).
The effect of this on the RBM phase diagram, Fig. 2b, is
the addition of a discontinuous transition line at interme-
diate M . Although this meets the continuous transition
line at two points, it does not end there (as at tricriti-
cal points) but extends beyond them, thus creating over-
hangs (see insets). So as λ is increased, for particular
choices of M , we find an initial continuous transition to
a nonzero optimal resetting rate R∗ very closely followed
by a discontinuous jump in R∗ as shown in Figs. 3a and
3b. This sequence of transitions implies an initial gradual
introduction of resetting into the optimal search strategy
then a sudden jump to a stronger resetting strategy.

In contrast to RBM, the success probability for a RBB
search is a peaked function of R for all target positions
M (see SM Fig. S2). The effect of this is that resetting
always becomes beneficial for high enough λ. With a
linear cost per reset (Fig. 2c), the transition is continuous
for high M and discontinuous at low M , the two lines
meeting at a classical tricritical point (see Fig. 3c) [29].

Finally, for the case of RBB with quadratic cost per reset
(Fig. 2d), the shape of the phase boundary has developed
a kink in comparison to the linear cost case. Similar to
the case of RBM, the mean cost plateaus as R → ∞,
creating an overhang instead of a tricritical point. This
overhang effect is evident in Fig. 3d, where we see both
a continuous transition from R∗ = 0 to R∗ > 0 and a
discontinuous jump between two nonzero values of R∗

at a higher value of λ. As M is increased, the jump in
the discontinuous transition goes to zero and we are left
with a single continuous transition. If we consider fixing
λ and increasing M , then in the region of the kink we
have re-entrant behaviour into the R∗ = 0 phase via a
discontinuous transition.
To gain deeper insight into the nature of these transi-

tions, we make a Landau-like expansion of the profligacy
(1) in powers of R, valid for small values of R,

ξ = a0 + a1R+ a2
R2

2
+ a3

R3

6
+ a4

R4

24
+ . . . , (9)

with all the coefficients ai = ai(λ,M). Due to the system
not possessing an R → −R symmetry, we have to include
all terms of the expansion. Related Landau-like expan-
sions have been made in [24, 29]. The expansion of ⟨C⟩ is
obtained directly from (3), (4) and (6), (7). We also re-
quire the expansion of Ps for the two resetting ensembles,
which is obtained by expanding out the integrands of (5)
and (8) in terms of R and integrating term by term. This
procedure is carried out in detail in the SM [35].
The simplest case is when a2 > 0 in the expansion

(9) and we may ignore higher order terms. The curve
of continuous transitions, λ∗(M), is obtained by solving
a1(λ,M) = 0 for λ. This is the usual scenario for a
continuous transition seen in equilibrium systems [41].
This simple scenario pertains in the case of RBM with
a linear cost, where we saw in Fig. 2 that a continuous
transition occurs on increasing λ, for sufficiently low M .
The threshold value MT is given by λ∗(MT) → ∞ and
forM > MT no transition occurs. The exact valueMT =
0.8198 . . . that is obtained from this procedure provides
the horizontal line in Fig. 2a.
The next case is where a2 may be positive or negative

according to parameters, but a3 is positive. This is the
case for RBB with linear cost, Fig. 2c. Then for a2 > 0
we obtain a continuous transition at a1 = 0 but for a2 < 0
there is a discontinuous transition. A classical tricritical
point occurs when a1 = a2 = 0 and a3 > 0. To obtain
the tricritical point, we set a2(λ

∗,M) = 0, which yields
(M∗, λ∗) = (0.6333, 8.4994) indicated by the filled circle
in Fig. 2c.

The interesting non-classical overhangs that occur for
both RBM and RBB with quadratic cost per reset
(Figs. 2b and 2d) can be attributed to the coefficients
satisfying a3 < 0 and a4 > 0. If we look for a tricritical
point by solving a2(λ

∗,M) = 0 for M , we find at all such
M∗ that a3(λ

∗,M∗) < 0. This violates the condition
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for a tricritical point, which is why overhangs emerge in-
stead. Of course the predictions of a Landau-like theory
for discontinuous transitions will only be quantitatively
accurate for small R, nevertheless the correct qualitative
behaviour is predicted.

In summary, we have introduced the profligacy ξ (1)
as a tool to analyse the cost-efficacy trade-off in a search
process. We have derived ξ from considering the effi-
cacy, Ps, weighted by an exponential function of the cost
expectation value ⟨C⟩. The simple framework of diffu-
sion under stochastic resetting with rate r has allowed us
to derive analytical expressions for Ps and ⟨C⟩ and thus
to carry out the minimization of ξ. This has resulted
in surprisingly rich phase diagrams, exhibiting classical
continuous and discontinuous transitions, but also non-
standard transitions with re-entrant behaviour and over-
hangs. These transitions imply changes of the optimal
search strategy that may be gradual or sudden. We have
shown that these transitions may be understood within
a simple Landau-like expansion of the profligacy. As the
profligacy just requires a cost and a measure of success
as inputs, it has the potential for application in wider
contexts. It would be of interest to see if the different
classes of transition that we have identified here, arise
more generally.
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This Supplemental Material details the calculations of the mean cost (Section I) and the success probability (Sec-
tion II) in diffusion with resetting. Section III sets out the Landau-like expansion of the profligacy and the procedure
for determining where phase boundaries lie. Finally, we briefly expand in Section IV on the interpretation of the
profligacy function introduced in the main text as it applies to the case of predetermined search strategies.

I. DERIVATION OF THE MEAN COST

The key quantity that is required to determine the mean total cost incurred in a diffusive resetting process is
Ωr(C, tf ), the statistical weight of trajectories that start at the origin at t = 0, return to the origin as a Poisson
process at rate r, end at a predetermined time t = tf and incur a total cost C. These statistical weights will differ in
the ensemble where the endpoint of the trajectory is free (as in Resetting Brownian Motion, RBM) or constrained to
lie at the origin (as in a Resetting Brownian Bridge, RBB). Once this quantity is known, we can determine the mean
cost over such trajectories as

⟨C⟩ =
∫
dC C Ωr(C, tf )∫
dC Ωr(C, tf )

. (S1)

An explicit expression for Ωr(C, tf ) is obtained from a renewal equation. The idea is to consider the evolution from
the start of the process until either one of two things happens. The first possibility is that the particle resets for the
first time at some time 0 ≤ t ≤ tf , after which the entire process restarts from the origin, with the remainder of the
trajectory lasting a time t− tf and incurring a cost C − c(x), where c(x) ≥ 0 is the cost of resetting from the point
x to the origin. In this case, the particle resets with probability e−rtrdt in the interval [t, t + dt], and is distributed
over space as G(x; t) which is the Green function for diffusion,

G(x; t) =
1√
4πDt

e−
(x−x0)2

4Dt (S2)

where D is the diffusion constant. The second possibility is the particle reaches the point x at time tf without
resetting. This event arises with probability e−rt, incurs zero cost and we allow only those endpoints x that fall
within the set E. For the case of RBM, E is the entire real line, whereas for RBB, E is the origin.

Expressing these two possibilities as a renewal equation, we find

Ωr(C, tf ) =

∫ tf

0

dt re−rt

∫ ∞

−∞
dxG(x; t)Ωr(C − c(x), tf − t) + e−rtδ(C)

∫

E

dxG(x; tf ) . (S3)

The first term is a convolution and thus the recursion can be solved by introducing the double Laplace transform

Ω̃r(p, s) =

∫ ∞

0

dC e−pC

∫ ∞

0

dtf e
−stfΩr(C, tf ) . (S4)

Note on notation Here we have used Ω̃r(N, p|x0, s) to indicate a double Laplace transform. We will also use a

tilde symbol to denote single Laplace transforms of a single time variable, e.g. G̃(x; s), below. The arguments of the
function should make clear the number of Laplace variables. In certain places, for convenience, we will use Lt→s to
indicate Laplace transform to Laplace variable s and L−1

s→t to indicate Laplace inversion to the time domain.

Laplace transforming (S3) with respect to both arguments and rearranging, we find

Ω̃r(p, s) =
K̃(r + s)

1− rW̃ (p, r + s)
(S5)
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where

K̃(s) =

∫

E

dx

∫ ∞

0

dtf e
−stfG(x; tf ) =

∫

E

dx G̃(x; s) (S6)

W̃ (p, s) =

∫ ∞

−∞
dx e−pc(x)

∫ ∞

0

dt e−stG(x; t) =

∫ ∞

−∞
dx e−pc(x)G̃(x; s) (S7)

and we have from (S2) that

G̃(x, s) =
1

2
√
Ds

e−
√

s
D |x| . (S8)

We see that the function K̃(s) is determined by the constraint placed on the endpoint of the trajectory, and that

W̃ (p, s) depends on the functional form of the cost. Once these functions have been determined for the cases of
interest, we can obtain the mean cost as a function of tf from (S1) via

⟨C⟩ =
L−1
s→tf

{−∂pΩ̃r(p, s)|p→0}
L−1
s→tf

{Ω̃r(p, s)|p→0}
. (S9)

Taking the limit p → 0, we find that the functions to be inverted to obtain the numerator and denominator, respec-
tively, are

−∂pΩ̃r(p, s)
∣∣∣
p→0

=
r(r + s)2

s2
K̃(r + s)

∫ ∞

−∞
dx c(x)G̃(x; r + s) (S10)

Ω̃r(p, s)
∣∣∣
p→0

=
r + s

s
K̃(r + s) . (S11)

A. Resetting Brownian Motion (RBM)

For the case of RBM, the trajectory endpoint is unconstrained, and the integral in (S6) is over all x. For any

properly normalized distribution of endpoints we then have K̃(s) = 1
s and the denominator in (S9) is unity. It thus

remains to compute the numerator by inverting (S10) for the cost function of interest. In the main text we consider
power-law cost functions,

c(x) = 2n/2|y|n where y =
x√
2Dtf

, (S12)

specifically the linear and quadratic cases, n = 1 and n = 2. Substituting into (S10) yields

⟨C⟩RBM
n =

Γ(n+ 1)

t
n/2
f

L−1
s→tf

{
r

s2
1

(r + s)n/2

}
=

Γ(n+ 1)

Rn/2

Rγ(n2 , R)− γ(n2 + 1, R)

Γ(n2 )
(S13)

where R = rtf is the dimensionless resetting rate, and γ(s, x) is the lower incomplete Gamma function,

γ(s, x) =

∫ x

0

duus−1e−u . (S14)

Note that this result is obtained by recognising the Laplace transform in (S13) as the convolution of t with
1

Γ(n/2) t
n/2−1e−rt, evaluated at tf . Note further that ⟨C⟩RBM

0 = R and that for the special cases n = 1 (‘lin’)

and n = 2 (‘quad’) considered in the main text, we have

⟨C⟩RBM
lin =

e−R

√
π

+
(2R− 1) erf

(√
R
)

2
√
R

(S15)

⟨C⟩RBM
quad =

2
(
R+ e−R − 1

)

R
, (S16)

where we have used

Γ( 12 ) =
√
π , γ( 12 , x) =

√
π erf(

√
x) and γ(1, x) = 1− e−x (S17)

along with the recursion relation

γ(s+ 1, x) = sγ(s, x)− xse−x . (S18)
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B. Resetting Brownian Bridge (RBB)

For the RBB, the calculation is a little more complex due to the constraint on the trajectory endpoint. Taking E

to comprise just the point at the origin in (S6) we now have K̃(s) = 1
2
√
Ds

and the denominator of (S9) takes the form

L−1
s→tf

{Ω̃r(p, s)|p→0} =
1

2
√
D
L−1
s→tf

{(
1 +

r

s

) 1√
r + s

}
=

e−rtf +
√
πrtf erf(

√
rtf )

2
√
πDtf

. (S19)

Again, the inversion can be performed by recognising as a convolution.
Turning now to the numerator, we find for c(x) given by (S12) that

L−1
s→tf

{−∂pΩ̃r(p, s)|p→0} =
1

2
√
D

Γ(n+ 1)

t
n/2
f

L−1
s→tf

{
r

s2
1

(r + s)(n−1)/2

}
. (S20)

Comparing with (S13) we see that

L−1
s→tf

{−∂pΩ̃r(p, s)|p→0} =
n

2
√
Dtf

⟨C⟩RBM
n−1 (S21)

and by dividing by the denominator (S19) we find

⟨C⟩RBB
n =

n
√
π ⟨C⟩RBM

n−1

e−R +
√
πR erf(

√
R)

, (S22)

recalling that R = rtf . For the special cases n = 1 and n = 2 we have

⟨C⟩RBB
lin =

√
πR

e−R +
√
πR erf(

√
R)

(S23)

⟨C⟩RBB
quad = 2−

√
π

R

erf(
√
R)

e−R +
√
πR erf(

√
R)

. (S24)

We compare the functional forms of the mean cost between the two ensembles in Fig. S1. Fig. S1a shows how the
mean linear cost behaves with R, and is seen to increase indefinitely as R → ∞ as

√
R. Corresponding plots for the

mean quadratic cost are in Fig. S1b. Unlike the case for the linear cost, the mean total quadratic cost saturates as
R → ∞.

II. DERIVATION OF SUCCESS PROBABILITIES

A. Resetting Brownian Motion (RBM)

For a Resetting Brownian Motion, the probability of reaching a target at position m by time tf can be obtained
from the target’s survival probability which was given as Eq. (6) in [12]. Noting that the target surviving corresponds
to an unsuccessful search, we find that the success probability is given by the inverse Laplace transform

PRBM
s =

∫

Γ

ds

2πi
estf

1

s

r + s

r + se
√

r+s
D m

. (S25)

where Γ is the Bromwich contour. By introducing rescaled variables u = stf , R = rtf and M = m√
2Dtf

, we obtain

the form presented in the main text,

PRBM
s =

∫

Γ

du

2πi
eu

1

u

R+ u

R+ ueM
√
2
√
u+R

. (S26)
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FIG. S1: Comparison of mean total cost ⟨C⟩ for (a) linear cost and (b) quadratic cost per reset for RBM and RBB. It
can be seen that the costs increase monotonically for both the cases. This is consistent with the intuition that more
frequent resets will incur a higher cost. Although in the case of a linear cost the mean cost increases indefinitely with
R we find that in the case of a quadratic cost the mean cost saturates as R → ∞.

B. Resetting Brownian Bridge (RBB)

The success probability for a Resetting Brownian Bridge is provided as Eq. (54) in the Supplemental Material of
Ref. [36]. In the notation of the present work, this reads

PRBB
s = ϕ(R)

∫

Γ

du

2πi
eu

√
u+R

u

R+ ue−M
√
2
√
u+R

R+ ueM
√
2
√
u+R

where ϕ(R) =

√
π

e−R +
√
πR erf

(√
R
) . (S27)

We can plot the success probabilities (S26) and (S27) by performing the inverse Laplace transforms numerically
[40]. In Figure S2a, we plot the two functions obtained at fixed M = 1. For RBM, we find that the success probability
decreases monotonically with R, whilst for RBB, the function is peaked at some nonzero resetting rate R. When M
is reduced to 1

2 , Figure S2b, we find that both functions are peaked.

III. LANDAU-LIKE EXPANSION FOR PROFLIGACY (ξ)

To gain deeper insight into the nature of the transitions observed in the main text, we make a Landau-like expansion
of the profligacy (1)

ξ = ⟨C⟩ − λ lnPs (S28)

in powers of R, valid for small values of R, which we define as

ξ = a0 + a1R+ a2
R2

2
+ a3

R3

6
+ a4

R4

24
+ . . . , (S29)

where ai = ai(λ,M). Due to the system not possessing an R → −R symmetry, we have to include all terms of the
expansion. The expansion of ⟨C⟩ can be obtained from performing a Taylor expansions of the mean total costs given
by (S15), (S16), (S23) or (S24), as appropriate for the case of interest.

We also need to expand Ps in each ensemble, expressions for which are given by the integrals (S26) and (S27). To
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FIG. S2: Comparison of probability of finding the target (Ps) as a function R for (a) M = 1.0 and (b) M = 0.5. For
RBM (purple), Ps can initially be a decreasing of increasing function function depending on the value of M , whereas
for RBB (green) Ps always increases initially with resetting, reaches a maximum then decreases for large R.

perform these expansions, it is helpful to define s = u+R, so that they become

PRBM
s = e−R

∫

Γ

du

2πi
eu

1

s−R

s

R+ (s−R)eM
√
2s

, (S30)

PRBB
s =

√
πe−R

√
πR erf

(√
R
)
+ e−R

∫

Γ

ds

2πi
es

√
s

s−R

R+ (s−R)e−M
√
2s

R+ (s−R)eM
√
2s

. (S31)

The procedure now is to expand these expressions as a power series in R, and invert term-by-term. Up to second
order, we find for the RBM case the expansion

PRBM
s =g0(M) + g1(M)R+ g2(M)

R2

2
+ . . . , (S32)

where the coefficients gi(M) are given by the integrals

g0(M) =

∫

Γ

ds

2πi
es
e−

√
2M

√
s

s
= erfc

(
M√
2

)
(S33)

g1(M) =

∫

Γ

ds

2πi
es
e−2

√
2M

√
s
(
−1− e

√
2M

√
s(−2 + s)

)

s2
(S34)

g2(M) =

∫

Γ

ds

2πi
es
e−3

√
2M

√
s
(
2 + 2e

√
2M

√
s(−3 + s) + e2

√
2M

√
s
(
6− 4s+ s2

))

s3
, (S35)

each of which can, like g0(M), be expressed in a closed form in terms of error functions. Explicit expressions are
provided in an accompanying Mathematica notebook uploaded to DataShare.

Similarly for RBB, we have

PRBB
s =h0(M) + h1(M)R+ h2(M)

R2

2
+ . . . , (S36)
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where

h0(M) =

∫

Γ

ds

2πi
es
e−2

√
2M

√
s
√
π√

s
= e−2M2

, (S37)

h1(M) =

∫

Γ

ds

2πi
es
e−3

√
2M

√
s
√
π
(
−1 + e2

√
2M

√
s + e

√
2M

√
s(1− 2s)

)

s3/2
, (S38)

h2(M) =

∫

Γ

ds

2πi
es

2e−4
√
2M

√
s
√
π
(
3 + 6e

√
2M

√
s(−1 + s)− 6e3

√
2M

√
s(−1 + s) + 2e2

√
2M

√
ss(−3 + 4s)

)

3s5/2
(S39)

and which again have closed-form expressions.
A similar process can be used to obtain the terms beyond the quadratic term. Note that in R → 0 limit, (S32) and

(S36) reduce to known results without resetting: PRBM
s = erfc

(
M√
2

)
[42] and PRBB

s = e−2M2

[36].

The coefficients ai in (S29) can be written in terms of the terms of expansion of PS as

a0 =C0 − λ log (g0) , (S40)

a1 =C1 − λ
g1
g0

, (S41)

a2 =
C2

2
− λ

(
−g21 + g0g2

)

2g20
, (S42)

a3 =
C3

6
− λ

(
2g31 − 3g0g1g2 + g20g3

)

6g30
, (S43)

a4 =
C4

24
− λ

(
−6g41 + 12g0g

2
1g2 − 3g20g

2
2 − 4g20g1g3 + g30g4

)

24g40
, (S44)

where Cn = dn⟨C⟩
dRn

∣∣∣
R→0+

. The gi should be substituted with hi in the RBB case.

We now discuss the different cases that occur for transitions in the global minimum of the profligacy ξ as we vary
λ.

A. Classical continuous transition

In this case a2 > 0 in the expansion (S29) and may ignore higher order terms. The curve of continuous transition
occurs when a1 = 0. This is the usual scenario for a continuous transition seen in equilibrium systems [41]. Continuous
transition lines are seen in all four panels of Fig. 2.

For the case of RBM the continuous transition condition, a1(λ,M) = 0, is satisfied at λ∗(M) given by

λ∗ =
d ⟨C⟩RBM

dR

∣∣∣∣
R→0+

×
erfc

(
M√
2

)

g1(M)
, (S45)

with
d⟨C⟩RBM

lin

dR

∣∣
R→0+

= 4
3
√
π
and

d⟨C⟩RBM
quad

dR

∣∣
R→0+

= 1. However, since we consider the investment λ, to act as a penalty

if the searcher does not find the target, we require λ > 0. But g1(M) < 0 for M > 0.8198 which suggests that a
continuous transition cannot exist for RBM if the rescaled distance to the target is greater than M = 0.8198. Further,
a1(λ

∗,M) > 0 for all values M < 0.8198, which implies that the system has a continuous transition for all values of
M < 0.8198. This exactly matches with the result obtained in the FIG. 2a and 2b where no transitions are observed
beyond the critical value of M .

For the case of RBB, the continuous transition condition, a1(λ,M) = 0, is satisfied at λ∗(M). There we obtain the
curve of continuous transition (a1(λ,M) = 0) to be

λ∗ =
d ⟨C⟩
dR

∣∣∣∣
R→0+

× e−2M2

h1(M)
. (S46)

where we have the derivatives
d⟨C⟩RBB

lin

dR

∣∣
R→0+

=
√
π and

d⟨C⟩RBB
quad

dR

∣∣
R→0+

= 8
3 . Since h1(M) > 0 for all values of M ,

we obtain a solution for a1 = 0 for all values of M for RBB. For small values of λ∗ this corresponds to a continuous
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FIG. S3: The figure presents classical continuous transition observed in ξ for the case of RBB with linear cost per
reset when λ is varied for M = 1.0. (a) The global minimum which is at R∗ = 0 initially continuously transitions to
the new global minimum R∗ in (b) as λ is varied.

transition, however for large values of λ∗ we find that a2 < 0 and we have to consider classical discontinuous transition
which we now discuss.

B. Classical discontinuous transition

A discontinuous transition may occur when a1 is positive, a2 is negative but a3 is positive. Then we have a local
minimum in the profligacy at a non-zero value of R in addition to a boundary minimum at R = 0. If on increasing λ
the global minimum switches between these two local minima, we have a jump in R∗ from a zero to a non-zero value.
This is the classical scenario for a discontinuous transition. A classical tricritical point occurs when a continuous
transition line meets a discontinuous transition line, which occurs when a1 = a2 = 0.

A classical tricritical point occurs in the case of RBB with linear cost as is seen in Fig. 2c. Then for a2 > 0
we obtain a continuous transition at a1 = 0 but for a2 < 0 there is a discontinuous transition and if a1 = a2 = 0
(and a3 > 0), we obtain a tricritical point. To obtain the tricritical point for RBB with linear cost per reset, we set
a2(λ

∗,M) = 0, which gives

e−2M∗2 d2 ⟨C⟩
dR2

∣∣∣∣
R→0+

+ e2M
∗2
λ∗h2

1(M
∗)− λ∗h2(M

∗) = 0 , (S47)

which upon solving yields the tricritical point (M∗, λ∗) = (0.6333, 8.4994). For λ approaching this point from above
we have a classical discontinuous transition

C. Non-classical discontinuous transition

Finally we address an interesting scenario, which to our knowledge is a non-standard way of generating discontinuous
transitions. This occurs when a3 < 0 and a4 > 0 and we retain terms up to R4 in the Landau-like expansion. This is
the case for both RBM and RBB with quadratic cost per reset in an intermediate range of M . The quartic expansion
in R allows two local minima in the profligacy if a1 < 0, or one local minimum, plus a boundary minimum at R = 0, if
a1 > 0. In the latter case either a discontinuous transition to a non-zero value of R∗ can occur when the local minimum
becomes the global minimum, or a continuous transition can occur when a1 becomes negative; in the former case a
discontinuous transition between two non-zero values of R∗ can occur when the global minimum switches between
the two local minima. A sequence of a continuous transition (when a1 turns negative) followed by a discontinuous
transition (when the global minimum switches between the subsequent two local minima) generates the overhangs
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FIG. S4: The figure presents classical discontinuous transition observed in ξ for the case of RBB with linear cost per
reset when λ is varied for M = 0.63. (a) The global minimum which is at R∗ = 0 initially discontinuously transitions
to the new global minimum R∗ in (b) when the local minima becomes the new global minima as λ is varied.
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FIG. S5: The figure presents the non-classical discontinuous transition occurs observed in RBB with quadratic cost per
reset as λ is varied for M = 0.707. (a) The global minimum initially emerges continuously from R = 0 as λ is varied.
(b) As lambda is further increased, the second minimum becomes the global minima and there is a discontinuous
transition of the optimal value R∗ to the new global minimum.

seen in Figs. 2b,2d. Thus the red dots in Figs. 2b,2d are not classical tricritical points as can be verified by evaluating
a2(λ

∗,m) = 0 For RBM evaluating this results in two different values m∗
1,2, but evaluating the coefficient of R3 gives

a3(λ
∗,m∗

1,2) < 0.

Finally we comment that, generally speaking, if the coefficients of R2 or higher turn out to be negative, it indicates
that a discontinuous transition might be possible. But the prediction of discontinuous transition must be considered
carefully as the expansion is only quantitatively valid for small values of R.
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IV. FURTHER INTERPRETATION OF THE PROFLIGACY FUNCTION

Consider a search company with K independent Brownian searchers each of fixed duration tf , starting and resetting
at the origin with fixed rate r in one dimension. For the moment, there is no target to search for. For each walker,
there is a cost Ctraj associated with its trajectory. The cost per walker

∑
traj Ctraj/K converges, for large K, to the

mean cost ⟨C(r)⟩ associated with a trajectory of fixed duration tf (irrespective of the target). The mean cost ⟨C(r)⟩
is an increasing function of r. Suppose that the total cost (or equivalently the mean ⟨C(r)⟩) is constrained to have a
fixed value, say, C0 (the fixed budget of the search company). Then, from ⟨C(r)⟩ = C0, one obtains a unique value of
r, say, r1. This is the ‘predetermined’ search parameter estimated by the company, irrespective of where the target
may lie.

Now, imagine putting a target at a distance m from the origin and the task of a searcher is to find the target in
the least possible time, i.e., to maximize the success probability Ps(r). However, the value r2, that maximizes Ps(r)
only, is typically not the same as r1 (fixed by the budget). So, one needs to find a compromise. If we insist on a
‘fixed’ budget C0, then we have no choice but to select the predetermined value r1. One can optimize a bit better
by choosing r to be different from the set value r1, i.e., by relaxing the hard cost constraint by a soft one. But this
comes at a price. Allowing a bit more flexibility in the budget by exceeding C0 incurs a penalty, parametrized by a
temperature like factor λ > 0, as an additional weight factor exp

[
− 1

λ (⟨C(r)⟩ − C0)
]
, for ⟨C(r)⟩ > C0. When λ → 0,

one recovers the hard constraint. Then our goal is to find the value of r = r∗ that maximizes the product of Ps(r)
and this weight factor. This is equivalent to minimizing the profligacy defined by

ξ = ⟨C(r)⟩ − λPs(r) (S48)

where we have ignored a global constant involving C0 without any loss of generality. Let us remark here that while the
success probability Ps(r) depends on the target distance m, the ‘predetermined’ reset parameter r1 and cost function
⟨C(r)⟩ are independent of the target distance m.


