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POSITIVITY PRESERVERS OVER FINITE FIELDS

DOMINIQUE GUILLOT, HIMANSHU GUPTA, AND PRATEEK KUMAR VISHWAKARMA

Abstract. We resolve an algebraic version of Schoenberg’s celebrated theorem [Duke Math. J.,
1942] characterizing entrywise matrix transforms that preserve positive definiteness. Compared
to the classical real and complex settings, we consider matrices with entries in a finite field and
obtain a complete characterization of such preservers for matrices of a fixed dimension. When the
dimension of the matrices is at least 3, we prove that, surprisingly, the positivity preservers are
precisely the positive multiples of the field’s automorphisms. Our work makes crucial use of the
well-known character-sum bound due to Weil, and of a result of Carlitz [Proc. Amer. Math. Soc.,
1960] that provides a characterization of the automorphisms of Paley graphs.

1. Introduction and main Results

Let A = (aij) be an n × n matrix and let f be a function defined on the entries of A. The
function naturally induces an entrywise transformation of A via f [A] := (f(aij)). The study of
such entrywise transforms that preserve various forms of matrix positivity has a rich and long
history with important applications in many fields of mathematics such as distance geometry and
Fourier analysis on groups – see the surveys [2, 3] and the monograph [22] for more details. Consider
for example the set of n × n real symmetric or complex Hermitian matrices. By the well-known
Schur product theorem [29], the entrywise product A ◦ B := (aijbij) of two positive semidefinite
matrices is positive semidefinite. As an immediate consequence of this surprising result, monomials
f(x) = xn with n ≥ 1, and more generally convergent power series f(x) =

∑∞
n=0 cnx

n with real
nonnegative coefficients cn ≥ 0 preserve positive semidefiniteness when applied entrywise to n× n
real symmetric or complex Hermitian positive semidefinite matrices. An impressive converse of this
result was obtained by Schoenberg [28], with various refinements by others collected over time.

Theorem 1.1 ([28, 27, 4]). Let I := (−ρ, ρ), where 0 < ρ ≤ ∞. Given a function f : I → R, the
following are equivalent.

(1) The function f acts entrywise to preserve the set of positive semidefinite matrices of all
dimensions with entries in I.

(2) The function f is absolutely monotone, that is, f(x) =
∑∞

n=0 cnx
n for all x ∈ I with cn ≥ 0

for all n.

Notice that in Schoenberg’s result, the characterization applies to functions preserving positivity
for matrices of arbitrary large dimension. Obtaining a characterization of the entrywise preservers
for matrices of a fixed dimension is a very natural endeavor, but a much harder problem that
remains mostly unsolved. An interesting necessary condition given by Horn [19] shows that such
preservers must have a certain degree of smoothness, with a number of non-negative derivatives. In
[1], seventy-four years after the publication of Schoenberg’s result, Belton–Guillot–Khare–Putinar
resolved the problem for polynomials of degree at most N that preserve positivity on N × N
matrices. They also provided the first known example of a non-absolutely monotone polynomial
that preserves positivity in a fixed dimension. In [23], Khare and Tao characterized the sign patterns
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of the Maclaurin coefficients of positivity preservers in fixed dimension. They also considered sums
of real powers, and uncovered exciting connections between positivity preservers and symmetric
function theory. However, apart from this recent progress, the problem of determining entrywise
preservers in fixed dimension remains mostly unresolved. We note that many other variants were
previously explored, including problems involving: structured matrices [4, 14, 15], specific functions
[10, 12, 13, 16, 18], block actions [17, 31], different notions of positivity [5], preserving inertia [6],
and multivariable transforms [6, 11].

To the authors’ knowledge, all previous work on entrywise preservers has focused on matrices
with real or complex entries. In this paper, we consider matrices with entries in a finite field and
describe the associated entrywise positivity preservers in the harder fixed-dimensional setting. As
a consequence, we also obtain the positivity preservers for matrices of all dimensions, as in the
setting of Schoenberg’s theorem. Here, we say that a symmetric matrix in Mn(Fq) with entries in a
finite field Fq is positive definite if each of its leading principal minors is equal to the square of some
non-zero element in Fq, i.e., the leading principal minors are quadratic residues in Fq. As shown in
[9], this leads to a reasonable notion of positivity for matrices with entries in finite fields. Compared
to previous work on R or C that uses analytic techniques to characterize preservers, the flavor of our
work is considerably different and relies mostly on combinatorial and number-theoretic arguments.
Surprisingly, our characterizations unearth new connections between functions preserving positivity,
field automorphisms, and automorphisms of the Paley graphs associated to finite fields. Recall that
the Paley graph P (q) associated to Fq is the graph whose vertices are V = Fq with edges (a, b) ∈ E
if and only if a− b is a non-zero quadratic residue in Fq. Our main result is as follows.

Theorem 1.2 (Main result). Let Fq be any finite field with q = pk elements and let f : Fq → Fq.
Then the following are equivalent:

(1) f preserves positivity on Mn(Fq) for some n ≥ 3.
(2) f preserves positivity on Mn(Fq) for all n ≥ 3.
(3) f is a positive multiple of a field automormhism of Fq, i.e., there exist c = d2 ∈ F

∗
q and an

integer 0 ≤ ℓ ≤ k − 1 such that f(x) = cxp
ℓ

for all x ∈ Fq.

Moreover, when p is odd, the above are equivalent to

(4) f(0) = 0 and f is an automorphism of the Paley graph associated to Fq, i.e., η(f(a)−f(b)) =
η(a− b) for all a, b ∈ Fq, where η(x) denotes the quadratic character of Fq.

Detailed statements of all our main results including refinements are given in Theorems A, B, and
C below.

1.1. Main results. Let p be a prime number. We denote the finite field with q = pk elements by
Fq. We let F∗

q := Fq \ {0} denote the non-zero elements of the field. We say that an element x ∈ Fq

is positive if x = y2 for some y ∈ F
∗
q. In that case, we say y is a square root of x. We denote the

set of positive elements of Fq by F
+
q , i.e.,

F
+
q := {x2 : x ∈ F

∗
q}.

If q is odd, then |F+
q | = q−1

2 . The quadratic character of Fq is the function η : Fq → {−1, 0, 1} given
by:

η(x) = x
q−1

2 =





1 if x ∈ F
+
q

−1 if x 6∈ F
+
q and x 6= 0

0 if x = 0.

(1.1)

Observe that η(xy) = η(x)η(y) for all x, y ∈ Fq and
∑

x∈Fq
η(x) = 0. Finally, we denote by Mn(Fq)

the set of n×n matrices with entries in Fq, by In the n×n identity matrix, and by 0m×n the m×n
matrix whose entries are 0.

In this paper, we adopt the following definition of positive definiteness.
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Definition 1.3 (Positive definite matrices). Let Fq be a finite field. We say that a matrix A ∈
Mn(Fq) is positive definite if A is symmetric and all the leading principal minors of A belong to
F
+
q .

Our goal is to classify entrywise preservers of positive definite matrices.

Definition 1.4. Given a matrix A = (aij) ∈ Mn(Fq) and a function f : Fq → Fq, we denote by
f [A] the matrix obtained by applying f to the entries of A:

f [A] := (f(aij)).

We are interested in determining the functions f for which f [A] is positive definite for all positive
definite A ∈ Mn(Fq). When this is the case, we say that f preserves positivity on Mn(Fq).

In classifying the positivity preservers on Mn(Fq), a natural trichotomy arises. When p = 2,
the Frobenius map f(x) = x2 is an automorphism of Fq so that every non-zero element of Fq is a
square. Characterizing the entrywise preservers in even characteristic thus reduces to characterizing
the entrywise transformation that preserve non-singularity, a problem that is considerably different
from the odd characteristic case. Our techniques in odd characteristic also differ depending on
whether −1 is a square in Fq or not. When q is odd, it is well-known that −1 6∈ F

+
q if and only if

q ≡ 3 (mod 4). As a consequence, our work is organized into three parts: (1) the even characteristic
case, (2) the q ≡ 3 (mod 4) case where −1 6∈ F

+
q , and (3) the q ≡ 1 (mod 4) case where −1 ∈ F

+
q .

Our first main result addresses the even characteristic case.

Theorem A. Let q = 2k for some k ≥ 1 and let f : Fq → Fq. Then

(1) (n = 2 case) The following are equivalent:
(a) f preserves positive definiteness on M2(Fq).
(b) f(0) = 0, f is bijective, and f(

√
xy)2 = f(x)f(y) for all x, y ∈ Fq.

(c) There exist c ∈ F
∗
q and 1 ≤ n ≤ q − 1 with gcd(n, q − 1) = 1 such that f(x) = cxn for

all x ∈ Fq.
(2) (n ≥ 3 case) The following are equivalent:

(a) f preserves positivity on Mn(Fq) for some n ≥ 3.
(b) f preserves positivity on Mn(Fq) for all n ≥ 2.
(c) f is a non-zero multiple of a field automorphism of Fq, i.e., there exist c ∈ F

∗
q and

0 ≤ ℓ ≤ k − 1 such that f(x) = cx2
ℓ

for all x ∈ Fq.

Remark 1.5. The condition gcd(n, q− 1) on the power in Theorem A(1c) is equivalent to the fact
that f(x) = xn is bijective on Fq (see Theorem 2.2). The positivity preservers on M2(Fq) thus
coincide with the bijective monomials.

Our second main result addresses the case where q ≡ 3 (mod 4).

Theorem B. Let q ≡ 3 (mod 4) and let f : Fq → Fq. Then the following are equivalent:

(1) f preserves positivity on Mn(Fq) for some n ≥ 2.
(2) f preserves positivity on Mn(Fq) for all n ≥ 2.
(3) f(0) = 0 and f is an automorphism of the Paley graph associated to Fq, i.e., η(f(a)−f(b)) =

η(a− b) for all a, b ∈ Fq.
(4) f is a positive multiple of a field automorphism of Fq, i.e., there exist c ∈ F

+
q and 0 ≤ ℓ ≤

k − 1 such that f(x) = cxp
ℓ

for all x ∈ Fq.

Finally, our last main result addresses the q ≡ 1 (mod 4) case.

Theorem C. Let q ≡ 1 (mod 4). Then the following are equivalent:

(1) f preserves positivity on Mn(Fq) for some n ≥ 3.
(2) f preservers positivity on Mn(Fq) for all n ≥ 3.
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(3) f(0) = 0 and f is an automorphism of the Paley graph associated to Fq, i.e., η(f(a)−f(b)) =
η(a− b) for all a, b ∈ Fq.

(4) f is a positive multiple of a field automorphism of Fq, i.e., there exist c ∈ F
+
q and 0 ≤ ℓ ≤

k − 1 such that f(x) = cxp
ℓ

for all x ∈ Fq.

In particular, as stated in Theorem 1.2, for any finite field Fq and any n ≥ 3, the positivity
preservers on Mn(Fq) are precisely the positive multiples of the automorphisms of Fq.

The rest of the paper is dedicated to proving Theorems A, B, and C. Section 2 contains prelimi-
nary results including statements of classical results from finite fields theory that are needed in the
proofs, a discussion of the properties of positive definite matrices with entries in a finite field, and
preliminary results on entrywise preservers over finite fields. Section 3, 4, and 5 address the even
case (Theorem A), the q ≡ 3 (mod 4) case (Theorem B), and the q ≡ 1 (mod 4) case (Theorem
C), respectively. Section 6 contains supplementary results on positivity preservers. Concluding
remarks are given in Section 7.

2. Preliminary results

For convenience of the reader, we begin by collecting some standard results about finite fields that
we will use later. The reader who is familiar with finite fields can safely skip the next subsection.
We then discuss in greater detail the properties of positive definite matrices over finite fields, and
prove some preliminary properties of entrywise preservers.

2.1. Finite fields. We first recall the characterization of automorphisms of finite fields.

Theorem 2.1 ([25, Theorem 2.21]). Let q = pk. Then the distinct automorphisms of Fq are exactly

the mappings σ0, σ1, . . . , σk−1 defined by σℓ(x) = xp
ℓ

.

In particular, (x + y)p
ℓ

= σℓ(x + y) = σℓ(x) + σℓ(y) = xp
ℓ

+ yp
ℓ

in a field of characteristic p.
Notice that in characteristic 2, the map x 7→ σ1(x) = x2 is an automorphism. It follows that every
non-zero element in F2k is a square, i.e., F+

2k
= F

∗
2k
.

Next, recall some elementary facts about permutation polynomials over Fq, i.e., polynomials that
are bijective on Fq.

Theorem 2.2 ([25, Theorem 7.8]).

(1) Every non-constant linear polynomial over Fq is a permutation polynomial of Fq.
(2) The monomial xn is a permutation polynomial of Fq if and only if gcd(n, q − 1) = 1.

The following simple facts will be useful later. We provide a short proof for completeness.

Proposition 2.3. Let Fq be a finite field of odd characteristic. Then the following are equivalent:

(1) q ≡ 3 (mod 4).
(2) −1 is not a square in Fq.
(3) We have

Fq = {0} ⊔ F
+
q ⊔ (−F

+
q ).

(4) Every element in F
+
q has a unique positive square root.

Proof. The equivalence between (1) and (2) is folklore (see e.g. [24, Corollary II.2.2]).
Next, suppose (2) holds. Let x ∈ F

∗
q \ F

+
q . Since −1 is not a square in Fq, we have η(−x) =

η(−1)η(x) = 1. It follows that −x ∈ F
+
q and so x ∈ −F

+
q . This proves Fq = {0} ∪ F

+
q ∪ (−F

+
q ).

That the union is disjoint follows again from the fact that η(−x) = −η(x).
Now, suppose (3) holds. Let x ∈ F

+
q , say x = y2. Then y and −y are exactly the square roots of

x because every element in Fq has at most 2 square roots. Since only one of these is positive, the
positive square root of x must be unique. Finally, suppose (4) holds. Since 12 = (−1)2 = 1, both
1 and −1 are square roots of 1 in Fq. Since 1 ∈ F

+
q the uniqueness implies that −1 6∈ F

+
q . �
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When q is even, since x 7→ x2 is a bijective map, every non-zero element also has a unique positive
square root. When q is even or q ≡ 3 (mod 4), we denote the unique positive square root of x ∈ F

+
q

by
√
x or by x1/2. We also define

√
0 = 0.

We will also need the following well-known character sum bound due to André Weil.

Theorem 2.4 (Weil [25, Theorem 5.41]). Let Ψ be a multiplicative character of Fq of degree m > 1
and let f ∈ Fq[x] be a monic polynomial that is not an m-th power of a polynomial. Let d be the
number of distinct roots of f in its splitting field over Fq. Then for every a ∈ Fq, we have

∣∣∣∣∣∣

∑

c∈Fq

Ψ(af(c))

∣∣∣∣∣∣
≤ (d− 1)

√
q.

The next classical lemma shows that two polynomials in Fq[x] coincide as functions, i.e., when
evaluated at every point of Fq, if and only if they are equal as polynomials modulo xq − x.

Lemma 2.5 (see e.g. [25, Lemma 7.2]). For g(x), h(x) ∈ Fq[x] we have g(c) = h(c) for all c ∈ Fq

if and only if g(x) ≡ h(x) (mod xq − x).

Notice that every function f : Fq → Fq can be written as an interpolation polynomial of degree
at most q − 1. When studying entrywise positivity preservers, we can thus assume, without loss of
generality, that f is a polynomial of degree at most q − 1.

Finally, we recall some of the properties of the Paley graph associated to a finite field Fq.

Definition 2.6. Let q be an odd prime power. The Paley graph P (q) is the graph whose vertices
are the elements of Fq and where two vertices a, b ∈ Fq are adjacent if and only a− b ∈ F

+
q .

Notice that when q ≡ 1 (mod 4), we have a− b ∈ F
+
q if and only if b− a ∈ F

+
q . The graph P (q) is

thus undirected. However, when p ≡ 3 (mod 4), the graph becomes directed and is often referred
to as the Paley digraph.

Paley graphs have been well-studied in the literature. In particular, when q ≡ 1 (mod 4),
they are well-known to be strongly regular. Given a graph G = (V,E) and a vertex v ∈ V
let us denote the set of adjacent vertices to v by N(v) and the set of non-adjacent vertices by
N c(v) := V \ (N(v) ∪ {v}).
Definition 2.7 (see e.g. [7, Chapter 9]). A strongly-regular graph srg(ν, k, λ, µ) is a graph with ν
vertices that has the following properties:

(1) For any vertex v, we have |N(v)| = k.
(2) For any two adjacent vertices u, v, we have |N(u) ∩N(v)| = λ.
(3) For any two non-adjacent vertices u, v, we have |N(u) ∩N(v)| = µ.

Lemma 2.8 (see e.g. [7, Proposition 9.1.1]). Let q be a prime power with q ≡ 1 (mod 4). Then

P (q) is srg(q, q−1
2 , q−5

4 , q−1
4 ). Consequently, for any two adjacent vertices x, y, we have

|N(y) ∩N c(x)| = |N(y)| − |N(y) ∩N(x)| − 1 =
q − 1

2
− q − 5

4
− 1 =

q − 1

4
.

An automorphism of the Paley graph P (q) is a permutation polynomial f(x) which satisfies

η(f(a)− f(b)) = η(a− b) for all a, b ∈ Fq. Thus, it follows from Theorem 2.1 that f(x) = cxp
ℓ

+ d
is an automorphism of P (q) for any c ∈ F

+
q , d ∈ Fq, and 0 ≤ ℓ ≤ k − 1. More interestingly,

polynomials of this type precisely form the set of automorphisms of the Paley graph P (q). Proving
this result requires substantial effort. One of the first proofs follows from the following theorem
due to Carlitz.

Theorem 2.9 (Carlitz [8]). Let Fq be a finite field of odd characteristic and let f(x) be a permuta-
tion polynomial such that f(0) = 0, f(1) = 1 and η(f(a)− f(b)) = η(a− b) for all a, b ∈ Fq. Then

f(x) = xp
ℓ

for some 0 ≤ ℓ ≤ k − 1.
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It is worth noting that in Carlitz’s work [8], there is no mention of the Paley graph or its
automorphisms. Carlitz was instead motivated in answering a question raised by W. A. Pierce.
For other known proofs of Theorem 2.9 and its generalizations, and for an account of the history of
Paley graphs and their automorphism groups, we refer the interested reader to the survey article
[21] by Jones.

2.2. Positive definite matrices over finite fields. For real symmetric or complex Hermitian
matrices, it is well-known that many natural notions of positive definiteness coincide. Any of the
following equivalent conditions can be used to define positive definiteness.

Proposition 2.10 (see e.g. [20, Chapter 7]). Let A ∈ Mn(C) be a Hermitian matrix. Then the
following are equivalent:

(1) z∗Az > 0 for all non-zero z ∈ C
n.

(2) A has positive eigenvalues.
(3) The sesquilinar form Q(z, w) = z∗Aw forms an inner product.
(4) A is the Gram matrix of linearly independent vectors.
(5) All leading principal minors of A are positive.
(6) A has a unique Cholesky decomposition.

As shown in [9], the situation is very different for matrices over finite fields. For example, the
standard definition of positive definiteness via quadratic forms (as in Proposition 2.10(1)) does not
yield a useful notion over finite fields.

Proposition 2.11 ([9, Proposition 1]). Let Fq be a finite field, let n ≥ 3, and let A ∈ Mn(Fq).
Define Q : Fn

q → Fq by Q(x) = xTAx. Then there exists a non-zero vector v ∈ F
n
q so that Q(v) = 0.

In fact, more can be said about the range of the quadratic form associated to a positive definite
matrix.

Proposition 2.12. Let n ≥ 2 and let A ∈ Mn(Fq) be a positive definite matrix. Then the range of
the quadratic form Q(x) = xTAx is Fq, i.e.,

{xTAx : x ∈ F
n
q } = Fq.

Proof. Suppose first n = 2. Let

A =

(
a b
b c

)
∈ M2(Fq)

be positive definite. Then a ∈ F
+
q and ac − b2 ∈ F

+
q . In particular, c − b2a−1 ∈ F

+
q . For x =

(x1, x2)
T ∈ F

2
q, consider the quadratic form

Q(x) = xTAx = ax21 + 2bx1x2 + cx22.

Completing the square, we obtain

Q(x) = a(x1 + ba−1x2)
2 + (c− b2a−1)x22.

Setting y1 := a1/2
(
x1 + ba−1x2

)
and y2 := (c−b2a−1)1/2x2 yields the equivalent diagonal quadratic

form
Q̃(y) = y21 + y22

having the same range as Q. Since every element of Fq can be written as the sum of two (not
necessarily nonzero) squares, it follows that the range of Q is Fq.

Suppose now n ≥ 3. Let Ã ∈ M2(Fq) be the 2 × 2 leading principal submatrix of A. Then Ã is
positive definite. Letting x := (x̃T ,01×(n−2))

T ∈ F
n
q with x̃ ∈ F

2
q, we obtain

xTAx = x̃T Ãx̃.

The result now follows from the n = 2 case. �
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When q is even or q ≡ 3 (mod 4), some of the classical real/complex positivity theory can be
recovered. Recall that a symmetric matrix A ∈ Mn(Fq) is said to have a Cholesky decomposition
if A = LLT for some lower triangular matrix L ∈ Mn(Fq) with positive elements on its diagonal.
When q is even or q ≡ 3 (mod 4), it is known that the positivity of the leading principal minors of
a matrix in Mn(Fq) is equivalent to the existence of a Cholesky decomposition.

Theorem 2.13 ([9, Theorem 2, Corollary 1]). Let A ∈ Mn(Fq) be a symmetric matrix.

(1) If A admits a Cholesky decomposition, then all its leading principal minors are positive.
(2) If q is even or q ≡ 3 (mod 4) and all the leading principal minors of A are positive, then

A admits a Cholesky decomposition.

We note however that the equivalence fails in general when q ≡ 1 (mod 4).

Proposition 2.14. Let q ≡ 1 (mod 4). Then there exists a positive definite matrix A ∈ M2(Fq)
that does not admit a Cholesky decomposition.

Proof. For x ∈ F
∗
q, let

A(x) :=

(
1 x
x 0

)
.

Then A(x) is positive definite since −1 ∈ F
+
q (Proposition 2.3). Suppose A(x) = LLT , say

A(x) =

(
1 x
x 0

)
=

(
a 0
b c

)(
a b
0 c

)
=

(
a2 ab
ab b2 + c2

)

with a, c ∈ F
+
q . Then a = ±1, b = ±x and c2 = −b2 = −x2. Thus c ∈ {ix,−ix} where i denotes a

square root of −1 in Fq. We can then pick x ∈ F
∗
q such that η(c) = η(i)η(x) = −1. Such a choice

of x forces c 6∈ F
+
q and therefore the Cholesky decompostion of A(x) does not exist. �

Remark 2.15. We note that, when q is even or q ≡ 3 (mod 4), the authors of [9] define a symmetric
matrix in Mn(Fq) to be positive definite if it admits a Cholesky decomposition. As Theorem 2.13
shows, this definition coincides with ours. We note, however, that verifying if a matrix admits a
Cholesky decomposition is not as straightforward as computing leading principal minors. This is
our motivation for adopting Definition 1.3.

Notice that in a finite field, a sum of squares is not always a square. In fact, it is well-known
that every element in a finite field can be written as a sum of two squares. As a consequence, sums
of positive definite matrices are not always positive definite. Similarly, a Gram matrix A = MMT

with M ∈ Mn×m(Fq) is not always positive definite (take, for example, M = (x, y) ∈ M1×2(Fq)
with x2 + y2 6∈ F

+
q .) Many other standard properties of positive definite matrices over R or C fail

for finite fields. For example, a positive definite matrix may not have positive eigenvalues and the
Hadamard product of two positive definite matrices is not always positive definite. See [9, Section
3] for more details. As mentioned above, the behavior of the quadratic form of a positive definite
matrix is also different over finite fields (see Proposition 2.12). The reader who is accustomed to
working with positive definite matrices over the real or the complex field must thus take great care
when moving to the finite field world.

2.3. Entrywise preservers. We now turn our attention to entrywise positivity preservers on
Mn(Fq). Recall that every function f : Fq → Fq coincides with a polynomial of degree at most
q − 1 (Lemma 2.5). Unless otherwise specified, we therefore always assume below that f is such a
polynomial.

When n = 1, the preservers are precisely the functions f : Fq → Fq such that f(F+
q ) ⊆ F

+
q . In

characteristic 2, the Frobenius map x 7→ x2 is an automorphism and as a result, every non-zero
element is a square. The positivity condition thus reduces to 0 6∈ f(F+

q ). There are (q − 1)q−1 × q
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such maps. In odd characteristic, the number of preservers is
(
q−1
2

) q−1

2 × q
q+1

2 . Any such map can

be explicitly written using an interpolation polynomial.
We next obtain a family of maps that preserves positivity for matrices with entries in any finite

field.

Proposition 2.16. Let Fq be a finite field of characteristic p. Then all the positive multiples of
the field automorphisms of Fq preserve positivity on Mn(Fq) for all n ≥ 1.

Proof. Let A = (aij) ∈ Mn(Fq) be positive definite and let Ar denote the leading r × r principal

submatrix of A. By Definition 1.3, detAr = µ2 for some µ ∈ F
∗
q. Let f(x) = xp

ℓ

. By Theorem 2.1

(x+ y)p
ℓ

= xp
ℓ

+ yp
ℓ

in Fq. Thus, by using the Leibniz formula for the determinant we obtain

det f [Ar] =
∑

σ∈Sr

sgn(σ)ap
ℓ

1,σ(1)a
pℓ

2,σ(2) . . . a
pℓ

r,σ(r) =

(
∑

σ∈Sr

sgn(σ)a1,σ(1)a2,σ(2) . . . ar,σ(r)

)pℓ

= (detAr)
pℓ = (µ2)p

ℓ

= (µpℓ)2.

Notice that the above holds even when p = 2 since in that case −1 = 1 in Fq and so sgn(σ) = 1 for
all σ ∈ Sr. Since the above holds for any 1 ≤ r ≤ n, the matrix f [A] is positive definite. Clearly,
multiplying f by c ∈ F

+
q also yield a positivity preserver. �

Our next result provides a necessary condition for preserving positivity on M2(Fq) when q is
even or q ≡ 3 (mod 4).

Lemma 2.17. Let Fq be a finite field with q even or q ≡ 3 (mod 4) and let f : Fq → Fq. Suppose
f preserves positive definiteness on M2(Fq). Then:

(1) The restriction of f to F
+
q is a bijection of F+

q onto itself.
(2) f(0) = 0.

Proof. Let a, b ∈ F
+
q with a 6= b. Thus, either a − b ∈ F

+
q or b − a ∈ F

+
q . Say a − b ∈ F

+
q without

loss of generality. Thus, the matrix

A =

(
b b
b a

)

is positive definite. Note that f(a), f(b) ∈ F
+
q since f is preserving the positivity of the positive

definite matrices aI2 and bI2. By assumption, f [A] is also positive definite. Hence, det f [A] =
f(b)(f(a)− f(b)) ∈ F

+
q . In particular, f(a) 6= f(b). This proves that f is an injective map on F

+
q ,

and is therefore a bijection from F
+
q onto itself. This proves (1).

Now, suppose f(0) = c where c ∈ F
+
q . By the first part, there exists a ∈ F

+
q such that f(a) = c.

Since the matrix aI2 is positive definite so is f [aI2]. However,

f [aI2] =

(
c c
c c

)
,

which is not positive definite. If instead f(0) ∈ −F
+
q , then c := −f(0) ∈ F

+
q . Now repeat the above

argument to get det f [aI2] = 0, again a contradiction. Thus, it follows by Proposition 2.3 that
f(0) = 0. �

The next lemma discusses the number of square elements in the translations of the squares in Fq.
The result will be used later on to prove that preservers on M2(Fq) are bijective (see Theorem 4.1).
Recall that η denotes the quadratic character of Fq (see Equation (1.1)).

Lemma 2.18. Let Fq be a finite field with q ≡ 3 (mod 4). Fix a ∈ F
∗
q, and define

Ga := {a+ g : g ∈ F
+
q }.
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Then |G0 ∩Ga| = q−3
4 .

Proof. For a ∈ F
+
q , we have

|G0 ∩Ga| =
∑

x∈Fq\{0,−a}

η(x) + 1

2
· η(x+ a) + 1

2

=
1

4




∑

x∈Fq\{0,−a}

η(x)η(x + a) +
∑

x∈Fq\{0,−a}

η(x) +
∑

x∈Fq\{0,−a}

η(x+ a) +
∑

x∈Fq\{0,−a}

1




=
1

4
(−1− η(−a)− η(a) + q − 2)

=
q − 3

4
,

where for the first term, we have
∑

x∈Fq\{0,−a}

η(x)η(x + a) =
∑

x∈F∗

q

η(x)η(x + a) =
∑

x∈F∗

q

η(x−1)η(x + a) =
∑

x∈F∗

q

η(1 + ax−1)

=
∑

t∈Fq

t6=1

η(t) = −1. �

The rest of the paper is mostly devoted to proving that the positive multiples of field automor-
phisms are the only entrywise positivity preservers on Mn(Fq) when n ≥ 3. We begin by examining
fields of even characteristic as they behave differently from the odd characteristic fields with respect
to positivity preservers.

3. Even characteristic

In this section, we always assume q = 2k for some integer k ≥ 1. Recall that in that case the
Frobenius map x 7→ x2 is bijective and therefore F+

q = F
∗
q. Positive definiteness thus reduces to the

non-vanishing of the leading principal minors. We break down the proof of Theorem A into two
parts: the n = 2 case (Theorem 3.1) and the n ≥ 3 case (Theorem 3.2).

Theorem 3.1. Let q = 2k for some k ≥ 1 and let f : Fq → Fq. Then the following are equivalent:

(1) f preserves positive definiteness on M2(Fq).
(2) f(0) = 0, f is bijective, and f(

√
xy)2 = f(x)f(y) for all x, y ∈ Fq.

(3) There exist c ∈ F
∗
q and 1 ≤ n ≤ q − 1 with gcd(n, q − 1) = 1 such that f(x) = cxn for all

x ∈ Fq.

Proof. (1) =⇒ (2). Suppose (1) holds. Then f(0) = 0 and f is bijective on F
+
q = F

∗
q by Lemma

2.17. Thus, f is bijective on Fq. Fix x, y ∈ F
∗
q and consider the matrix

A(z) =

(
x

√
xyz√

xyz y

)
(z ∈ Fq).

Observe that A(z) is positive definite if and only if z 6= 1. Thus, for any z 6= 1, f [A(z)] is positive
definite and so

det f [A(z)] = f(x)f(y)− f(
√
xyz)2 6= 0.

Hence, for all z 6= 1,

f(
√
xyz)2 6= f(x)f(y). (3.1)

Since f and the x 7→ x2 maps are bijections, there exists a unique w ∈ Fq such that f(w)2 =
f(x)f(y). Also, the map z 7→ √

xyz is a bijection of Fq. Using Equation (3.1), we conclude that
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w =
√
xy and so f(

√
xy)2 = f(x)f(y). The expression f(

√
xy)2 = f(x)f(y) also holds trivially

when x = 0 or y = 0 since f(0) = 0. This proves (2).

(2) =⇒ (3). Suppose (2) holds and let f(x) =
∑q−1

k=1 akx
k without loss of generality. Applying the

Frobenius, we obtain

f(
√
xy)2 =

(
q−1∑

k=1

ak(
√
xy)k

)2

=

q−1∑

k=1

a2kx
kyk.

Next, we compute

f(x)f(y) =

(
q−1∑

i=1

aix
i

)


q−1∑

j=1

ajx
j


 =

q−1∑

k=1

a2kx
kyk +

∑

1≤i<j≤q−1

aiaj(x
iyj + xjyi).

Since f(
√
xy)2 = f(x)f(y) for all x, y ∈ Fq, we conclude that

Q(x, y) :=
∑

1≤i<j≤q−1

aiaj(x
iyj + xjyi) = 0

for all x, y ∈ Fq. Now, for any fixed y,

Q(x, y) =

q−1∑

k=1




∑

1≤j≤q−1
j 6=k

ajaky
j


xk

is a polynomial in x of degree at most q − 1 that is identically 0 on Fq. Therefore, by Lemma 2.5,
∑

1≤j≤q−1
j 6=k

ajaky
j = 0 (1 ≤ k ≤ q − 1).

Since this is true for all y ∈ Fq and since the above expression is a polynomial of degree at most
q−1, we conclude that ajak = 0 for all j 6= k. This proves f(x) is a monomial and so f(x) = cxn for
some 1 ≤ n ≤ q − 1. Clearly c 6= 0 since f ≡ 0 is not bijective. We conclude that gcd(n, q − 1) = 1
by Theorem 2.2(2).

(3) =⇒ (1). Suppose (3) holds and let

A =

(
u v
v w

)

be an arbitrary positive definite matrix inM2(Fq), i.e., u 6= 0 and uw 6= v2. Clearly, f(u) = cun 6= 0.
Moreover, since x 7→ xn is injective on Fq, we have unwn 6= v2n and so

det f [A] = c2unwn − c2v2n 6= 0.

This proves f preserves positivity on M2(Fq) and so (1) holds. This concludes the proof. �

We now describe the entrywise positivity preservers on M3(Fq).

Theorem 3.2. Let q = 2k and let f : Fq → Fq. Then the following are equivalent:

(1) f preserves positivity on M3(Fq).

(2) There exist c ∈ F
∗
q and 0 ≤ ℓ ≤ k − 1 such that f(x) = cx2

ℓ

for all x ∈ Fq.

Proof. That (2) =⇒ (1) follows from Proposition 2.16. Now, suppose (1) holds. By embedding
2× 2 positive definite matrices A into M3(Fq) via

(
A 02×1

01×2 1

)
∈ M3(Fq),
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it follows by Theorem 3.1 that f(x) = cxn for all x ∈ Fq, where c ∈ F
∗
q and 1 ≤ n ≤ q − 1 is such

that gcd(n, q − 1) = 1. Without loss of generality we assume that c = 1. It suffices to show that
the only exponents n that preserve positivity on M3(Fq) are powers of 2.

For x, y ∈ Fq, let

A(x, y) =



1 x y
x 1 0
y 0 1


 .

The matrix A(x, y) is positive definite if and only if x 6= 1 and detA = 1 − x2 − y2 6= 0. Notice
that, using the fact that −1 = 1 in Fq,

detA(x, y) = 0 ⇐⇒ x2 + y2 = 1 ⇐⇒ (x+ y)2 = 1 ⇐⇒ x+ y = 1.

Similarly, det f [A] = 1− x2n − y2n and so

det f [A(x, y)] = 0 ⇐⇒ x2n + y2n = 1 ⇐⇒ (xn + yn)2 = 1 ⇐⇒ xn + yn = 1.

Suppose n is not a power of 2. We will prove that there exist x0, y0 ∈ Fq such that A(x0, y0)
is positive definite, but f [A(x0, y0)] is not positive definite. In order to do so, we will prove the
existence of x0, y0 ∈ Fq such that

(1) x0 6= 1,
(2) x0 + y0 6= 1, and
(3) xn0 + yn0 = 1.

Indeed, consider the two sets:

S1 = {(x, y) ∈ F
2
q : x+ y = 1}, S2 = {(x, y) ∈ F

2
q : x

n + yn = 1}.
Clearly, |S1| = q since for every x ∈ Fq, there is a unique y ∈ Fq such that x + y = 1. We claim
that |S2| = q as well. To see why, recall that the map x 7→ xn is a bijection since gcd(n, q − 1) = 1
(Theorem 2.2(2)). For any a ∈ Fq, denote by n

√
a the unique element z ∈ Fq such that zn = a.

Then, for any x ∈ Fq, there is a unique y ∈ Fq such that xn + yn = 1, namely, y = n
√
1− xn.

It follows that |S2| = q. Now, suppose the desired pair x0, y0 does not exist. Then for every
(x, y) ∈ S2, either x = 1 or x+ y = 1. But if x = 1 then y = 0 (since (x, y) ∈ S2) and so x+ y = 1.
In all cases, (x, y) ∈ S1 and it follows that S2 ⊆ S1. Since the two sets have the same cardinality,
we conclude that S1 = S2. Thus,

xn + yn = 1 ⇐⇒ x+ y = 1.

We claim that this implies (x + y)n = xn + yn for all x, y ∈ Fq. Indeed, let x, y ∈ Fq and assume
xn + yn = c for some c ∈ Fq. If c = 0, then xn = −yn = yn since −1 = 1 in characteristic 2, and it
follows that x = y. Thus (x+ y)n = (x+ x)n = 0n = 0 and xn + yn = xn + xn = 0 as well. Thus,
(x+ y)n = xn + yn. If c 6= 0, then

(
x
n
√
c

)n

+

(
y
n
√
c

)n

= 1

and so
x
n
√
c
+

y
n
√
c
= 1

by assumption. Hence x+ y = n
√
c and so xn + yn = c = (x+ y)n. This proves the map f(x) = xn

is an automorphism of Fq. By Theorem 2.1, we therefore must have n ≡ 2ℓ (mod q − 1) for some
ℓ. This is impossible since 1 ≤ n ≤ q − 1 and n is not a power of 2. We therefore conclude that
there exists x0 6= 1 such that x0 + y0 6= 1 and xn0 + yn0 = 1. This proves (1) =⇒ (2). �

Using Theorem 3.1 and 3.2, we immediately obtain Theorem A.
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Proof of Theorem A. The n = 2 case is exactly Theorem 3.1. Consider now the n ≥ 3 case.
Clearly (b) =⇒ (a). Suppose (a) holds. If n > 3, then using matrices of the form A⊕ In−3 with
A ∈ M3(Fq), we conclude that f preserves positivity on M3(Fq). Theorem 3.2 then implies that
(c) holds. The (c) =⇒ (b) implication is Proposition 2.16. �

4. Odd characteristic: q ≡ 3 (mod 4)

We now move to the case where q ≡ 3 (mod 4). Equivalently, we assume −1 6∈ F
+
q . We break

down the proof of Theorem B into several lemmas. Interestingly, the n = 2 case of the theorem
is considerably more difficult to prove as very little structure is available to work with. Most of
the results below rely on indirect combinatorial arguments to obtain relevant properties of the
preservers. When n ≥ 3, although the result follows from the n = 2 case, the supplementary
structure of 3×3 matrices can be used to give a shorter proof of the theorem. We first show how to
obtain the n = 2 case, and then explain how a simpler approach can be used to deduce the n ≥ 3
case.

Theorem 4.1. Let Fq be a finite field with q ≡ 3 (mod 4) and let f : Fq → Fq preserve positivity
on M2(Fq). Then f(0) = 0 and f is bijective on F

+
q and on −F

+
q (and hence on Fq).

Proof. By Lemma 2.17, the function f satisfies f(0) = 0 and its restriction to F
+
q is a bijection onto

F
+
q . We will conclude the proof by proving that f(−F

+
q ) ⊆ −F

+
q and that f is injective on −F

+
q .

Step 1: f(−F
+
q ) ⊆ −F

+
q . Suppose for a contradiction that f(−b) ∈ F

+
q for some b ∈ F

+
q . Since f is

bijective from F
+
q onto itself, f(−b) = f(a) for some a ∈ F

+
q . Let y := f(a) = f(−b). For x ∈ F

+
q ,

consider the matrix

A(x) =

(
x a
a −b

)
.

Observe that det f [A(x)] = f(x)f(−b)− f(a)2 = y (f(x)− y). Since y = f(a) ∈ F
+
q , it follows that

f [A(x)] is positive definite ⇐⇒ f(x)− y ∈ F
+
q .

Define
L := {x ∈ F

+
q : f(x)− y ∈ F

+
q }.

Since f is bijective on F
+
q , by Lemma 2.18, we have |L| = q−3

4 . Now, let

MA := {x ∈ F
+
q : −bx− a2 ∈ F

+
q }.

Observe that
A(x) is positive definite ⇐⇒ x ∈ MA.

We claim |MA| = q+1
4 > q−3

4 . Indeed,

x ∈ MA ⇐⇒ x ∈ F
+
q and − bx− a2 ∈ F

+
q

⇐⇒ x ∈ F
+
q and − x− a2b−1 ∈ F

+
q

⇐⇒ x ∈ F
+
q and x+ a2b−1 ∈ −F

+
q .

Using Lemma 2.18 again, the cardinality of the set

S := {x ∈ F
+
q : x+ a2b−1 ∈ F

+
q }

is |S| = q−3
4 . Observe that x+ a2b−1 = 0 implies x = −a2b−1 ∈ −F

+
q . It follows that MA = F

+
q \ S

and so

|MA| =
q − 1

2
− q − 3

4
=

q + 1

4
.

Therefore, there exists x∗ ∈ MA such that x∗ 6∈ L. Thus, A(x∗) is positive definite, but f [A(x∗)]
is not positive definite, contradicting the assumption of the theorem. We therefore conclude that
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f(−F
+
q ) ⊆ −F

+
q ∪ {0}. Finally, suppose f(−b) = 0 for some b ∈ F

+
q . Taking any x ∈ MA, we have

that A(x) is positive definite, but

det f [A(x)] = det

(
f(x) f(a)
f(a) 0

)
= −f(a)2 6∈ F

+
q .

We therefore conclude that f(−b) 6= 0 and so f(−F
+
q ) ⊆ −F

+
q .

Step 2: f is injective on −F
+
q . Suppose f(−a) = f(−b) =: y for some a, b ∈ F

+
q with a 6= b. Notice

that y ∈ −F
+
q by Step 1. Thus −y ∈ F

+
q and so there exists α ∈ F

+
q such that f(α) = −y. Consider

the matrices

A(x) =

(
x −a
−a α

)
, B(x) =

(
x −b
−b α

)
.

Let

MA := {x ∈ F
+
q : αx− a2 ∈ F

+
q },

MB := {x ∈ F
+
q : αx− b2 ∈ F

+
q }.

Clearly, A(x) is positive definite if and only if x ∈ MA and B(x) is positive definite if and only if
x ∈ MB . Also,

det f [A(x)] = det f [B(x)] = −y(f(x) + y).

Since −y ∈ F
+
q , the matrices f [A(x)] and f [B(x)] are positive definite if and only if x ∈ F

+
q and

f(x) + y ∈ F
+
q . Using Lemma 2.18,

|{x ∈ F
+
q : f(x) + y}| = q − 3

4
.

We will now prove that |MA ∪MB | > q−3
4 . First, notice that

x ∈ MA ⇐⇒ x, x− a2α−1 ∈ F
+
q .

Thus, by Lemma 2.18, we have |MA| = q−3
4 . Similarly, |MB | = q−3

4 . To prove that |MA∪MB| > q−3
4 ,

it therefore suffices to show |MA ∩MB | < q−3
4 . Let s := a2α−1 and t := b2α−1. Then s, t ∈ F

+
q and

|MA ∩MB | =
∑

c∈Fq\{0,s,t}

η(c) + 1

2
· η(c− s) + 1

2
· η(c− t) + 1

2
.

Thus,

8|MA ∩MB | =
∑

c∈Fq\{0,s,t}

[η(c)η(c − s)η(c− t) + η(c)η(c − s)

+ η(c)η(c − t) + η(c) + η(c− s)η(c− t) + η(c − s) + η(c− t) + 1].

We examine each term separately. First, using Weil’s bound (Theorem 2.4),
∑

c∈Fq\{0,s,t}

η(c)η(c − s)η(c− t) =
∑

c∈Fq

η(c)η(c − s)η(c − t) ≤ 2
√
q.

Next,
∑

c∈Fq\{0,s,t}

η(c)η(c − s) =
∑

c∈Fq\{0,s,t}

η(c−1)η(c − s) =
∑

c∈Fq\{0,s,t}

η(1 − sc−1) =
∑

γ∈Fq\{1,0,1−st−1}

η(γ)

= −1− η(1− st−1)

= −1− η(t− s)
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since t ∈ F
+
q . Similarly,

∑

c∈Fq\{0,s,t}

η(c)η(c − t) = −1− η(s − t) = −1 + η(t− s).

Next, ∑

c∈Fq\{0,s,t}

η(c) = −η(s)− η(t) +
∑

c∈Fq

η(c) = −2

since s, t ∈ F
+
q . For the next term, setting y = c− s yields

∑

c∈Fq\{0,s,t}

η(c− s)η(c− t) =
∑

y∈Fq\{−s,0,t−s}

η(y)η(y + s− t) =
∑

y∈Fq\{−s,0,t−s}

η(y−1)η(y + s− t)

=
∑

y∈Fq\{−s,0,t−s}

η(1 + (s− t)y−1)

= −η(ts−1)− η(1) − η(0) +
∑

γ∈Fq

η(γ)

= −2.

Finally, ∑

c∈Fq\{0,s,t}

η(c − s) = −η(−s)− η(0) − η(t− s) +
∑

c∈Fq

η(c) = 1− η(t− s)

and similarly, ∑

c∈Fq\{0,s,t}

η(c− t) = 1− η(s − t) = 1 + η(t− s).

Combining all the above, we obtain

8|MA ∩MB | ≤ 2
√
q − 1− η(t− s)− 1 + η(t− s)− 2− 2 + 1− η(t− s) + 1 + η(t− s) + q − 3

= 2
√
q + q − 7.

Now,

2
√
q + q − 7 < 8 · q − 3

4
= 2q − 6 ⇐⇒ q + 1− 2

√
q = (

√
q − 1)2 > 0,

which holds for q > 1. This proves |MA∪MB| > q−3
4 . As a consequence, there exists x∗ ∈ MA∪MB

such that f(x) + y 6∈ F
+
q . For such an x∗ we have either A(x∗) is positive definite, but f [(A(x∗)] is

not or B(x∗) is positive definite, but f [B(x∗)] is not. This contradicts our assumption and therefore
proves that f is bijective on −F

+
q . This concludes the proof. �

As a consequence of Theorem 4.1, even functions cannot preserve positivity. Formally:

Corollary 4.2. Let Fq be a finite field with q ≡ 3 (mod 4). If f : Fq → Fq is an even function
then it does not preserve positive definiteness on M2(Fq).

We next show that the positivity preservers over M2(Fq) are necessarily odd functions.

Lemma 4.3. Let Fq be a finite field with q ≡ 3 (mod 4). Suppose f : Fq → Fq preserves positivity
on M2(Fq). Then f is odd.

Proof. Fix x ∈ F
+
q and let

g(y) := f(x)f(y)− f(−x)2 (y ∈ Fq).

By Theorem 4.1, f is bijective on Fq. It follows that g is bijective on Fq as well. Thus, there exists
y∗ such that g(y∗) = 0, i.e.,

g(y∗) = f(x)f(y∗)− f(−x)2 = 0 ⇐⇒ f(y∗) = f(−x)2f(x)−1. (4.1)
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Using Theorem 4.1 we have that f(x) ∈ F
+
q , which in turn implies that f(y∗) ∈ F

+
q . Applying

Theorem 4.1, we conclude that y∗ ∈ F
+
q . Now, consider

A =

(
y∗ −x
−x x

)
.

Since x, y∗ ∈ F
+
q , the matrix A is positive definite if and only if xy∗ − x2 = x(y∗ − x) ∈ F

+
q which

happens if and only if y∗ − x ∈ F
+
q . Since f is bijective on Fq, its entrywise action on M2(Fq) is

also bijective. Thus, since

det f [A] = f(x)f(y∗)− f(−x)2 = 0,

and since f [−] maps positive definite matrices bijectively onto themselves, the matrix A cannot be
positive definite. We conclude that either y∗ − x = 0 or x− y∗ ∈ F

+
q . In the first case, we have

0 = f(x)2 − f(−x)2 = (f(x)− f(−x)) (f(x) + f(−x)) .

It follows that f(x) = −f(−x) or f(x) = f(−x). The second choice here is not possible by Theorem
4.1 and so we conclude that f(x) = −f(−x) for all x ∈ F

+
q . The same holds for x = 0 since f(0) = 0

(Theorem 4.1) and for x ∈ −F
+
q by symmetry of the expression. Thus f is odd.

Suppose instead that x− y∗ ∈ F
+
q . Consider the matrix

B =

(
x y∗

y∗ y∗

)
.

By assumption, x ∈ F
+
q and we have

detB = xy∗ − (y∗)2 = y∗(x− y∗) ∈ F
+
q .

Thus B is positive definite and so

det f [B] = f(x)f(y∗)− f(y∗)2 ∈ F
+
q .

Using Equation (4.1), we obtain

det f [B] = f(x)f(y∗)− f(y∗)2 = f(−x)2 − f(−x)4f(x)−2 ∈ F
+
q .

It follows that 1− f(−x)2f(x)−2 ∈ F
+
q and so f(x)2 − f(−x)2 ∈ F

+
q . Now, consider

C =

(
x −x
−x x

)
.

Then f(x) ∈ F
+
q and det f [C] = f(x)2 − f(−x)2 ∈ F

+
q . Thus f [C] is positive definite. Using the

same reasoning as in the y∗ = x case above, the matrix C needs to be positive definite. This is a
contradiction since C is singular. We conclude that y∗ = x and therefore f must be odd. �

Lemma 4.4. Let Fq be a finite field with q ≡ 3 (mod 4). Suppose f : Fq → Fq preserves positivity
on M2(Fq) and f(1) = 1. Then f(x2) = f(x)2 for all x ∈ Fq.

Proof. Clearly, the conclusion holds when x = 0 since f(0) = 0 (Theorem 4.1). Also, notice that it
suffices to prove the result for x ∈ F

+
q since f(−x)2 = (−f(x))2 = f(x)2 by Lemma 4.3.

Now, fix x ∈ F
+
q and consider the function

g(y) := f(x2)f(y)− f(x)2.

Since f is bijective (Theorem 4.1), so is g. Thus, there exists y∗ ∈ Fq such that

g(y∗) = f(x2)f(y∗)− f(x)2 = 0,

i.e.,

f(y∗) = f(x)2f(x2)−1. (4.2)
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Therefore f(y∗) ∈ F
+
q and so y∗ ∈ F

+
q by Theorem 4.1. We will prove y∗ = 1. Indeed, consider the

matrix

A =

(
x2 x
x y∗

)
.

We have det f [A] = f(x2)f(y∗) − f(x)2 = 0. It follows that A is not positive definite since f
preserves positivity on M2(Fq) by assumption. Thus, x2y∗ − x2 = x2(y∗ − 1) 6∈ F

+
q and so either

y∗ = 1 or 1 − y∗ ∈ F
+
q . If y∗ = 1 we are done. Suppose for a contradiction that we instead have

1− y∗ ∈ F
+
q . Let

B =

(
1 y∗

y∗ y∗

)
.

Then detB = y∗−(y∗)2 = y∗(1−y∗) ∈ F
+
q and so B is positive definite. Since f preserves positivity

on M2(Fq), the matrix f [B] is positive definite and so

det f [B] = f(1)f(y∗)− f(y∗)2 ∈ F
+
q .

Using Equation (4.2) and the f(1) = 1 assumption, we obtain

f(y∗)− f(y∗)2 = f(x)2f(x2)
−1 − f(x)4f(x2)−2 ∈ F

+
q .

Equivalently, 1 − f(x)2f(x2)
−1 ∈ F

+
q . Since f(x2) ∈ F

+
q (Theorem 4.1), it follows that f(x2) −

f(x)2 ∈ F
+
q . Now, consider the matrix

C =

(
x2 x
x 1

)
.

We have f(x2) ∈ F
+
q and det f [C] = f(x2)−f(x)2 ∈ F

+
q . Thus f [C] is positive definite. But since f

is bijective on Fq, its entrywise action onM2(Fq) is also bijective and maps positive definite matrices
onto themselves. Since C is singular, the matrix f [C] cannot be positive definite, a contradiction.
We therefore conclude that y∗ = 1 and so f(x2) = f(x)2. �

With the above preliminary results in hand, we can now prove the main result of this section,
which immediately implies Theorem B.

Theorem 4.5. Let Fq be a finite field with q ≡ 3 (mod 4) and let f : Fq → Fq be such that f

preserves positivity on M2(Fq), and f(1) = 1. Then f(x) = xp
ℓ

for some ℓ = 0, 1, . . . , k − 1.

Proof. First notice that by Lemma 4.3, f(−a) = −f(a) for all a ∈ Fq. We will now show that
η(a− b) = η(f(a)− f(b)) for all a, b ∈ Fq. This is clear when a = 0 or b = 0 since by Theorem 4.1,
we have η(c) = η(f(c)) for all c ∈ Fq. Let us consider the remaining cases as follows.

Case 1: Let η(a) = ±1, η(b) = 1, and η(a − b) = 1. Consider the positive definite matrix

A =

(
b b
b a

)
. Then f [A] =

(
f(b) f(b)
f(b) f(a)

)
is also positive definite, which implies that

η(f(a)− f(b)) = 1.
Case 2: Let η(a) = 1, η(b) = ±1, and η(a − b) = −1. Consider the positive definite matrix

A =

(
a a
a b

)
. Then f [A] =

(
f(a) f(a)
f(a) f(b)

)
is also positive definite, which implies that

η(f(b)− f(a)) = 1, and hence, η(f(a)− f(b)) = −1.

Case 3: Let η(a) = −1, η(b) = −1, and η(a − b) = −1. Consider a′ = −a, b′ = −b, and
a′ − b′ = (−a) − (−b). Note that η(a′) = 1, η(b′) = 1, and η(a′ − b′) = 1. According to
Case 1 above and since f is odd, we have −1 = −η(f(a′)− f(b′)) = −η(f(−a)− f(−b)) =
−η(−f(a) + f(b)) = η(f(a)− f(b)).
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Case 4: Let η(a) = −1, η(b) = −1, and η(a − b) = 1. Consider a′ = −a, b′ = −b, and
a′ − b′ = (−a) − (−b). Note that η(a′) = 1, η(b′) = 1, and η(a′ − b′) = −1. According to
Case 2 above and since f is odd, we have 1 = −η(f(a′) − f(b′)) = −η(f(−a) − f(−b)) =
−η(−f(a) + f(b)) = η(f(a)− f(b)).

Case 5: Let η(a) = 1, η(b) = −1, and η(a − b) = 1. Here we use Lemma 4.4 which asserts
that f satisfies f(x2) = f(x)2 for all x ∈ Fq. Now, consider a + b. If b = −a, then
1 = η(a − b) = η(2a) = η(a)η(2) = η(2). Hence, since f is odd, we get η(f(a) − f(b)) =
η(f(a) − f(−a)) = η(2f(a)) = η(2)η(f(a)) = η(2) = 1. If instead η(a + b) = 1, then
η(a2 − b2) = η((a + b)(a − b)) = 1. By using Case 1 we have 1 = η(f(a) − f(−b)) =
η(f(a) + f(b)) and 1 = η(f(a2) − f(b2)) = η(f(a)2 − f(b)2). Thus, η(f(a) − f(b)) = 1.
Similarly, if η(a+ b) = −1, then η(a2 − b2) = η((a + b)(a− b)) = −1. By using Case 2 we
have −1 = η(f(a)− f(−b)) = η(f(a)+ f(b)) and −1 = η(f(a2)− f(b2)) = η(f(a)2− f(b)2).
Thus, η(f(a)− f(b)) = 1.

Case 6: Let η(a) = −1, η(b) = 1, and η(a − b) = −1. Consider a′ = −a, b′ = −b, and
a′ − b′ = (−a) − (−b). Note that η(a′) = 1, η(b′) = −1, and η(a′ − b′) = 1. According to
Case 5 above and since f is odd, we have −1 = −η(f(a′)− f(b′)) = −η(f(−a)− f(−b)) =
−η(−f(a) + f(b)) = η(f(a)− f(b)).

Hence, the result follows from Theorem 2.9. �

With the above results in hand, we can now prove Theorem B.

Proof of Theorem B. Suppose (4) holds. Since c ∈ F
+
q , we have η(cap

l − cbp
l

) = η(ap
l − bp

l

) and so

we can assume c = 1. Next, using the fact that (a+ b)p
ℓ

= ap
ℓ

+ bp
ℓ

for all a, b ∈ Fq, we have

η(ap
ℓ − bp

ℓ

) = η((a− b)p
ℓ

) = η(a− b)p
ℓ

= η(a− b)

since p is odd. This proves (4) =⇒ (3). The converse implication is Theorem 2.9 applied to

f(1)−1f . Thus (3) ⇐⇒ (4).
That (4) =⇒ (2) follows from Proposition 2.16 and (2) =⇒ (1) is trivial. We now prove

(1) =⇒ (4). It suffices to prove the result for n = 2. If n > 2, then one can embed any
2 × 2 positive definite matrix A into Mn(Fq) using a block matrix A ⊕ In−2, where In−2 denotes
the (n − 2)-dimensional identity matrix. We therefore assume below that n = 2 and f preserves
positivity on M2(Fq).

Since f(1) ∈ F
+
q (Theorem 4.1), replacing f by f(1)−1f , we may assume without loss of generality

that f(1) = 1 and prove that f(x) = xp
ℓ

for some 0 ≤ ℓ ≤ k − 1. Now, using Lemmas 4.3 and 4.4,

f satisfies the assumptions of Theorem 4.5. We immediately conclude that f(x) = xp
ℓ

for some
0 ≤ ℓ ≤ k − 1, as claimed. �

As explained at the beginning of Section 4, the (1) =⇒ (4) implication of Theorem B is easier
to prove under the assumption that f preserves positivity on M3(Fq). In that case, the larger test
set of 3×3 matrices makes it easier to deduce the properties of the preservers. We therefore provide
a simpler proof of Theorem B below under the assumption that n ≥ 3 in (1) and (2). The proof
avoids using Lemma 4.3, Lemma 4.4, and Theorem 4.5.

Theorem 4.6 (Special Case of Theorem B for n ≥ 3). Let q ≡ 3 (mod 4) and let f : Fq → Fq.
Then the following are equivalent:

(1) f preserves positivity on Mn(Fq) for some n ≥ 3.
(2) f preserves positivity on Mn(Fq) for all n ≥ 3.
(3) f(0) = 0 and η(f(a)− f(b)) = η(a− b) for all a, b ∈ Fq.
(4) f is a positive multiple of a field automorphism of Fq, i.e., there exist c ∈ F

+
q and 0 ≤ ℓ ≤

k − 1 such that f(x) = cxp
ℓ

for all x ∈ Fq.
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Proof. We only prove (1) =⇒ (3). The other implications are proved as in the proof of Theorem
B.

Without loss of generality, we assume f(1) = 1. Suppose (1) holds. Without loss of generality,
we can assume n = 3 (the general case follows by embedding 3 × 3 positive definite matrices into
larger matrices of the form A⊕ In−3). By Lemma 2.17(2) we have f(0) = 0. If η(a − b) = 0, then
we are done. Let us assume that η(a− b) = 1 and consider the following three cases.

Case 1: Assume b = 0. Then η(a) = 1, and therefore by using Lemma 2.17(1) we have
η(f(a)− f(0)) = η(f(a)) = 1.

Case 2: Assume η(b) = 1. Then the matrix

A =



b b 0
b a 0
0 0 1




is positive definite. Hence,

f [A] =



f(b) f(b) 0
f(b) f(a) 0
0 0 1




is also positive definite. Note that det f [A] = f(b)(f(a) − f(b)). Thus, η(f(a) − f(b)) = 1
since η(f(b)) = 1.

Case 3: Assume η(b) = −1. Consider the linear map g : Fq → Fq as g(x) = x+ b. Note that
g is bijective (Theorem 2.2(1)), g(0) = b and g(−b) = 0. Thus, there must exist x0 such
that η(x0) = −1 and η(g(x0)) = 1. Let x0 = −c where η(c) = 1, and hence η(b − c) = 1.
Thus, the matrix

A =



c c c
c b b
c b a




is positive definite. Hence,

f [A] =



f(c) f(c) f(c)
f(c) f(b) f(b)
f(c) f(b) f(a)




is also positive definite. Note that det f [A] = f(c)(f(b)− f(c))(f(a)− f(b)). We know that
η(f(c)) = 1, and using the previous case applied with a′ = b and b′ = c, we conclude that
η(f(b)− f(c)) = 1. Thus, η(f(a)− f(b)) = 1.

On the other hand, if η(a − b) = −1, then η(b − a) = 1. Hence, by the above argument η(f(b) −
f(a)) = 1. That implies η(f(a)− f(b)) = −1. Thus, (1) =⇒ (3) and the result follows. �

5. Odd characteristic: q ≡ 1 (mod 4)

We now address the case where q ≡ 1 (mod 4) and prove Theorem C. We start with two lemmas
that will be useful in the proof.

Lemma 5.1. Let Fq be a finite field with q ≡ 1 (mod 4). Let a ∈ Fq such that η(a) ∈ {0,−1}.
Then there exists c ∈ Fq such that η(c) = 1 and η(a− c) = 1.

Proof. If η(a) = 0, then any c ∈ F
+
q works since −1 ∈ F

+
q . If η(a) = −1, then we consider the linear

map g : Fq → Fq as g(x) = a−x. Note that g is bijective (Theorem 2.2(1)), g(0) = a and g(a) = 0.
Thus, there must exist c such that η(c) = 1 and η(g(c)) = η(a− c) = 1. �
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Lemma 5.2. Let Fq be a finite field with q ≡ 1 (mod 4). Let a, b ∈ Fq such that a 6= b, η(a) = 1
and η(b) ∈ {0, 1}. Then there exists c ∈ Fq such that η(c) = −1, η(a − c) = 1, and η(b− c) = −1.
Consequently, if a 6= b with η(a) = −1 and η(b) ∈ {0,−1}, then there exists c ∈ Fq with η(c) = 1
such that η(c− a) = −1 and η(c− b) = 1.

We provide two proofs of Lemma 5.2: one using character sums and Weil’s bound (Theorem 2.4)
and one using properties of Paley graphs. Both proofs are of independent interest.

Proof of Lemma 5.2 (using character sums). Suppose first that η(b) = 0. Pick ω ∈ Fq with η(ω) =
−1 and consider the map g(x) := a−1x− ω for x ∈ Fq. Note that g(aω) = 0 and g(0) = −ω. Since
g is bijective, there exists z ∈ Fq with η(z) = 1 such that η(g(z)) = η(a−1z − ω) = 1. This implies
η(a− a2z−1ω) = 1 with η(z) = 1. Now take c = a2z−1ω to get η(c) = −1 and η(a− c) = 1.

Next suppose a 6= b ∈ Fq and η(a) = η(b) = 1. Let

S := {c ∈ Fq : η(c) = −1, η(a− c) = 1 and η(b− c) = −1}.
Then

|S| =
∑

c∈Fq\{0,a,b}

1− η(c)

2

1 + η(a− c)

2

1− η(b− c)

2

=
1

8

∑

c∈Fq\{0,a,b}

(
1− η(c) + η(a− c)− η(b− c)− η(c)η(a − c) + η(c)η(b − c)

− η(a− c)η(b − c) + η(c)η(a − c)η(b− c)

)

We examine each sum individually:
∑

c∈Fq\{0,a,b}

η(c) = −2.

∑

c∈Fq\{0,a,b}

η(a− c) =
∑

c∈Fq\{0,a,b}

η(b− c) = −1− η(a− b).

∑

c∈Fq\{0,a,b}

η(c)η(a − c) =
∑

c∈Fq\{0,a,b}

η(ac−1 − 1) =
∑

t∈Fq\{0,ab−1−1,−1}

η(t) = −1− η(a− b).

Similarly, ∑

c∈Fq\{0,a,b}

η(c)η(b − c) = −1− η(a− b).

Next, setting y = a− c, we obtain
∑

c∈Fq\{0,a,b}

η(a− c)η(b− c) =
∑

y∈Fq\{a,0,a−b}

η(y)η(y + b− a) =
∑

y∈Fq\{a,0,a−b}

η(1 + (b− a)y−1)

= −η(1) − η(1 + (b− a)a−1)− η(0) = −2.

Finally, using Weil’s bound (Theorem 2.4) we get
∑

c∈Fq\{0,a,b}

η(c)η(a − c)η(b− c) ≥ −2
√
q.

Therefore,

|S| ≥ 1

8

(
q − 3 + 2− 1 + 1 + 1− 1 + 2− 2

√
q
)
=

1

8

(
q + 1− 2

√
q
)
=

1

8
(
√
q − 1)2 ≥ 1
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provided q ≥ 15. The only remaining case are q ∈ {5, 9, 13}. It is not difficult to see that F+
5 = {1, 4},

and when (a, b) = (1, 4), c = 2 provides the required solution, and c = 3 works for (a, b) = (4, 1).
We now deal with the F9 and F13 cases.

Since η(x) = η(−x), note that c is such that η(c) = −1 with η(c − a) = 1 and η(c − b) = −1 if
and only if −c is such that η(−c) = −1 with η(−c+ a) = 1 and η(−c+ b) = −1. This means that
if c is a solution for the pair (a, b) then −c is a required solution for the inverse pair (−a,−b), and
vice versa. This simplifies the resolution of the following cases.

F9 : F
+
9 = {1, 2, x, 2x}, where we identify F9

∼= F3[x]/(x
2 + 1). Using the observation above, we

reduce the number of cases into the following:
Case 1: For a 6= b ∈ {1, x}, one of c ∈ {x+2, 2x+1} provides the solution. This implies

that c ∈ {2x+ 1, x+ 2} provides solutions for a 6= b ∈ {2, 2x}.
Case 2: For each a 6= b ∈ {1, 2}, one of c ∈ {x+1, 2x+2} works; for each a 6= b ∈ {1, 2x},

one of c ∈ {x + 1, 2x + 2} works; for each a 6= b ∈ {x, 2}, one of c ∈ {x + 1, 2x + 2}
works; for each a 6= b ∈ {2x, x}, one of c ∈ {2x+ 1, x+ 2} works.

F13 : F
+
13 = {1, 3, 4, 9, 10, 12}. Here as well, we use the observation mentioned above to break the

cases into the following:
Case 1: a 6= b ∈ {1, 3, 4}. For each a 6= b ∈ {1, 3}, one of c ∈ {5, 6} works; for each

a 6= b ∈ {1, 4} one of c ∈ {2, 8} works; for each a 6= b ∈ {3, 4} one of c ∈ {5, 2} works.
This means the required c also exists if a 6= b ∈ {9, 10, 12}.

Case 2: a ∈ {1, 3, 4} and b ∈ {9, 10, 12} and vice versa. There are thus nine cases:
{a, b} = {1, 9}, . . . , {4, 12}. For each of these cases, the following table gives two values
of c, exactly one of which works.

a 6= b c a 6= b c a 6= b c
1, 9 2, 8 1, 10 2, 7 1, 12 3, 5
3, 9 2, 5 3, 10 2, 9 3, 12 6, 8
4, 9 6, 7 4, 10 5, 6 4, 12 2, 5

The second statement of the lemma follows by replacing a, b by θa′, θb′ respectively, where θ is any
element such that η(θ) = −1. This completes the proof. �

We now provide our second proof of Lemma 5.2 using a graph theoretic approach.

Proof of Lemma 5.2 (using graph theory). Let us consider the Paley graph P (q) for q ≥ 9. Note
that N(0) = F

+
q and N c(0) = F

∗
q \ F+

q . Thus, a ∈ N(0) and b ∈ {0} ∪N(0). We want to show that
there exists c ∈ N c(0) such that c ∈ N(a) but c /∈ N(b).

If b = 0, then a ∈ N(b). Thus, by Lemma 2.8 there exists c ∈ N(a) ∩ N c(0) with the required

property. Suppose that b 6= 0. Note that 0 ∈ N(a)∩N(b). So |N(a)∩N(b)∩F
∗
q | = q−5

4 −1 = q−9
4 <

q−1
4 or |N(a) ∩N(b) ∩ F

∗
q| = q−1

4 − 1 = q−5
4 < q−1

4 depending on whether a, b are adjacent or non-

adjacent, respectively. Now, by Lemma 2.8 we have that |N(a) ∩ N c(0)| = |N(b) ∩N c(0)| = q−1
4 .

Thus, there must exist c ∈ N c(0) such that c ∈ N(a) but c /∈ N(b). Note that the lemma is easy
to verify by using the Paley graph P (5).

A similar argument works for the second part, that is, if η(a) = η(b) = −1. However, we need to
consider the complement graph of P (q) and use the fact that it is isomorphic to P (q) (see e.g. [7,
Section 9.1]). �

We next show a partial analogue of Theorem 4.1 in the q ≡ 1 (mod 4) case.

Theorem 5.3. Let Fq be a finite field with q ≡ 1 (mod 4) and let f preserves positivity on M3(Fq).
Then f(0) = 0 and f is bijective on F

+
q and on F

∗
q \ F+

q (and hence on Fq).

Proof. We first prove that f is bijective over F∗
q. Let a, b ∈ F

∗
q with a 6= b.
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Case 1: Let η(a − b) = 1. Suppose that at least one of a or b is positive. Since η(b − a) =
η(a− b) = 1, we assume without loss of generality that η(a) = 1. Thus, the matrix

A =



a a 0
a b 0
0 0 1




is positive definite. Hence,

f [A] =



f(a) f(a) f(0)
f(a) f(b) f(0)
f(0) f(0) f(1)




is also positive definite. In particular, examining the leading 2 × 2 minor of f [A], we
conclude that f(a) 6= f(b). Next, assume neither a nor b is positive, i.e., η(a) = η(b) = −1.
By Lemma 5.1 there exists c ∈ Fq such that η(c) = 1 and η(a− c) = 1. Thus, the matrix

A :=



c c c
c a a
c a b




is positive definite since the leading principal minors c, c(a− c), c(a− c)(b−a) ∈ F
+
q . Hence,

f [A] is also positive definite. In particular, f(a) 6= f(b) (else the last two rows of f [A] would
be identical).

Case 2: Let η(a− b) = −1. Suppose that at least one of a or b is non-zero and non-positive.
Since η(b − a) = η(a − b) = −1 we can assume without loss of generality that η(a) = −1.
If η(b) = −1, then using Lemma 5.2, there exist c ∈ Fq such that η(c) = η(b − c) = 1, and
η(a− c) = −1. Therefore the matrix

A :=



c c c
c b a
c a a




is positive definite since all its leading principal minors c, c(b − c), c(a − c)(b − a) ∈ F
+
q .

It follows that f [A] is positive definite. In particular f(a) 6= f(b). On the other hand if
η(b) = 1, i.e., η(a) = −1 = −η(b) then using Lemma 5.1 pick c ∈ Fq with η(c) = 1 such
that η(a− c) = 1. Then the matrix

A :=



b a a
a a a
a a c




is positive definite since all its leading principal minors b, a(b − a), a(c − a)(b − a) ∈ F
+
q .

This implies f [A] is positive definite. In particular, f(a) 6= f(b).
Next, assume η(a) = η(b) = 1. By Lemma 5.2 there exists c ∈ Fq such that η(c) = −1,

η(a− c) = 1, and η(b− c) = −1. Thus, the matrix

A =



a a a
a c b
a b b




is positive definite since the leading principal minors a, a(c−a), a(b−c)(a−b) ∈ F
+
q . Hence,

f [A] is also positive definite. In particular, f(a) 6= f(b). Hence, f is injective over F∗
q.

Since f preserves positivity of matrices of the form aI3 with a ∈ F
+
q , we must have

f(F+
q ) = F

+
q . In particular, f(a) 6= 0 for all a ∈ F

+
q . Therefore, if there exists a ∈ Fq such

that f(a) = 0 then η(a) ∈ {0,−1}. Assume η(a) = −1. Lemma 5.1 implies that there
exists b ∈ Fq with η(b) = 1 such that η(a − b) = 1. Now using Lemma 5.2 (applied with
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a′ = a and b′ any element such that η(b′) = −1) there exists c ∈ Fq such that η(c) = 1 with
η(a− c) = −1. Consider

A :=



c a a
a a a
a a b


 .

The matrix A is positive definite since c, a(c− a), a(a − b)(a− c) ∈ F
+
q . However

f [A] :=



f(c) 0 0
0 0 0
0 0 f(b)




is not positive definite, a contradiction. Therefore a = 0, and f maps F
∗
q \ F

+
q bijectively

onto itself, and thus it is bijective over F∗
q.

Now if η(f(0)) = 1 then there exists a ∈ Fq with η(a) = 1 such that f(a) = f(0). But then
f [aI3] is not positive definite, which is a contradiction. On the other hand if η(f(0)) = −1,
then there exists a ∈ F

∗
q \ F+

q such that f(a) = f(0). Now suppose ω ∈ Fq with η(ω) = −1,
and consider

A =



ωa a 0
a 0 0
0 0 ωa


 .

The matrix A is positive definite since its leading principal minors ωa,−a2,−ωa3 ∈ F
+
q .

Therefore

f [A] =



f(ωa) f(a) f(0)
f(a) f(0) f(0)
f(0) f(0) f(ωa)


 =



f(ωa) f(0) f(0)
f(0) f(0) f(0)
f(0) f(0) f(ωa)




is positive definite. However, since η(f(0)) = −1, det f [A] = f(0)(f(ωa) − f(0))2 6∈ F
+
q .

This is a contradiction. Hence, f(0) = 0. Thus f is bijective, f(0) = 0, f(F+
q ) = F

+
q , and

f(F∗
q \ F+

q ) = F
∗
q \ F+

q .

�

We can now prove Theorem C.

Proof of Theorem C. Assume without loss of generality that f(1) = 1. We only prove (1) =⇒ (3).
The other equivalences are proved in the same way as in the proof of Theorem B. Suppose (1) holds.
As before, it suffices to assume n = 3 as the general case follows by embedding 3× 3 matrices into
Mn(Fq). By Theorem 5.3, f is bijective and f(0) = 0. If η(a − b) = 0, then the statement holds
trivially. Moreover, if a = 0 or b = 0, then the statement follows from Theorem 5.3. So we assume
that a, b ∈ F

∗
q with a 6= b.

Case 1: Let η(a − b) = 1. Suppose that at least one of a or b is positive. Since η(b − a) =
η(a− b) = 1 we assume without loss of generality that η(a) = 1. Thus, the matrix

A =



a a 0
a b 0
0 0 1




is positive definite. Hence,

f [A] =



f(a) f(a) 0
f(a) f(b) 0
0 0 1
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is also positive definite. Note that det f [A] = f(a)(f(b) − f(a)). Thus, η(f(a) − f(b)) =
η(f(b) − f(a)) = 1 since η(f(a)) = 1. Now, suppose that η(a) = −1 and η(b) = −1. By
Lemma 5.1 there exists c ∈ Fq such that η(c) = 1 and η(a− c) = 1. Thus, the matrix

A =



c c c
c a a
c a b




is positive definite since the leading principal minors c, c(a− c), c(a− c)(b−a) ∈ F
+
q . Hence,

f [A] =



f(c) f(c) f(c)
f(c) f(a) f(a)
f(c) f(a) f(b)




is also positive definite. Note that det f [A] = f(c)(f(a) − f(c))(f(b) − f(a)). We have
η(f(c)) = 1 and η(f(a)− f(c)) = 1 by the previous case. Hence, η(f(a)− f(b)) = η(f(b)−
f(a)) = 1.

Case 2: Let η(a − b) = −1. Suppose that at least one of a or b is non-positive. Since
η(b − a) = η(a − b) = −1 we assume without loss of generality η(a) = −1. Suppose
η(b) = 1, and using Lemma 5.1 pick c ∈ Fq with η(c) = 1 such that η(a− c) = 1. Then the
matrix

A :=



b a a
a a a
a a c




is positive definite since all its leading principal minors b, a(b − a), a(c − a)(b − a) ∈ F
+
q .

This implies

f [A] :=



f(b) f(a) f(a)
f(a) f(a) f(a)
f(a) f(a) f(c)




is positive definite. In particular, det f [A] = f(a)(f(c)−f(a))(f(b)−f(a)) ∈ F
+
q . By Case 1

above, η(f(c) − f(a)) = 1, and as f maps non-zero non-positive elements bijectively onto
themselves, η(f(a)) = −1. Therefore, η(f(a)− f(b)) = η(f(b)− f(a)) = −1.

For the other case when η(b) = −1 (along with η(a) = η(a− b) = −1), using Lemma 5.2
there exists c ∈ Fq with η(c) = 1 with η(a− c) = −1 and η(b− c) = 1. Now the matrix

A :=



c c c
c b a
c a a




is positive definite since its leading principal minors c, c(b − c), c(a − c)(b− a) ∈ F+
q . Thus

f [A] :=



f(c) f(c) f(c)
f(c) f(b) f(a)
f(c) f(a) f(a)


 .

is positive definite, and det f [A] = f(c)(f(a) − f(c))(f(b) − f(a)) ∈ F
+
q . Since f maps

F
+
q onto itself, η(f(c)) = 1. By the previous case above, η(f(a) − f(c)) = −1. Therefore

η(f(b)− f(a)) = −1. This concludes the proof when η(a) = −1 and η(b) = ±1.
Now, suppose that η(a) = 1 and η(b) = 1. By Lemma 5.2 there exists c ∈ Fq such that

η(c) = −1, η(a− c) = 1, and η(b− c) = −1. Thus, the matrix

A =



a a a
a c b
a b b
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is positive definite since the leading principal minors a, a(c−a), a(b−c)(a−b) ∈ F
+
q . Hence,

f [A] =



f(a) f(a) f(a)
f(a) f(c) f(b)
f(a) f(b) f(b)




is also positive definite. Note that det f [A] = f(a)(f(b) − f(c))(f(a) − f(b)). We have
η(f(a)) = 1 and η(f(b)− f(c)) = −1 by the previous case. Hence, η(f(a)− f(b)) = −1.

In all cases, we proved η(f(a)− f(b)) = η(a− b). The result follows. �

Remark 5.4. The proofs of Theorem 5.3 and Theorem C used Lemmas 5.1 and 5.2. These
intermediary results provide a certain c ∈ Fq for the given field elements a, b assuming η(a) = η(b).
The following lemma is analogous to Lemma 5.2, but when a and b have opposite signs, i.e.,
η(a) = −η(b). This can be applied to resolve some of the cases in the proof of Theorem 5.3 and
provide an alternative proof. Its proof is similar to the proof of Lemma 5.2 and is omitted.

Lemma 5.5. Let Fq be a finite field with q ≡ 1 (mod 4) and q ≥ 9. Suppose s ∈ {−1, 1}, and let
a, b ∈ Fq such that η(a) = −1 = −η(b). Then there exists c ∈ Fq such that η(c) = s, η(a − c) = 1,
and η(b− c) = −1.

6. Other results and applications

We now briefly return to the q ≡ 3 (mod 4) case. Recall that by Theorem B, the only power

functions f(x) = xn that preserve positivity on M2(Fq) are the field automorphisms f(x) = xp
ℓ

for
some ≤ k − 1. Our proof of Theorem B relied on several lemmas and on Weil’s character bound
(Theorem 2.4). We now provide an elementary proof for power functions that is of independent
interest. The proof only relies on Lucas’ Theorem [26], which we now recall.

For a ∈ {1, 2, . . . , q − 1}, we denote the representation of a in base p by a := (ak−1, . . . , a1, a0)p,

i.e., a = ak−1p
k−1 + . . . + a1p + a0 where 0 ≤ ai ≤ p − 1 for all i = 0, 1, . . . , k − 1. For any

a, b ∈ {1, 2, . . . , q − 1} we have a < b if and only if (ak−1, . . . , a1, a0) < (bk−1, . . . , b1, b0) in the
lexicographic order (meaning, for the largest integer s such that as 6= bs we must have as < bs).
The following classical result of Lucas provides an effective way to evaluate binomial coefficients
modulo a prime.

Theorem 6.1 (Lucas [26]). Let a, b ∈ {1, 2, . . . , q − 1}. Then
(
a

b

)
≡

k−1∏

i=0

(
ai
bi

)
(mod p),

where, a = (ak−1, . . . , a1, a0)p and b = (bk−1, . . . , b1, b0)p. �

We now directly examine the properties of power functions that preserve positivity on M2(Fq).

Lemma 6.2. Let f(x) = xn for some n ∈ {1, 2, . . . , q−1}. If n is even, then f(x) does not preserve
positive definiteness on M2(Fq).

Proof. Suppose f(x) preserves positive definiteness on M2(Fq). Thus, by Lemma 2.17, f(x) must
be bijective on F

+
q onto itself and f(0) = 0. Since f(x) is even it maps −F

+
q bijectively onto F

+
q . By

Lemma 2.18 we have |G0 ∩G−1| = q−3
4 and |G0 ∩G1| = q−3

4 . Let us define g(x) := x− 1. Then g is

bijective on Fq (Theorem 2.2(1)) and satisfies g(0) = −1, g(1) = 0, and g−1(x) = x+1. Therefore,
we have

|{z : z ∈ −F
+
q and z + 1 ∈ F

+
q }| = |{z : z ∈ F

+
q and z − 1 ∈ −F

+
q }| =

q − 1

2
− q − 3

4
− 1 =

q − 3

4
,

|{z : z ∈ −F
+
q and z − 1 ∈ F

+
q }| = |{z : z ∈ F

+
q and z + 1 ∈ −F

+
q }| =

q − 1

2
− q − 3

4
=

q + 1

4
.
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Thus, there exists z ∈ F
+
q such that f(z + 1) − 1 /∈ F

+
q . For such z, the matrix A =

(
1 1
1 z + 1

)
is

positive definite but f [A] =

(
1 1
1 f(z + 1)

)
is not, a contradiction. This completes the proof. �

Lemma 6.3. Let f(x) = xn for some n ∈ {1, 2, . . . , q − 1}.
(1) If there exists a ∈ Fq such that a− 1 is positive but an − 1 is non-positive, then f(x) = xn

does not preserve positive definiteness on M2(Fq).
(2) If there exists a ∈ Fq such that a− 1 is non-positive but an − 1 is positive, then f(x) = xn

does not preserve positive definiteness on M2(Fq).

Proof. By Lemma 6.2, we assume that n is odd. First, suppose (1) holds. Consider the matrix

A =

(
1 1
1 a

)
. Then A is positive definite, but f [A] =

(
1 1
1 an

)
is not. Hence, f does not preserve

positive definiteness on M2(Fq).
Now, suppose (2) holds. Notice that a is non-zero since −1 6∈ F

+
q . Thus, it either belongs to F

+
q

or to −F
+
q .

Case 1: Suppose a ∈ F
+
q . Then

√
a exists and consider the matrix A =

(
1

√
a√

a 1

)
. Then A

is positive definite, but f [A] =

(
1 (

√
a)n

(
√
a)n 1

)
is not.

Case 2: If instead a ∈ −F
+
q , then consider

√
−a. If a = −1, then a− 1 = −2 is non-positive

but on the other hand an − 1 = −2 is positive by assumption, which is impossible. Thus
a 6= −1 and we now consider a + 1 6= 0. Suppose a + 1 ∈ F

+
q . Consider the matrix A =(

1
√−a√−a 1

)
. Then A is positive definite and therefore so is f [A] =

(
1 (

√−a)n

(
√−a)n 1

)
.

Thus, det f [A] = an + 1 is positive. Now, a2 − 1 = (a − 1)(a + 1) is non-positive and
(a2)n − 1 = (an − 1)(an + 1) is positive. Taking b = a2, we have b ∈ F

+
q , b − 1 6∈ F

+
q

and bn − 1 ∈ F
+
q . By Case 1 above applied to b, we conclude that f does not preserve

positivity. Finally, suppose a+ 1 ∈ −F
+
q . Consider the matrix A =

(√
−a 1
1

√−a

)
. Then

A is positive definite and so is f [A] =

(
(
√−a)n 1

1 (
√
−a)n

)
. Thus, det f [A] = −(an + 1)

is positive. Hence, a2 − 1 = (a − 1)(a + 1) is positive and (a2)n − 1 = (an − 1)(an + 1)
is non-positive. Applying (1) to b = a2, we conclude that f does not preserve positive
definiteness on M2(Fq).

�

Lemma 6.4. Let n ∈ {1, 2, . . . , q − 1} such that gcd(n, q − 1) = 1 and n 6= pi for any i =

0, 1, . . . , k−1. Then there exists a positive integer r = rk−1p
k−1+ . . .+r1p+r0, where 0 ≤ ri ≤ p−1

2

for all 0 ≤ i ≤ k − 1, and such that if s ≡ nr (mod q − 1), then q−1
2 < s < q − 1.

Proof. Note that q−1
2 =

(
p−1
2 , . . . , p−1

2 , p−1
2

)
p
. Let n = (nk−1, . . . , n1, n0)p and t = max{ni : 0 ≤

i ≤ k − 1}. Denote by j the largest integer such that nj = t. Let us consider the following two
cases.
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Case 1: Suppose t > 1. Consider rj =

⌊
p−1

2

t

⌋
+ 1 and r = rjp

k−1−j. Then we obtain

nr = nrjp
k−1−j

=

(
k−1∑

i=0

nip
i

)
rjp

k−1−j =

k−1∑

i=0

nirjp
k+i−(j+1) =

j∑

i=0

nirjp
k−1−(j−i) +

k−1∑

i=j+1

nirjp
k+i−(j+1)

=

j∑

i=0

nirjp
k−1−(j−i) + pk

k−1∑

i=j+1

nirjp
i−(j+1) =

j∑

i=0

nirjp
k−1−(j−i) + q

k−j−2∑

ℓ=0

nℓ+j+1rjp
ℓ

=

j∑

i=0

nirjp
k−1−(j−i) +

k−j−2∑

ℓ=0

nℓ+j+1rjp
ℓ + (q − 1)

k−j−2∑

ℓ=0

nℓ+j+1rjp
ℓ.

Letting

s =

j∑

i=0

nirjp
k−1−(j−i) +

k−j−2∑

ℓ=0

nℓ+j+1rjp
ℓ,

we have s ∈ {1, . . . , q − 1} and s ≡ nr (mod q − 1). Moreover, the representation of s in

base p is s = (njrj , nj−1rj, . . . , n0rj , nk−1rj, nk−2rj . . . , nj+1rj)p. Note that 1 ≤ rj ≤ p−1
2 ,

njrj > p−1
2 , and 0 ≤ nirj ≤ p − 1 for all i = 0, 1, . . . , k − 1. Also, s 6= q − 1 since

gcd(n, q − 1) = 1. It follows that q − 1 > s > q−1
2 by using the lexicographic ordering.

Case 2: Now assume t = 1. Then ni ∈ {0, 1} for all i = 0, 1, . . . , k − 1. Since n 6= pi for any
i = 0, 1, . . . , k − 1, there exist two distinct integers, say j and ℓ, such that nj = nℓ = 1.

Let rj = rℓ = p−1
2 and let r = rjp

k−1−j + rℓp
k−1−ℓ. By a similar calculation as in the

previous case, if s = (sk−1, . . . , s1, s0)p with s ≡ nr (mod q − 1), then sk−1 = p − 1 and

si ∈ {0, p−1
2 , p−1} for all i = 0, 1, . . . , k−1. Since gcd(n, q−1) = 1, s 6= q−1 and it follows

that q − 1 > s > q−1
2 by using the lexicographic ordering. �

Let g(x) =
∑m

i=0 aix
i be a polynomial of degree m in Fq[x]. Suppose r(x) is the remainder

obtained from g(x) when dividing it by xq − x. Then g has degree at most q − 1. We have
g(x) ≡ r(x) (mod xq −x). We may avoid long division when dividing a polynomial by xq −x since

xq = x for all x ∈ Fq. More precisely, r(x) = a0 +
∑m

i=1 aix
m (mod q−1) with the convention that

m ≡ q − 1 (mod q − 1) if m = s(q − 1) for s 6= 0, instead of m ≡ 0 (mod q − 1).
Our next lemma is key to characterizing powers that preserve positivity on M2(Fq).

Lemma 6.5. Let n ∈ {1, 2, . . . , q − 1} such that gcd(n, q − 1) = 1. Define g(x) = (xn − 1)
q−1

2 and

h(x) = (x−1)
q−1

2 . Then g(c) = h(c) for all c ∈ Fq if and only if n = pi for some i = 0, 1, . . . , k−1.

Proof. Suppose n = pi for some i = 0, 1, . . . , k − 1. Then for any c ∈ Fq we have

g(c) = (cn − 1)
q−1

2 = (cp
i − 1)

q−1

2 = (c− 1)p
i· q−1

2 = h(c)p
i

.

So g(c) = h(c) for all c ∈ Fq since g(c), h(c) ∈ {−1, 0, 1} and p is odd. Conversely, suppose n 6= pi

for any i = 0, 1, . . . , k − 1. Note that deg(h(x)) ≤ q−1
2 . On the other hand, we have

g(x) = (xn − 1)
q−1

2 =

q−1

2∑

r=0

(−1)
q−1

2
−r

( q−1
2

r

)
xnr

≡


−1 +

q−1

2∑

r=1

{
(−1)

q−1

2
−r

( q−1
2

r

)
(mod p)

}
xnr (mod q−1)


 (mod xq − x).
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Since q−1
2 = (p−1

2 , . . . , p−1
2 , p−1

2 )p, by Lucas’s theorem (Theorem 6.1) we have

( q−1
2

r

)
=

k−1∏

i=0

(p−1
2

ri

)
(mod p).

By Lemma 6.4 we must have deg (g(x) (mod xq − x)) > q−1
2 . Thus g(x) 6= h(x) (mod xq−1). The

result now follows from Lemma 2.5. �

An immediate corollary of Lemmas 2.5 and 6.5 is the following:

Corollary 6.6. Let n ∈ {1, 2, . . . , q−1} such that gcd(n, q−1) = 1. Then there exists a polynomial

s(x) ∈ Fq[x] such that (xn − 1)
q−1

2 = s(x)(xq − x) + (x − 1)
q−1

2 if and only if n = pi for some
i = 0, 1, . . . , k − 1.

Finally, we obtain the desired result.

Theorem 6.7. Let n ∈ {1, 2, . . . , q−1}. Then f(x) = xn preserves positive definiteness on M2(Fq)
if and only if n = pi for some i = 0, 1, . . . , k − 1.

Proof. Suppose n = pi for some i = 0, 1, . . . , k − 1. Then by Proposition 2.16 f(x) = xn preserves
positive definiteness on M2(Fq). Conversely, suppose n 6= pi for any i = 0, 1, . . . , k− 1. If n is even,
by Lemma 6.2, f(x) = xn does not preserve positive definiteness on M2(Fq). So we assume that
n is odd and hence, together with Lemma 2.17, f(x) = xn must be a bijective map. By Theorem
2.2(2), we must have gcd(n, q − 1) = 1. Now, consider the following two functions

g(x) = (xn − 1)
q−1

2 = η(xn − 1),

h(x) = (x− 1)
q−1

2 = η(x− 1).

Since gcd(n, q − 1) = 1, we have xn = 1 if and only if x = 1. If there exists a ∈ Fq \ {1} such that
g(a) 6= h(a), then by Lemma 6.3, f(x) = xn does not preserve positive definiteness on M2(Fq).
Hence, we assume that g(c) = h(c) for all c ∈ Fq. But Lemma 6.5 shows that this is impossible, a
contradiction. �

7. Conclusion

The astute reader will have noticed that one case was not addressed in the paper: the charac-
terization of entrywise preservers on M2(Fq) when q ≡ 1 (mod 4). While the authors were able to
gather evidence that the analogue of Theorem B should hold when q ≡ 1 (mod 4), our techniques
did not allow us to resolve this case. This will be the object of future work.

Acknowledgements. The authors would like to acknowledge the American Institute of Mathe-
matics (CalTech) for their hospitality and stimulating environment during a workshop on Theory
and Applications of Total Positivity in July 2023 where authors met and initial discussions occurred.
The authors would also like to thank Apoorva Khare for his comments on the paper.

D.G. was partially supported by a Simons Foundation collaboration grant for mathematicians.
H.G. and P.K.V. acknowledge support from PIMS (Pacific Institute for the Mathematical Sciences)
Postdoctoral Fellowships. P.K.V. was additionally supported by a SwarnaJayanti Fellowship from
DST and SERB (Govt. of India), and is moreover thankful to the SPARC travel support (Scheme
for Promotion of Academic and Research Collaboration, MHRD, Govt. of India; PI: Tirthankar
Bhattacharyya, Indian Institute of Science), and the University of Plymouth (UK) for hosting his
visit during part of the research.



28 DOMINIQUE GUILLOT, HIMANSHU GUPTA, AND PRATEEK KUMAR VISHWAKARMA

References

[1] Alexander Belton, Dominique Guillot, Apoorva Khare, and Mihai Putinar. Matrix positivity preservers in fixed
dimension. I. Adv. Math., 298:325–368, 2016.

[2] Alexander Belton, Dominique Guillot, Apoorva Khare, and Mihai Putinar. A panorama of positivity. I: Dimen-
sion free. In: Alexandru Aleman, H̊akan Hedenmalm, Dmitry Khavinson, and Mihai Putinar, editors, Analysis
of Operators on Function Spaces, The Serguei Shimorin memorial volume, Trends in Mathematics, pp. 117–165.
Birkhauser, Basel, 2019.

[3] Alexander Belton, Dominique Guillot, Apoorva Khare, and Mihai Putinar. A panorama of positivity. II: Fixed
dimension. In: Javad Mashreghi, Garth Dales, and Dmitry Khavinson, editors, Complex Analysis and Spectral

Theory: Proceedings of the CRM Workshop held at Laval University, QC, May 21–25, 2018, CRM Proceedings,
AMS Contemporary Mathematics 743, pp. 109–150. American Mathematical Society, Providence, RI, 2020.

[4] Alexander Belton, Dominique Guillot, Apoorva Khare, and Mihai Putinar. Moment-sequence transforms. J. Eur.
Math. Soc., 24(9):3109–3160, 2022.

[5] Alexander Belton, Dominique Guillot, Apoorva Khare, and Mihai Putinar. Totally positive kernels, pólya fre-
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