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We demonstrate ionization of a molecule with the bias voltage of a Scanning Tunnelling Micro-
scope (STM) resulting in a coexistence of a neutral and ionic molecules, i.e. radical (paramagnetic)
and non-radical (diamagnetic) states. This coexistence may be facilitated by a periodic switching
between two bias voltages. The precession of the nucleus in the diamagnetic state modulates the
nuclear polarization as well as the hyperfine transitions as seen in electron spin resonance (ESR). We
analyze the power spectrum of a selected hyperfine intensity and obtain the nuclear magnetic reso-
nance (NMR) spectrum. We have observed this phenomenon in three types of molecules: TEMPO,
toluene and triphenylphosphine, showing NMR of 14N, 13C, 31P and 1H nuclei. The spectra are
detailed and show signatures of the chemical environment, i.e. chemical shifts. A master equation
including off-diagonal hyperfine interactions accounts for these observations.

The detection of Nuclear Magnetic Resonance (NMR)
of individual molecules is an outstanding challenge. It
is essential for chemical analysis, for quantum informa-
tion devices and as a significant improvement of medical
NMR. Furthermore, a high resolution NMR can identify
the chemical environment of a given nucleus. Previous lo-
cal NMR probes were attempted by magnetic resonance
force microscopy [1, 2] that have reached a resolution of
10nm or by NV centers [3, 4] that, however, lack the
flexibility of scanning.

In the present work we measure electron-spin-
resonance (ESR) by the technique of ESR-STM [5–7] to
probe via the hypefine coupling individual nuclear spins.
In contrast with other ESR-STM methods [8, 9] in our
scheme we do not need either a polarized STM tip, high
magnetic fields, low temperatures or even external rf
fields, thus we have the advantage of simplicity.

Principles and Outline

The present work can be applied to either radicals or
non-radical molecules, The basic idea is to ionize the
molecule using the STM bias creating a coexistence of
neutral and ionized states. In the radical state the hyper-
fine tensor couples the electron and nuclear spins, σ and
τ respectively. Consider an ESR frequency ν = gµBB,
where g is the g-factor, µB is the Bohr magneton and
B is the external magnetic field in the z direction. The
dominant hyperfine terms are aσzτz and an off-diagonal
dσzτy, present for a general molecular orientation, assum-
ing ν ≫ a, d. When the eigenvalue of aτz + dτy is posi-

tive (negative) the hyperfine transition is at ν+
√
a2 + d2

(ν−
√
a2 + d2). Thus, as τ rotates, e.g. freely in the non-

radical state, the intensity of a given hyperfine resonance
is oscillating in time, hence detectable by ESR-STM. The
challenge is then, both experimentally and theoretically,
to create conditions where the free nucleus encodes its
phase on the ESR spectrum.

In our experiments we probe various nuclei such as

14N, 13C, 31P and 1H . The STM bias voltage is modu-
lated in time so as to enhance ionization, though we find
that this modulation is not essential. We then record
a given hyperfine intensity during a sequence of dwell
times, each one is short relative to the nuclear period. Fi-
nally we identify the power spectrum of this sequence as
our NMR spectrum. We find that in 1sec we can take an
NMR spectrum of each pixel in an STM image (see Sup-
plementary Information (SM) [10]). Our experiments are
then a proof of concept, providing a powerful yet simple
technique for detection of single nucleus NMR. Further-
more, the NMR spectrum with high frequency resolution
provides chemical shifts [11], spin-spin (dipolar) interac-
tions, hence the chemical environment of the nucleus.
We demonstrate our technique on three types of

molecules: (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl
(TEMPO), which is a radical at zero bias and be-
comes a non-radical in its ionized state, toluene and
triphenylphosphine both molecules are non-radicals at
zero bias and become radicals in the ionized state, see
structures and STM images in Fig. 1. We note also
recent experiments [12] on 60C which is non-radical at
zero bias, becoming a radical at finite STM bias as seen
by its ESR-STM spectrum.

NMR-STM Experiments
Consider first our NMR-STM experiment on TEMPO

molecules; we note our earlier ESR-STM data for various
TEMPO configurations [13]. We have chosen the ESR
intensity at 760 MHz and recorded its value during 0.25
µsec (dwell time Td) by a fast scope (Rhode Schwarz),
taking 106 values, i.e. total of 0.25 sec. This set of
ESR intensities forms a sequence h(t) (proportional to
the ESR intensity in dBm units) at times t separated by
Td. The corresponding Fourier |h(ν)|2 representing the
NMR spectrum is then plotted. We have taken 50 spectra
within 5 min forming one group, then searched the STM
image for another molecule and repeated this procedure,
thus generating 101 groups. The nominal magnetic field
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FIG. 1. Molecular structures and STM images.
Left: atomic structure of molecules, right: their STM im-
age (20x20nm2 for a,b, 10x10nm2 for c). STM current is
I=0.1nA and voltage 1V. (a) TEMPO on Au(111) covered
with graphene oxide monolayer, (b) toluene on Au(111), (c)
triphenylphosphine on Au(111).

at the beginning of the experiment was 233 G though
it was not monitored during the experiment. Fig. 2a
shows the full range of the spectrum, summing on the 50
spectra of one group. A strong line is visible at 0.0785
MHz and is present in about 1/3 of the groups. We assign
this line to 14N, with the standard 14N gyromagnetic fac-
tor 3.077 MHz/T this line corresponds to a field of 255
G. A high resolution plot is shown in Fig. 2b of the
sum on 50 spectra as well as that of one individual spec-
trum. The linewidth is ∼100 Hz, as common in molecules
with 14N [14]. The individual spectrum exhibits consid-
erable structure, consistent with known chemical shifts
[14]. There are two weaker lines at 0.2303 MHz and at
1.544 MHz that have a narrow linewidth of ∼ 20 Hz, we
consider these lines as due to extrinsic noise.

Our next set of experiments shows 1H nuclei in toluene,
Fig. 3. ESR-STM data is shown in Fig. S2 [10]. This
molecule is significant as it demonstrates that the non-
magnetic toluene in its neutral state becomes param-
agnetic in its ionized state, enabling the observation of
NMR. In this experiment a hyperfine line at 627 MHz is
monitored with Td = 0.5µsec, nominal B =230 G. We
have examined over 100 spectra, all having a sharp line
near the expected position of the 1H NMR. A typical

FIG. 2. Data on TEMPO. (a,b) NMR data using the fast
scope method. Monitored ESR frequency is 760 MHz, voltage
is modulated between 0.2V and 3.8V at 15 MHz, tunneling
current is I=0.5 nA, nominal B=233 G, Td = 0.25µsec. Data
is summed over 50 consecutive spectra while (b) shows also a
single spectrum (lower red line, enhanced by x15).

NMR spectrum is shown on the whole frequency range
in Fig. 3a, and the resonance at 0.96486 MHz is shown
in more detail in Figs. 3b, 3c. The gyromagnetic value of
1H 42.577 MHz/T implies that the actual field is 226.6
G. The scale in Fig. 3a is chosen so a to exhibit the
background noise, here just 4% of the 1H resonance in-
tensity is shown. The signal to noise ratio near the res-
onance, as shown in Fig. 3a, is ≈ 1000. Within a total
acquisition time of 1 second we recorded 2 · 106 points
which allows detection of chemical shifts. This is shown
in the very high resolution Fig. 3c that shows splitting of
∼ 10ppm, as in standard data [15]; in this figure the data
has been smoothed to avoid the inherent discreteness of
1 Hz. Fig. 3d, at a higher magnetic field, shows split-
tings of ∼ 100ppm, possibly chemical shifts which can be
larger in radical molecules [16], such as ionized toluene.

We consider next our data on triphenylphosphine
molecules in Fig. 4 showing resonaces of 13C, 31P and
1H. Spectra are taken in groups of 50, repated 4 times.
Fig. 4a shows the full spectrum with dashed lines in-
dicating the expected resonances at B = 225 G, using
the gyromagnetic factors 10.7084 MHz/T of 13C, 17.235
MHz/T of 31P and 42.577 MHz/T of 1H; we note devia-
tions of up to ∼4%. We also note that the 1.1% natural
abundance of 13C is compensated by the presence of 18
C atoms in this molecule. The triplet of the 31P with
splitting of 20 Hz is consistent with chemical shifts in
similar molecules [17].
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FIG. 3. Data on toluene. (a) Single nucleus NMR of 1H
in toluene, the signal near 0.97 MHz is shown with just 4%
of its intensity. The scale is chosen so as to exhibit the back-
ground noise. (b) Full size of the signal in Fig. 3a. (c) A
high resolution spectrum of the signal in (b) showing chem-
ical shifts between aromatic and aliphatic hydrogen peaks.
Voltage modulation is between 0.2V and 3.7 V at a frequency
of 15.675 MHz, I=0.1 nA, B=230 G, Td = 0.25µsec. (d) Same
parameters except B = 235 G, demonstrating that the NMR
peak indeed shifts with B.

Theoretical Model

We have developed a model to describe the ionization
process. The model assumes the presence of a second
molecule in the system that collects the electron that is
being ionized. A second radical is actually essential for
observing ESR-STM [18]. The basis set has then the
state |11⟩ where the two electron spins are on separate
molecules while one of the spins has a hyperfine coupling
with a nuclear spin 1

2 . The |11⟩ state has therefore 8 spin
components. In addition, we have the state where both
spins are on the same molecule, labeled as |20⟩. The elec-
tron spins are then in a singlet state and the only spin
components are the two nuclear ones, hence a total of 10
states in the Hilbert space. In the |11⟩ state the nuclear
spin dynamics is dominated by the hyperfine, hence free
nuclear rotation is allowed only in the |20⟩ state. We
have also considered a case where two nuclear spins are
hyperfine coupled, leading to a Hilbert space of 20 states.
We build a master equation to describe dissipative tran-
sitions of strength γ between the |11⟩ and |20⟩ subspaces,
as well as dissipative transitions γ1 between the two spin
states of either electron spin. We find that an off-diagonal
hyperfine element is essential for observing the NMR sig-
nature, i.e. dσzτy. In the SM [10] we demonstrate that a
rotated molecule has in general such a term. We have ex-
tended the model to allow distinct relaxation rates from
|11⟩ to |20⟩ and back, to account for a voltage modula-
tion. We find the the modulation has a weak effect on the
NMR features, hence the main ingredient are the states
|11⟩ and |20⟩ that coexist even in the steady state.

We find two situations when an NMR signal is ob-
served, as shown in Fig. 5, for details see SM [10].

FIG. 4. Data on triphenylphosphine. NMR data using
the fast scope method. Monitored ESR frequency is 734 MHz,
voltage is modulated between 0.2V and 3.8V at 16.5 MHz,
tunneling current is I=0.5 nA, B=225 G. Data is averaged
over 50 consecutive spectra. High resolution data is shown
for the 13C line (b), the 31P line (c) and the 1H line (d).
The lower lines in red (4a, 4b, 4c) show individual spectra,
enhanced as indicated.

(i) Case of small γ: when a = d = 1 and γ1 = 0.1
there is a strong signal at a shifted position ν̃n =√
(νn + 2a)2 + 4d2, Fig. 5a, which we consider as an ex-

treme case of a chemical shift. It corresponds to a fully
polarized σz → +1; if γ1 increases eventually ⟨σz⟩ → 0
and this peak approaches νn. At the expected a = d ≈ 10
for toluene the signal shows a weak dip. However, when
2 nuclei are present with different hyperfine couplings,
a = d = 10 and a2 = d2 = 0.5, e.g. two inequivalent
1H nuclei in toluene [19], we observe a strong signal of
the weaker coupled nucleus, while a very weak dip of the
strongly coupled nucleus persists, Fig. 5b. (ii) Case of
large γ (though still small on the voltage scale): here the
singlet state of |11⟩ decays fast and ESR is then possible
only between the triplet states of |11⟩. The ESR is then
at shifted position while the NMR signal is strong for
a = d = 10 as well as for a = d = 1, the latter case shows
an additional peak, a chemical shift to the same ν̃n due
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FIG. 5. Theory cases. Theory results showing nuclear cor-
relations with NMR observed at a nuclear frequency νn = 1
MHz, electron frequencies are 600 MHz (hyperfine coupled)
and 650 MHz (spectator). (a) Low γ = 0.01 and low
a = d = 1, γ1 = .1, (b) case of two nuclei with low γ = 0.1:
high a = d = 10 (red line, data enhanced by a factor 50)
coexisting with a low a2 = d2 = 0.5 (blue thick line), γ1 = 20.
(c) High γ = 10, 000 and high a = d = 10, γ1 = .01, (d) High
γ = 10, 000 and low a = d = 1 , γ1 = .01.

to the relatively small hyperfine coupling, Figs. 5c,5d.

We propose that the case with two nuclei, Fig. 5b, is
the most likely scenario to account for the experimental
data, as it is the only case that allows a relatively large

ESR linewidth γ1, consistent with the ESR spectrum
(Fig. S2). The NMR linewidth ≈ a22/γ1 (SM [10] section
IIIE) can be identified from the experimental intensity
and linewidth.

Conclusions
In conclusion, our work demonstrates the successful

observation of single spin NMR, a proof of concept which
is detected experimentally and accounted for theoreti-
cally. We note that a clear single spin NMR spectrum
can be achieved within 1sec, close to the time that a
(slow) scan of STM takes to record 1 pixel. This opens
the road for observing an atomically resolved STM image
concurrently with identifying each nucleus
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I. MATERIALS AND METHODS

Our experiments were carried out with a Demuth type STM operated at room temperature in ultrahigh vacuum
(UHV) (base pressure ≤ 1.5 · 10−10 Torr). STM images were acquired with chemically etched tungsten tip (W). The
molecules were deposited on gold films of thickness 100nm on Mica. The deposition was done in two ways: TEMPO
was dissolved in toluene and drop casted on the surface at a concentration of 0.041 g/25 ml, corresponding to one
monolayer. Toluene and triphenylphosphine were evaporated for few minutes with a leak valve maintaining base
pressure of 10−8 Torr in the chamber. Molecular resolution was achieved, and it was easy to identify single molecules
on the surface (Fig. 1). The next step was to study their magnetic resonance signature.

The electronic setup for our ESR and NMR data is shown in Fig. S1. DC tunneling current from the sample was
connected to the STM control unit for the STM image acquisition. RF and DC tunneling currents from the tip were
split with a bias-tee (BT) where the DC part (frequency f < 30MHz) was connected to a frequency generator (FG) that
modulated the STM tip bias voltage (0.1 < Vbias < 4V) with the desired modulation frequency (0.25 < f < 30MHz).
The RF part was connected to an impedance matching circuit (IMC) and to an amplifier (Amp). A spectrum analyzer
(SA) recorded the RF intensity as a function of frequency (span: 200 < f < 800MHz) at constant magnetic field,
Bext ≈ 230G, and the output was the ESR-STM spectrum. Then, the intensity of one of the hyperfine peaks (with a
bandwidth of 3MHz) was digitally recorded and finally its power spectrum calculated (DSA) as a function of frequency,
the output was the NMR-STM spectrum.

FIG. S1. Setup. NMR-STM acquistion setup.

We have also studied a different two stage experiment: one spectrum analyzer records a chosen hyperfine line
intensity as function of time, generating a video output. A second spectrum analyzer is directly connected to find
the power spectrum of that intensity at the low NMR frequencies (i.e. SA at the bottom of Fig. S1 instead of DSA).
The advantage of this method is that a high resolution NMR spectrum is seen immediately without time consuming
calculations of the results. The disadvantage is that its spectral resolution is relatively low. This can be improved by
either a new spectrum analyzer with a shorter dwell time, or by using a fast scope with a short dwell time.

The results of this procedure are shown at Fig. S2. The sample as in the main text, is a monolayer of toluene on
a gold surface. ESR spectra are shown in Fig S2a at constant voltage and in S2b with voltage modulation, showing
that it is well defined even in letter case. We note that the distance between the peaks is 17MHz, as expected for
toluene radical anion [1]. With B=235G the NMR signal of 1H is expected at 1.001MHz, indeed close to the peak
shown in Fig. S2b. We note that the intensity of the NMR peaks are smaller in this method.

We have carried out yet another type of experiment on TEMPO, where the low frequency hyperfine peak intensity
in the ESR is analyzed by a lock in amplifier in which the reference frequency was swept from 0 to 150 kHz. A
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FIG. S2. Data on toluene. (a) ESR data with a constant voltage of 2V, I=0.1 nA, corresponding to B=286 G. (b) ESR data
with bias voltage modulation of 0.2V and 3.8V at a frequency of 15MHz, I=1nA, B=235G. (c) NMR spectrum using ESR data
at 660MHz is chosen and analyzed by a second spectrum analyser.

significant signal was detected quite often at 70 kHz, consistent with the Larmor frequency of the 14N nucleus at 230
G (Fig. S3a); an additional signal was observed at half of this frequency. In this experiment a single sweep has taken
90 sec, a long time that caused a linewidth much broader than those with the fast scope method as shown in the
main text and in Fig. S3b. In the latter figure we have taken 5 consecutive spectra over a given molecule, showing
line positions that vary by ∼ 0.1%, possibly due to a slight drift of either the magnetic field or the tip position.

We next summarize the parameters of the experiment, that will be incorporated in the following theory sections.
These parameters also appear in the captions of figures in the main text. The parameters are: Magnetic field B,
chosen in the z direction; the STM bias voltage chosen as sample positive (i.e. the tip is at negative voltage with
respect to the substrate), if the voltage is modulated with period T̄ it has high and low voltage values, each during
time T1 = T2 = T̄ /2; the tunneling current I; a chosen hyperfine frequency νhyper that is detected by a spectrum
analyzer with a bandwidth of 3MHz; the intensity of this hyperfine signal is detected during a dwell time Td. We
note that Td = 0.5µsec for the data in Fig. 3 and Td = 0.25µsec for Figs. 2,4, for the lock-in method (Fig. 2c) Td

is in some sense its response time ≈ 100µsec, though this implies a too large νnTd. The second spectrum analyzer
method (Fig. S2c) acquires time dependent data continuously so Td is not well defined, indeed the data in Fig. S2c
is rather noisy. Td should be in the range νn ≪ 1/Td ≪ νhyper so that νhyper can be detected accurately (many ESR
oscillations within Td) while the nuclear polarization is almost constant (almost no NMR oscillation within Td).

II. ROTATED HYPERFINE

Suppose that the hyperfine tensor has principal axes z′y′x′ at some orientation relative to the magnetic field, chosen
in the z direction. The diagonal hyperfine elements are c′, b′, a′. We wish to rotate this tensor and find the dominant
hyperfine splitting for electron Larmor frequency ν ≫ a′, b′, c′. Assume for simplicity that it is sufficient to rotate
around the x = x′ axis with an angle θ, this is the case if c′ is relatively small or if two elements are equal b′ = c′.

FIG. S3. Data on Tempo. (a) NMR data using a lock-in method, monitoring the low frequency hyperfine peak. Voltage is
modulated between 0.2V to 3.7V at a frequency of 250 kHz, I=0.1 nA, B=230 G. (b) Five consecutive measurements of the 1H
resonance with the fast scope method. These lines include the one shown in Fig. 3b, parameters are the same as in Fig. 3.
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The hyperfine coupling with the rotation matrix R(θ) becomes, where the electron spin is S, the nuclear spin is I and
primes denote rotated quantities,

S′ ·A′ · I ′ = (Sz, Sy, Sx)




cos θ sin θ 0
− sin θ cos θ 0

0 0 1







a′ 0 0
0 b′ 0
0 0 c′







cos θ − sin θ 0
sin θ cos θ 0
0 0 1







Iz
Iy
Ix




= (Sz, Sy, Sx)




a′ cos2 θ + b′ sin2 θ sin θ cos θ(b′ − a′) 0
sin θ cos θ(b′ − a′) a′ cos2 θ + b′ sin2 θ 0

0 0 c′







Iz
Iy
Ix


 (1)

where the rotated spin vectors S = S′ ·R(−θ), I = R(θ) · I′. For a general rotation all elements of the tensor become
finite. In presence of a Larmor frequency ν in the Hamiltonian, i.e. νSz, the Sx, Sy terms are perturbative of order
(hyperfine)2/ν, hence the dominant hyperfine term is

Hhyp = Sz (aIz + dIy) =
√

a2 + d2Sz Ĩ , Ĩ =
a√

a2 + d2
Iz +

d√
a2 + d2

Iy (2)

a = a′ cos2 θ + b′ sin2 θ, d = sin θ cos θ(b′ − a′), ⇒ a2 + d2 = a′2 cos2 θ + b′2 sin2 θ

The eigenvalues ±
√
a′2 cos2 θ + b′2 sin2 θ are in agreement with Eq. 1.66 (or Eq. 3.44) of Ref. 2(g factor is assumed

isotropic).

III. MODEL AND SIMULATIONS

A. The model

There are two essential ingredients in our theoretical model: (i) In addition to the tested molecule the system has
an additional spectator molecule that can absorb an ionized electron from the tested one. This leads to the states
|11⟩ and |20⟩ as defined in the main text. We assume that these two states coexist, the coexistence may be affected
by a voltage modulations. (ii) The hyperfine tensor has a off diagonal element, a common possibility as shown in the
previous section.

We note that the tested molecule can be either a radical or a non-radical at equilibrium. In the radical case, e.g.
TEMPO, in the neutral state both molecules carry a spin forming a |11⟩ state, while in the ionized state the TEMPO
electron, i.e. the spin carrying one, is transferred to the spectator molecule forming there a singlet state, i.e. the
|20⟩ state. When the tested molecule is a non-radical, e.g. toluene, the roles are reversed – in the neutral state both
molecules are non-radicals forming a |20⟩ state, while in the ionized state one toluene electron from a singlet state
is transferred to the spectator molecule so that both molecules become radicals, i.e. the |11⟩ state. Depending on
the STM voltage, it is also possible that one spectator electron is transferred to toluene, also forming a |11⟩ state.
Our model treats all cases on equal footing. Evidently, the measured ESR signal comes from the |11⟩ state while the
derived NMR come from the coexisting |20⟩ state. The situation is somewhat similar to that of two quantum dots [3]
that by changing gate voltages can transfer charge between their |20⟩ and |11⟩ states.

The |20⟩ state has two states due to the nuclear spin, while |11⟩ has eight states (two electrons and one nuclear
having each 2 states). Hence the Hilbert space has 10 states. The Hamiltonian in the two subspaces, respectively,
and the total Hamiltonian are

H11 = 1
2ν1σz ⊗ 1⊗ 1+ 1

2ν21⊗ sz ⊗ 1+ 1
2νn1⊗ 1⊗ τz + aσz ⊗ 1⊗ τz + bσx ⊗ 1⊗ τx + dσz ⊗ 1⊗ τy

H20 = 1
2νnτz

H = H11|11⟩⟨11|+H20|20⟩⟨20| (3)

where σ, s, τ are Pauli matrices representing the two electron spins and the nuclear spin, respectively and ν1, ν2
are the electron resonance frequencies of the two radicals, respectively (in the absence of hyperfine couplings). An
additional direct tunneling element between |11⟩ and |20⟩ is possible, as well as a chemical potential shift between
these subspaces; we find that both terms have a minor effect on the results below.

We assume the switching between the |11⟩ and |20⟩ subspaces to be dissipative. We introduce the rate γ for the
|20⟩ → |11⟩ transition and γd for the reverse process. Labeling the states with ± for σz, sz and τz spins, respectively,
we order the |11⟩ space as |+++,++−,+−+,+−−,−++,−+−,−−+,−−−⟩. The jump operators couples

only the singlet component of the |11⟩ state, which is either |0, 0, 0,−1, 0, 1, 0, 0⟩/
√
2 or |0, 0,−1, 0, 1, 0, 0, 0⟩/

√
2 (i.e.
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two nuclear spins). We then construct a 10× 10 operator L that transfers the |20⟩ singlet states into |11⟩, while the
transpose Ld = LT (LT is the transpose of L) is transferring the opposite way. If γ ≫ γd the dominant subspace is
|11⟩ representing an ”ESR” state, while in the opposite case |20⟩ is dominant, representing an ”NMR” state. These
decay rates depend on voltage, hence when voltage is modulated with a period T̄ then γ > γd during time T1 while
γ, γd are interchanged during time T2 with T1 + T2 = T̄ .

Since only the singlet states are populated by γ, γd we need additional relaxations within the |11⟩ states, so as to
populate all states. The resonance frequencies ν1 or ν2 are much smaller than temperature (or voltage), hence spin
flip rates up or down are equal with values γ1, γ2, for the two radicals, respectively. We define a 10 × 10 operator
M1 = σ+ ⊗ 1⊗ 1 and 0 in the 2× 2 space of |20⟩, similarly with s+ → M2. Hence the Lindblad equation during the
”ESR” period T1 is (L, M1, M2 are real, e.g. L† = LT = Ld),

dρ

dt
= −i[H1, ρ] + {γ[L · ρ · L† − L† · L · ρ] + γb[L

† · ρ · L− L · L† · ρ]

+γ1[M1 · ρ ·M†
1 −M†

1 ·M1 · ρ+M†
1 · ρ ·M1 −M1 ·M†

1 · ρ]
+γ2[M2 · ρ ·M†

2 −M†
2 ·M2 · ρ+M†

2 · ρ ·M2 −M2 ·M†
2 · ρ] + h.c.} (4)

During the ”NMR” period T2 the roles of γ, γb interchange.

B. Master equation

Consider the density matrix ρkj as a vector (super-vector) whose elements are lexicographically ordered. Consider
a 10× 10 matrix that operates on the density matrix. To find its corresponding super-operators, which are 100× 100,
we write an i, j element of regular matrix multiplication as (sums on k or kl are implied, Id is a 10× 10 unit matrix),

Aikρkj = (A⊗ Id)ij,klρkl ⇒ A · ρ = (A⊗ Id) · ρ product from left

ρikAkj = (Id ⊗AT )ij,klρkl ⇒ ρ ·A = (Id ⊗AT ) · ρ product from right

(A · ρ ·A†)ij = AikA
†
ljρkl = (A⊗A†T )ij,klρkl (5)

The Lindblad operators are then

LL1 = −iH1 ⊗ Id + iId ⊗HT
1 + 1

2γ(2L⊗ LT
d − Ld · L⊗ Id − Id ⊗ [Ld · L]T )

+ 1
2γb(2Ld ⊗ LT − L · Ld ⊗ Id − Id ⊗ [L · Ld]

T )

LL2 = −iH2 ⊗ Id + iId ⊗HT
2 + 1

2γb(2L⊗ LT
d − Ld · L⊗ Id − Id ⊗ [Ld · L]T )

+ 1
2γ(Ld ⊗ LT − L · Ld ⊗ Id − Id ⊗ [L · Ld]

T )

MM1 = 1
2γ1[2M1 ⊗M1 −MT

1 ·M1 ⊗ Id − Id ⊗ (MT
1 ·M1)

T

+2MT
1 ⊗MT

1 −M1 ·MT
1 ⊗ Id − Id ⊗ (M1 ·MT

1 )T ] (6)

and similarly for MM2 with 1 → 2. The evolution operators are then

L1 = LL1 +MM1 +MM2,
dρ

dt
= L1ρ ⇒ ρ(T1) = eL1T1ρ(0)

L2 = LL2 +MM1 +MM2,
dρ

dt
= L2ρ ⇒ ρ(T1 + T2) = eL2T2eL1T1ρ(0) (7)

Hence the evolution operator for one modulation period is U = eL2T2eL1T1 . The experiment has, in some cases, an
additional period, the dwell time Td, during which the ESR signal is recorded, eventually the list of these intensities
generates a power spectrum that shows the NMR signal. In the present formulation we assume that Td = T̄ . The
reasoning is that with a voltage modulation V (t) =

∑
m am cos(2πmt/T̄ ) (m are integers) the m-th component

produces a signal at νn + m/T̄ , since 1/T̄ ≫ νn in the actual experiments the detection in the vicinity of νn is
insensitive to m ̸= 0, i.e. the time average of V (t) dominates. We therefore consider the evolution U to be within the
period Td, yet, we divide this time to T1 + T2 so as to probe the effect of voltage modulation. We find numerically
that cases with γ ̸= γd are fairly similar to those with γ = γd. In the simulations below we use T1 = T1 = .05µsec, we
find that the results are insesitive to the values of T1, T2 as long as they are in the window 1/ν1 ≪ T1 + T2 ≪ 1/νn.

Define eigenvectors Uρi = λiρi, hence an expansion ρ(0) =
∑100

i=1 ciρi yields

ρ(N(T1 + T2)) =
∑

i

ciλ
N
i ρi ⇒ ⟨τ̃(N)⟩ =

∑

i

ci|λi|NeiNφi Tr[τ̃ ρi] (8)
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We expect that only i = 1 has λ1 = 1 and Tr[ρ1] = 1, i.e. ρ1 is the steady state while for i > 1 |λi| < 1 and Tr[ρi] = 0
(otherwise the steady state is not unique). Thus we need an eigenvector ρi for a particular i ̸= 1 such that (i) λi has
a phase, equal to νn · (T1 + T2), (ii) its amplitude |λi| is very close to 1 so that its linewidth is narrow, and (iii) has
a reasonable amplitude Tr[τ̃ ρi] for NMR observation, τ̃ are Pauli matrices that correspond to a nuclear spin 1

2 with
operators I, Eq. (2). This tests the nuclear projection on ρi.

For the numerical program (using Mathematica), it is more efficient to find the eigenvectors v
(1)
i and eigenvalues

e
(1)
i of L1 and then build a matrix E1 of size 100 × 100 whose columns are e

(1)
i . In terms of a diagonal matrix D1

whose elements are ee
(1)
i T1 the evolution during T1 is

U1 = E1D1(E1)
−1 (9)

and similarly with 1 → 2. To prove this, drop the index 1 or 2 for convenience, i.e. L · vi = eivi, U = eLT and define
Eij = (vj)i and Djk = δjke

ekT and check i, k elements of both sides in U · E = E ·D:

(E ·D)ik =
∑

j

(vj)iδjke
ekT = (vk)ie

ekT (10)

(U · E)ik =
∞∑

n=0

∑

j

(
(LT )n

n!

)

ij

(vk)j =
∞∑

n=0

(
(LT )n

n!
· vk

)

i

=
∞∑

n=0

(
(ekT )

n

n!
vk

)

i

= eekT (vk)i

Note that the eigenvectors are not orthogonal (L1 is not hermitian), we need, however, that E1 is invertable, otherwise
a subset of ρi can span the whole space.

C. ESR

Consider first the electron correlation Ci(ω), assuming that the initial state is some ρi so that after N periods
ρi(N(T1 + T2)) = λN

i ρi. For i > 1 this decays with N , yet it indicates effects in the correlation between different
N ’s; for the steady state we need C1(ω). Using the identities (5) for transforming into supermatrices and using
C−+(−t) = ⟨σ−(−t)σ+(0)⟩ = ⟨σ−(t)σ+(0)⟩∗ = C∗

−+(t), we have

Ci(ω) =

∫ ∞

0

⟨σ−(t)σ+(0)⟩eiωtdt+ c.c. = λN
i

∫ ∞

0

Tr[eiHtσ−e
−iHtσ+ρi]e

iωt + c.c.

= λN
i

∫ ∞

0

Tr[(σ− ⊗ Id)e
L1t(σ+ ⊗ Id)ρi]e

iωt + c.c. = λN
i C̄i(ω) + c.c.

C̄i(ω) ≡ Tr[(σ− ⊗ Id)
1

−iω − L1
(σ+ ⊗ Id)ρi] (11)

Note that the current operator, as measured in the STM experiment, involves [4] σ+ ⊗ sz rather than σ+ ⊗ 1. This
has a minor effect on the numerical data below.

For the parameters of Fig. S4 we find that the 3rd eigenvalue satisfies the required constraints, in particular it has
a phase that corresponds to νn and a reasonable overlap ⟨τ̃ ρ3⟩ = −0.02217. Fig. S4 is for the correlation C̄3(ω) using
the 3rd eigenvector, showing as expected an increase of one hyperfine state and a decrease of the other. When using
the 1st eigenvector C1(ω) has 2 equal peaks, the ratio C3(ω)/C1(ω) at maximum varies from .007 at γ = .01 to .063

at γ = 1; this ratio is well correlated with ⟨τ̃ ρ3⟩ with the ratio ⟨τ̃ ρ3⟩/C3(ω)
C1(ω) being 1.74-1.56 in this range.

For the parameters of Fig. S4 the weight of the |20⟩ states (within the staedy state ρ1) is 0.2, i.e. all 10 states have
equal weight. If the |20⟩ state is neutral (e.g. the toluene case) then it is 80% ionized.

It is instructive to look at the γ dependence of λ3 and of τ̃ ρ3, see Fig. S5. In particular if γ = γb both vanish then
also the linewidth Γ = −(ln(|λ3|)/T̄ as well as τ̃ ρ3 vanish. Since we need a small Γ and a large Tr[τ̃ ρ3] we need a
small γ, but not too small. When γ → 0 but γb stays finite then Γ also stays finite.

We consider briefly a regular NMR experiment, i.e. the correlation of τ̃ in the full 10 dimensional phase space (our
NMR-STM experiment is considered in the next subsection). Consider γ = γb so that the system is in steady state
and we can use using the regression theorem, similar to Eq. (11), operating in both |11⟩ and |20⟩ spaces in the steady
state ρ1, i.e.

Cregular
NMR (ν) = Tr[(τ̃ ⊗ Id)

1

−iω − L1
(τ̃ ⊗ Id)ρ1] (12)
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FIG. S4. projected ESR. ESR resonance correction C̄3(ν) due to ρ3. Parameters are ν1 = 600, ν2 = 650, νn = 1, a = 20, b =
20, c = 20, d = 20, γ = 0.1, γb = 0.1, γ1 = 10, γ2 = 10, g = 0, V = 109 (V = 0 gives the same result).
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FIG. S5. Dependence on relaxation rates. Dependence on γ = γb of the frequency (phase of λ3/T̄ , blue), linewidth
(Γ = − ln |λ3|/T̄ , orange) and the projection Tr[τ̃ ρ3] (purple). Other parameters are same as in Fig. S4.

This nuclear correlation is plotted in Fig. S6. There is a strong peak at ν = 0 and a peak at the expected νn = 1
with a linewidth as expected for ρ3 with |λ3| = 0.968524 = e−0.1T̄ , i.e. linewidth of 0.1. This correlation can be
evaluated for the general case L1 ̸= L2, the method is developed in the next subsection.

D. NMR-STM

We arrive now at our main goal of simulating our NMR-STM experiment; consider first a qualitative argument.
Asssume that the hyperfine peaks vary slowly with the instantaneous value of τ̃ , at a frequency ∼ νn. For small
dissipation γ, γb these peaks are given by eigenvalues of 1

2ν1σz + ãσz ⊗ τ̃ where ã =
√
a2 + d2, i.e. ESR lines at

ν1 ± 2ã. The instantaneous probability of having nuclear spin up is 1
2 (1 + τ̃) determines the relative intensity of the

ν1 + 2
√
a2 + d2 line, similarly 1

2 (1− τ̃) for the lower hyperfine line. Since the hyperfine peak is measured only in the
subspace of |11⟩ the correlation of τ̃ has to be projected on |11⟩ within the steady state ρ1, this projection results in
a significant reduction of the NMR signal.

As a somewhat more quantitative argument we consider the ESR Eq. (11) with weak relaxation γ1. Within the
|11⟩ subspace it has the form

C1(ω) =

∫ ∞

−∞
ei(

1
2ν1+ãτ̃)σztσ−e

−i(
1
2ν1+ãτ̃)σztσ+e

iωt−γ1|t|dt =
∫ ∞

−∞
ei(−ν1−2ãτ̃+ω)t−γ1|t|σ−σ+dt

=
2γ1

(ν1 + 2ãτ̃ − ω)2 + γ2
1

σ−σ+ ≈ [
1

γ1
(1+ τ̃) +

γ1
4ã2

(1− τ̃)]σ−σ+ (13)

where in the 2nd line we measure one hyperfine line with ω ≈ ν1 + 2ã. Note that if we were to include triplet excited



7

0.5 1.0 1.5 2.0 2.5 3.0
ν

0.5

1.0

1.5

2.0

2.5

0.5 1.0 1.5 2.0 2.5 3.0
ν

0.2

0.4

0.6

0.8

1.0

FIG. S6. Regular nuclear correlation. Nuclear spin correlation ⟨τ̃(t)τ̃(0)⟩ν using Eq. (12). Left: ν1 = 600, ν2 = 650, νn =
1, a = 20, b = 20, c = 20, d = 20, γ = 0.1, γb = 0.1, γ1 = 10, γ2 = 10, g = 0, V = 0. Right: same parameters except b = c = 0.

states within |20⟩ that have a high energy E∞ then σ−σ+|20⟩ would have a resonance at ∼ E∞ so that its correlation
is negligible at ν1 + 2ã.

Thus, we define an NMR-STM operator for ã ≫ γ1

τ̄ = (1− σz)⊗ 1⊗ τ̃ ⊕ 0 · |20⟩⟨20| (14)

The 1 − σz factor projects on ω > 0 while τ̃ projects on hyperefine states with opposite signs. For just the upper
transition replace τ̃ → 1 + (τ̃)/2 corresponding to Eq. 13.

To further motivate the use of τ̃ to represent our NMR-STM data we consider now the full form of the measured
ESR correlation which is

C(ω) =

∫ ∞

0

⟨σ−(t)σ+(0)⟩eiωtdt+ c.c. (15)

The regression theorem then gives the steady state of Eq. (11)

C(ω) = 2ReTr

[
(σ− ⊗ Id)

1

−iω − L
(σ+ ⊗ Id)ρ1

]
. (16)

This quantity is measured many times near a certain value of ω (with some bandwidth) and the results are Fourier
transformed in order to obtain the power spectrum of the NMR signal. We want to demonstrate that measuring C(ω)
near the frequency corresponding to one of the hyperfine lines is equivalent to measuring the appropriate projection of
the nuclear spin, i.e. τ̃ . In order to convince the reader that this procedure is meaningful we introduce the following
super-operator that represents the ESR operator

Ĉ(ω) ≡ (σ− ⊗ Id)
1

−iω − L
(σ+ ⊗ Id) + h.c. (17)

and calculate the overlap between this ESR operator and τ̄ ,

⟨Ĉ(ω)τ̃⟩ = Tr
[
Ĉ(ω)(τ̄ ⊗ Id)ρ1

]
. (18)

The results are shown in Fig. S7. We observe the perfect correlation (anti-correlation) with the upper (lower) hyperfine
line which justifies using the operator τ̃ to represent one of the ESR spectral lines. (The weak signals in Fig. S7 are
additional ESR transitions, visible when νn is comparable to a, d.)

We next derive the nuclear correlation for the general case L1 ̸= L2 using τ̄ of Eq. (14). In the supermatrix notation
the density matrices ρi in Eq. (8) are vectors (of length 100). Assuming that these vectors span the whole space
(corresponding to invertible E) then τ̄ · ρk =

∑
n dknρn. The correlation, using the regression theorem for N1 > N2 is

Cnuc(N1 −N2) = ⟨τ̄(N1)τ̄(N2)⟩ = Tr[τ̄UN1−N2 τ̄ ρ1] =
∑

n

d1nλ
N1−N2
n Tr[τ̄ ρn] =

∑

n

d1ndn1λ
N1−N2
n

Cnuc(ν) =
∑

n

d1ndn1

∫ ∞

0

e−Γnt−iν∗
nt+iνtdt+ c.c. =

∑

n

d1ndn1
1

−i(ν − ν∗n) + Γn
+ c.c. (19)
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FIG. S7. Correlation of nuclear operator with ESR. The correlation function ⟨Ĉ(ω)τ̄⟩ (blue) and the ESR spectrum
C(ω) (red, enhanced by factor 2 for clarity) as functions of ω. Parameters are ν1 = 600, ν2 = 650, νn = 1, a = 1.0, b = 0.0, c =
0.0, d = 1.0, γ = 0.1, γb = 0.1, γ1 = 0.1, γ2 = 0.1. We observe the perfect (anti) correlation.

where Tr[ρn] = δn,0, the eigenvalues λn = |λn|eiφn define Γn = −(ln |λn|)/T̄ , ν∗n = φn/T̄ and the c.c. comes from
summation on N1 < N2. Using the previously defined matrix E of eigenvectors Eij = (ρj)i we obtain for the matrix

d̂, (d̂)kn = dkn

(τ̃ · E)ik =
∑

j

(τ̃)ij(ρk)j =
∑

n

dkn(ρn)i =
∑

n

dknEin = (E · d̂T )ik

⇒ d̂ = (E−1 · τ̃ · E)T (20)

which is an efficient way of evaluating dkn. Thus finally

Cnuc(ν) =
∑

n>0

Re[
2d1ndn1

−i(ν − ν∗n) + Γn
] (21)

For small γ, γd we find a weak signal at νn = 1MHz, while if the hyperfine couplings a, d are small (and γ1, γ2 are
corresponding small as they need to be smaller than a, d) we find a large signal at a shifted position, see Fig. 5a.

To interpret the shifted signal we note that when νn is comparable to a, d and γ1 ≪ a, d then the nucleus feels an
effective magnetic field corresponding to a Hamiltonian ( 12νn1+ aσz)⊗ τz + dσzτy. The shifted frequency is then the

eigenvalue difference ν̃n =
√
(νn + 2a)2 + (2d)2 taking σz → +1. We consider this as an extreme case of a chemical

shift, i.e. a shifted NMR due to electron polarization. We note that the more conventional chemical shift is obtained
when σz is averaged, i.e. polarization effect [5]. In fact if γ1 increases then eventually ⟨σz⟩ vanishes and the peak
approaches νn (for γ1 >∼ 20). One can maintain a finite ⟨σz⟩ by keeping different relaxations of the up and down
electron spin, leading to a chemical shift even for strong relaxations. We note that the chemically shifted peak persists
also at higher hyperfine couplings, though with reduced intensity.

It is interesting to consider the situation at large γ1 > 2ã, which is a type of Zeno effect. Although the hyperfine lines
merge the correlation Eq. (18) changes sign at ν1 so that τ̃ can still be used to measure NMR. Furthermore, we find
that the NMR signal becomes sharper as γ1 increases. To motivate this remarkable effect we note that the evolution

of the raising operator τ+ for the eigenstates of τ̃ is, neglecting here νn, τ+(t) = e−iãτ̃
∫ t
0
σz(t

′)dt′τ+e
iãτ̃

∫ t
0
σz(t

′)dt′ =

e−2iã
∫ t
0
σz(t

′)dt′τ+, hence the average ⟨τ+(t)⟩ ∼ e−γφt where the decay rate is γφ = 2ã2/γ1 using the σz correlation at
ω = 0 which is 1/γ1.

In some cases measurements sum both ±ω ESR resonances, hence one needs the combination 2(σ−σ++σ+σ−) = 21.
The NMR-STM operator is then

¯̄τ = 2 · 1⊗ 1⊗ τ̃ ⊕ 0 · |20⟩⟨20| (22)

The corresponding spectrum is shown in figure S8. The 2 peaks correspond now to both ±1 electron spin, hence
ν̃n =

√
(νn ± 2a)2 + (2d)2, displaying two chemically shifted resonances.

Since we do not know at present the relaxation rates γ, γb, we have considered also large values, though still small
on the voltage scale (the chemical potential difference of the two molecules is ∼ 1V). We have found that sharp
NMR signals are possible also in this case. We note that in this case the singlet states rapidly decay while the γ1, γ2
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FIG. S8. NMR-STM with both ±ω. NMR-STM spectra when both ±ω ESR resonances are summed. Left: γ = 0.01, γ1 =
0.1, a = d = 1. Right: γ = 10, 000, γ1 = 0.01, a = d = 1. Compare with Fig. 5 of the main text where only one chemically
shifted peak is seen, corresponding to ω > 0 ESR.

transitions populate the triplet states, leading to dominance of the latter, hence a strong coupling between the two
spins. Projecting the Hamiltonian (keeping only the a, d hyperfine terms) onto the triplet states we find that the
ESR frequencies are

νESR
± = 1

2 [ν1 + ν2 ± νn ±
√

4(a2 + d2)− 4aνn + ν2n] (23)

These frequencies can be detected by measuring either spin. We find that a sharp NMR frequency at νn is present
when γ1 γ2 are small and if also a, d are small then two signals appear, one at νn and the other at a shifted value,
given by the same ν̃n as above, see the bottom figures of Fig. 5. In case that both ±ω ESR are summed there are
two chemically shifted resonances as shown in Fig. S8 (right).

E. NMR-STM with two nuclear spins

In almost all molecules there are distinct nuclei with various hyperfine couplings. In particular in toluene there are
inequivalent 1H nuclei with either strong or weak hyperfine coupling [5]. Since the ESR (Fig. 4a) shows fairly strong
hyperfine splitting of ∼10MHz, while interesting structure is manifested by weakly coupled nuclei (Figs. 5, S8) we are
motivated to study the case of two nuclei spins, one spin with a strong hyperfine coupling, producing the dominant
structure in the ESR, while the other with a weak coupling. The latter may show splitting of the dominant ESR lines,
however, when its hyperfine coupling is weaker than the linewidth then it is not even noticeable in the ESR. As we
find here, the correlation of the latter nuclear spin produces sharp structure at the nuclear frequency that is sharper
as the ESR linewidth increases. We propose that this situation is the best scenario accounting for our NMR-STM
data.

We consider then a Hamiltonian of four spins so that the |11⟩ state has 16 states while |20⟩ has 4 states, i.e. our
Hilbert space has now 20 states; the weakly coupled spin corresponds to Pauli matrices ρx, ρy, ρz.

H11 = [ 12ν1σz ⊗ 1⊗ 1+ 1
2ν21⊗ sz ⊗ 1+ 1

2νn1⊗ 1⊗ τz + aσz ⊗ 1⊗ τz + dσz ⊗ 1⊗ τy]⊗ 1

+ 1
2νn21⊗ 1⊗ 1⊗ ρz + a2σz ⊗ 1⊗ 1⊗ ρz + d2σz ⊗ 1⊗ 1⊗ ρy

H20 = 1
2νnτz ⊗ 1+ 1

2νn21⊗ ρz

H = H11|11⟩⟨11|+H20|20⟩⟨20| (24)

where we focus on the more relevant hyperfine couplings to τz, τy, ρz, ρy. Our results for the ESR spectra are shown
in Fig. S9a. The linewidth and a, d are chosen to correspond to the observed ESR shape, Figs. S2a, S2b, the weaker
hyperfine a2 = d2 = .5 is not seen since it is smaller than the linewidth. To study the nuclear correlations we define
the operators

τ ′ = 2 · 1⊗ 1⊗ τ̃ ⊗ 1⊕ 0 · |20⟩⟨20|
ρ′ = 2 · 1⊗ 1⊗ 1⊗ ρ̃⊕ 0 · |20⟩⟨20| (25)
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FIG. S9. Case of 2 nuclei. (a) ESR spectra, (b) overlap of the ESR operator with τ ′ of Eq. (25), (c) overlap of the ESR
operator with ρ′. Parameters in the Hamiltonian Eq. (24): ν1 = 600, ν2 = 650, νn1 = νn2 = 1, γ = 0.1, γ1 = 20, a = d =
10, a2 = d2 = 0.5

where ρ̃ = (a2ρz + d2ρy)/ã2 and ã2 =
√

a22 + d22. The overlap of the ESR spectra with the first nucleus, using Eq.
(18) with τ̄ → τ ′, is shown in Fig. S9b, it is insensitive to to second nucleus as expected and is qualitatively similar
to Fig. S7. The ESR overlap with the second nucleus, using Eq. (18) with τ̄ → ρ′, is shown in Fig. S9c. It shows
clearly the splitting of the ESR spectrum to four lines (using 1+ ρ̃ would show only two lines). We show the nuclear
correlations for τ ′ and ρ′ using the formulation as in Eq. (21) in Fig. 5b of the main text (we do not show the 1+ τ ′

or 1+ρ′ correlations to conform with Figs. S9b,S9c, the NMR spectra are very similar). To measure the NMR signal
the sampling of the ESR data should be taken in the vicinity of one of the peaks (or one of the dips) in Fig. S9c. This
vicinity has a reasonable overlap with ρ′, it is smaller than the overlap with τ ′ yet its NMR signal is considerably
stronger, thus the ρ′ correlation is a proper presentation of the NMR-STM data with this sampling.

The results in Fig. 5b are remarkable: the 1st spin shows a very weak and negative dip at ν = 1 while the 2nd spin
shows a strong and sharp signal at ν = 1 while the ESR spectra has a linewidth in agreement with the data. The
NMR linewidth varies as ã22/γ1, similar to the Zeno effect discussed above, though now there is just one frequency at
ν = νn2. We therefore consider this case with two nuclear spins as the most likely to account for our data.
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