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Abstract

Because of the absence of indistinguishability constraint, interparticle interactions between
nonidentical particles have in general much more variety than those between identical particles.
In particular, it is known that there exists a U(2) family of two-body contact interactions between
nonidentical particles in one spatial dimension. This paper studies breakdown of continuous scale
invariance to discrete scale invariance under this U(2) family of two-body contact interactions in
two-body problems of nonidentical particles on the half line. We show that, in contrast to the
corresponding identical-particle problem, there exist two distinct channels that admit geometric
sequences of two-body bound states.

1 Introduction

Discrete scale invariance is an invariance under enlargements and reductions of the system size by

constant factors that form a geometric sequence. If a quantum many-body system enjoys this invari-

ance, bound-state energies of many-body bound states, if exist, must form a geometric sequence. The

most prominent example that realizes this phenomenon is the three-body problem of identical bosons

in three dimensions under two-body short-range interactions. This example, first discovered by Efi-

mov in 1970 [1], has now been experimentally observed and also theoretically generalized to several

directions; see, e.g., [2] for a recent review. The purpose of this paper is to present a new discrete

scale-invariant model of nonidentical particles in one dimension. The key is the absence of indistin-

guishability constraint in nonidentical-particle problems.

In general, the indistinguishability of identical particles requires interparticle interactions to be

permutation invariant. This permutation invariance places a stringent constraint on possible many-

body interactions. For example, for two-body contact interactions in one spatial dimension, identical

bosons and fermions (with no internal degrees of freedom) have no other choice but to interact via

delta- and epsilon-function potentials, respectively [3]. In contrast, there is no such constraint for

distinguishable particles, meaning that there are much more variety of two-body contact interactions

for nonidentical particles than those for identical particles. In fact, in one spatial dimension, the most

general two-body contact interaction consistent with the probability conservation (unitarity) is known

to be described by a 2 × 2 unitary matrix U ∈ U(2) [4, 5], which contains dimU(2) = 4 independent

real parameters. However, scale-invariance breaking under this U(2) family of two-body interactions

has never been studied in the literature.

This paper is aimed at studying breakdown of continuous scale invariance to discrete scale invari-

ance under the U(2) family of two-body contact interactions. To simplify the analysis, we shall focus

on two-body problems on the half line, which is exactly solvable and known to exhibit discrete scale
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invariance for the case of identical particles [6]. We shall show that, in a certain subspace of the pa-

rameter space of U(2), there arise two distinct channels that admit geometric sequences of two-body

bound states.

The rest of the paper is organized as follows. We first formulate the problem in section 2. We

consider two nonidentical particles on the half line with two-body contact interaction. Under the

assumption that the interaction potential satisfies a scaling law, we see that the two-body problem is

reduced to a set of two differential equations—the radial and angular Schrödinger equations—where

the former determines the two-body energy spectrum while the latter determines the scale-invariance

breaking. Section 3 studies the whole parameter space of scale-invariant two-body contact interactions

in one dimension. We first show that, for nonidentical particles, there exists a U(2) family of scale-

invariant two-body contact interactions. We then discuss the quantization condition for eigenvalues

of the angular Schrödinger equation. This quantization condition becomes particularly simple if the

masses of the particles are the same. Section 4 studies such a mass-degenerate case and shows that,

in a certain parameter region, there arise two distinct geometric sequences of two-body bound states.

We conclude in section 5. Appendix A presents a derivation of the U(2) family of two-body contact

interactions.

2 Scale-invariant two-body problem on the half line

To begin with, let us fix some notation. Let x1 and x2 be the coordinates of two nonidentical particles

of mass m1 and m2 on the half line R+ = {x ∈ R ∶ x ≥ 0}, respectively. Let V (x1, x2) be a potential for

interparticle interactions between these particles. The Hamiltonian of such a two-body system is then

given by

H = −
2∑j=1 ℏ2

2mj
)2

)x2j + V (x1, x2). (1)

We wish to understand when and how continuous scale invariance is broken down to discrete scale

invariance under a general two-body contact interaction. To study this, we focus on the potential V

that fulfills the following properties:

• Property 1. (Scaling law)

V (et x1, et x2) = e−2t V (x1, x2), ∀t ∈ R. (2)

• Property 2. (Contactness)

supp(V ) = {(x1, x2) ∈ R
2
+ ∶ x1 = x2}. (3)

Here supp(V ) stands for the support of V . The first property (2) is necessary to be scale invariant.

The second property (3), on the other hand, describes the situation where the particles interact only

at two-body coincidence points. As we will see in the next section, such contact interactions are best

described by connection conditions at the two-particle coincidence points. Throughout this section,

however, we shall use the potential V as a convenient placeholder. Note that we do not impose the

translation invariance V (x1 + a, x2 + a) = V (x1 , x2) (a ∈ R) on the potential because the translation

invariance is already broken by the boundary.

Now, let us first discuss the impact of the scaling law (2) in two-body problems on the half line. To

this end, let us introduce the polar coordinate system (r , �) in the two-body configuration space R2
+.

We write

x1 =

√
m0

m1
r cos �, (4a)

x2 =

√
m0

m2
r sin �, (4b)
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or, equivalently,

r =

√
m1x

2
1 + m2x

2
2

m0
, (5a)

� = arctan(√m2

m1

x2

x1) , (5b)

where 0 ≤ r < ∞ and 0 ≤ � ≤ �/2. Here m0(> 0) is an arbitrary mass scale introduced to assign the

length dimension to the radius r . In this polar coordinate system, the general solution to the scaling

law (3) can be written as

V (x1, x2) =
ℏ2

2m0

v(�)

r2
, (6)

where v(�) is some function of �. Note that the solution (6) is in general not invariant under the

translation (x1, x2) ↦ (x1 + a, x2 + a) and is different from the translation-invariant two-body non-

contact interaction V (x1, x2) ∝ 1/(x1 − x2)
2 discussed in the literature [7]. By using (6) and the identity

(1/m1))
2/)x21 + (1/m2))

2/)x22 = (1/m0)r
−1/2()2/)r2 + (1/r2))2/)�2)r1/2, we find

H =
ℏ2

2m0
r−1/2(− )2

)r2
+
−)2� + v(�) − 1/4

r2 ) r1/2. (7)

The eigenvalue equation of this operator is easily solved by the method of separation of variables. In

fact, by assuming the energy eigenfunction  is of the form,

 (x1, x2) = r−1/2R(r)Θ(�), (8)

we immediately see that the eigenvalue equationH = E is reduced to the following set of differential

equations:

(− d2

d�2
+ v(�))Θ(�) = �Θ(�), (9a)

(− d2

dr2
+
� − 1/4

r2 )R(r) =
2m0E

ℏ2
R(r). (9b)

Notice that the energy eigenvalue E is solely determined by the one-body problem on the half line

with the inverse-square potential (9b), which is known to break continuous scale invariance to discrete

scale invariance when � < 0 [8]. In this case, there arises a geometric sequence of negative energy

eigenvalues {En} that satisfy the scaling law En/En−1 = exp(−2�/√−�). Hence, what we have to do

is to solve the angular equation (9a) and to find out when the eigenvalue � becomes negative. Let

us next turn to this problem by using the most general scale-invariant two-body contact interactions

consistent with the unitarity.

3 U(2) family of scale-invariant two-body contact interactions

In the previous section, we have imposed the scaling law (2) and studied its consequence in the two-

body problem on the half line. In this section, we further impose the contactness (3), which, in terms

of the function v(�), is described by
supp(v) = {� ∈ [0, �/2] ∶ � = �0}. (10)

Here �0 is the two-body coincidence point in the polar coordinate system (r , �) defined through (5b)

with x1 = x2:

�0 = arctan(√m2

m1) . (11)
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Now, wewish to consider the two-body contact interaction as general as possible. One obviousway

to do this is to use the most general function v(�) with one-point support at the two-body coincidence

point � = �0. Another way to do this is to use the most general connection condition at � = �0.

Since the latter approach is much more well-established than the former, we shall use the connection-

condition approach to the two-body contact interaction. Following [9], we shall focus on the most

general connection condition consistent with the probability conservation, which, in our two-body

problem, can be put into the following continuity condition for the probability current normal to the

two-body coincidence line x1 = x2 in the two-body configuration space R2
+:

n ⋅ j ||x1−x2=0+ = n ⋅ j ||x1−x2=0− . (12)

Here j = (j1, j2) is the two-body probability current and n = (n1, n2) is a (unit) normal vector to the

line x1 = x2. In the original Cartesian coordinate system, they are given by ja = (ℏ/(2ima))( ) /)xa −
) /)xa ) and na = 1/√2, where a = 1, 2 and overline ( ) stands for the complex conjugate. In the

following, we would like to obtain the most general connection condition for Θ(�) by solving (12).

First, in the polar coordinate system, the probability conservation (12) at the two-body coincidence

point is equivalent to to the following condition:

Θ(�0+)Θ′(�0+) − Θ′(�0+)Θ(�0+) = Θ(�0−)Θ′(�0−) − Θ′(�0−)Θ(�0−), (13)

where prime (′) indicates the derivative with respect to � and f (�0±) stands for one-sided limits given

by f (�0±) = lim�→0+ f (�0 ± �). Notice that (13) is quadratic equation with respect to Θ. However, it
can be linearized and there exists a U (2) family of linearized solutions. An important observation to

see this is that (13) can be put into the form of inner product in two-dimensional complex vector space

C
2:

(Θ(�0+)Θ(�0−))†( Θ′(�0+)−Θ′(�0−)) = ( Θ′(�0+)−Θ′(�0−))†(Θ(�0+)Θ(�0−)) , (14)

where † stands for the hermitian conjugate. As shown in appendix A, the solution to this type of

equation is parameterized by a 2 × 2 unitary matrix U and given by

(1 − U )(Θ(�0+)Θ(�0−)) + i(1 + U )( Θ′(�0+)−Θ′(�0−)) = 0, U ∈ U (2). (15)

This is the U (2) family of connection conditions that describe all possible scale-invariant two-body

contact interactions in the two-body problem on the half line.

Now, in order to solve the problem, we also have to specify the boundary conditions at � = 0, �/2.
For simplicity, we will impose the Dirichlet boundary conditions:

Θ(0) = Θ(�/2) = 0. (16)

What we have to do is then to solve the angular equation −Θ′′(�) = �Θ(�) for � ≠ �0 under the

conditions (15) and (16) and to determine the unitary matrix U that admits negative eigenvalue �.
To this end, let us next parameterize the unitary matrix U . Let ei�+ and ei�− be two eigenvalues

of U , where �± ∈ [−�, �) are real parameters. Then, the 2 × 2 unitary matrix U can be written as the

following spectral decomposition:

U = ei�+ P+ + ei�− P−, (17)

where P± are projection operators that satisfy the completeness P+ + P− = 1, hermiticity P†± = P±, and
orthonormality PaPb = �abPb (a, b ∈ {+,−}). Such 2×2 hermitian matrices are parameterized as follows:

P± = 1 ± e ⋅ �
2 , (18)
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where e = (e1, e2, e3) is a real unit 3-vector satisfying e21 + e22 + e23 = 1 and � = (�1, �2, �3) is the 3-

tuple of Pauli matrices. Eq. (17) is the most general parameterization of U ∈ U (2), which contains four

independent parameters (�+, �−, e). What we want to do is to determine the parameter space of U that

admits negative eigenvalue �. Let us next do this by solving the angular equation −Θ′′(�) = �Θ(�).
First, the general solution to the angular equation with the Dirichlet boundary conditions (16) can

be written as the following linear combination of plane waves:

Θ(�) = {A(ei√�(�0−�) − ei√�(�0+�−�)) for � ∈ (�0, �/2],B(ei√�(�−�0) − e−i√�(�+�0)) for � ∈ [0, �0). (19)

Here A and B are integration constants. Next, we impose the connection condition (15). Substituting

(19) into (15) we get the following condition:

(1 − U(�))(AB) = 0, (20)

where

U(�) = ∑j=± e2i[ �4
√�+arctan(√� cot(�j/2))] Pj e2i√�( �4 −�0)�3 . (21)

Hence, in order to have nontrivial solution (A, B) ≠ (0, 0), the matrix 1 − U(�) must not have the

inverse for any �. Thus we get
det(1 − U(�)) = 0. (22)

This gives the quantization condition for the eigenvalue �. This equation possesses negative solutions

in a certain parameter region of U . Let us next see this by considering the simple case m1 = m2.

4 A simple example: mass-degenerate case

The quantization condition (22) becomes particularly simple in the mass-degenerate case m1 = m2,

where the angle �0 becomes

�0 = arctan(1) = �
4 for m1 = m2. (23)

In this case, the matrix (21) takes the following form:

U(�) = ∑j=± e2i[ �4
√�+arctan(√� cot(�j/2))] Pj . (24)

It is clear from this expression that the unitarymatrix U(�)has the eigenvalues e2i[ �4√�+arctan(√� cot(�±/2))],
whichmust be 1 in order to fulfill the condition (22). Thus we find the following quantization condition:�

4
√� + arctan(√� cot(�±2 )) = n�, (n ∶ integer), (25)

or, equivalently,

�± = −2 arctan(
√� cot (�4 √�)) . (26)

This equation is easily solved graphically and possesses infinitely many real roots �±,0 < �±,1 < �±,2 <⋯. As depicted in Fig. 1, the lowest root �±,0 becomes negative for �± < �∗, where �∗ is the critical
value given by

�∗ = lim�→0 [−2 arctan(
√� cot (�4 √�))] = −2 arctan( 4�) . (27)
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0
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�
�∗

42 82 122

�±,0 �±,1 �±,2

−�

+�

Figure 1: The �±-dependence of the eigenvalues �±,0 < �±,1 < �±,2 < ⋯. The red dot represents the critical value� = �∗ below which the lowest eigenvalue �±,0 becomes negative.

Hence, continuous scale invariance is broken to discrete scale invariance for �± < �∗. In consequence,

there exist three distinct “phases” in this model. The first is the region {(�+, �−) ∶ �+ < �∗ & �− < �∗}
in which there arise two distinct geometric series of two-body bound states in the �+,0- and �−,0-
channels; the second is the region {(�+, �−) ∶ �± < �∗ & �∓ ≥ �∗} in which there arises a single

geometric series of two-body bound states in the �±,0-channel; and the third is the region {(�+, �−) ∶�+ ≥ �∗ & �+ ≥ �∗} in which continuous scale invariance is unbroken and there is no two-body bound
states. Notice that the parameter e has no effect in this phase structure.

5 Conclusion

In this paper, we have studied breakdown of continuous scale invariance to discrete invariance in

two-body problems of nonidentical particles on the half line. We first discussed that, for nonidentical

particles in one dimension, there exists the U (2) family of scale-invariant two-body contact interactions

consistent with the probability conservation. We then discussed the breakdown of continuous scale

invariance under this U (2) family of interactions. We showed that, in addition to the unbroken phase,

there exist two additional phases in the scale-invariant two-body problem: one is the discrete scale

invariant phase in which two distinct geometric series of two-body bound states appear, and the other

is the discrete scale invariant phase in which a single geometric series of two-body bound states appear.

This is in sharp contrast to the two-body problem of identical particles on the half line [6], where there

arises at most a single geometric series of two-body bound states.

Throughout this paper we focused on two-body problems with boundary just for simplicity. Future

studies should investigate a generalization to n(≥ 3)-body problems of nonidentical particles with or

without boundary and reveal its phase structure. It is also interesting to study experimental realizations

of the scenario discussed in this paper. Though currently unknown, the realization of the U (2) family

of two-body contact interactions in experiments will open up a new phase of many-body problems in

one dimension.
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Appendix A Proof of (15)

Following the original work by Fülöp and Tsutsui [9], in this section we show that there exists a U (2)
family of solutions to the continuity condition (14). The essentially same derivation can also be found

in [10].

To begin with, let us consider the following abstract problem. Let Ψ and Φ be some elements of an
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arbitrary Hilbert space Hand subject to the following condition:

(Ψ,Φ) = (Φ,Ψ), (28)

where (∗, ∗) stands for the inner product. We wish to find out all possible solutions to this equation.

To solve this, we first note that any inner products can be written in terms of norms. In fact, the

polarization identity gives (see, e.g., Eq. (1.11) of [11])

(Ψ,Φ) = 1
4 (‖Ψ + Φ‖2 − ‖Ψ − Φ‖2 + i‖Ψ + iΦ‖2 − i‖Ψ − iΦ‖2) , (29)

where ‖ ∗ ‖ stands for the norm. Note that (Φ,Ψ) = (Ψ,Φ) = (1/4)(‖Ψ + Φ‖2 − ‖Ψ − Φ‖2 − i‖Ψ + iΦ‖2 +i‖Ψ − iΦ‖2). Equating these expressions, one immediately sees that (28) is equivalent to the following

condition:

‖Ψ + iΦ‖2 = ‖Ψ − iΦ‖2. (30)

This equation says that two distinct vectorsΨ+ iΦ and Ψ− iΦ have the same norm. Hence there should

exist a unitary U that satisfies the following relation:

Ψ + iΦ = U (Ψ − iΦ), (31)

or, equivalently,

(1 − U )Ψ + i(1 + U )Φ = 0. (32)

This is the linearized relation that solves (28).

Now let us turn to the problem of solving the continuity condition (14). We first note that (14) is

equivalent to (28) with the special choice H = C
2, Ψ = t(Θ(�0+),Θ(�0−)), Φ = t(Θ′(�0+),−Θ′(�0−)),

and (Ψ,Φ) = Ψ†Φ, where t stands for the transposition. Note also thatU in this case is just a 2×2 unitary
matrix. Hence there exists a U (2) family of connection conditions given by (15). This completes the

proof.
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