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The emerging field of free-electron quantum optics enables electron-photon entanglement and holds the po-
tential for generating nontrivial photon states for quantum information processing. Although recent experimental
studies have entered the quantum regime, rapid theoretical developments predict that qualitatively unique phe-
nomena only emerge beyond a certain interaction strength. It is thus pertinent to identify the maximal electron-
photon interaction strength and the materials, geometries, and particle energies that enable one to approach it.
We derive an upper limit to the quantum vacuum interaction strength between free electrons and single-mode
photons, which illuminates the conditions for the strongest interaction. Crucially, we obtain an explicit energy
selection recipe for electrons and photons to achieve maximal interaction at arbitrary separations and identify
two optimal regimes favoring either fast or slow electrons over those with intermediate velocities. We validate
the limit by analytical and numerical calculations on canonical geometries and provide near-optimal designs
indicating the feasibility of strong quantum interactions. Our findings offer fundamental intuition for maxim-
izing the quantum interaction between free electrons and photons and provide practical design rules for future
experiments on electron-photon and electron-mediated photon-photon entanglement. They should also enable
the evaluation of key metrics for applications such as the maximum power of free-electron radiation sources and
the maximum acceleration gradient of dielectric laser accelerators.

Free–electron–light interaction with structured optical en-
vironments leads to photon emission through diverse radi-
ation mechanisms, including Cherenkov radiation, Smith-
Purcell radiation, transition radiation, and incoherent cath-
odoluminescence [1–7]. These interaction processes lie at the
heart of modern electron microscopy [1–3], spectroscopy [8],
radiation sources [9–12], particle detection [13, 14], free–
electron laser [15], accelerators [16–19], and biomedical ima-
ging [20, 21]. Recent theoretical advances have shown that
the quantum-photonic nature of light could become critical
for describing the interaction [22, 23]. It was further predicted
that the interaction could shape and entangle electron and
photon wavefunctions [22, 24–30], and induce entanglement
among electrons [22] and photons [31] themselves. The inter-
action has also been proposed for free-electronic topological
probes and quantum simulators [32–34]. Such a wide range of
predicted quantum-optical interactions now form the basis of
free-electron quantum optics.

With the rapid developments of photon-induced near-field
electron microscopy (PINEM) [35–37] on photonic plat-
forms [38–41], the predicted quantum free-electron-light in-
teraction has been realized in a few experiments [42–44]. The
crucial parameters for describing these interactions are the di-
mensionless spontaneous coupling strength gQ with vacuum
and its stimulated counterpart g with external optical fields
(gQ and g are sometimes respectively denoted as β0 and β
in the literature, e.g. Ref. [2, 23, 45]). gQ can be calculated
via the spectral integration of spontaneous electron energy
loss [22, 23, 27, 28, 46, 47], and the two parameters relate to
each other via g =

√
NgQ where N is the number of photons

injected into the optical mode from a pump laser [22, 23].
In particular, the vacuum spontaneous processes exhibit in-

triguing prospects for universal and ultrafast quantum compu-
tation and information processing because they can create a
variety of highly non-trivial quantum optical states under de-
signed interaction sequences [47, 48] and they are essential
for the proposed hybrid free-electron-polariton blockade [49].

The key to these predictions is a strong quantum interac-
tion with

∣∣∣gQ
∣∣∣ > 1. Intuitively, this regime indicates that each

emitted photon can cycle back to the electron and cause a cas-
cade of multi-photon emission and absorption. Crucially, this
strong interaction regime involves higher-order quantum elec-
trodynamics processes and can be understood as inducing a
unique type of optical nonlinearity. Strong optical nonlinear-
ities are being pursued in all fields of photonics, with the goal
of reaching single-photon nonlinearities. Thus, a question of
fundamental importance is whether electron-photon interac-
tions can reach this regime. Answering this question requires
an upper bound to the quantum interaction strength gQ in ar-
bitrary photonic environments.

In this work, we derive universal limits to the quantum
interaction strength gQ between free electrons and single-
mode photons and provide analytical and numerical valida-
tions. We find that the limits allow for the strong quantum in-
teraction condition

∣∣∣gQ
∣∣∣ > 1, which is feasible in near-optimal

designs under realistic conditions. Limits for both line and
point electrons are obtained for arbitrary geometries, relying
only on material electrostatic constants, electron velocity, and
electron-structure separation. Intriguingly, the limits produce
an explicit criterion for selecting electron and photon energy
under certain electron-structure separations and give rise to
two optimal interaction regimes, one favoring fast electrons
and the other favoring slow electrons. We evaluate the limits
across the electromagnetic spectrum and reveal the dichotomy
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of fast and slow electrons: the former is advantageous for
high-energy photons, while the latter predominates towards
the long-wavelength regime.
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Figure 1. Illustration of the theoretical framework. Schem-
atic of an electron beam with velocity β = v/c traveling close
to an arbitrary structure at a separated distance d. The struc-
ture is defined by material permittivity ϵ(r, ω) within a volume V.
The electron (e−) can become an entangled state with its emit-
ted photons (ph) through spontaneous or stimulated processes.
These quantized emission events are able to be identified via
EELS and PINEM, respectively. The inset Feynman diagrams
show the corresponding physical processes and represent the
interaction between electrons and photons can be described by
a spontaneous quantum strength gQ in EELS and a stimulated
quantum strength g in PINEM. The spontaneous quantum interac-
tion strength gQ relates to the electron-energy-loss spectral dens-
ity by |gQ|

2 =
∫
Γ(ω) dω, where the integration window ∆ω relates

to the intended mode(s) that free electrons couple to. The afore-
mentioned interaction can be described by a special scattering
matrix “T”, which can be decomposed into a set of Drude–Lorentz
oscillators with matrix-valued coefficients Ti.

We begin the analysis by considering an electron beam
at normalized velocity β = v/c, interacting with an arbit-
rary photonic structure characterized by volume V and ma-
terial permittivity ϵ(r, ω) in its near field with a separation
d, as shown in Fig. 1. Photon exchanges between the elec-
tron and the structure can be strongly amplified when the
photonic structure supports modes with large spatial and spec-
tral overlap with the electron’s excitation field. In the frame-
work of quantum optics, the joint electron (e−)-photon (ph)
state |Ψ⟩ = |ψe⟩ ⊗

∣∣∣ψph
〉
=
∑∞

n=0
∑+∞

k=−∞ cn,k |Ek, n⟩ is a super-
position state with electron energy E0 + kℏω and n photons
where n denotes the photonic Fock states and k denotes the
electronic energy ladder. For spontaneous processes with an
electron of energy E0 in an empty cavity, the initial state is
|Ψi⟩ = |E0, 0⟩, and the final state |Ψf⟩ satisfies n = −k by virtue
of energy conservation. The initial and final states are related
by the scattering matrix, represented as |Ψi⟩ = Ŝ |Ψf⟩, which is

given by [22, 23]

Ŝ = exp
(
gQb̂†â − g∗Qb̂â†

)
, (1)

where â, â† are the annihilation and creation operators of the
optical mode; b̂, b̂† denote the ladder operators for electron
energy, describing energy exchanges between the electron
and the optical mode; and gQ is the dimensionless electron-
photon interaction strength. The strong-coupling regime of∣∣∣gQ
∣∣∣ > 1 indicates that one free electron becomes more likely

to emit more than one photon and that this electron becomes
quantum entangled with these photons. In the limit of va-
cuum zero field [50], the quantum-optical theory of PINEM
coincides with the theory of electron energy loss spectro-
scopy (EELS), which enables the calculation of gQ from the
spectrally-integrated electron energy loss probability (see SI
Sec. S1): |gQ|

2=
∫
Γ(ω) dω without competing loss mechan-

isms [27, 28, 46, 47]. In stimulated processes like PINEM, the
general quantum framework still holds, whereas one should
replace gQ with the stimulated strength g amplified by the in-
put coherent state amplitude.

To impose a bound on gQ and g, we treat free electrons
interacting with an arbitrary photonic environment as an elec-
tromagnetic scattering problem (Fig. 1). Although this scatter-
ing perspective has previously led to a single-frequency (zero-
bandwidth) limit [51], it cannot translate to a gQ limit straight-
forwardly because of a divergent material metric for lossless
materials. Alternatively, a sum-rule approach can bound near-
field interactions (e.g. power loss from a stationary point di-
pole) [52, 53], but its applicability to free electrons is hindered
by the non-analytic behaviors of their external fields near the
complex-plane origin. Recently, a T-matrix–based oscillator
representation framework [54] (where the T operator relates
the polarization fields with incident fields [55, 56]) appears
ideal for analyzing free-electron–light scattering.

In the polarization-response representation, the frequency-
dependent extinction equals the work done by the incid-
ent field on the induced polarization field in the scatterer,
Pext(ω) = (ω/2) Im

∫
V E∗inc · P dV . The polarization response

is related to the incident field through a linear operator, the
“T matrix” [55]: P(r) =

∫
V T(r, r′) · Einc(r′) dr′, or p = Teinc

in vector-matrix notation that we use throughout. Causality
and passivity produce a Kramers–Kronig relation and sum-
rule constraints for the T matrix. These properties enable the
decomposition of theTmatrix into an infinite sum of lossless
Drude–Lorentz oscillators with resonance frequency ωi and
highly constrained matrix-valued oscillator strengths Ti rep-
resenting the only degrees of freedom [54] (see Sec. S2). Con-
tributions from Ti at well-separated ωi originate from differ-
ent resonances. For reciprocal systems, combining the zero-
frequency sum rule, the oscillator representation, and the do-
main monotonicity of polarizability [52] along the positive-
frequency axis yields ωImT(ω) ≤ (πτ/2)

∑∞
i=1 ω

2
Tiδ(ω−ωi),

which can reformulate the extinction as

Pext(ω) ≤
ω2πϵ0τ

4

∞∑
i=1

e†incTieincδ(ω − ωi). (2)
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The constant τ is a dimensionless electrostatic permittivity
coefficient relating the incident and total fields at zero fre-
quency via P(0) = ϵ0τEinc(0) (ϵ0 is the vacuum permittivity).

Based on this foundation, we next derive the upper limit
to the vacuum strength gQ of free-electron-photon interac-
tion. Under certain interaction bandwidth described by a
dimensionless window function Θ(ω;ω0,∆ω) ≤ 1 (peaked
at ω0 with bandwidth ∆ω), gQ can be evaluated by in-
tegrating the loss probability Γ(ω) = Pext(ω)/ℏω:

∣∣∣gQ
∣∣∣2 =∫

Γ(ω)Θ(ω;ω0,∆ω) dω. By combining Eq. (2),
∣∣∣gQ
∣∣∣2 becomes

∣∣∣gQ
∣∣∣2 ≤ πϵ0τ

4ℏ
Tr

∞∑
i=1

TiEi, (3)

a Ti-weighted sum of Ei ≡ ωieinc(ωi)e†inc(ωi)Θ(ωi;ω0,∆ω)
that incorporates the frequency of the emitted photons,
the incident field, and the window function. Because
ωeinc(ω)e†inc(ω) varies much slower than Θ(ω;ω0,∆ω) un-
der a high-Q interaction scenario (ω0 ≫ ∆ω), Ei also spec-
trally peaks at ω0 with negligible detuning. Therefore, set-
ting Ti = IV for the oscillator at ω0 and zero elsewhere will
maximize Eq. (3), which simultaneously satisfies the sum-rule
constraint

∑∞
i=1Ti = IV , where IV is an identity matrix within

the scatterer volume V . This mathematically optimal choice
corresponds to the physical condition of all of the sum-rule-
constrained polarization responses concentrating within the
frequency window of interest.

Applying the single-mode condition at ω0 to Eq. (3), we get∣∣∣gQ
∣∣∣2 ≤ πϵ0ω0τ

4ℏ

∫
V
|Einc(ω0)|2 dV. (4)

This limit to gQ thus becomes a simple product among phys-
ical constants, photon frequency, electrostatic polarizability,
and the integration of the incident fields within the scatterer.
We can obtain τ analytically for free electrons with canonical
geometries (e.g. τ = 2ϵ1(ϵ2 − 1)/(ϵ2 + ϵ1) for a half-space, and
τ = ϵ1(ϵ2−1)/ϵ2 for a concentric cylinder, both made of mater-
ials ϵ1 and ϵ2, where ϵ1 and ϵ2 are electrostatic permittivity of
materials 1 and 2, respectively; see Sec. S2.D). Evidently, τ is
finite and bounded for both dielectrics and perfect conductors
(see Sec. S2.D).

We further obtain shape-independent upper limits for line
and point electrons by enclosing arbitrary scatterers with ca-
nonical geometries. Assuming translational invariance along
one of its transverse directions and the spatial coherence of the
source current [57], a line electron beam (sometimes also de-
noted as “sheet electron beam”) is a simplified mathematical
treatment used in many free-electron theory analyses [58–62].

Applying Eq. (4) to a line electron beam moving above a
half-space (which can enclose an arbitrary scatterer) at a sep-
aration d yields a shape-independent limit for 2D line elec-
trons (see Sec. S3):

∣∣∣gQ
∣∣∣2
2D ≤

πq2τL
32ℏϵ0

(
k2

v,0 + κ
2
ρ,0

)
ω0κρ,0

e−2κρ,0d, (5)
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Figure 2. Universal behaviors of the quantum interaction
strength

∣∣∣gQ

∣∣∣2. a. Line-electron upper limit Eq. (5) as a function
of electron energy and photon energy under a separation dis-
tance d = 100 nm. The quantum interaction strength is normalized
between 0 and 1 by the maximum

∣∣∣gQ

∣∣∣2
2D

, and the white dashed
line denotes the cut-off photon energy of the optimal region. b.
Photon energy cut-off of line-electron limit Eq. (7) across vari-
ous separation d. c. Point-electron limit Eq. (6) for d = 100 nm.
The white dashed line highlights optimal choices of electron and
photon energies. d. The optimal electron and photon energies un-
der different separation d [Eqs.(8) and (9)].

where q is the charge density per unit transverse length, L
is the interaction length, and k0 = ω0/c, kv,0 = ω0/v, κρ,0 =√

k2
v,0 − k2

0 = k0/βγ are the free-space, electron longitudinal
and transverse wavevectors of the target photon frequency ω0,
respectively and γ = 1/

√
1 − β2 is the Lorentz factor.

Applying Eq. (4) to a point electron moving at the center
of a concentric hollow cylinder sector (which can enclose an
arbitrary scatterer) of azimuthal opening angle ψ, inner radius
d, and outer radius ∞ leads to a shape-independent limit for
point electrons (see Sec. S4):∣∣∣gQ

∣∣∣2
3D ≤

ατψL
4c

ω0

β2 κρ,0dK0(κρ,0d)K1(κρ,0d), (6)

where α is the fine-structure constant, Kn is the modified
Bessel function of the second kind. The limits Eqs. (4)-(6)
are the key analytical findings of the paper. They show that
the maximum

∣∣∣gQ
∣∣∣ for a target emission center frequency ω0

is solely determined by the electron velocity (via β and κρ,0),
the separation d, and the electrostatic polarizability τ of the
optical environment.
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∣∣∣gQ

∣∣∣2 > 1 regime.

We illustrate the universal behaviors of the quantum upper
limits in Fig. 2 to depict the key features of Eqs. (5) and (6),
ignoring the fractional pre-factors comprising physical con-
stants and structural coefficients. This way, we can obtain a
general energy selection recipe under arbitrary separations.

For line electrons (Fig. 2a), a photon energy cut-off condi-
tion (dashed line in Fig. 2a; Sec. S5) appears:

κρ,0d = ω0d/cβγ = 0.5, (7)

meaning that large
∣∣∣gQ
∣∣∣ is possible and forbidden below and

above the cut-off photon energies, respectively, as indicated
by the dichotomy of the brightness and darkness to the left and
right of the cut-off line in Fig. 2a. As the separation distance
reduces, the cut-off line blueshifts in photon energy (Fig. 2b).

For point electrons (Fig. 2c), an optimal condition (dashed
line in Fig. 2c and see Sec. S6) illuminates the choice of elec-
tron and photon energies to maximize their interaction:

K0(κρ,0d)K1(κρ,0d) = κρ,0d
[
K0(κρ,0d)2 + K1(κρ,0d)2

]
. (8)

Such an optimal condition is satisfied when

κρ,0d ≈ 0.4064, (9)

which differs from line electrons’ cut-off condition Eq. (7).
In particular, two optimal regimes emerge and favor re-
lativistic (top-right brightness in Fig. 2c, ultraviolet 10 eV
photons coupled to ⪆ 6 MeV electrons when d = 100 nm)
and non-relativistic (bottom-left brightness in Fig. 2c, long-
infrared 0.1 eV photons coupled to ⪅ 4 keV electrons when
d = 100 nm) electrons, respectively. The former optimal re-
gime aligns with traditional free-electron physics, where
high-energy photons are generated with relativistic electrons,
whereas the latter optimal regime indicates the huge poten-
tial for quantum electron-light interaction with slow electrons,
which has been recognized in an early study on multi-plasmon
generation in graphene [63] and rapid development is being
made in more recent years [51, 62, 64–74]. For intermediate
electron energies, the optimal photon energies can be analog-
ously defined using Eq. (8), although the associated limit is

lower than those for the two optima. The two optimal regimes
prevail under various separation distances (Fig. 2d).

We next contextualize the discussion by applying the uni-
versal feature above to evaluate the feasibility of

∣∣∣gQ
∣∣∣ > 1

at concrete frequency windows. Under various electron ve-
locities β and separation d, Fig. 3 shows the

∣∣∣gQ
∣∣∣2 upper

limit for point electrons [Eq. (6)] in four technologically rel-
evant regimes, namely, extreme ultraviolet (EUV) (Fig. 3a),
near-infrared (Fig. 3b), Terahertz (Fig. 3c), and microwave
(Fig. 3d). At the EUV 13.5 nm (Fig. 3a), despite the high lim-
its near the atomic-scale separations (under which quantum
tunneling and surface effects can become pronounced and
modify the bounds here [75–77]),

∣∣∣gQ
∣∣∣ > 1 is almost im-

possible for d ⪆ 10 nm except with β ⪆ 0.8 relativistic elec-
trons. At the telecom 1.55 µm (Fig. 3b), whereas slow elec-
trons’ upper limits are higher at tens-of-nanometer or smal-
ler separation, fast electrons with β ⪆ 0.3 are superior at d ⪆
100 nm, a typical separation in modern grazing-interaction ex-
periments. Towards the longer wavelengths, the advantages
of slow electrons are predominant.

∣∣∣gQ
∣∣∣ > 1 is only possible

for β ⪅ 0.3 and β ⪅ 0.1 at 1 THz (Fig. 3c) and 100 GHz
(Fig. 3d), respectively. Despite the ln(γ) divergence of the
limit Eq. (6) in electron energy, the slow-electron advantage
remains evident when comparing with electrons of 6.8 TeV
(dashed lines in Fig. 3c and d), the current highest acceleration
energy [78]. Taken together, the

∣∣∣gQ
∣∣∣ > 1 goal is indeed chal-

lenging for EUV and X-ray photons; nevertheless, slow elec-
trons are promising from electrostatics to the far-infrared, and
fast electrons are advantageous from mid-infrared to far ultra-
violet; the evaluation is based on the current levels of electron
beam collimation and focusing.

We analytically and numerically validate the derived upper
limits in Fig. 4a-c. We first consider two analytical scenarios:
line (Fig. 4a) and point (Fig. 4b) electron beams pass above
a Drude-metal half-space in vacuum and launch surface plas-
mon polaritons (SPPs). Both cases permit analytical treatment
of energy loss (see derivations in Sec. S7) to validate the line-
electron [Eq. (5)] and point-electron [Eq. (6)] upper limits, re-
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Figure 4. Validations (a-c) of the theoretical upper limits and near-optimal designs (d-f). a-b. Analytical calculations compared
to the upper limits. A line electron (a) with charge density q = 1.6 × 10−19 C/nm and a point electron (b) interacting with a half space
made of air and a Drude metal (ϵm = 1 − ω2

p/ω(ω + iγm), ωp = 9.06 eV, γm = 0.071 eV [79] for gold). c. Numerical simulations compared
to the upper limits. A point electron moves above a Si-SiO2 waveguide (thickness 220 nm and width 500 nm) at a distance d. d. Near-
optimal electron-photon coupling design for slow electrons. An air-GaP (Gallium Phosphide) core-shell structure with a 40 nm GaP
shell is designed for non-relativistic electrons. The property of polar dielectric GaP is described by a Lorentz oscillator model, ϵd =

ϵ∞ + ϵ∞(ω2
LO − ω

2
TO)/(ω2

TO − ω
2 − iωγd), where background permittivity ϵ∞ = 9.1 [80], γd = 1.25 meV, longitudinal optical ωLO and

transverse optical ωTO phonon frequencies are 67.8 meV and 47.1 meV, respectively [81]. e. Near-optimal electron-photon coupling
design for fast electrons. An air-aluminum core-shell structure with a 13 nm aluminum (Al) [82] shell is used for relativistic electrons. The
light gray shows the

∣∣∣gQ

∣∣∣ > 1 regime (circles: exact calculations; lines: theoretical upper limit). f. The coupling ideality as a function of
separation (orange squares: GaP design; green circles: Al design). The interaction length is fixed at 100 µm for all calculations.

spectively. We compute gQ when electrons excite SPPs at fre-
quency ωSPP that vary under different electron velocities. The
definite integral of energy loss is calculated between (ωSPP -
γm) and (ωSPP + γm) for an interval of two full-width-half-
maximum, where γm is simultaneously the intrinsic material
loss and the surface plasmon decay rate of the Drude metal
(see Sec. S8). In both the 2D and 3D cases, the analytical res-
ults closely trail the upper limits at the considered separation.
We also numerically validate the upper limit using full-wave
simulations of an integrated waveguide setup in Fig. 4c, where
an electron passes above a Si waveguide embedded in SiO2
substrate; the numerical coupling strength gQ of the funda-
mental mode of the waveguide falls short of the upper limit
for about one order of magnitude.

Finally, we design two near-optimal hollow-core structures
(Fig. 4d-f) to verify the two predicted optimal regimes (two
bright areas in Fig. 2b) associated with slow and fast electrons,
respectively. The core-shell configuration is motivated by the
sum-rule constraint constant τ, which is maximum when the
largest possible near-field area of a source is occupied by the
polarizable material. For the slow-electron optimum, we util-
ize a Lorentz polar dielectric gallium phosphide (GaP) with

low optical phonon frequencies to allow the coupling between
0.058 eV infrared photons and non-relativistic β = 0.05 elec-
trons; for the fast-electron optimum, we adopt Aluminium that
features a high plasma frequency to achieve an efficient inter-
action between 8.01 eV ultraviolet photons and β = 0.995 re-
lativistic electrons. In both cases,

∣∣∣gQ
∣∣∣ > 1 is predicted possible

by the upper limits and is validated by the slightly trailing con-
crete designs at the separation 100 nm (dashed vertical lines
in Fig. 4d-e) and interaction length 100 µm that are relevant
to current electron beam focusing and collimation techniques.
In Fig. 4d and e, GaP and Aluminium, two lossy materials,
are used primarily to verify the two optimal regimes (Fig. 2c),
as their material properties facilitate the coupling of electrons
and photons at the desired energy. Alternatively, lossless plat-
forms (e.g. Fig. 4c) can be employed to maintain the entan-
glement of the interaction.

In addition, Fig. 4f depicts the coupling ideality of the two
near-optimal designs as the function of separation. The ideal-
ity of the target mode m is defined as Im =

∣∣∣gQu,m
∣∣∣2/∑i

∣∣∣gQu,i
∣∣∣2,

which describes the fraction of coupling into the designated
mode among exciations of all modes [23, 46]. The ideality of
the slow-electron design (Fig. 4d; orange squares in Fig. 4f)
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grows monotonically with the considered separation, reach-
ing more than 95% under d > 500 nm due to the domin-
ance of the fundamental mode. Meanwhile, the fast-electron
design (Fig. 4e; green circles in Fig. 4f) exhibits a good ideal-
ity> 80% for a wide range of separations, including both near-
and far-field of the 8.01 eV photon.

In summary, we have theoretically derived a universal upper
limit to the quantum interaction strength gQ between free elec-
trons and single-mode photons. The limit allows us to evalu-
ate the feasibility of achieving the

∣∣∣gQ
∣∣∣ > 1 strong interaction

condition over all possible designs across the electromagnetic
spectrum without exhaustive computational optimization. Un-
der arbitrary separations, the limits identify two optimal in-
teraction regimes, showing how to select electron and photon
energy to maximize their interaction. Notably, the gQ limit de-
veloped here can directly translate to a limit for the stimulated
strength g, scaled by the coherent state amplitude. There still
exists some gap between the limits and the performance of
prevalent structures, indicating the potential for further tight-
ening the limits and improving designs to approach them.

The limits derived here hinge on reciprocity, under which
the skew-symmetric part of the T-matrix vanishes, and the
sum rule of the real-symmetric part of T can be applied; it
is thus pertinent to seek the generalization of the current lim-
its to nonreciprocal free-electron systems [83–85] and explore
the possibility for higher gQ therein. As the electron-structure
separation increases into the far field, electron energy loss un-
dergoes exponential decay, and its spectral composition can
become multimodal. This scenario may violate the single-
mode condition, decrease the coupling ideality, and cause an
apparent breakdown of the limits developed here because the
spectral integration of energy loss no longer corresponds to
the
∣∣∣gQ
∣∣∣2 of a particular mode of interest (e.g. when the tail

of the zero-loss peak dominates; see Sec. S9). Therefore, it
would also be of interest to generalize the present work into
the multimodal condition. The findings here offer an intuit-
ive understanding of how to maximize the quantum interac-
tion between free electrons and photons. They also provide
practical design guidelines for future experiments that aim to
achieve strong entanglement between electrons and photons,
as well as photon entanglement mediated by free electrons.
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F. J. Kappert, R. N. Wang, M. Möller, J. Pan, et al., Nature 600,
653 (2021).

[41] Y. Yang, J.-W. Henke, A. S. Raja, F. J. Kappert, G. Huang,
G. Arend, Z. Qiu, A. Feist, R. N. Wang, A. Tusnin, et al., Sci-
ence 383, 168 (2024).

[42] R. Dahan, A. Gorlach, U. Haeusler, A. Karnieli, O. Eyal,
P. Yousefi, M. Segev, A. Arie, G. Eisenstein, P. Hommelhoff,
et al., Science 373, eabj7128 (2021).

[43] Y. Adiv, H. Hu, S. Tsesses, R. Dahan, K. Wang, Y. Kurman,
A. Gorlach, H. Chen, X. Lin, G. Bartal, et al., Physical Review
X 13, 011002 (2023).

[44] A. Feist, G. Huang, G. Arend, Y. Yang, J.-W. Henke, A. S. Raja,
F. J. Kappert, R. N. Wang, H. Lourenço-Martins, Z. Qiu, et al.,
Science 377, 777 (2022).

[45] G. M. Vanacore, I. Madan, G. Berruto, K. Wang, E. Po-
marico, R. Lamb, D. McGrouther, I. Kaminer, B. Barwick,
F. J. Garcı́a de Abajo, et al., Nature Communications 9, 2694
(2018).

[46] G. Huang, N. J. Engelsen, O. Kfir, C. Ropers, and T. J. Kippen-
berg, PRX Quantum 4, 020351 (2023).

[47] G. Baranes, S. Even-Haim, R. Ruimy, A. Gorlach, R. Dahan,
A. A. Diringer, S. Hacohen-Gourgy, and I. Kaminer, Physical
Review Research 5, 043271 (2023).

[48] R. Dahan, G. Baranes, A. Gorlach, R. Ruimy, N. Rivera, and
I. Kaminer, Physical Review X 13, 031001 (2023).

[49] A. Karnieli, S. Tsesses, R. Yu, N. Rivera, A. Arie, I. Kaminer,
and S. Fan, PRX Quantum 5, 010339 (2024).

[50] F. J. Garcia-Vidal, C. Ciuti, and T. W. Ebbesen, Science 373,
eabd0336 (2021).

[51] Y. Yang, A. Massuda, C. Roques-Carmes, S. E. Kooi,
T. Christensen, S. G. Johnson, J. D. Joannopoulos, O. D. Miller,
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