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We characterize the possible moments of entropy production for general overdamped Markovian
systems. We find a general formulation of the problem, and derive a new necessary condition between
the second and third moment. We determine all possible first, second and third moments of entropy
production for a white noise process. As a consequence, we obtain a lower bound for the skewness
of the current fluctuations in dissipative devices such as transistors, thereby demonstrating that the
Gaussianity assumption widely used in electronic engineering is thermodynamically inconsistent.

Introduction.—Stochastic thermodynamics extends
and generalizes the laws of conventional thermodynamics
and equilibrium statistical physics to mesoscopic systems
in which random fluctuations are non negligible [1–3].
The theory is able to describe possibly strongly nonlin-
ear systems operating far from equilibrium [4]. Modern
nanoscale electronic devices, operating either in classi-
cal [5–8] or quantum regime [2, 9–13], constitute one re-
cent field of application of this theory. Recent contribu-
tions were dedicated to reliability assessment [14, 15], or
relation between noise and energy dissipation in digital
CMOS circuits in non-stationary conditions [16–18].
The local detailed balance (LDB) relation [3, 19] results

from the first principle of microscopic reversibility, and
formulates the entropy production in terms of probabil-
ities of direct and time-reversed trajectories. It holds in
wide range of situations [1]. From the LDB one can de-
rive a host of important results, such as the fluctuation
relation [20], or the thermodynamic uncertainty relations
(TUR) [21–27]. The TURs provide a fundamental lower
bound for the variance of entropy production ∆σ, and
more generally observables antisymmetric under time re-
versal [21, 28–30].
Beyond mean and variance, characterization of higher-

order moments, like the skewness (the third central mo-
ment) quantifying the asymmetry of the fluctuations,
provides finer information about the random physical
process [31], especially far from equilibrium [6, 30]. The
topic is covered to a much lesser extent. Other theoret-
ical works focus on special cases, notably noninteract-
ing systems [32], unicyclic [29, 32] and multicyclic [29]
Markovian networks. As broadly reviewed in [7], skew-
ness of electrical current fluctuations was experimentally
reported in tunnel junctions [9, 11], avalanche diodes [5],
quantum devices [10] and metallic wire at cryogenic tem-
perature [31].
In the present work, we derive a methodology to derive

tight bounds on moments of entropy production. Besides
recovering the generalized TUR [33–35] and Salazar’s
third-moment bound [30], it allows to find bounds on
higher moments. As an illustration, we derive a novel,
tight, bound between second and third moment. We also
write the tightest relations that hold close to equilibrium
(in the limit of low entropy production).

As the main result of this article, we find the relations
that hold between the mean, variance and skewness of en-
tropy production any white noise that is thermodynam-
ically consistent (in that it satisfies LDB). The bounds
apply in particular to the flow (e.g., electric current) go-
ing through a purely dissipative device, in both equilib-
rium and far-from-equilibrium conditions. Our bound
contains as particular cases several important special
cases encountered in electronics, mechanics and chem-
istry: Johnson-Nyquist [36, 37] or Einstein diffusion pro-
cess (Brownian motion [38]); shot noise or any bidirec-
tional Poisson process [6, 8, 39]. Moreover, because any
colored noise can be regarded as a white noise passing
through a linear filter, we also introduce a corrected for-
mula including the filtering effect of some system (e.g.
experimental setup) through its impulse response.
Problem Statement.—For a real random observableX ,

let mk = 〈Xk〉 be its kth moment, for k = 1, 2, 3, . . . In
this paper, 〈·〉 always denotes the expectation operator,
i.e. ensemble average. The Hamburger moment problem,
in probability theory, consists in characterising all possi-
ble sequences m1,m2,m3, . . . ,mk that indeed emerge as
the k first moments of some arbitrary random observable
X . For instance for k = 2, we find that real numbers m1

and m2 are valid moments if and only if m2 ≥ m2
1. One

may also state the problem for random observables of a
certain type, for instance nonnegative random variables
(Stieltjes problem). We find that real numbers m1 and
m2 are moments of some nonnegative random observable
if and only if m2 ≥ m2

1 and m1 ≥ 0. The extension for
arbitrary k is a standard topic of probability theory.
In this article we ask which real numbers can possibly

arise as the moments (or, equivalently, cumulants) of en-
tropy production of a (classical) system satisfying LDB,
as defined below.
We also analyse the near-equilibrium situation, and

the case of white noise. We characterise all possible cu-
mulants of order one (mean), two (variance) and three
(skewness) for thermodynamically consistent white noise.
Consequences of the local detailed balance.—Let Ω be

a probability space with probability measure p and an
involution ω 7→ ω (‘involution’ means that ω = ω). This
defines p(A) = p(A) for any event A ⊆ Ω. Without loss
of generality, and for the sake of simplicity of notations,
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we assume a discrete space, so that we can write, for an
observable f : Ω → R, the mean as 〈f〉 =

∑

ω∈Ω f(ω)p(ω)
(even though in some cases the space Ω is continuous, and
this sum should be implicitly understood as an integral).
Let ∆σ ≡ ln(p/p). We call this observable the ‘entropy

production’, in reference to the situations where this ob-
servable is indeed endowed with this physical meaning
(up to Boltzmann’s constant kB). This includes the cases
where Ω is the space of trajectories, over some time in-
terval, of a Markov process modelling an overdamped
physical process subject to a constant or time-symmetric
protocol (the protocol referring to the transition proba-
bilities characterizing the Markov process), and the in-
volution is simply the time-reversal of the trajectory (i.e.
the sequence of states traversed by the trajectory, read in
reverse order), as a direct consequence of LDB [1, 19, 33–
35]. Notice however that our results hold mathematically
for this observable whether or not it has the physical
meaning of an entropy production. Indeed it may have
very different meanings, such as the magnetization of a
spin system at equilibrium if the involution is the spin
reversal [33, 40].
Our question is to characterize all the possible values

taken by the moments of the entropy production, mk =
〈∆σk〉 for k = 1, 2, 3, . . .
First observe that all moments are nonnegative. If k

is odd, we can write indeed

mk =
∑

ω∈Ω

p(ω) lnk
p(ω)

p(ω)
=

∑

{ω,ω}

(p(ω)−p(ω)) lnk
p(ω)

p(ω)
≥ 0,

(1)
where the second sum runs over all unordered pairs
{ω, ω} (counted once). For even k we have:

mk =
∑

{ω,ω}

(p(ω) + p(ω)) lnk
p(ω)

p(ω)
≥ 0. (2)

To go further, we first focus on the simplest case Ω =
{ω, ω}. Then p(ω) + p(ω) = 1. We assume without loss
of generality that p(ω) ≥ 1/2. We can write, for even k:

mk = lnk
p(ω)

p(ω)
(3)

and for odd k

mk = lnk
p(ω)

p(ω)

p(ω)− p(ω)

p(ω) + p(ω)
= lnk p(ω)

p(ω)
tanh

1

2
ln

p(ω)

p(ω)
.

(4)

Reparametrizing with s = ln p(ω)
p(ω) (for any s ≥ 0), we see

that the list of possible moments (m1,m2,m3,m4, . . .) in
this simple case is (s tanh(s/2), s2, s3 tanh(s/2), s4, . . .),
for any s ≥ 0.
Now consider a general Ω, containing (possibly in-

finitely) many pairs {ω, ω}. Then we can compute mk

as a convex combination (weighted average) of the mo-
ments computed over each pair {ω, ω}, weighted with

0
0 m2

m3

m
3/2
2

tanh
m

1/2
2

2

FIG. 1. Illustration of the set of all possible pairs (m2,m3)
for entropy production. The domain of validity (hatched in
sky blue), defined by (6), is obtained as the convex hull of the
blue boundary curve (which is thus included in the domain).
The black boundary straight line m2 = 0 (lower bound for m2

in (6)) is excluded, save for the blue dot at the origin, which
corresponds to the equilibrium (no entropy production).

probability p({ω, ω}) = p(ω) + p(ω):

mk =
∑

{ω,ω}

p({ω, ω})
p(ω)± p(ω)

p(ω) + p(ω)
lnk

p(ω)

p(ω)
(5)

Since the probability distribution over all pairs {ω, ω}
can be arbitrary, the set S of possible vector of mo-
ments (m1,m2,m3,m4,m5, . . .) is the convex hull (i.e.,
set of convex combinations) of points of the curve
(s tanh s

2 , s
2, s3 tanh s

2 , s
4, s5 tanh s

2 , . . .). This in itself is
a complete, albeit implicit, characterization of the possi-
ble values taken by the moments (of all orders) of entropy
production.
We are usually interested in moments of specific or-

ders. As illustration, the set of all possible pairs (m2,m3)
for entropy production is the convex hull of the curve
(s2, s3 tanh s

2 ) (see Figure 1) . It is thus characterized by

m3 ≥ m
3/2
2 tanh

m
1/2
2

2
> 0, (6)

(along with the trivial equilibrium point m2 = 0 = m3).
This means that every pair (m2,m3) satisfying this re-
lation is the second and third moments of the entropy
production of some system, and conversely. The same
methodology applied to (m1,m2) recovers the general-
ized Thermodynamic Uncertainty Principle [33–35] or to
(m1,m3) recovers [30].
Moments near equilibrium.—We now consider the

problem of characterizing moments near equilibrium, i.e.,
for small values of mean entropy production m1 = 〈∆σ〉.
Remember that if m1 = 0, then all the moments are zero
(equilibrium, with p ≡ p).
Consider once again the set S of all possible mo-

ments (m1,m2,m3, . . .). Recall that a cone is a sub-
set of a vector space that is stable under positive lin-
ear combinations. Call C the cone generated by the
convex set S, which is the set of half-lines starting
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from the origin and meeting S. This cone is gener-
ated by positive linear combinations of points of the form
(s tanh(s/2), s2, s3 tanh(s/2), s4, . . .).
This cone is equivalently characterized by the con-

vex set of all values taken by the ‘scaled coordi-
nates’ (m2/m1,m3/m1,m4/m1, . . .) (for all non-zero
points in S) indicating the directions of the half-
lines in C. In this representation, C is the con-
vex hull of points (m2/m1,m3/m1,m4/m1, . . .) =

( s
tanh(s/2) , s

2, s3

tanh(s/2) , . . .). For the first three moments,

we thus have

2 <
m2

m1
≤

√

m3

m1

tanh
(1

2

√

m3

m1

)

and
m3

m1
> 0 (7)

or
m2

m1
= 2 and m3 = 0 (8)

Notice that the r.h.s. of (7) converges to 2 for m3/m1 →
0. The (non-zero) moments (m1,m2,m3) of entropy pro-
duction necessarily satisfy (7) or (8). This is a necessary
condition, not sufficient in general, since the cone C is
larger than S. Nevertheless, intuitively, the cone C is a
good approximation of S ‘near the origin’. We make this
intuition precise.
Consider Cǫ the (convex) set of points of the form

(m2/ǫ,m3/ǫ, . . .), for all points (ǫ,m2,m3,m4 . . .) in S.
Thus Cǫ encodes the ‘slice’ of S with coordinate m1 = ǫ.
By convexity of S (which contains the origin), the set Cǫ

is increasing with ǫ: if ǫ < ǫ′ then Cǫ ⊃ Cǫ′ . As ǫ → 0,
then Cǫ converges to C: every point in C is eventually
in Cǫ for small enough ǫ. Thus C, which is larger than
S, can be seen as a good approximation of S for those
points with small enough coordinate m1 = ǫ ≈ 0.
Said otherwise, any numbers m1,m2,m3 satisfying (7)

or (8) are possible moments m1,m2,m3 of entropy pro-
duction, provided that m1 is small enough.
Moments and cumulants of white noise.—The typical

situation of interest where the bounds (7) and (8) apply
is the entropy production of any overdamped stationary
Markov process over any infinitesimal time interval, as
m1 = 〈∆σ〉 vanishes with the time interval ∆t → 0.
Let us examine a specific case of particular practical

importance: the case of white noise, which can be seen
as a Markov process with a single state (no memory of
the past).
A specific example is the electrical current flowing

through an arbitrary dissipative electronic device, like an
homogeneous semiconductor or metallic bar or a nonlin-
ear diode or transistor, subjected to a constant voltage V .
The random current is adequately modelled as a white
noise process [6, 7]. The total entropy production over a
time interval ∆t reads

∆σ =
V

kBT
∆q (9)

where ∆q is the random charge increment (integral of
white noise current over ∆t), kB is Boltzmann’s constant
and T is the constant temperature of the environment,
assimilated to a uniform thermal bath. Thus, entropy
production and charge increment over a same time inter-
val are related by (9), proportional through a constant
factor, the ‘thermodynamic force’ V/kBT . Likewise, the
electrical current q̇ can be identified up to the same multi-
plicative constant to the entropy production rate σ̇, both
described by a white noise.
Similar situations occur in various context where a

purely dissipative system subjected to a constant ‘ther-
modynamic force’ (mechanical force, gradient of chemical
potential, of temperatures, of concentration, etc.) gen-
erates a random ‘flow’ (speed, chemical flow, heat flow,
matter flow, etc.).
Characterizing the moments of entropy production

is thus characterizing the moments of electric current
(speed, heat flow, etc.) in response to a given external
force, a problem of fundamental importance.
For any such white noise, the entropy production ∆σ

over a time interval ∆t can be broken down as the sum of
independent entropy productions over smaller intervals.
Thus the cumulants c1, c2, c3, . . . of entropy production
over time ∆t are proportional to ∆t, for any ∆t (small
or large). Indeed the cumulants are additive for the sum
of independent variables. Let us recall that the first cu-
mulant c1 is the mean (of entropy production over a time
interval ∆t), while c2 is the variance and c3 is the third
central moment — sometimes called skewness because it
captures the non-symmetric nature of fluctuations on ei-
ther side of the mean. The white noise is thus character-
ized by the cumulant rates ck/∆t, which do not depend
on ∆t, and which we denote ċk (same unit as an inverse
time). For instance ċ1 is the mean entropy production
rate.
In the limit of short time intervals ∆t → 0, the cu-

mulants ck and the moments mk coincide: for instance
c2 = m2−m2

1 = m2+O(∆t2), while c2 is proportional to
∆t. Similarly, c3 = m3 − 3m2m1 + 2m3

1 = m3 +O(∆t2),
etc.
Thus, the relations (7)(8) hold for cumulants of white

noise, which satisfy either

2 <
c2
c1

≤

√

c3
c1

tanh
(1

2

√

c3
c1

)

and
c3
c1

> 0 (10)

or

c2
c1

= 2 and c3 = 0 (11)

In this equation, the ratios c2/c1 and c3/c1 do not de-
pend on observation time ∆t and can be replaced (equiv-
alently) with the rate ratios ċ2/ċ1 and ċ3/ċ1. See Figure 2
for illustration.
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0
0

2

c3/c1

c2/c1

√

c3

c1

tanh

(

1

2

√

c3

c1

)

FIG. 2. Possible values for the cumulants c1 (mean), c2 (vari-
ance), and c3 (third central moment, indicating skewness) of
thermodynamically consistent white noise. The domain of
validity (hatched in sky blue) defined by (10) and (11) is gen-
erated as the convex hull of the blue boundary curve (which
is thus included in the domain). The black boundary straight
line c2/c1 = 2 is excluded. Gaussian white noise is necessarily
at the blue dot (0, 2), while the blue curve is otherwise popu-
lated by bidirectional Poisson processes. The same figure can
be seen as representing the possible values of m3/m1 (hori-
zontal axis) vs m2/m1 (vertical axis) for arbitrary moments
m1,m2,m3 of entropy production, as in (7) and (8).

In fact, it characterizes the possible cumulants of ther-
modynamically consistent white noise, not only at short
times (where they coincide with moments), but also at
arbitrarily long times (by time-proportionality of cumu-
lants).
In particular Gaussian white noise, which has nec-

essarily c3 = 0 (no skewness, symmetric fluctuations
around the mean), corresponds to the case (11), thus
must satisfy c2 = 2c1, which is a particular case of the
fluctuation-dissipation theorem [41] expected in the near-
equilibrium, linear response regime. This relation is also
called Johnson-Nyquist’s formula in the case of a lin-
ear electrical resistor or Einstein’s diffusion law [38] in
mechanics. Conversely, when the skewness is zero, one
must obey the fluctuation-dissipation relation c2 = 2c1.
In other words, fluctuations in a purely dissipative device
that strictly exceed the fluctation-dissipation regime can-
not be purely Gaussian and must exhibit some positive
skewness.
Relation (10) holds with equality for a bidirectional

Poisson random process, i.e., a white noise that is the
sum of two Poisson processes with rates λ+ and λ−. Ev-
ery arrival in the positive (resp., negative) process gen-

erates an entropy of ln λ+

λ−

(resp., the opposite). For in-

stance in an electronic device, a charge carrier (electron,
charge qe) passing through the device subjected to a volt-

age V generates an entropy ± ln λ+

λ−

= ±V qe
kT . In this

context, the bidirectional Poisson process is called shot

noise [6, 39].
For such a bidirectional Poisson process, the first cu-

mulants are the mean entropy production c1 = (λ+ −

λ−) ln
λ+

λ−

∆t, the variance c2 = (λ+ + λ−) ln
2 λ+

λ−

∆t, the

skewness c3 = (λ+ − λ−) ln
3 λ+

λ−

∆t). Direct check up

shows that all these white noise processes satisfy the re-
lation with equality, and populate the top curve of the do-
main in Figure 2. The interior of the domain is obtained
by positive linear combinations of different Gaussian or
bidirectional Poisson processes. This is also in line with
Lévy-Khintchine theorem [42], stating that every (math-
ematical) white noise is decomposable into a (possibly
continuous) sum of Poisson and Gaussian noises.
This confirms that the relation (10)(11) is not only

necessary but also sufficient to characterize the possible
cumulants of thermodynamically consistent white noise.
Finally, observe that the l.h.s inequality term of (10)

is a particular case of the Thermodynamic Uncertainty
Relation [21]. Thus the r.h.s inequality can be seen as
a sort of converse of Thermodynamic Uncertainty Rela-
tion, as providing an upper bound on the variance of the
entropy production.
Application to Nonlinear Electronic Devices.—

Electrical current flowing through dissipative devices
is an important instance of white noise process, as
introduced above. That the current fluctuations in
nonlinear devices exhibit non-zero skewness has been
previously highlighted experimentally and theoretically
in [6, 7].
The cumulants of ∆q can be related to those of ∆σ

through the proportionality relationship (9), and thus
satisfy, using (10)(11), either

2 <
V

kBT

〈

∆q2
〉

〈∆q〉
≤

V

kBT

√

〈∆q3〉

〈∆q〉

tanh

(

1

2

V

kBT

√

〈∆q3〉

〈∆q〉

)

and

〈

∆q3
〉

〈∆q〉
> 0

(12)
or

〈

∆q2
〉

= 2kBT
〈∆q〉

V
and

〈

∆q3
〉

= 0. (13)

Equation (13) is the Johnson-Nyquist formula [36, 37] (a
particular case of the fluctuation-dissipation theorem),
known to be valid at least for linear resistors.
Beyond this case, (12) is valid for any white noise phys-

ically generated within any nonlinear device. From the
knowledge of the mean and variance (varying with V ),
solving (12) for

√

〈∆q3〉 / 〈∆q〉, provides a lower bound
for the skewness of the current fluctuations, as a function
of the applied voltage V (possibly very large, allowing to
investigate the far-from-equilibrium regime).
We aim at exploiting (12) to discuss the skewness of

the current fluctuations in MOS (Metal-Oxide Semicon-
ductor) (field-effect) transistors, key elements of modern
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V/Vsat

√

〈∆
q3
〉
/
〈∆

q〉
[q
e
]

0
0

kT

qeVsat

1

1

Shot noise (e.g. junction)

MOS transistor

Gaussian (linear resistor)

FIG. 3. Minimum skewness (third central moment) of cur-
rent through a MOS transistor, predicted from (12) (dashed
curve). Gaussian and shot noise skewness are also depicted
for comparison.

integrated circuits in silicon. A MOS transistor can be
regarded as a structure with three accesses: Gate, Source
and Drain. In our analysis, the gate-to-source voltage is
assumed fixed, thus the transistor reduces to a nonlin-
ear resistance between two accesses, the source and the
drain. Within our notations, ∆q/∆t is the (drain-to-
source) current, a white noise whose statistics depend on
the constant source-to-drain voltage difference V .
The classical ‘long-channel’ MOS transistor theory pre-

dicts, in strong inversion regime, the average current [43]:

〈∆q〉

∆t
=











β
(

VsatV −
V 2

2

)

if V < Vsat

β
V 2
sat

2
if V ≥ Vsat.

(14)

β and saturation voltage Vsat are constant which absorbs
some transistor and physical parameters. The variance
of the white noise may be compactly written as [43, 44]:

〈

∆q2
〉

∆t
= 2kBT βVsat

2

3

1 + η + η2

1 + η
(15)

where

η =







1−
V

Vsat
if V ≤ Vsat

0 if V ≥ Vsat.
(16)

As already reported in [6], following these equations it
is straighforward to check that

〈

∆q2
〉

/ 〈∆q〉 ranges from
2 (thus reaching Johnson-Nyquist’s lower bound of (13))
for V → 0 to 8/3 for V ≥ Vsat. This result is consistent
with the fact that, for V → 0, the two-access transistor
behaves like a linear resistor.
Thus for V > 0, Johnson-Nyquist’s prediction (12) is

exceeded and (13) must instead apply. This allows to

extract (numerically) a lower bound for the skewness as
a function of V , see dashed line in Figure 3. The initial
value can be computed analytically by a Taylor approx-
imation of the tanh in (13):

√

〈∆q3〉 / 〈∆q〉 ≥
kT/qe
Vsat

qe. (17)

This value must be compared to the zero skewness of a
pure Gaussian noise, and to qe analytically computed for
a shot noise (a bidirectional Poisson noise of intensity qe,
modelling the transfer of one electron at a time through
the resistance), also measured experimentally in a tunnel
junction [9].
This theoretical result proves that the white noise in a

MOS transistor has a positive skewness and hence is not
rigorously Gaussian, although this convenient assump-
tion is widely used for noise modelling and circuit simu-
lations [45].
We find instructive to consider realistic numerical val-

ues for the parameters involved. The order of magnitude
of

√

〈∆q3〉 / 〈∆q〉, in number of qe, is determined by the
kBT/(qeVsat). At room temperature kBT/qe ≈ 25mV.
Regarding Vsat, it typically ranges from a few V in old
µm CMOS technologies and down to several hundreds of
mV in the most advanced decananometer technologies.
Vsat = 250mV, as used in Figure 3, results in ∼ qe/10.
Discussion.—A natural continuation for those results

would be the characterization of higher-order tempo-
ral correlations of non-white noise as produced by gen-
eral Markov chains, in view to complement for example
the recent results of autocorrelations and power spectral
correlations[46–49].
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