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Electron collimation via a graphene pn-junction allows electrostatic control of ballistic electron trajectories 

akin to that of an optical circuit. Similar manipulation of novel correlated electronic phases in twisted-bilayer 

graphene (tBLG) can provide additional probes to the underlying physics and device components towards 

advanced quantum electronics. In this work, we demonstrate collimation of the electron flow via gate-defined 

moiré barriers in a tBLG device, utilizing the band-insulator gap of the moiré superlattice. A single junction 

can be tuned to host a chosen combination of conventional pseudo barrier and moiré tunnel barriers, from 

which we demonstrate improved collimation efficiency. By measuring transport through two consecutive 

moiré collimators separated by 1 um, we demonstrate evidence of electron collimation in tBLG in the 

presence of realistic twist-angle inhomogeneity. 

A massless relativistic particle can tunnel through a barrier with 100% transmission, independent of the 

barrier height and width, a phenomenon known as Klein paradox. Analogous behavior has been observed 

in graphene thanks to the linear energy-momentum dispersion relationship for electrons, akin to a massless 

relativistic particle.  In the case of electrons in graphene, there exists a pseudo-barrier defined at the 

interface of a pn-junction: ballistic carriers along paths perpendicular to the pn-junction undergo perfect 

transmission, whereas carriers astray from it get reflected with a probability that increases exponentially 

with incident angle [1–8]. The strong angle dependence of Klein tunneling allows for collimation of 

ballistic electron trajectories, or the generation of electronic plane waves. This can serve as the basis for 

electron-optics, in which electrons are manipulated to form electronic analogies of optical circuits, whose 

coherent interference can be utilized for novel quantum electronics.  



 

 

 

The presence of flat bands in twisted bi- and multi-layer graphene leads to electron localization and 

correlations [9–11]; this allows the emergence of novel quantum transport phenomena, such as 

superconductivity [12–23], correlated insulator states [21–35] and magnetism [21,24,35–37]. The 

collimation of correlated ballistic current can be used for more versatile manipulation of the novel 

quantum coherent phases towards advanced quantum electronics, including applications in spintronics, 

valleytronics, and guided Josephson currents; in addition, it may provide flexible experimental knobs for 

investigating the microscopic mechanism of the rich underlying physics of correlated electron states.  

There remain two major experimental challenges in realizing these possibilities: first and foremost, the 

collimation efficiency becomes better with a narrower and higher tunnel barrier [1]. Realistically, the 

electrostatically defined pn-junction is at least as wide as the gate separation (~50 nm), and the effective 

pseudo-barrier height is limited by the absence of a true bandgap. As a result, a portion of the electrons 

with small but finite incident angle undergo Veselago refraction instead of being reflected, resulting in 

transmission of these uncollimated electrons that in turn compromises the overall collimation 

efficiency [38–42]. The second challenge has to do with the fact that the ballistic electron trajectory in 

twisted-bilayers may be curved over long distance, in contrast to that in monolayer graphene, due to twist-

angle inhomogeneity from local atomic reconstruction which is present in real samples. After passing 

through the collimator [43–46], electron current can gradually go astray from its intended path, making it 

harder to stay collimated over long distance.  

In this work, we demonstrate collimation of the electron flow in tBLG via gate-defined moiré barriers. 

Utilizing the moiré band-insulator gap, we show that a narrow (on the order of 10 nm) and a true tunnel 

barrier can be electrostatically defined to improve the collimation efficiency on top of the state-of-the-art 

pn-pseudo barriers (See Supporting Information section S1, S5). By measuring the transport through two 

consecutive moiré collimators separated by 1 um, we demonstrate evidence of electron collimation in 

tBLG in the context of the additional challenges presented by twist-angle inhomogeneity.  

Figure 1a shows the schematic image of a single moiré barrier. Two pieces of monolayer graphene 

(MLG) are consecutively picked up with a relative twist angle of ~1.05°, where a band insulator gap 

(Figure 1d) of ~ 23 meV is expected. The stack is encapsulated by hBN and transferred onto two pre-

patterned local bottom gates (hereby referred to as G1 and G2), whose topography is confirmed by atomic 

force microscopy to be atomically flat (Figure 1e, also see SI section S1). This is a crucial experimental 

design to avoid additional atomic strain, as local twist-angle homogeneity in the region between two gates 

is essential for a spatially uniform moiré tunnel barrier. The two bottom gates tune the carrier density (and 



 

 

 

the filling factor) in regions directly above them, and the carrier density changes linearly in tBLG across 

the region in between the ~100 nm gate separation. 

Figure 1f shows measured 4-probe resistance as a function of the filling factors, 𝜈1 and 𝜈2, of the region 

on top of G1 and G2, respectively. Local high resistance is observed along three horizontal and vertical 

lines, when either one of the two regions reach precisely 𝜈 = −4, 0 or 4 as expected from the relatively 

high resistance of the charge neutrality point and band-insulator states. Here the filling factor is defined 

as 𝜈 = 𝑛/(𝑛𝑆/4), where 𝑛 is the carrier density in tBLG, and 𝑛𝑆 is the carrier density corresponding to 4 

electrons per moiré unit cell. The experiments are conducted at an electron temperature ≥ 4 K, at which 

correlated insulating states at 𝜈 = ±2 have not been observed. This ensures that the measured electron 

collimation is due to tunnel barriers defined by band-insulator states (𝜈 = ±4) and the PN junction (𝜈 =

0). As a result, it can be interpreted solely within the frame of single-particle Klein physics.  

When neither of the two filling factors 𝜈1  and 𝜈2  equals exactly −4, 0 or 4, a series of resistive or 

insulating regions can exist in between the gate separation, depending on whether 𝜈 = −4, 0 or 4 is found 

in between the value of 𝜈1 and 𝜈2. For example (Figure 1b), at 𝜈1 = 5 and 𝜈2 = 3, as the filling factor in 

the region above the gate separation changes from 𝜈 = 5 to 𝜈 = 3 , a narrow section of it reaches 𝜈 = 4 

band insulator states and serve as a narrow tunnel barrier, which we refer to as a 𝜈 = 4 moiré barrier. The 

width of the barrier can be tuned to be narrower (wider) with an increase (decrease) in |𝜈1 − 𝜈2|, and 

multiple tunnel barriers can co-exist to further improve collimation efficiency (See Supporting 

Information section S1). For example (Figure 1c), for 𝜈1 = 5  and 𝜈2 = −5 , three narrow barriers 

corresponding to 𝜈 = −4, 𝜈 = 0 and 𝜈 = 4, respectively, exist in series at the junction. This allows three 

consecutive collimation processes from two moiré barriers (𝜈 = ±4) and a pn-barrier (𝜈 = 0).  

Strictly speaking, the tunneling across the pn-and moiré barriers in tBLG is not a conventional Klein 

tunneling process. The former relies on a pseudo-barrier while the latter lacks the electron-hole 

symmetry [1]. Yet for as long as the tunnel probability shows strong angle-dependence, collimation can 

be achieved. The barriers selectively reflect electrons with finite incident angle, and those successfully 

transmitted through follows a current path perpendicular to the barrier. At the ballistic limit, the resistance 

of the junction 𝑅𝐽 measures the number of electrons it reflects (or backscatters), and can be extracted by 

symmetrizing the measured 4-probe resistance (to eliminate gate-dependent contact resistance and bulk 

graphene resistance) following the previously-established methods [8] (See Supporting Information 

section S2 for the detailed method). 



 

 

 

 Figure 2a shows the extracted junction resistance 𝑅𝐽  as a function of fillings factors 𝜈1  and 𝜈2 . 16 

sections separated by 𝜈1, 𝜈2 = −4, 0, 4  lines are clearly visible, each corresponding to an arbitrary 

combination of 𝜈 = −4, 𝜈 = 0 and 𝜈 = 4 barriers found (or absent) in the gate-defined junction. For ease 

of referencing, we label the column numbers A, B, C and D for 𝜈1 < −4, −4 < 𝜈1 < 0, 0 < 𝜈1 < 4 and 

𝜈1 > 4, respectively, and row number a, b, c and d for 𝜈2 < −4,  −4 < 𝜈2 < 0, 0 < 𝜈2 < 4 and 𝜈2 > 4, 

respectively. The number and type of tunnel barriers existing in the junction depends on whether 𝜈 =

−4, 0 and/or 4 are found in between 𝜈1 and 𝜈2. For example, the domain Ca corresponds to 0 < 𝜈1 < 4 

and 𝜈2 < −4, in between which 𝜈 = −4, 0 are found. Therefore, a junction consisting of a pn-barrier and 

a 𝜈 = −4 moiré barrier is expected. Similarly, a junction in Aa, Bb, Cc and Dd contains no tunnel barriers, 

while that in Ad and Da contains all three in series.  

 A previously established method for characterizing the collimation efficiency [8] compares the junction 

resistance of two co-existing barriers in series (𝐵12), to that with just one at a time (𝐵1 or 𝐵2). In the limit 

of perfect collimation by barrier 𝐵1, charge carriers will experience no reflection at 𝐵2 whether 𝐵2 is 

established or not, leading to 𝑅𝐵12
= 𝑅𝐵1

. In contrast, if collimation is completely absent, we expect 

𝑅𝐵12
= 𝑅𝐵1

+ 𝑅𝐵2
, a trivial consequence of two resistors in series. Previous work with state-of-the-art pn-

junctions have demonstrated 𝑅𝐵1
+ 𝑅𝐵2

> 𝑅𝐵12
> max (𝑅𝐵1

, 𝑅𝐵2
) , with ~ 40% and ~25% difference 

between neighboring terms [8], and an estimated collimation efficiency of  ~30%.  

We first examine the pair of 𝜈 = 0 (pn) and 𝜈 = 4 (moiré) barriers along a 1D cut (Figure 2b) taken 

across Bc→Cc→Cd→Bd (red) in Figure 2a, where the junction contains tunnel barriers of Bc:[𝜈 = 0] → 

Cc:[none] → Cd:[𝜈 = 4] → Bd:[𝜈 = 0, 4] (both, in series). The observation of 𝑅𝑣=0 + 𝑅𝑣=4 > 𝑅𝑣=0,4  ≈

  𝑅𝑣=4 implies nearly perfect (some) collimation from 𝜈 = 4 moiré barrier (𝜈 = 0 pn-barrier). The similar 

junction resistance observed in Cd and Bd, implies that electrons with finite incident angle get efficiently 

reflected by 𝜈 = 0 barrier alone (Cd). The resulting electrons are highly collimated and can fully transmit 

through the downstream pn-barrier (added in Bd), without additional reflection to increase the junction 

resistance further. A 1D cut along column D (yellow) in Figure 2a adds one barrier at a time, with junction 

consisting of barriers from Dd:[none] →  Dc: [𝜈 = 4] → Db: → [𝜈 = 0, 4] → Da: [𝜈 = −4, 0, 4] . The 

junction resistance reaches its maximum value as soon as the  𝜈 = 4 barrier is added and single-handedly 

reflects all uncollimated electrons. Subsequently added 𝜈 = 0  and 𝜈 = −4  barriers become nearly 

invisible to the collimated electrons downstream of the  𝜈 = 4 moiré barriers and are thus incapable of 

raising the junction resistance any further.  



 

 

 

In contrast, the collimation efficiency of the 𝜈 = −4 moiré barrier is observed to be much weaker (See 

Supporting Information section S5 for more detailed discussion). Figure 2d shows a 1D cut across Cb 

→ Bb  → Ba → Ca (blue). While 𝑅𝑣=0 + 𝑅𝑣=−4 > 𝑅𝑣=−4,0 (see SI section S4 for more details), the 

collimation efficiency of the 𝜈 = −4 moiré barrier seems to be no better than that of the conventional pn-

barrier. A cut across column A (Figure 2e) along Aa→Ab→Ac→Ad (green) confirms similarly. After the 

𝜈 = −4 barrier is added (Ab), some of the uncollimated electrons are reflected by an additional pn-barrier 

(Ac). Even the combined collimation efficiency of the two is not perfect since the final addition of the 

strong 𝜈 = 4 moiré collimator still helps reflect electrons that managed to escape through the 𝜈 = −4, 0 

barriers.  

Multiple devices qualitatively reproduced the results (See Supporting Information section S4), while the 

quantitative collimation efficiency for the moiré barrier is extremely sensitive to homogeneity of local 

twist angles and the electrostatic profile at the junction, with realistic device-to-device variation. For 

comparison, we measured a second junction (𝐽2), electrostatically defined on the same tBLG sample, 1 

µm away from the first junction (𝐽1). Figure 3a shows the junction resistance as a function of 𝜈1 and 𝜈2. 

The 𝜈1, 𝜈2 = −4, 0, 4 local resistance peaks separating the 16 sections are found at nearly the exact same 

(See Supporting Information section S4) carrier densities as that of 𝐽1, showing that the overall twist-angle 

has not migrated over the 1 µm separation between the two devices. 1D cuts (Figure 3b, 3c) through 

Column A and row d, implies neither of the two (𝜈 = −4 and 𝜈 = 4) moiré barriers are enough to reach 

a high level of collimation by itself. However, the junction resistance with two consecutive barriers (Ac: 

𝜈 = 0, 4 or Bd: 𝜈 = −4, 0), is much more similar to that of the “full-house” (Ad: 𝜈 = −4, 0, 4). This 

shows that effective collimation can be achieved with two tunnel barriers in the junction, and the addition 

of the third and final barrier no longer helps and thus is unnecessary.  

The above measurements demonstrate that the gate-defined moiré barrier significantly improves the 

collimation efficiency, either single-handedly or in collaboration with a conventional pn-barrier. However, 

such measurement is done by tracking the ballistic electron trajectory over a distance no longer than the 

100 nm gate separation. The ballistic electron flow across longer distances may not follow a straight path 

(like that in monolayer graphene), due to inhomogeneity of the local twist-angle in the sample, and 

therefore the spatially varying electronic structure. 

To characterize long-distance collimation efficiency in tBLG, we measure overall resistance of the entire 

device consisting of the two junctions (𝐽1 and 𝐽2 mentioned above) separated by 1 µm distance, with three 

local gates that can independently tune the carrier density directly above. Each junction can contain one 



 

 

 

of the barriers (𝜈 = −4, 0, or 4) or a combination of them. Three sets of measurements are performed with 

the same circuits but different gate configurations (Fig. 4b) and are symmetrized to eliminate the 

contribution from bulk graphene resistance and contact resistance. The resistance of right (left) junction 

𝐽1 (𝐽2) as a function of adjacent bulk carrier densities, is measured by configuring the center gate voltage 

to be the same as the left (right) gate, to ensure that the other junction is absent. The junction resistance 

𝐽12 is measured when both junctions are simultaneously defined, with left and right gate voltage tuned to 

the same value, and therefore the same barrier combinations are expected in each junction throughout the 

measurement. While it is possible to configure the two junctions differently, the extraction of 𝐽12 with 

three independent gate voltages requires symmetrizing 3-dimensional data sets, which is unrealistic.  

The difference of ∆𝑅 = 𝑅𝐽1
+ 𝑅𝐽2

− 𝑅𝐽12
is plotted to characterize the signature of collimation (Figure 

4a), with ∆𝑅 = 0 corresponding to the trivial scenario of two resistors in series. ∆𝑅 = 0 is measured when 

collimation is completely missing in sections Aa, Bb, Cc and Dd, as expected.  A positive ∆𝑅 is observed 

in section Cd and Dc, when both junctions consist of only 𝜈 = 4 moiré barriers, demonstrating a signature 

of electron collimation over 1 µm distance in tBLG. Adding more barriers to each junction improves (or 

at least does not comprise) the collimation efficiency of each junction based on previous characterization, 

yet the resulting ∆𝑅 decreases to nearly zero. This implies that a highly collimated electron beam from 

one junction is unsuccessful in transmitting through the other.  

We attribute this observation to curved electron ballistic paths due to local twist-angle inhomogeneity. 

To elaborate on this, we plot the electron flow at the limit of nearly perfect collimation by each junction 

(Figure 4c), where the angle-dependence is close to a d-function that reflects any electron other than the 

one incident strictly perpendicular to the barrier. The curvature of the collimated electron path over the 1 

µm distance results in reflections of electrons with finite incident angle, instead of 100% transmission. 

Significant backscattering occurs at both junctions (akin to resistors in series), despite the highly guided 

electron path, thus eliminating the expected logic between the two collimators. As a result, ∆𝑅 > 0 is 

measured when there is effective but not perfect collimation (Figure 4d). Electrons passing through 𝐽2 

have a narrow but still finite angle distribution, permitting electron paths through 

𝐽2 with small incident angle.  A selection of those electrons will arrive perpendicularly to 𝐽1  after 

traveling a curved ballistic path, successfully transmitting through 𝐽1 with ease, and thus contributing to 

∆𝑅. Nonetheless, the results experimentally confirm the expected curved ballistic electron path in tBLG 

over long distance, and electrostatic manipulation over it. Future experiments with scanning gate 



 

 

 

microscopy can further confirm the microscopic details of the electron trajectories. In applications where 

a straighter path is desired, a series of gate-defined junctions with smaller separations can be implemented.   

In conclusion, we demonstrate electrostatically defined junctions in tBLG, consisting of arbitrary 

combinations of gate-defined tunnel barriers from two band-insulator gaps and conventional pn-barriers. 

We demonstrate that the collimation efficiency of electrons can be improved with a moiré barrier and 

observe the signature of long-distance collimation in the presence of realistic twist-angle inhomogeneity. 

Our work provides new insights in electron transport in moiré superlattices, and new approaches in 

manipulating the exotic quantum transport phenomena, both as additional probes to rich underlying 

physics and as components towards advanced quantum electronic circuits.  
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 Sample Preparation and Device Fabrication. A pair of parallel metal gates (G1 and G2, with a 120 

nm separation between them) consisting of Cr/Pd-Au alloy (1 nm / 7 nm) is deposited on a SiO2 (285 nm) 

/ Si (doped) substrate. The Pd-Au alloy (40% Pd / 60% Au) is chosen to reduce the surface roughness 

when it is compared to conventional pure Au deposition. The gates are subsequently annealed in a high-

vacuum environment at 350 ̊C for 10 minutes to remove surface residue. 

The tBLG devices are made by the ‘cut and tear’ method [22]. First, hBN and monolayer graphene 

flakes are exfoliated [47] and characterized by the atomic force microscope (AFM) to be atomically clean. 

A single piece of monolayer graphene was cut into two individual pieces along the same lattice orientation 

by the atomic force microscope (AFM). With the help of a poly (bisphenol A carbonate) (PC) and 

polydimethylsiloxane (PDMS) stamp on a glass slide [48], we pick up the first piece of hBN. Then the 

two pieces of the precut graphene are picked up consecutively, with a relative twist angle 𝜃 = 1.05° 



 

 

 

between them. The second piece of hBN is picked up to encapsulate the tBLG and the whole stack is 

transferred onto the pre-deposited bottom metal [49]. After the PC residue on the top hBN surface is 

cleaned by chloroform, acetone and isopropanol, the Cr/Pd/Au (1 nm/5 nm/180 nm) metal contacts (serve 

as source, drain and voltage probes) are added to the sample by e-beam lithography, plasma etching and 

e-beam evaporation processes [50]. Finally, a Hall-bar shaped bubble-free region is defined by e-beam 

lithography and plasma etching. 

 Electrical Transport Measurements. Experiments are performed in a Montana fridge at a base 

temperature of ~4 K. All data are collected by a standard lock-in amplifier with an alternating current 

excitation of 10 nA at 17.777778 Hz applied through the device unless otherwise specified. Yokogawa 

and Keithley DC voltage sources are used to apply voltages on the local metal gates and the global Si 

backgated, respectively. 
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Figure 1. Gate-defined Moiré Barriers in tBLG. (a) Schematic image of a moiré junction device. Two pieces 

of MLG are consecutively picked up with a relative twist angle of 1.05°, then transferred on top of prepatterned 

local bottom gates (G1 and G2) with 100 nm gate separation. 1D edge contact are subsequently deposited to serve 

as source (S), drain (D), and voltage probes (VA, VB) for transport measurement. (b) Bottom: Schematic of the 

carrier density distribution in the device when carrier density is tuned to be 𝜈1 = 5 (𝜈2 = 3) for the region on 

top of G1 (G2). Carrier density changes from 𝜈 = 𝜈1 to 𝜈 = 𝜈2 in regions above the gate separation, a narrow 

section of which reaches 𝜈 = 4 band insulator states and serve as a narrow tunnel barrier, which we refer to as  

𝜈 = 4 moiré barrier. (c) Schematic of the carrier density distribution in the device when carrier density is tuned 

to be 𝜈1 = 5 and 𝜈2 = −5. Three narrow barriers (corresponding to 𝜈 = −4, 𝜈 = 0 and 𝜈 = 4) are present in 

series at the junction. (d) Band structure of tBLG with twist angle of 1.05°. Blue and black come from K and K’ 

valley respectively. (e) Atomic force microscope (AFM) topography of local bottom gates. Inset: 1D cuts along 

the white dashed line demonstrating atomic flatness, essential for a homogeneous moiré barrier. (f) Measured 

4-probe resistance as a function of 𝜈1 and 𝜈2. Local high resistance is observed along three horizontal and 

vertical lines, when either one of the two regions reaches 𝜈 = −4, 0 or 4.  



 

 

 

  

 

Figure 2. Electron Collimation via Moiré Barriers. (a) Extracted junction resistance 𝑅𝐽 as a function of filling 

factors 𝜈1 and 𝜈2. 16 domains separated by 𝜈1, 𝜈2 = −4, 0, 4 lines are clearly visible. Column number A, B, C 

and D and row number a, b, c and d are used to label different 𝜈1 and 𝜈2 sections, respectively. (b) 1D cut along 

the red path in (a), where the junction contains tunnel barriers of Bc:[𝜈 = 0] → Cc:[none] → Cd:[𝜈 = 4] → 

Bd:[𝜈 = 0, 4]. The observation of 𝑅𝑣=0 + 𝑅𝑣=4 > 𝑅𝑣=0,4  ≈   𝑅𝑣=4 implies nearly perfect (some) collimation 

from the  𝜈 = 4 moiré barrier (𝜈 = 0 pn-barrier). Inset: schematic image of the charge carriers passing through 

and being reflected by the junction. The thickness of the arrows indicates the number of charge carriers. The 

color bar on the right side corresponds to the carrier density. (c) 1D cut along the yellow path in (a) with junction 

consisting of barriers from Dd:[none] → Dc:[𝜈 = 4] →Db: → [𝜈 = 0, 4] →Da:[𝜈 = −4, 0, 4]. (d) 1D cut along 

the blue path in (a), consisting of barriers from Cb:[𝜈 = 0] → Bb:[none] → Ba: [𝜈 = −4] →Ca:[𝜈 = −4, 0]. (e) 

1D cut along the green path in (a), consisting of barriers from: Aa:[none] →  Ab:[𝜈 = −4] →Ac: → [𝜈 =
−4, 0] →Ad:[𝜈 = −4, 0, 4].  



 

 

 

  

  

Figure 3. Characterization of Electron Collimation from the Second Moiré Junction. (a) Junction resistance 

as a function of 𝜈1 and 𝜈2. The 𝜈1, 𝜈2 = −4, 0, 4 local resistance peaks separating the 16 sections are found at 

nearly the exact same carrier densities as that of junction 1, showing that the overall twist-angle has not migrated 

over the 1 µm separation between the two devices. (b)(c) 1D cuts through Column A (yellow) and row d (green) 

imply that neither of the two (𝜈 = −4 and 𝜈 = 4) moiré barriers is enough to reach a high level of collimation 

by itself. However, the junction resistances with two consecutive barriers (Ac: 𝜈 = 0, 4 or Bd: 𝜈 = −4, 0), are 

more similar to that of three consecutive barriers (Ad: 𝜈 = −4, 0, 4). This shows that effective collimation can 

be achieved with two tunnel barriers in the junction, and the addition of the third (final) barrier no longer helps. 



 

 

 

 

   

Figure 4. Characterization of Long-distance Collimation Efficiency in tBLG. (a) ∆𝑅 = 𝑅𝐽1
+ 𝑅𝐽2

− 𝑅𝐽12
as 

a function of 𝜈1 and 𝜈2, with 𝑅𝐽1
, 𝑅𝐽2

, 𝑅𝐽12
 measured with the (b) same circuits but different gate configurations.  

∆𝑅 = 0 corresponding to the trivial scenario of two resistors in series. A positive ∆𝑅 is observed in section Cd 

(green square) and Dc, when both junctions consist of only 𝜈 = 4 moiré barriers, demonstrating a signature of 

electron collimation over 1 µm distance in tBLG. (c) Schematic of electron flow at the limit of nearly perfect 

collimation by each junction, where any electron other than the one incident strictly perpendicular to the barrier 

is reflected (inset). The curvature of the collimated electron path over the 1 µm distance results in reflections of 

electrons with finite incident angle, instead of 100% transmission, eliminating the expected logic between the 

two collimators. (d) Schematic of electron flow when both junctions consist of only 𝜈 = 4 moiré barriers. Insets: 

Zoom-in on the electron trajectory through 𝐽2. Electron through 𝐽2 has a narrow but still finite angle distribution, 

permitting electron paths through 𝐽2  with small incident angle. A selection of those electrons will incident 

perpendicularly to 𝐽1 after traveling a curved ballistic path, successfully transmitting through 𝐽1 with ease and 

contributing to ∆𝑅. 
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S1. Characterization of Moiré Barrier Width via Measured Transport Resistance 

The width of the moiré barrier can be 

characterized through the measured transport 

resistance. Figure S1 shows a 1D resistance line 

cut along 𝜈1 = -5 in the range of 𝛥𝜈2 = 10, where 

an obvious resistance peak can be observed at 𝜈2 

= 4, which corresponds to the moiré barrier at the 

n-side. The red curve represents the peak fitting 

result, agreeing with the original data points 

which are indicated by the black circles. The 

width at half-height of the peak is estimated as 

𝛥𝜈 = 0.96. As the size of the gap between the 

gates d is ~100 nm, the width of the moiré barrier 

can be characterized by the equation: 

𝑤 = 𝑑
Δ𝜈

Δ𝜈2
= 100 nm ×

0.96

10
= 9.6 nm. 

 

 

 

 

 

Figure S1. Fitting of the resistance peak at a moiré 

barrier. Black circles represent the original data while 

the red curve is the peak fitting result. The half-height-

width of the peak is estimated as 𝛥𝜈 = 0.96. The width 

of the moiré barrier is characterized as ~ 9.6 nm. 



 

 

 

S2. Extraction of Junction Resistance via the Symmetrization Method 

In a ballistic device, the resistance of the junction 

characterizes the backscattering at the junction, while the bulk 

resistance of the graphene is limited by ballistic quantum 

conductance [1,2]. To characterize the collimation effect of a 

junction (either a conventional pn-barrier, a moiré barrier, or a 

combination of them), we adopt the following symmetrization 

method to isolate the junction resistance from the previously 

shown 4-probe resistance. The schematic image of a device with 

two gate-tunable regions is shown in Figure S2a. The contact 

resistance, the resistance of bulk graphene directly on top of the 

local bottom gates and the junction resistance are denoted by 𝑅𝐶, 

𝑅𝐺1, 𝑅𝐺2, and 𝑅𝐽 respectively. 𝑅𝐺1(𝑅𝐺2) is a function of 𝑉1(𝑉2) 

only, while 𝑅𝐽 is function of both 𝑉1 and 𝑉2. Note that 𝑅𝐶 comes 

from the process where electrons overcome the Schottky barrier 

between graphene and the metal voltage probes. Although the 

Schottky barrier [3] is determined by the properties of the 

materials, i.e., graphene and Cr/Pd/Au metal contacts, the change 

in the carrier density in graphene may still weakly change the 

contact resistance. So, here, we denote 𝑅𝐽 as a function of both 

𝑉1  and 𝑉2.   Besides, we expect the contact and junction 

resistance are symmetric functions of 𝑉1 and 𝑉2, i.e.,  

𝑅𝐶(𝑉1, 𝑉2) = 𝑅𝐶(𝑉2, 𝑉1), 

𝑅𝐽(𝑉1, 𝑉2) = 𝑅𝐽(𝑉2, 𝑉1). 

When the left and right gate voltage are tuned to be 𝑉1 and 𝑉2, the total resistance of the device 

can be expanded into the summation of four terms:  

𝑅𝑇(𝑉1, 𝑉2) = 𝑅𝐶(𝑉1, 𝑉2) + 𝑅𝐺1(𝑉1) + 𝑅𝐺2(𝑉2) + 𝑅𝐽(𝑉1, 𝑉2). 

Similarly, the resistance of the device can be expanded as the following when the two gate voltages 

are at (𝑉2, 𝑉1), (𝑉1, 𝑉1) and (𝑉2, 𝑉2): 

𝑅𝑇(𝑉2, 𝑉1) = 𝑅𝐶(𝑉2, 𝑉1) + 𝑅𝐺1(𝑉2) + 𝑅𝐺2(𝑉1) + 𝑅𝐽(𝑉2, 𝑉1), 

𝑅𝑇(𝑉1, 𝑉1) = 𝑅𝐶(𝑉1, 𝑉1) + 𝑅𝐺1(𝑉1) + 𝑅𝐺2(𝑉1) + 𝑅𝐽(𝑉1, 𝑉1), 

𝑅𝑇(𝑉2, 𝑉2) = 𝑅𝐶(𝑉2, 𝑉2) + 𝑅𝐺1(𝑉2) + 𝑅𝐺2(𝑉2) + 𝑅𝐽(𝑉2, 𝑉2), 

where 𝑅𝐽(𝑉1, 𝑉1) = 𝑅𝐽(𝑉2, 𝑉2) = 0 since there is no junction formed when the device is uniformly 

gated. Therefore, the junction resistance is extracted to be:  

𝑅𝐽(𝑉1, 𝑉2) =
1

2
(𝑅𝑇(𝑉1, 𝑉2) + 𝑅𝑇(𝑉2, 𝑉1) − 𝑅𝑇(𝑉1, 𝑉1) − 𝑅𝑇(𝑉2, 𝑉2)). 

 

 

Figure S2. Schematic Image of the 

Device. The two bright yellow bars 

represent metal contacts. The dark 

yellow rectangles represent bulk 

regions of the tBLG devices, 

independently controlled by the two 

local bottom gate voltages 𝑉1 and 𝑉2. 

The red region represents the moiré 

and/or pn barrier. 



 

 

 

S3. Charactering the Collimation Efficiency of a Junction 

With the junction resistance being extracted, the collimation efficiency is further characterized by 

analyzing the logic between two consecutive junctions (𝐽1  and 𝐽2), i.e., the relationship between the 

symmetrized resistance 𝑅𝐽1, 𝑅𝐽2, and 𝑅𝐽12. Here, 𝑅𝐽1(𝑅𝐽2) is the junction resistance when only 𝐽1 (𝐽2) is 

defined, while 𝑅𝐽12 is the total junction resistance when both 𝐽1 and 𝐽2 are simultaneously defined and 

connected in series. 𝐽1 and 𝐽2 can be considered as either (1) two barriers (either conventional pn-barriers 

or moiré barriers) coexsisting within the same gap (~100 nm wide) between two local bottom gates, which 

is the case discussed in Figure 2 and Fig. 3, or (2) two junctions that are 1 µm away as discussed in Figure 

4 in the main manuscript. 

In the limit of perfect collimation by junction 𝐽1, charge carriers will experience no reflection at 𝐽2 

whether 𝐽2  is established or not, leading to 𝑅𝐽12 = 𝑅𝐽1 ; While in the limit of complete absence of 

collimation, we expect 𝑅𝐽12 = 𝑅𝐽1 + 𝑅𝐽2, similar to two resistors in series. In previous state-of-the-art pn-

junctions, it is found that 𝑅𝐽1 + 𝑅𝐽2 > 𝑅𝐽12 > max (𝑅𝐽1, 𝑅𝐽2)  with at least 25% difference between 

neighboring terms [4]. This corresponds to about 30% collimation efficiency, meaning that more than half 

of the charge carriers stay uncollimated.  

 

S4. Transport Signature from the Additional Device 

In addition to the tBLG device that was presented in Figure 2 and 3 in the main manuscript, a 

similar transport signal can be observed in the control device, due to the existence of a moiré barrier. As 

Figure S3(a)-(b) show, a moiré barrier is formed on the n-side in an additional device. However, the 

transport feature as well as the strength of the moiré barrier (in terms of resistance) are not strong enough 

as the data that is presented in Figure 2 or Figure 3, which could be attributed to the large angle 

inhomogenity. This is consistent with the broader transition region on the n-side in Figure S3(a) and (b), 

indicating varied moiré lengths in the device. Similar to Figure 2, the electron-hole symmetry-breaking is 

also found in the additional devices, where the moiré barrier is not even formed on the p-side in this 

additional device. This might be due to the absence of the moiré gap on the p-side corresponding to their 

specific twist angles. Similar to Figure 4(a) in the main paper, positive ∆𝑅 is observed in the NN regime 

in Figure S3(c), demonstrating the signature of electron collimation in the tBLG device. 

  

Figure S3. Additional Devices Data. (a) Junction resistance as a function of 𝜈1 and 𝜈2 at one junction in 

the additional device. (b) Junction resistance as a function of 𝜈1 and 𝜈2 at another junction in the same 

additional device. (c) ∆𝑅 = 𝑅𝐽1
+ 𝑅𝐽2

− 𝑅𝐽12
as a function of 𝜈1 and 𝜈2.  



 

 

 

 

S5. Characterization on Moiré Band Gaps via Temperature Dependence 

The temperature dependence of 4-probe longitudinal resistance can be used to determine the size of the 

moiré band gaps at ν = ±4. Note that both local gates are tuned at the same voltage in this measurement 

to measure the global transport signature of the tBLG devices (no presence of any moiré barrier). The 

following equation is used to fit the resistance measured at ν = ±4 as a function of temperature 𝑇 [5,6]: 

𝑅 ∝ 𝑒
−𝐸𝑔𝑎𝑝

2𝑘𝐵𝑇 , 

where 𝐸𝑔𝑎𝑝 is the size of the band gaps, and 𝑘𝐵 is the Boltzmann factor. A temperature dependent scan at 

various filling factors is shown in Figure S4a. A vertical cut is taken at ν = +4 and an exponential fit 

following Equation (1) is applied to this cut (Figure S4b). The fitting yields a gap energy of 3.36 ± 0.44 

meV, which is smaller than the calculated band insulator gap (~23 meV). This indicates the inhomogeneity 

in the sample region across the two bottom gates ( at least 1 µm × 2 µm) has a considerable effect. Possible 

causes may include variations in local twist angle, non-uniform doping of tBLG across the sample region, 

the formation of conductive domain walls resulting from lattice reconstruction (particularly notable when 

the twist angle approaches the critical angle, ~ 1°, for significant lattice reconstruction), and other factors. 

Despite the potential presence of inhomogeneity over long distances, the band insulator gap at the junction 

may remain well-defined, given the relatively small length scale of the junction region (~100 nm). The 

collimation effect resulting from a clearly defined moiré barrier remains observable in the measurements. 

For ν = −4, the resistance remains nearly constant as a function of temperature (Figure S4c), suggesting 

a vanishing band gap. The uncertainty on the exponential fit is larger than the extracted energy gap, so 

 

Figure S4. Temperature Dependence of R. (a) R of Device 1 as a function of moiré filling factors ν 

and temperature T. (b) 1D cuts of (a) along ν =  +4 but plotted as a function of 1/T. An exponential fit 

is overlaid on top of the data points. (c) 1D cuts of (a) along ν =  −4, where almost no temperature 

dependence is observed. 

(1) 



 

 

 

Equation (1) is not applicable anymore. The result matches with what we observe in the main manuscript 

(Figure 2a) that a larger moiré band gap (in this case it is the band gap present at ν = +4) can create a 

more effective Klein tunneling barrier and thus facilitates the collimation process.  

 

S6. Band Structure Calculation 

We perform a band structure calculation of the twisted bilayer graphene using a low-energy 

continuum model, incorporating the out-of-plane relaxation  [7,8]. In the low-energy limit, the intralayer 

term can be approximated by rotated linear Dirac Hamiltonians: 

𝐻𝐷
1(𝒒(1)) = −𝑣𝐹 [

0 𝑒𝑖𝜃/2𝒒+
(1)

𝑒−𝑖𝜃/2𝒒−
(1) 0

], 

𝐻𝐷
3(𝒒(2)) = −𝑣𝐹 [

0 𝑒−𝑖𝜃/2𝒒+
(2)

𝑒𝑖𝜃/2𝒒−
(2) 0

] , (2) 

where 𝒒(ℓ)  is the momentum degree of freedom in layer ℓ , 𝒒±
(𝑙) = 𝒒𝑥

(𝑙)
± 𝒒𝑦

(𝑙)
,  and 𝑣𝐹  is the Fermi 

velocity of monolayer graphene which we take to be 𝑣𝐹 = 0.8 × 106 m/s from the DFT calculated value. 

For the interlayer coupling, we keep the nearest neighbor coupling in momentum space: 

𝑇(𝒒(1), 𝒒(2)) = ∑ 𝑇𝛼𝛽
𝒒𝑛𝛿𝒒(1)−𝒒(2),−𝒒𝑛

,

3

𝑛=1

 (3) 

where 𝛼𝛽  are sublattice degrees of freedom, 𝒒1 = 𝐾L1
− 𝐾L2

, 𝒒2 = ℛ−1 (
2𝜋

3
) 𝒒1 , 𝒒3 = ℛ (

2𝜋

3
) 𝒒1  and 

ℛ(𝜃) is the counterclockwise rotation matrix by 𝜃, 𝐾Lℓ
 is the Dirac point of layer ℓ. We take into account 

the out-of-plane relaxation by letting 𝑡𝐴𝐴
𝑖𝑗

= 𝑡𝐵𝐵
𝑖𝑗

= 𝜔0 = 0.07 eV and 𝑡𝐴𝐵
𝑖𝑗

= 𝑡𝐵𝐴
𝑖𝑗

= 𝜔1 = 0.1 eV due to 

the strengthened interaction between AB/BA sites from relaxation 

𝑇𝒒1 = [
𝜔0 𝜔1

𝜔1 𝜔0
] , 𝑇𝒒2 = [

𝜔0 𝜔1�̅�
𝜔1𝜙 𝜔0

] , 𝑇𝒒3 = [
𝜔0 𝜔1𝜙

𝜔1�̅� 𝜔0
] , (4) 

where 𝜙 = 𝑒
𝑖2𝜋

3  and �̅� = 𝑒−
𝑖2𝜋

3 . 
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