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Bloch oscillations and Landau-Zener tunneling are ubiquitous phenomena which are sustained by a band-gap
spectrum of a periodic Hamiltonian and can be observed in dynamics of a quantum particle or a wavepacket in a
periodic potential under action of a linear force. Such physical setting remains meaningful for aperiodic poten-
tials too, although band-gap structure does not exist anymore. Here we consider the dynamics of noninteracting
atoms and Bose-Einstein condensates in a quasi-periodic one-dimensional optical lattice subjected to a weak
linear force. Excited states with energies below the mobility edge, and thus localized in space, are considered.
We show that the observed oscillatory behavior is enabled by tunneling between the initial state and a state (or
several states) located nearby in the coordinate-energy space. The states involved in such Bloch-Landau-Zener
oscillations are determined by the selection rule consisting of the condition of their spatial proximity and condi-
tion of quasi-resonances occurring at avoided crossings of the energy levels. The latter condition is formulated
mathematically using the Gershgorin circle theorem. The effect of the inter-atomic interactions on the dynamics
can also be predicted on the bases of the developed theory. The reported results can be observed in any physical
system allowing for observation of the Bloch oscillations, upon introducing incommensurablity in the governing
Hamiltonian.

Bloch oscillations and Landau-Zener tunneling are fun-
damental phenomena predicted nearly a century ago [1–3].
Nowadays, they are experimentally observed for electrons in
solids [4–6], cold atoms [7–9] and Bose-Einstein conden-
sates (BECs) in optical lattices (OL) [10–17], arrays of op-
tical waveguides [18–21], periodic dielectric media [22], opti-
cal resonators [23], exciton-polaritons in microcavities [24],
plasmonics [25], acoustic fields in water cavities [26] and
phononic crystals [27], and in non-Hermitian systems [28, 29]
(see also reviews [30, 31]). In virtue of the ubiquity of these
phenomena and possibilities of modifying experimental set-
tings toward including aperiodic potentials, further attention
was paid to effect of randomness on Bloch oscillations [32–
35], as well as to dynamics of particles in deterministic ape-
riodic media [36–42]. Despite previous studies, the known
results for tilted quasi-periodic potentials, remain scarce, lim-
ited to extended states, and somewhat controversial.

Indeed, for a particle in a deep tilted lattice, where aperiod-
icity is treated as a perturbation and description relies on us-
age of the conventional Bloch-band theory, numerical studies
of [36] revealed sustained dynamics while in [38] the oscilla-
tions were found damped. In Ref. [39] investigating Harper’s
tilted lattice, where Bloch theory is not applicable anymore,
fragmentation of oscillations in momentum and in real spaces,
as well as sensitivity of the dynamics to the initial state and
to the system parameters, were reported. On the other hand,
even though the mobility edge (ME) [43] is known to exist
for certain types of quasi-periodic potentials [44–47] and was
mentioned in [36, 39] in the context of Bloch oscillations, only
extended states were addressed, so far. Among the available
results we also mention experimental observation of the os-
cillatory dynamics of a BEC in a weakly disordered quasi-
periodic lattice [40], and numerical studies of Bloch oscilla-
tions in two-dimensional quasi-periodic lattices [37, 41].

In this Letter, we report on the dynamics of atoms and BECs
in a one-dimensional tilted quasi-periodic OL in the regime

when tight-binding approximation is not applicable. We con-
centrate on the states having energies below the ME and thus,
localized in the coordinate space. In the absence of Bloch-
band spectrum, the motion of the atoms, referred below as
Bloch-Landau-Zener (BLZ) oscillations, is sustained by si-
multaneous tunneling in the coordinate space and inter-level
transitions enabled by the tilt [see Fig. 1 (a)]. The tunneling
events can be viewed as quasi-resonances where the resonant
modes are chosen according to the selection rule. This rule
stems from intersection of Gershgorin circles [48] and from
the condition of non-negligible spatial hopping of the wave-
functions.

To describe BLZ oscillations we consider the dimensionless
Gross-Pitaevskii equation for the wavefunction Ψ (normalized
to one):

i∂tΨ = HαΨ+ g|Ψ|2Ψ. (1)

Here Hα = H0 − αx, H0 = −(1/2)∂2
x + V (x) is the linear

Hamiltonian in the absence of tilt, and α, 0 < α ≪ 1, is the
strength of the linear force. For definiteness below we con-
centrate on a quasi-periodic potential V (x) = v cos (2x) +
v cos (2φx+ θ), where v is the amplitude and φ is an irra-
tional relation between the periods of the sub-lattices. An
arbitrarily chosen θ breaks spatial symmetry, and g character-
izes the strength of inter-atomic interactions. Bi-chromatic in-
commensurate potentials with sub-lattices of comparable am-
plitudes were studied in Refs. [51–55]. When one of the sub-
lattices has much larger amplitude, the tight-binding approx-
imation becomes applicable and the model is reduced to an
Aubry-André-Harper type equation [56–60]. This limit will
not be considered here. For cold atoms such potential was
produced experimentally in [61].

The spectrum of H0 with the quasi-periodic potential V (x)
on the whole real axis is of particular complexity [47, 62, 65].
Meantime a real-world condensate has a finite spatial dimen-
sion. Therefore the model can be simplified by considering
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a BEC in an infinite potential well (see e.g.[63, 64]) whose
width L greatly exceeds the periods of the sublattices: L ≫ 1.
This means that x ∈ [−L/2, L/2] and zero boundary con-
ditions must be imposed: Ψ(±L/2, t) = 0 (for localized
states centered far from the boundaries, the assumption that
L is finite is not important [67]). Now our goal can be re-
formulated: given an initial (t = 0) localized eigenstate of H0

we explore its dynamics at t > 0 for α > 0.
To this end we consider the eigenvalue problem

Hαϕ
(α)
n (x) = ϵ

(α)
n ϕ

(α)
n (x), where n numbers the orthonor-

mal eigenstates (they are nondegenerate): ⟨ϕ(α)
n , ϕ

(α)
m ⟩ = δmn

(thereafter ⟨f, g⟩ =
∫ L/2

−L/2
f∗(x)g(x)dx), and n = 1 cor-

responds to the ground state. Starting with the linear case,
g = 0, for L large enough, we can define [52–55, 58, 66]
a ME ϵME such that all eigenstates of H0 with ϵ

(0)
n < ϵME

(ϵ(0)n > ϵME) are localized (delocalized) [see Fig. 1 (b)].
Here the localization means that the characteristic width of
the state, measured as χ−1

n , where χn = ⟨|ϕ(0)
n |2, |ϕ(0)

n |2⟩ is
the inverse participation ratio (IPR), is much less than the size
of the system: 1/χn ≪ L.

FIG. 1. (a) Schematics of the selection rule. Two states created at
α = 0 (dashed lines) when α increases move in the coordinate-
energy space along trajectories shown by arrows. These states do
not interact until for certain α1 they approach each other (solid lines)
closer than a distance ensuring non-negligible hopping and proxim-
ity of the energies (intersection of shadowed stripes). At α ≈ α1

the states are in quasi-resonance. Grey lines illustrate the potential
without (dashed) and with (solid) tilt. (b) IPRs of the eigenstates
of Hα. The dashed line indicates the ME for α = 0. Energies
and centers of masses (empty circles) of states with ϵ

(α)
n < ϵ

(α)
ME for

α = 0 and ϵ
(0)
ME = −0.056 (c), and α = 0.029 and ϵ

(α)
ME = 0.78

(d). The colored crosses and diamonds in (c) and (d) represent ε(α)
n

of the states involved in the dynamics shown in Fig. 2. Vertical bars
in the inset are the Gershgorin intervals. The parameters are v = 1,
φ = (1 +

√
5)/2, θ = 1.23, and L = 55π.

Let N be the total number of localized states at α = 0,
i.e., ϵ(0)N < ϵME < ϵ

(0)
N+1. A low-energy wavepacket in such

lattice without tilt is given by Ψ =
∑N

n=1 c
(0)
n (t)ϕ

(0)
n (x).

Since at α > 0 each eigenstate undergoes displacement in
the coordinate-energy space [see Fig. 1 (a)], we consider also

the ”displaced” basis: ϕα = (ϕ
(α)
1 , . . . , ϕ

(α)
N )T (T stands for

the transpose). Strictly speaking, at α > 0 the ME smears
out [see Fig. 1 (b)] and a possibility of atomic transfer to ex-
tended states may occur. However, for the low-energy sates
the probability of such events remains negligibly small be-
cause of smallness of the hoping integrals between localized
and delocalized states. This conclusion is supported by nu-
merical simulations that we have performed, thus justifying
the use of the N -mode approximation for α ≪ 1.

The bases ϕ0 and ϕα are connected via the unitary trans-
formation ϕα = Sαϕ0, where the entries of the matrix Sα

are S
(α)
mn = ⟨ϕ(0)

n , ϕ
(α)
m ⟩. Assuming that initially a state ϕ

(0)
n

is prepared, our task can be reformulated as determining the
states ϕ(0)

m (with m ̸= n) to which the atoms are transferred in
a tilted lattice, and describing the respective evolution.

We characterize the spatial position of a localized state with
its center of mass (c.m.) which can be expressed using a
basis obtained for any α: X(t) = c†α(t)Xαcα(t), where
cα = (c

(α)
1 , . . . , c

(α)
N )T , and Xα is an N ×N matrix with en-

tries X
(α)
mn = ⟨ϕ(α)

m , xϕ
(α)
n ⟩. The diagonal element X(α)

nn can
be interpreted as the c.m. of a state ϕ(α)

n . Different eigenstates
in quasi-periodic potentials are localized at different lattice
sites [53, 66]. In Fig. 1 this is illustrated for the unperturbed
H0 [panel (c)] and tilted Hα [panel (d)] Hamiltonians. At
α = 0 one observes a nearly homogeneous distribution over
the x axis, while panel (d) for α > 0 can be viewed as a
Wannier-Stark ladder (for the lower states) where unlike in
the cases of periodic potentials (see e.g. [68–71]) states with
different energies are localized at different spatial steps.

Turning to the linear dynamics, from Eq. (1) with g = 0
we obtain: idc0/dt = (E0 − αX0)c0 and idcα/dt = Eαcα,

where Eα = diag(ϵ(α)1 , ..., ϵ
(α)
N ), in the unperturbed and tilted

bases, respectively. The evolution of c(α)n is trivial: cα(t) =

Λ(t)cα(0) where Λ(t) = diag
(
e−iϵ

(α)
1 t, ..., e−iϵ

(α)
N t

)
and in

terms of the initial populations, the c.m. has the form [67]

X(t) = c†0(0)S
†
αΛ

†(t)SαX0S
†
αΛ(t)Sαc0(0). (2)

Certain entries in this formula give negligible contributions to
the dynamics. Indeed, suppose that at t = 0 only a state m

is excited, i.e., c(0)n (0) = δnm. Then, c(α)n (0) = S
(α)
nm, i.e.,

the amplitudes of the state ϕ
(α)
n is determined by the hopping

integral S(α)
nm. Most of these integrals are negligible, except

those involving states satisfying a spatial proximity condition

|⟨ϕ(0)
n , ϕ(α)

m ⟩| > ∆x (3)

where ∆x ≪ 1 is determined by the desired accuracy. Only
such states are excited in the oscillatory motion.

Furthermore, it follows from (2) that time dependence of
the X(t) is determined by ϵ

(α)
n −ϵ

(α)
m . To express this quantity

through the eigenvalues at α = 0, we consider the diagonal
elements of the matrix E0 − αX0: ε(α)n = ϵ

(0)
n − αX

(0)
nn [for

a few states involved in dynamics described below, they are
marked by colored crosses in Figs. 1 (c) and (d)]. Since ϵ

(α)
n
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is an eigenvalue of the matrix E0 − αX0, the Gershgorin cir-
cle theorem [48] assures that for each ϵ

(α)
n there exist ε(α)m such

that |ϵ(α)n − ε
(α)
m | ≤ |R(α)

m | where R
(α)
m = α

∑N
m′ ̸=m |X(0)

mm′ |
are the Gershgorin radii. The subindexes m and n in this
formula may not coincide because unlike ϵ

(α)
n the diagonal

elements ε
(α)
m considered as functions of α can cross [see

Fig. 2 (a)]. We refer to such event of crossing as quasi-
resonance. Notice that this quasi-resonance is essentially dif-
ferent from the resonances induced by driving of the Aubry-
André model [60], as well as from recently studied resonances
governing behavior of disordered systems in the many-body
localized phase [49, 50]. Thus, ϵ(α)n may be found inside a
Gershgorin interval (due to reality of the spectrum in our case
the circles are squeezed to intervals) centered at ε(α)m originat-
ing from the eigenvalue ε

(0)
m = ϵ

(0)
m .

The states below the ME are distributed in the space nearly
homogeneously [Fig. 1 (c)], i.e., the average distance be-
tween neighboring states ∼ L/N , while for their maximal
widths one estimates 1/χ = 1/minm{χm}. Since |X(0)

mn| ≲
1/χ [67], for 1/χ ≲ L/N , valid for our case, only the nearest
neighbors contribute to the sum in R

(α)
m . Thus, we obtain the

estimate |R(α)
m | ≲ 2α/χ. For the modes in the inset of Fig. 1

(d) this yields |R(α)
m | ≲ 0.2.

Suppose now, that energies of two eigenstates of H0, say
ϵ
(0)
m and ϵ

(0)
m′ , originate Gershgorin intervals which overlap at

a certain value of α [see Fig. 1 (a)], i.e.,

|ε(α)m − ε
(α)
m′ | ≤ R(α)

m +R
(α)
m′ . (4)

For such states |ϵ(α)m − ϵ
(α)
m′ | ≤ 2(R

(α)
m +R

(α)
m′ ). If also R

(α)
m,m′

are small enough and spatial hopping of the wavefunctions is
non-negligible, they interact resonantly and can be identified
as resonant. Thus, the conditions of spatial proximity (3) and
of the overlapping of Gershgorin intervals (4) constitute a se-
lection rule, which allows one, for a given initial state m to
determine a state m′ of the Hamiltonian H0, which becomes
excited in the tilted quasi-periodic potential. The number of
resonant states versus tilt is shown in Fig. 2 (c).

The selection rule for sufficiently small α admits a trans-
parent physical interpretation. Indeed, for strongly localized
modes the Gershgorin radii determined by the hopping inte-
grals are small and the quasi-resonance, ε(α)m = ε

(α)
m′ can be

interpreted as approximate equality ϵ
(0)
m − ϵ

(0)
m′ ≈ α(X

(0)
mm −

X
(0)
m′m′). This means that two states m and m′ are involved

in atomic exchange if the work of the linear force necessary
for spatial transfer between their c.m. is approximately equal
to the energy difference between the states. The described dy-
namics corresponds to simultaneous inter-level transitions in
the energy space and tunneling in the coordinate space.

Turning to numerical study of the evolution governed by
Eq. (1) with the initial condition Ψ(x, t = 0) = Ψ0(x), we
characterize participation of a state n in the dynamics by its
average population: ρn = 1

T

∫ T

0
|⟨ϕ(0)

n ,Ψ0⟩|2dt where T is
the total time of the evolution. Figure 2 (b) illustrates the re-

FIG. 2. (a) Centers ε (solid lines) of Gershgorin intervals (shaded
area) versus tilt. (b) Average populations of excited states obtained
from (1) with Ψ0 = ϕ

(0)
13 for the evolution time T = 103. The ver-

tical dotted lines indicate α for which the Gershgorin intervals inter-
sect (α1, ..., α4) and stop intersecting (α5, α6). (c) Numbers of states
satisfying the selection rule at α > 0 obtained for the states which
for α = 0 are centered at X(0)

nn (corresponding to X coordinate of
colored stripes whose finite widthsare used for better visibility). The
potential is the same as in Fig. 1.

sults for Ψ0(x) = ϕ
(0)
13 (x) shown by the blue cross in Fig. 1

(c). In close proximity to that state one can find a localized
state ϕ

(0)
14 [red cross in Fig. 1 (c)]. As a result, already at

α = α1 ≈ 0.0007 tunneling between these states occurs.
Tunneling between these states remains for the whole interval
α ∈ [0, 0.1] [see intersecting blue and red Gershgoring inter-
vals in Fig. 2 (a)]. Respectively, in Fig. 2 (b) one observes that
the mentioned states (blue and red lines) remain populated for
all α ∈ [0, 0.1]. For α < α2 ≈ 0.0079 (the left yellow dotted
line) there are no other excited states satisfying the selection
rule, and periodic oscillations [Fig. 3 (a)] occur only due to
tunneling between the two states. At exact quasi-resonances
corresponding to the intersection of solid lines in Fig. 2 (a)
when ε

(α)
n = ε

(α)
m , sharp peaks in the average population of

the excited states occur [panel (a)], indicating that the states
exchange by the largest amount of atoms.

Upon increase of the linear force new states may satisfy the
selection rule (3), (4), thus becoming excited and involved in
the interchange of atoms through BLZ tunneling. In Fig. 2,
this is the state ϕ

(0)
28 [yellow crosses in Fig. 1] whose Gersh-

gorin interval starts to overlap with that of the state ϕ(0)
13 at α2.

Respectively, for α > α2 one observes oscillatory dynamics
characterized by involvement of three states and thus by two
main frequencies of oscillations [see Fig. 3 (b)] . Further in-
crease of the linear force results in the involvement of even
more states in the evolution. For instance, at α = α3 ≈ 0.016
the state ϕ

(0)
39 becomes involved in the population exchange
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process [see dynamics in Fig. 3(c)]. Remarkably, the ”in-
verse” process is also possible: when the discs separate upon
the increase of α the tunneling between the respective states
becomes suppressed. For example, this happens for the states
ϕ
(0)
28 and ϕ

(0)
39 at α5 ≈ 0.062 and α6 ≈ 0.072 [marked in

Fig. 2(b) by the right yellow and pink dotted lines], respec-
tively. Therefore in Fig. 2(b), one observes that these states
remain unpopulated for α > α5 and α > α6. The respec-
tive BLZ oscillations become ”simpler” as shown in Fig. 3 (d)
where the tunneling to ϕ

(0)
28 and ϕ

(0)
39 is strongly suppressed.

The dynamics in a quasi-periodic potential strongly de-
pends on the choice of the initially populated state. In Fig. 2
(c) we show the number of states which are excited in a tilted
potential provided that at α = 0 a localized state with a given
c.m. X

(0)
nn (vertical colored lines) is created. The shown

numbers correspond all excited states satisfying the selection
rule (3), (4). Notice, that there are states remaining out of
resonances (marked as 0 excited states), meaning that no os-
cillations of such states are observed below certain values of
α. At the same time, while increase of the tilt involves more
states in the dynamics, this is not the only possible scenario:
states may become non-resonant upon increase of α, because
their Gershgorin intervals become separated.

All patterns in Fig. 3 are non-decaying. This is also ex-
plained by the selection rule. Indeed, absence of overlap of
Gershgoring intervals means a negligibly small tunneling rate
which, loosely speaking, excludes excitation of those states at
any time. For the same reason for a given α, the dynamics
is well described by a few-mode approximation, i.e., by the
reduced column-vector c0 in which only excited states (of all
N existing) are relevant [the number of states can be deter-
mined from Fig. 2 (c)]. For example, for α < α2 in Fig. 2
(a), the vector c0 has two components and X0 is a 2× 2 ma-
trix (see [67]). The dynamics illustrating this case is shown in
Fig. 3 (a). Other panels of this figure show evolution which
is well described by three-mode [Fig. 3 (b) and (d)] and four-
mode [Fig. 3 (c)] models. Comparing the evolution of the c.m.
obtained from the full dynamics (dashed green line) and from
the respective few-mode approximations (dotted blue line) re-
veal excellent agreement in all these cases. Notice that while
several states are involved in the dynamics, which thus must
be characterized by several frequencies, only one main fre-
quency is observed in all panels. This is explained by small-
ness of other frequencies [67] which do not manifest them-
selves during the evolution time shown in the figure.

The developed theory allows one to predict the effect of
weak and even moderate nonlinearity on BLZ oscillations de-
scribed by (1). A small positive scattering length g > 0, fa-
voring delocalization, is expected to recruit more adjacent (in
the coordinate-energy space) states, thus increasing effective
Gershgorin intervals. This naturally results in more complex
(compared with the linear limit) dynamics, as shown in Fig. 4
(a) [cf. Fig. 3 (a)]. At larger scattering lengths relatively fast
dispersion of the initial wavepacket is observed (see [67] for
examples).

FIG. 3. Evolution of |Ψ|2 for the initial state Ψ0 = ϕ
(0)
13 and different

field strengths (indicated in the panels). The dashed green and dotted
blue line shows evolution of the c.m. obtained from Eq. (1) and the
few-mode model. Other parameters are as in Fig. 1. In (b)-(d) only
few periods are shown, while simulations were carried till t = 1000.

FIG. 4. Evolution of |Ψ|2 for the initial state Ψ0 = ϕ
(0)
13 for positive

(a) and negative (b) scattering lengths, corresponding to the linear
dynamics in Figs. 3 (a) and (c).

On the other hand, a negative scattering length (g < 0)
results in stronger localization, and thus, in smaller effective
Gershgorin radii leading to suppression of the tunneling and
creation of weakly oscillating matter solitons. This is illus-
trated in Fig. 4 (b) where barely visible oscillations of the
c.m. are displayed [cf. Fig 3 (c)]. At larger intensities of
the attractive two-body interactions a nearly static soliton is
created (not shown here).

To conclude we have described sustained Bloch-Landau-
Zener oscillations of atoms and BECs in a tilted quasi-periodic
lattices. We considered states having energies below the mo-
bility edge. The oscillatory motion occurs due to tunneling
of atoms between an initial localized state and other localized
state (or states) satisfying the selection rule. This rule con-
sists of the conditions of proximity of the states in coordinate
and in energy spaces, achieved due to action of the applied
linear force. Depending on the initial condition and on the
magnitude of the tilt of the quasi-periodic potential, one can
detect two- or a few- mode dynamics, or even no dynamics
at all. The reported results can be observed in any of physi-
cal systems where Bloch oscillations have been realized, since
quasi-periodic potentials can be obtained using essentially the
same technical tools as periodic ones.
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[5] K. Leo, H. Bolivar, F. Brüggemann, R. Schwedler, and K.
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[34] S. Drenkelforth, G. Kleine Büning, J. Will1, T. Schulte, N. Mur-
ray, W. Ertmer, L. Santos and J. J. Arlt, Damped Bloch oscilla-
tions of Bose–Einstein condensates in disordered potential gra-
dients, New J. Phys. 10, 045027 (2008).

[35] S. Stützer, Y. V. Kartashov, V. A. Vysloukh, V. V. Konotop,
S. Nolte, L. Torner, and A. Szameit. Hybrid Bloch–Anderson
localization of light. Opt. Lett. 38, 1488 (2013).

[36] F. A. B. F. de Moura, M. L. Lyra, F. Domı́nguez-Adame,
and V. A. Malyshev, Bloch oscillations in an aperiodic one-
dimensional potential, Phys. Rev. B 71, 104303 (2005).

[37] F. A. B. F. de Moura, L. P. Viana, M. L. Lyra, V. A. Malyshev
and F. Domı́nguez-Adame, Bias driven coherent carrier dynam-
ics in a two-dimensional aperiodic potential, Phys. Lett. A 372,
6694 (2008).

[38] S. Walter, D. Schneble and A. C. Durst, Bloch oscillations in
lattice potentials with controlled aperiodicity, Phys. Rev. A 81,
033623 (2010).

[39] G. Wang, Fragmentation of Bloch oscillations in quasiperiodic



6

waveguide arrays, J. Opt. 16, 015502 (2014).
[40] J. B. Reeves, B. Gadway, T. Bergeman, I. Danshita and D.

Schneble, Superfluid Bloch dynamics in an incommensurate
optical lattice, New J. Phys. 16, 065011 (2014) .

[41] A. Yar, B. Sarwar, S. B. A. Shah, K. Sabeeh, Bloch oscillations
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