
CRITICAL EXPONENT GAP AND LEAFWISE DIMENSION

OMRI NISAN SOLAN

Abstract. We show that for every nonarithmetic lattice Γ < SL2(C) there is

a gap εΓ > 0 such that for every g ∈ SL2(C) the intersection SL2(R)∩gΓg−1 is
either a lattice in SL2(R) or has critical exponent δ(SL2(R)∩gΓg−1) ≤ 1−εΓ.

1. Introduction

In his landmark work, Margulis [23] showed that there are no irreducible nonar-
ithmetic lattices in higher-rank semisimple Lie groups (see Definition 2.1 of arith-
metic lattice). However, there are nonarithmetic lattices in SL2(R) and SL2(C) and
more generally SO(n, 1) for n ≥ 2. This paper focuses on nonarithmetic lattices in
G = SL2(C). There are several constructions for such lattices. One such construc-
tion is given by Gromov and Piatetski-Shapiro [19] as the fundamental group of a
certain surgery of two arithmetic hyperbolic manifolds. Some other constructions
can be found e.g. in [40, 33].

A recent result of Mohammadi and Margulis [25] and of Bader, Fisher, Miller
and Strover [1] gives a geometric sufficient criterion for a lattice Γ < G to be
arithmetic, namely, if there are infinitely many totally geodesic surfaces in H3/Γ.
This is equivalent toG/Γ having infinitely many periodic SL2(R)-orbits. The Bader,
Fisher, Miller and Stover result is more general in that it deals with lattices in
SO(n, 1) for any n ≥ 3.

A notable distinction between arithmetic and nonarithmetic lattices is the follow-
ing. Let SL2(R).x be an orbit for some x ∈ G/Γ. If Γ is arithmetic and stabSL2(R)(x)
is Zariski dense in Γ, then a theorem of Borel and Harish-Chandra [3] says that
stabSL2(R)(x) must be a lattice as well. In the nonarithmetic case, this is no longer
true. One can quantify the “size” of a Zariski dense subgroup Λ < SL2(R) by its
critical exponent:

Definition 1.1 (Critical exponent). Let Λ < SL2(R) be a discrete subgroup. Define
the critical exponent of Λ by

δ(Λ) = lim sup
R→∞

log#(BSL2(R)(R) ∩ Λ)

R
.

Here BSL2(R)(R) is a ball in SL2(R) around the identity, with respect to the natural
metric which will be specified in Section 2. If Λ is a lattice, then δ(Λ) = 1, and this
is the maximal possible critical exponent.

The main result of this paper is the following theorem.
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Theorem 1.2 (Critical exponent gap). Let Γ < G be a non-arithmetic lattice. For
every g ∈ G define

Γg = SL2(R) ∩ gΓg−1 = stabSL2(R)(πΓ(g)),

where πΓ(g) image of g in G/Γ, and consider the critical exponent δ(Γg). Then
there is an εΓ > 0 such that for all g ∈ G one of the following holds:

(1) δ(Γg) ≤ 1− εΓ;
(2) Γg is a lattice.

To show that this εΓ cannot be chosen uniformly we prove the following.

Theorem 1.3. For every ε > 0 there is a nonarithmetic lattice Γ < G and g ∈ G
such that Γg is not a lattice but δ(Γg) > 1− ε.
Remark 1.4. It seems likely that in the homogeneous space G/Γ we construct in
Theorem 1.3 there are infinitely many orbits SL2(R).πΓ(g) so that δ(Γg) > 1 − ε,
but we do not know how to show it.

1.1. Application to polynomial equidistribution. We will relate Theorem 1.2
to a recent result of Lindenstrauss, Mohammadi, and Wang [22]. Let Γ < G be a
lattice. Let

u(s) =

(
1 s
0 1

)
, a(t) =

(
et/2 0
0 e−t/2

)
, ∀s, t ∈ R,

and let x ∈ G/Γ. Ratner’s Equidistribution Theorem (See [31, 30, 32]) shows that
u(s).x equidistributes in some homogeneous subspace of G/Γ. More formally, the
sequence of measures

µT,x =
1

T

∫ T

0

δu(s).xds

converges to the Haar measure on a homogeneous subspace. Moreover, unless x

lies in a u(s)-invariant homogeneous subspace, µT,x
T→∞−−−−→ mG/Γ. Lindenstrauss,

Mohammadi, and Wang [22] effectivized this claim whenever Γ is arithmetic. [22,
Thm. 1.1] can be seen to be equivalent to the effectivization of Ratner’s Equidis-
tribution Theorem. Informally and inaccurately, it states that either a(t)µ1,x is
exp(− ⋆ t) close to the Haar measure mG/Γ or one of the following algebraic ob-
structions occurs:

• u(s)x is exp(− ⋆ t) close to a periodic orbit SL2(R).x′ of volume exp(− ⋆ t)
for all t ≥ 0.
• x lies too deep in a cusp of G/Γ.

Lindenstrauss, Mohammadi and Wang also give a version of their theorem for
nonarithmetic lattices in G ([22, Thm. 1.3]), but its statement is more complicated
as it cites another, more complicated, type of obstruction, unrelated to periodic
SL(2,R)-orbits or cusp excursions, e.g. that the initial point is close to a point πΓ(g)
for which Γg is Zariski dense but not a lattice. And indeed, this potentially is an
obstruction: suppose that x ∈ G/Γ has a stabilizer Λ = stabSL2(R) x < SL2(R) with
critical exponent δ(Λ), and suppose δ(Λ) is very close to 1 (its maximal value). This
allows a(t)u(s).x to return Θ(exp(δ(Λ)t)) times to a ball BSL2(R)(1).x for s ∈ [0, 1].
This gives an lower bound of exp((δ(Λ)− 1)t) on the distance of µT,x and the Haar
measure mG/Γ.

Therefore, if one wants also for a nonarithmetic lattice a polynomial equidistri-
bution theorem analogous to [22, Thm. 1.1], the first step is to bound δ(Λ), which
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is done by Theorem 1.2. In a follow-up to this paper, we will show the following
polynomial unipotent equidistribution result.

Corollary 1.5 (Polynomial unipotent equidistribution in nonarithmetic lattices).
For every x0 ∈ G/Γ and large enough R (depending only on X and the injectivity
radius of x0), for any T ≥ RA, at least one of the following holds.

(1) For every φ ∈ C∞
c (G/Γ),∣∣∣∣∣

∫ 1

0

φ(a(log T )u(r))dr −
∫
G/Γ

φdmG/Γ

∣∣∣∣∣ < S(φ)R−κ1 .

where S(φ) is a certain Sobolev norm.
(2) There exists x1 ∈ G/Γ such that the orbit SL2(R)x1 is periodic and

dG/Γ(x0, x1) < RA(log T )AT−1.

The constants A and κ1 are positive and depend on X but not on x0.

The Sobolev norm used here is the same as in [22]. See [25], [1] for a finiteness
result of the periodic orbits in Option 2 in the above corollary.

Remark 1.6. The proof of Theorem 1.2 is via a limiting argument, invoking elements
of [1] and uses Ratner’s Measure Classification Theorem. Hence, Theorem 1.2 is
not effective, which implies the same regarding the constants in Theorem 1.2 and
Corollary 1.5. Similarly, the results of in [25] and [1] prove that for nonarithmetic
Γ there are only finitely many SL2(R) periodic orbits without any estimate on their
number. In contrast, the constants in [22] are explicit in principle; cf. also [21,
Thm. 1.4].

1.2. Structure of the proof of the gap in critical exponent. As mentioned
above, the proof of Theorem 1.2 combines results from [1], with some extra ergodic
theoretic arguments. In [1], the first step assumes to the contrary that there is
a nonarithmetic lattice Γ < G for which there are infinitely many periodic orbits
(SL2(R).xk)∞k=1 for xk = πΓ(gk) ∈ G/Γ. Then, using Ratner’s theorem (or more
precisely a result of Mozes and Shah that relies on this theorem as well as the
Dani-Margulis linearization method), the authors show that the sequence of Haar
measures on these periodic orbits converges to the Haar measure, i.e.

mSL2(R).xk

k→∞−−−−→ mG/Γ.

In our case, Γgk = stabSL2(R)(xk) are not lattices, so the Haar measures on them
are infinite. Instead, we will use for each k the Bowen-Margulis-Sullivan measure
µk corresponding1 to Γgk on SL2(R).xk. It has an entropy hµk

(a(1)) = δ(Γgk).
An a(1)-invariant measure on G/Γ can have any entropy ≤ 2, so these entropies
are certainly far from being maximal entropy. Thus we cannot show that such a
measure is close to Haar using only the uniqueness of measure of maximal entropy
on G/Γ (See e.g. [4], [39, §11]). However, all of the entropy of these µk comes “from
the SL2(R) direction”. This intuition can be formalized to say that the u-leafwise
dimension (see Definition 3.7) of µk is almost everywhere δ(Γgk) which is close to
the maximal value 1. This leads us to the ergodic component of the proof, Theorem
3.9 below. This theorem enables us to utilize this large dimension to show that any

1In fact, we use Bowen-Margulis-Sullivan measures corresponding to finitely generated sub-
groups of Γgk so that the measure will be finite. We ignore this subtlety for the introduction.
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weak-∗ limit is SL2(R)-invariant, and is of interest by itself. However, there is yet
work to be done to show that the limit is the Haar measure mG/Γ, as there may
be an escape of mass, or positive mass to SL2(R)-periodic orbit. To rule out these
options we use linearization methods and Margulis functions.

1.3. Structure of the construction of a lattice Γ with small gap. As for
Theorem 1.3, its proof can be divided to three main parts.

Part 1, construction of a homogeneous space: We implement a construc-
tion of a nonarithmetic lattice given by Gromov and Piatetski-Shapiro [19], who
construct a nonarithmetic space G/Γ in the following way: Take two (carefully con-
structed) arithmetic spaces G/Γ1 and G/Γ2, and identify isomorphic codimension-1
submanifold Vi ⊆ H3/Γi. Cut H3/Γi along Vi for each i = 1, 2 to obtain two hy-
perbolic threefolds with isomorphic boundaries. Finally, glue these manifolds along
their boundaries to obtain a compact hyperbolic threefold of the form H3/Γ. The
lattice Γ is the non-arithmetic manifold we look for.

Part 2, construction of an orbit: To construct the element g required by
Theorem 1.3, we construct the orbit SL2(R).πΓ(g) as follows. Take a periodic
SL2(R)-orbit H.x0 in G/Γi for some i = 1, 2. Denote its projection to G/Γi by S0.
This is an immersed hyperbolic surface. Cut S0 along Vi into finitely many pieces,
and consider the image S1 in H3/Γ of one of these pieces. This yields an immersed
hyperbolic surface S2

∼= H2/Γg2 ⊂ H3/Γ contains S1. We show that by properly
choosing S0 and S1 we can ensure that Γg2 is not a lattice.

Part 3, estimation of the critical exponent in the form of high Haus-
dorff dimension: The estimation of the critical exponent of Γg2 uses Sullivan
[36, Thm. 1], which reduces the estimation of the desired critical exponent to an
estimation of the Hausdorff dimension of the collection of geodesic in S0 that orig-
inates form a point p0 ∈ S0 and do not intersect Vi. Viewing this problem in the
universal cover of S0, the inverse image of Vi is a union of geodesics. This reduces
the question of giving a lower bound on the Hausdorff Dimension of set of rays from
p0 on S0 avoiding Vi to the following two claims on an immersion ι0 : H2 → H3/Γi.

• ι−1
0 (Vi) is composed of many hyperbolic lines in H2. Then there is a lower
bound on the distances of these lines from one another,
• For every collection L of lines in H2 that are far from one another, and
every point p0 ∈ H2 not on any of these lines, the dimension of the set of
geodesic rays from p0 that do not hit any of the lines is large.

The first point follows from arithmetic considerations. The second can be reduced
to an estimate of the dimension of a certain Cantor set.

1.4. Structure of the paper. In Section 2 we introduce several notations and
conventions. Section 3 is divided into three parts: In Subsections 3.1 and 3.2 we
recall a nonstandard definition for the leafwise measures and some of its properties.
In Subsection 3.3 we introduce the leafwise Markov chain and complete the proof
of Theorem 3.9.

In Section 4 we prove Theorem 1.2. The section is divided into three parts:
Subsection 4.1 states several claims which will be of use in the next subsection.
Subsection 4.2 follows the discussion at Subsection 1.2, and shows that a certain
sequence of measures µk on G/Γ converges to the Haar measure. We prove SL2(R)-
invariance, use Lemma 4.7 (whose proof is left to Section 5) to exclude escape
of mass in the limit and any nontrivial homogeneous component, and finally use
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Ratner’s theorem [32] to conclude that the limit is the Haar measure. In Subsection
4.3 we conclude the proof of Theorem 1.2 by adapting the work of [1] to our setup.
In Section 5 we use a linearization method and Margulis functions to prove Lemma
4.7. Section 6, which is independent of the rest of the paper, is dedicated to the
proof of Theorem 1.3.

1.5. Further research. A natural question is to prove an effective version of The-
orem 1.2.

Question 1.7. Find an effective formula for an εΓ depending on the lattice Γ < G
such that there are only finitely many SL2(R)-orbits SL2(R).πΓ(g) such that 1−εΓ <
δ(Γg) but Γg is not a lattice. We expect εΓ to depend on the spectral gap of G/Γ,
however, it may depend also on the arithmetic nature of Γ.

The example given by Theorem 1.3 inspires us to formulate the following more
optimistic question. We do not know if it helps to answer the previous one.

Question 1.8. Let Γ < G be a lattice. Is it true that there are only finitely many
SL2(R)-orbits of points x = πΓ(g) in G/Γ with Γg Zariski dense in SL2(R) for
which there does not exist an arithmetic lattice Γ1 < G such that SL2(R).x lift
bijectively to G/Λ where Λ = Γ1 ∩ Γ and Λ is Zariski-dense in G? Can one find a
finite collection ϖ of arithmetic lattices such that for every point x = πΓ(g) in G/Γ
with Zariski dense Γg the orbit SL2(R).x lifts to G/Λ with Λ = Γ1 ∩Γ and Γ1 ∈ ϖ,
except perhaps for finitely many SL2(R)-orbits?

One can also consider the analogous of Theorem 1.2 to nonarithmetic lattices in
more general R-rank 1 groups.

We now discuss possible extensions of Theorem 3.9 referred to above, and use
similar notations. Let B = R⋉ R using the exponent action of R on R.

Question 1.9. Let (µk)
∞
k=1 be a(t)-ergodic invariant probability measures on a lo-

cally compact second countable space X on which B acts continuously. Suppose
that there is a weak-∗ probability measure limit µ∞ = limk→∞ µk with ergodic de-
composition

∫
X
µx
∞dµ∞(x). Show that∫

X

dimu µx
∞dµ∞(x) ≥ lim sup

k→∞
dimu µk,(1.1)

with the convention that dimu µx
∞ = 1 if µx

∞ is not u-free.

One can try to extend this to actions of more general semi-direct products.

Acknowledgment. I thank my advisor, Elon Lindenstrauss, for introducing me
to the topic, and for his guidance, support, and constructive feedback throughout
the process of writing this paper.

2. Notations

Definition 2.1 (Homogeneous dynamics notations). Let G = SL2(C) and Γ < G
a lattice. We say that Γ is arithmetic if there is an algebraic group G/Q and a
homomorphism with compact kernel f : G(R)→ G whose image is open in G and
Γ is commensurable to f(G(Z)). From now on we assume that Γ is nonarithmetic.

Recall that a(t) = diag(et/2, e−t/2) and u(s) =

(
1 s
0 1

)
for all t, s ∈ R, generates
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a subgroup B < SL2(R). The group B is isomorphic to R ⋉ R, with the exponent
action. Denote by πΓ : G→ G/Γ the standard projection.

Definition 2.2 (Metric notations). For every metric spaceX, we will always denote
its metric by dX , and whenever there is a natural base point to the space we denote
by BX(R) a ball of radius R around the base point.

Let dG be the unique Riemannian metric on G that is right G-invariant and left
SU(2)-invariant, normalized so that

dG

((
et/2 0
0 e−t/2

))
= |t|,

for all t ∈ R. This metric restricts to a Riemannian metric dSL2(R) on SL2(R)
and gives rise to the standard hyperbolic metrics dH3 , dH2 on H3 = SU(2)\G and
H2 = SO(2)\ SL2(R), respectively. This makes H3 a right G-space and H2 a right
SL2(R)-space. Since dG is right invariant, it descends to a Riemannian metric dG/Γ

on G/Γ.

Definition 2.3 (Measure notations). For every measure space (X,µ) and a mea-
surable function f : X → R, we define µ(f) =

∫
X
fdµ and f · µ the measure

U 7→
∫
U
fdµ on X. For every two measurable spaces (X,µ), (Y, ν), we denote by

µ× ν the product measure on X × Y .

Definition 2.4 (Law of a random variable). Let (X,Σ) be a space together with a
σ-algebra. Let µ be a probability measure onX. Whenever we think ofX as a prob-
ability space, then any measurable function y : X → Z to any other space (Z,B),
is called a random variable. Denote by Law(y) = y∗µ the pushforward probability
measure on Z. For every two random variables y1 : X → Z1, y2 : X → Z2, measur-
able with respect to the σ-algebras B1,B2 on Z1, Z2 respectively, we define a ran-
dom variable Law(y1|y2) : X → {probability measures on Z1} as follows. Let B′2 =
y−1
2 B2 be the σ-algebra of all the information on X given by y2. Let x 7→ µx

B′
2
be the

conditional measure, and Law(y1|y2)(x) = (y1)∗µ
x
B′

2
. Similarly, if y1, y2, . . . , yn are

random variables, then we denote Law(y1|y2, y3, . . . , yn) = Law(y1|(y2, y3, . . . , yn)),
where (y2, y3, . . . , yn) is the tuple random variable.

Definition 2.5 (Entropy notations). For every p1, ..., pk ∈ [0, 1] with p1+p2+ · · ·+
pk = 1, denote

H(p1, . . . , pk) = −
k∑

i=1

pi log pi.

For every space X, a measure µ on X with countable support, denote

H(µ) = −
∑

p∈supp (µ)

µ({p}) logµ(p).

Removing the countable support assumption, let τ be a partition of X. Denote

Hµ(τ) = −
∑
A∈τ

µ(A) logµ(A).
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For every x ∈ X denote by [x]τ the unique element in τ containing x. Now,
whenever we think of X as a probability space and function from X as random
variables, let y : X → S be a random variable with a countable image. We denote

H(y) = H(y∗µ) = Hµ({y−1(x) : x ∈ Im(y)}).
Let y1, y2 be two random variables, such that given y2, the random variable y1
has countably many options, that is, Law(y1|y2) is almost surely a measure with
countable support. Then we denote H(y1|y2) =

∫
X
H(Law(y1|y2))dµy2. Similarly,

if y1, . . . , yn are random variable, then we define

H(y1|y2, y3, . . . , yn) = H(y1|(y2, y3, . . . , yn)) =
∫
X

H(Law(y1|y2, y3, . . . , yn))dµy2.

3. Leafwise measures

The purpose of this section is to prove Theorem 3.9 below. We will define the
leafwise measures and leafwise dimension in Subsections 3.1 and 3.2, and recall
some of their properties. At the end of Subsection 3.2 we state Theorem 3.9. In
subsection 3.3 we introduce a different approach to the leafwise measures, and use
it to prove Theorem 3.9.

3.1. The leafwise measures. LetX be a locally compact second countable (LCSC)
space, R ↷ X be a continuous action via u(s) : X → X for every s ∈ R. Let µ be a
measure on X, not neccessarily u-invariant. We assume that µ is u-free, that is, µ
almost every point x ∈ X is not fixed by u(s) for all s ∈ R. We recall the following
characterization for leafwise measures, which is equivalent to the one given in [12,
§3].

Definition 3.1 (Anti-convolution of a function with a measure). Let f : R → R
be a nonnegative function with

∫
R f(s)ds = 1. Denote

Sfµ =

∫
R
f(s)u(−s).µds.

Theorem 3.2 (Fubini construction of Leafwise measures). There is a measurable
map y 7→ µuy which associates to every y ∈ X a locally finite measure µuy on R,
which satisfies the following properties:

(1) for every s ∈ R and y ∈ X we have

µuu(s).y ∝ T
s
∗µ

u
y, where T s : R→ R, T s(r) = r − s.(3.1)

(2) Let

ω = F∗(µ×mR), where F : X × R→ X × R, F (x, s) = (u(−s)x, s),(3.2)

where µ × mR is the product measure on X × R. Let f : R → R be a
nonnegative integrable function with

∫
R f(s)ds = 1, and set f̃ : X ×R→ R

be defined by f̃(x, s) = f(s). For Sfµ-almost every y ∈ X, we have

0 < µuy(f) <∞ and(3.3)

f̃ · ω =

∫
X

δy ×
f · µuy
µuy(f)

dSfµ(y).(3.4)

Here we use the notations regarding measures from §2.3, and πR : X×R→
R is the projection.
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The map y 7→ µuy is unique in the following sense. If y 7→ µu,1y and y 7→ µu,2y

are maps satisfying the above conditions, then for µ-almost every x ∈ X we have
µu,1y ∝ µu,2y .

Remark 3.3 (On Eq. (3.4)). A different way to write the left-hand side is

(f ◦ πR) · ω = F∗(µ× (f ·mR)),

where F is as in Eq. (3.2).
An alternative way to write the formula (3.4) is that for every compactly sup-

ported function and continuous function g : X × R→ R

∫
X×R

f(s)g(x, s)dω(x, s) =

∫
X

1

µuy(f)

∫
R
g(y, s)f(s)dµuy(s)dSfµ(y), ∀g ∈ Cc(X × R).

(3.4′)

Corollary 3.4. In the notations of Theorem 3.2, note that F−1
∗ ((f ◦ πR) · ω) =

(f ◦ πR) · (µ×mR). Applying this to Eq. (3.4) and projecting to X, we obtain

µ =

∫
X

(s 7→ u(s)y)∗(f · µuy)
µuy(f)

dSfµ(y).(3.5)

Reduction of Theorem 3.2 to [12, §3]. We will describe the statement of [12, §3],
restricted to our R action. Denote by BX the borel σ-algebra of X. Consider the
infinite measure µ ×mR on X × R. Define Ψ : X × R → X by Ψ(x, s) = u(−s).x
and let C = Ψ−1(BX). Let f0 : R→ R be a positive continuous integrable function.

Lift f0 to a map f̃0 : X × R → R by f̃0(x, s) = f0(s). The conditional measures

of f̃0 · (µ × mR) = µ × (f0 · mR) with respect to the σ-algebra C are denoted

(f̃0 · (µ ×mR))
C
y , for y ∈ X × R. This measure lies on the atom [y]C of y which is

of the form {(u(s).x, s) : s ∈ R} = Ψ−1(x) for x = Ψ(y) ∈ X, and (f̃0 · (µ×mR))
C
y

depends only on the atom, that is, only on x, and is supported on this atom. Define
µux on R so that

(f̃0 · (µ×mR))
C
y = f̃0 · ax∗µux, where ax : R→ X × R, ax(s) = (u(s).x, s).

(3.6)

Then [12, §3] ensures that Eq. (3.1) holds in a u-invariant set X ′ ⊆ X with
µ(X ′) = 1.

We will now deduce our formulation of the result. To ensure that Eq. (3.1) holds
everywhere, we redefine µux := 0 for x /∈ X ′. This implies that Eq. (3.1) holds for
all x ∈ X.

As to the second condition, Eq. (3.6) implies that f̃0 · ax∗µux = ax∗(f0 · µux) is a
probability measure for all x ∈ X ′. That is, µux(f0) = 1. In addition,

f̃0 · (µ×mR) =

∫
X

(f̃0 · (µ×mR))
C
yd(f̃0 · (µ×mR))(y)

=

∫
X

f̃0 · ax∗µuxdΨ∗(f̃0 · (µ×mR))(x).

(3.7)

To simplify Eq. (3.7), first notice that

Ψ∗(f̃0 · (µ×mR)) = Ψ∗(µ× (f0 ·mR)) = Sf0µ.
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Second, we can multiply Eq. (3.7) by f̃−1
0 and obtain

µ×mR =

∫
X

ax∗µ
u
xdSf0µ(x).(3.8)

Applying F∗ to Eq. (3.8) we obtain

F∗(µ×mR) =

∫
X

δx ×
µux

µux(f0)
dSf0µ(x),(3.9)

where the denominator could be added since it is almost surely the constant 1. This
formula is equivalent to Eq. (3.4), for f = f0, after multiplying with f̃0. To obtain
it for general nonnegative f ∈ L1(R) with

∫
R f(x)dx = 1, we multiply Eq. (3.8)

with the function f̃ : X × R→ R defined by f̃(x, s) = f(s):

F∗(µ× (f ·mR)) = f̃ · F∗(µ×mR) =

∫
X

δx ×
f · µux
µux(f0)

dSf0µ(x).(3.10)

From Eq. (3.10) we deduce that for Sf0µ-almost every x ∈ X we have f ·µux is a finite
measure. Since f · µux = 0 if and only if µux(f) = 0 we deduce that we may restrict
the integral in the right-hand side of Eq. (3.10) to X0 = {x ∈ X : µux(f) = 0}.

F∗(µ× (f ·mR)) =

∫
X0

δx ×
f · µux
µux(f0)

dSf0µ(x) =

∫
X0

δx ×
f · µux
µux(f)

µux(f)

µux(f0)
dSf0µ(x)

=

∫
X0

δx ×
f · µux
µux(f)

dµf (x) =

∫
X

δx ×
f · µux
µux(f)

dµf (x),

(3.11)

where

µf =

∫
X

δxd
µux(f)

µux(f0)
dSf0µ(x),

and last equality of Eq. (3.11) holds since µf is supported on X0. To compute
µf , project Eq. (3.11) to X. The projection of the right-hand side is µf . The
projection of the left-hand side is Sfµ, and hence Sfµ = µf . Therefore, Eq. (3.11)
is equivalent to Eq. (3.4). Eq. (3.3) from the equality Sfµ = µf , the definition of
µf , and the fact that Sfµ is a probability measure.

To show the uniqueness of the measures µux, note that we have established an
equivalence between Eq. (3.4) applied to f0 and

(f̃0 · (µ×mR))
C
y = f0 ·

ax∗µ
u
x

µux(f0)
.

for f̃0 · (µ × mR)-almost every y and x = Ψ(y). Since the conditional measures
are uniquely defined almost everywhere, we deduce that µux is uniquely defined Sf0

almost surely.
□

The following claims follow from the uniqueness of the characterization of The-
orem 3.2.

Claim 3.5 (Equivariance of Leafwise measures). If α : X → Y is an injective map

of LCSC spaces, R u′↷ Y , and

α(u(s).x) = u′(s).α(x), ∀x ∈ X, s ∈ R,
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then for µ-almost every x ∈ X,

µux ∝ (α∗µ)
u′

α(x).(3.12)

Moreover, there is a set X ′ ⊆ X that is u invariant and has µ(X ′) = 1 such that
Eq. (3.12) holds for all x ∈ X ′.

Claim 3.6 (Rescaling of the action). Suppose that β ̸= 0, and define the rescaled

action R u′↷ X by u′(s).x = u(βs).x. Then µ-almost every for all x ∈ X have

µu
′

x ∝ (s 7→ β−1s)∗µ
u
x.(3.13)

Moreover, there is a set X ′ ⊆ X that is u invariant and has µ(X ′) = 1 such that
Eq. (3.13) holds for all x ∈ X ′.

3.2. Leafwise dimension. We will discuss measures µ on an LCSC space X. We
require that there is a measurable action B ↷ X where B ∼= R ⋉ R is defined as
in Homogeneous Dynamics Notations 2.1. Our measures µ will be A-invariant and
u-free, and we will analyze their u-leafwise measures.

Definition 3.7 (Leafwise dimension). Let X be an LCSC space with a continuous
action B ↷ X. Let µ be an A-invariant u-free probability measure on X. We say
that µ has u-leafwise dimension δ and write dimu(µ) = δ if for µ-almost-all x,

lim
t→∞

1

t
logµux([−e−t, e−t]) = −δ.(3.14)

If µ is ergodic, then dimu(µ) exists. This existence is proved in the homogenous
setting in [11, Thm 7.6(i)]. However, their proof works for our setting as well.

One can relate leafwise dimension to entropy. This will be useful in Section 3.

Theorem 3.8 (Relation of leafwise dimension to entropy). Let Λ ⊆ SL2(R) be a
discrete subgroup and µ an a-invariant and ergodic probability measure on SL2(R)/Λ.
Then

hµ(a(t)) = |t|dimu(µ).

This theorem is proved in [11, Thm 7.6 (ii)].

The main result of this section is the following:

Theorem 3.9. Let (µk)
∞
k=1 be a(t)-invariant and ergodic probability measures on

an LCSC space X on which B acts continuously. We further assume that for every
k the measure µk is u-free. Suppose that the u-leafwise dimensions

dimu µk
k→∞−−−−→ 1.(3.15)

Suppose that there is a weak-∗ probability measure limit µ∞ = limk→∞(µk)
∞
k=1.

Then µ∞ is u-invariant.

3.3. The leafwise Markov chain. In this subsection, we will prove Theorem
3.9. To prove this theorem we need some macroscopic way to view the leafwise
dimension, as opposed to Definition 3.7, which views it as a limit of a leafwise
measure of very small intervals. To do this we introduce a Markov chain, somewhat
similar to the one introduced in Furstenberg [17]. The properties of the Markov
chain are summarized in the following lemma.
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Lemma 3.10 (The leafwise Markov chain). Let X be an LCSC topological space, let
B ↷ X be a continuous action and let µ be an A-invariant ergodic u-free measure.
Then there is a function p : X → [0, 1] such that∫

X

H(p(x), 1− p(x))dS1[0,1)
µ(x) = dimu(µ) log 2,(3.16) ∫

X

ωxdS1[0,1)
µ(x) = S1[0,1)

µ,(3.17)

where

ωx = p(x)δa(log 2).x + (1− p(x))δu(1)a(log 2).x.(3.18)

Fix an a-invariant and ergodic u-free measure µ on X.

Claim 3.11 (Almost no periods). In this setting,

µ ({x ∈ X : stabU (x) ̸= I}) = 0.

The claim is fairly standard, see for instance [11, Lem. 7.12] in the homogeneous
case.

Consider the dynamical system with space X × [0, 1), measure ν0 = µ×m[0,1),
and action T0(x, s) = (a(log(2))x, 2s mod 1), which preserves ν0. Conjugate it by

F : X × [0, 1)→ X × [0, 1), F (x, s) = (u(−s)x, s).

We obtain a dynamical system (T,X × [0, 1), ν), where

ν = F∗ν0
(3.4)
=

∫
X

δy ×
µuy|[0,1)
µuy([0, 1))

dS1[0,1)
µ(y)(3.19)

and T (y, s) = (u(b1(s))a(log 2)x, 2s mod 1), where b1(s) is the 2−1 bit of the bi-
nary point in the binary expansion, s =

∑∞
i=1 2

−ibi(s), where bi(s) ∈ {0, 1}. Let
p0 = (y0, s) be a sample point in the probability space (X × [0, 1), ν). A different
interpretation of Eq. (3.19) is the following almost sure equalities,

Law(y0) = S1[0,1)
µ,(3.20)

Law(s|y0) =
µuy|[0,1)
µuy([0, 1))

.(3.21)

Denote by πX : X × [0, 1)→ X the projection. For every n ≥ 1 let pn = Tnp0 and
for every n ≥ 0 denote yn = πX(pn) . One can see that

yn = a(n log 2)u(sn)y0,(3.22)

where sn =
∑n

i=1 2
−ibi(s). Let X ′ = {x ∈ X : µux([0, 1)) > 0}. It has a full

S1[0,1)
µ-measure from Eq. (3.3). Define

p(x) =

{
µu
x([0,1/2))
µu
x([0,1))

, x ∈ X ′,

0, otherwise,

and let ωx be as in Eq. (3.18).

Claim 3.12. The stochastic process (yn)
∞
n=0 is a stationary Markov process, with

the ν-almost always law

Law(yn|y0, y1, . . . , yn−1) = Law(yn|yn−1) = ωyn−1
.(3.23)
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Proof. It will be sufficient to show that the RHS and LHS of 3.23 coincide. Indeed,
by Eq. (3.22) and Claim 3.11, Law(yn|y0, y1, . . . , yn−1) = Law(yn|sn−1, y0). Now,

Law(sn|sn−1, y0)
(3.21)
=

sn−1, with probability
µu
y0

([sn−1,sn−1+2−n))

µu
y0

([sn−1,sn−1+2−n+1)) ,

sn−1 + 2−n, with probability
µu
y0

([sn−1+2−n,sn−1+2−n+1))

µu
y0

([sn−1,sn−1+2−n+1)) .

(3.24)

We wish to apply Claims 3.5 and 3.6 to y0. Since u(s)y0 ∼ µ we deduce that y0 ∈ X ′

almost surely, where X ′ is one of the sets in Claims 3.5 and 3.6, and hence these
claim are applicable. Similarly, yn ∈ X ′ almost surely for all n ≥ 0. Apply Claim
3.5 for the a((n − 1) log 2)-action, which takes the u(s) action to u′(s) = u(2ns)-
action. Hence

µuyn−1

3.6∝ (s 7→ 2n−1s)∗µ
u′

yn−1

(3.22)
= (s 7→ 2n−1s)∗µ

u′

a((n−1) log 2)u(sn−1)y0

3.5∝ (s 7→ 2n−1s)∗µ
u
u(sn−1)y0

(3.1)
∝ (s 7→ 2n−1s)∗(s 7→ s− sn−1)∗µ

u
y0

= (s 7→ 2n−1(s− sn−1))∗µ
u
y0
.

Thus Eq. (3.24) implies the desired. □

This shows Eq. (3.17).

Proof of Eq. (3.16). Let C =
∫
X
H(p(x), 1−p(x))dS1[0,1)

µ(x). Then C = H(y1|y0).
The Markov chain property implies that

C = H(yn|yn−1) = H(yn|yn−1, . . . , y0) = H(bn(s)|bn−1(s), . . . , b1(s), y0).

Hence

H(bn(s), bn−1(s), . . . , b1(s)|y0) =
n∑

m=1

H(bm(s)|bm−1(s), . . . , b1(s), y0) = nC.

(3.25)

Denote by τn = {[m2−n, (m + 1)2−n) : m = 0, . . . , 2n − 1} the partition of [0, 1).
Rewriting Eq. (3.25) using Eq. (3.21), we obtain∫

X

H µu
y0

|[0,1)
µu
y0

([0,1))

(τn) dS1[0,1)
µ(y0) = nC.(3.26)

It follows from Lemma 3.13 below and the Dominated Convergence Theorem that
C = dimu(µ) log 2. □

Lemma 3.13. For µ-almost-all x ∈ X, and for all t ∈ R such that µux([t, t+1]) ̸= 0,

denote Mx,t = (x→ x− t)∗
µu
x|[t,t+1]

µu
x([t,t+1]) . Then 1

nH(Mx,y, τn)
n→∞−−−−→ dimu(µ) log 2.

This lemma will follow from the following Lemma. Let

τ̃n = {[m2−n, (m+ 1)2−n) : m ∈ Z},
denote the partition of R. For every s ∈ R denote by τ̃m(s) the unique partition
element in τ̃m containing s.

Claim 3.14. Let ν be a locally finite measure on R satisfying that for ν-almost-all
s ∈ R,

1

t
log ν([s− et, s+ et])

t→∞−−−→ ∆.(3.27)
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Define the function un : R → R by un(s) = − 1
n log ν(τ̃n(s)). Then un

m→∞−−−−→
∆ log 2 locally in L1(R, ν). That is, for every finite interval I ⊆ R,∫

I

|un(s)−∆ log 2|dν(s) n→∞−−−−→ 0.

Proof of Lemma 3.13 using Claim 3.14. Let

Xgood,0 =

{
x ∈ X : −1

t
logµux([−e−t, e−t])

t→∞−−−→ dimu(µ)

}
.

As mensioned in Definition 3.7, µ(Xgood,0) = 1. Let

Xgood,1 =
{
x ∈ X :

for µu
x-almost all s∈R

we have u(s)x∈Xgood,0

}
.

This set is u-invariant by Eq. (3.1). We will now show that µ(Xgood,1) = 1. Let
f : R→ R be a positive integrable function with

∫
R fds = 1.

0 = µ(Xc
good,0)

(3.5)
=

∫
X

∫
R f(s0)1u(s0)y∈Xc

good,0
dµuy(s0)

µuy(f)
dSfµ(y)

=

∫
X

∫
R

∫
R f(s0)1u(s0)u(s1)x∈Xc

good,0
dµuu(s1)x(s0)

µu
u(s1)x

(f)
f(−s1)ds1dµ(x)

Thus, the positivity of f implies that for µ×mR-almost all x, s1 ∈ X × R,

µuu(s1)x({s0 ∈ R : u(s0)u(s1)x ∈ Xc
good,0}) = 0.(3.28)

By Eq. (3.1), Eq. (3.28) is independent of s1. Therefore, for µ-almost-all x ∈ X
we have Eq. (3.28) with s1 = 0, which is equivalent to x ∈ Xgood,1. Hence,
µ(Xgood,1) = 1.

By Eq. (3.1), for every x ∈ Xgood,1 the measure µux satisfies the condition of
Claim 3.14. This conclusion implies the desired result.

□

Proof of Claim 3.14. We will first show that it is enough to prove this claim under
some simplifying assertions. It is sufficient to prove the convergence for intervals
I = (a, a + 1) with a ∈ 1/2Z. Then we may restrict ν to I, while preserving the
property for ν-almost all s ∈ I. Translating ν, we may assume that ν is supported
on (0, 1). Normalizing ν to a probability measure does not change the result as

well. We may now prove that un
m→∞−−−−→ ∆ log 2 in L1(R, ν), under the assumption

that ν is a probability measure on (0, 1).
Let ε > 0 be small numbers and n an integer going to ∞. By Eq. (3.27), for all

sufficiently large n there is S ⊆ (0, 1) of volume ν(S) > 1− ε such that for all s ∈ S
and for all t ≥ n log 2, ∣∣∣∣−1

t
log ν([s− e−t, s+ e−t])−∆

∣∣∣∣ < ε.

We will next show that
∫ 1

0
(un −∆ log 2)−dν

n→∞−−−−→ 0, where for every x ∈ R we

have x+ = max(x, 0) and x− = (−x)+, so that x = x+ − x−. Let

J− = {s ∈ [0, 1) : un(s) < ∆ log 2− ε}.
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Then J− is a union on τn elements. Note that J− ∩ S = ∅. Indeed, if s ∈ J− ∩ S,
then we get the following contradiction:

∆ log 2− ε > un(s) = −
1

n
log ν(τn(s))

≥ − 1

n
log ν([x+ e−n log 2, x− e−n log 2]) ≥ (∆− ε) log 2.

Consequently, ν(J−) ≤ 1− ν(S) < ε. This implies that∫ 1

0

(un −∆ log 2)−dν <

∫
J−

(un −∆ log 2)−dν +

∫
Jc
−

(un −∆ log 2)−dν

un≥0
< ∆ν(J−) log 2 + ε(1− ν(J−)) ≤ ε(∆ log 2 + 1− ν(J−)).

Taking ε→ 0 implies that
∫ 1

0
(un −∆ log 2)−dν

n→∞−−−−→ 0.

We will now show that
∫ 1

0
(un −∆ log 2)+dν

n→∞−−−−→ 0. Define

J ′
+ =

⋃
{I ∈ τn : ∃I ′ = I ± 2−n with 3εν(I ′) > ν(I)},

which satisfies

ν(J ′
+) =

∑
I

ν(I) < 3ε
∑
I,I′

ν(I ′) ≤ 6ε,(3.29)

where the sums are over I, I ′ as in the definition on J ′
+. The rightmost inequality

of Eq. (3.29) holds because each I0 ∈ τn can appear as I ′ at most twice. Let

A = {I ∈ τn : I ⊆ J ′
+ ∪ Sc}, J+ =

⋃
I∈A

I.

We can estimate

ζ := ν (J+) ≤ ν(J ′
+) + ν(Sc) ≤ 6ε+ ε.

Thus∫ 1

0

(un −∆ log 2)+dν =

∫
J+

(un −∆ log 2)+dν +

∫
Jc
+

(un −∆ log 2)+dν

=
∑
I∈A

ν(I)

(
− 1

n
log ν(I)−∆

)+

+
∑

I∈τn\A

ν(I)

(
− 1

n
log ν(I)−∆

)+

.(3.30)

To bound the sum over I ∈ A∑
I∈A

ν(I)

(
− 1

n
log ν(I)−∆

)+

≤ 1

n

∑
I∈A

−ν(I) log ν(I)

= −ζ log ζ + ζ

n

∑
I∈A

−ν(I)
ζ

log
ν(I)

ζ
≤ −ζ log ζ + ζ log 2.(3.31)

The last inequality holds since (ν(I)ζ )I∈A is a probability vector on at most 2n and

hence the maximal entropy it can have is n log 2. For the other summand, let
I ∈ τn \ A. Since I /∈ A we deduce that I ∩ J ′

+ = ∅ and I ∩ S ̸= ∅. Thus there is
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s ∈ I ∩ S with s /∈ J ′
+.

− 1

n
log ν(I) = − 1

n
log ν(τn(s))

s/∈J′
+

≤ − 1

n
log(εν(τn(s) ∪ (τn(s)− 2−n) ∪ (τn(s) + 2−n)))

≤ − 1

n
log(εν([s− 2−n, s+ 2−n]))

s∈S
≤ − 1

n
(log ε− n(∆ + ε)) = ∆+ ε− log ε

n

(3.32)

Combining Eqs. (3.30), (3.31), (3.32) we deduce that for all n sufficiently large∫ 1

0

(un −∆ log 2)+dν ≤ −7ε log(7ε) + 7ε log 2 + ε− log ε

n
.

Taking ε→ 0 implies that
∫ 1

0
(un −∆ log 2)+dν

n→∞−−−−→ 0. The desired follows. □

Proof of Theorem 3.9. For every k = 0, 1, . . ., let pk, νkx as in Lemma 3.10 con-
structed for µk. Let f ∈ Cc(X) be a continuous compactly supported function.
Then

S1[0,1)
µk(f)− 1

2

(
a(log 2).S1[0,1)

µk
)
(f)− 1

2

(
a(log 2).S1[0,1)

µk
)
(f)

=

∫
X

((
p(x)− 1

2

)
f(a(log 2).x) +

(
1− p(x)− 1

2

)
f(u(1)a(log 2).x)

)
dS1[0,1)

µk(x)

≤ ∥f∥∞
∫
X

∣∣∣∣p(x)− 1

2

∣∣∣∣dµk(x)
k→∞−−−−→ 0

The convergence follows from Eq. (3.16). Hence we get an equality of the weak-∗
limits

S1[0,1)
µ∞ =

1

2
a(log 2).S1[0,1)

µ∞ +
1

2
a(log 2).S1[0,1)

µ∞.(3.33)

inductively applying (3.33) to itself, and using a(log 2)u(1) = u(2)a(log 2), we get

S1[0,1)
µ∞ =

1

2n

2n−1∑
i=0

u(i)a(n log 2).S1[0,1)
µ∞.

Hence (u(1)S1[0,1)
µ∞ − S1[0,1)

µ∞)(f) ≤ 2
2n ∥f∥∞ for every f ∈ Cc(X). Taking

n → ∞ we deduce that S1[0,1)
µ∞ is u(1) invariant, and hence u(k)-invariant for

every k ∈ Z. Note that a(−n log 2)S1[0,1)
µ∞ is a(−n log 2)u(k)a(n log 2) = u(2−nk)-

invariant, for every k ∈ Z. On the other hand,

a(−n log 2)S1[0,1)
µ∞ =

∫ 1

0

a(−n log 2)u(−s).µ∞ds =

∫ 1

0

u(−2−ns)a(−n log 2).µ∞ds

=

∫ 1

0

u(−2−ns).µ∞ds
weak-∗−−−−→
n→∞

µ∞.

where the last equality follows from the a-invariance of µ∞. Since µ∞ is a weak-∗
limit of measures with more and more invariance, we obtain that µ∞ is invariant
to u (

⋃∞
n=0 2

−nZ), and hence to the entire u-action. □
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4. Proof of Theorem 1.2

In this section, we will prove Theorem 1.2, conditioned on Lemma 4.7. The
proof is an adaptation of [1], and is composed of four components, which we will
enumerate from last to first. The last component is [1, Thm. 1.6], whose outcome
contradicts the nonarithmeticity assumption we assumed. The third is a reduction
of our problem to [1, Thm. 1.6]. We will do this similarly to [1, §3]. However, two
new ergodic components will be needed for this part, namely, Theorem 3.9, and
Lemma 4.7. This section will focus on the reduction to [1, Thm. 1.6].

4.1. Notation and preliminaries.

Theorem 4.1 (Properties of Bowen-Margulis-Sullivan measures). Let Λ < SL2(R)
be a finitely generated discrete group. Then there is an a(t)-invariant probability
measure of maximal entropy, µΛ on SL2(R)/Λ with

hµ(a(t)) = |t|δ(Γ).

See for instance [36]. To bound from below the critical exponent we will use the
following claim:

Theorem 4.2 (Approximation of critical exponent). For every 0.5 > ε > 0, there
is Rε > 0 such that the following holds. Let Λ < SL2(R) be a discrete torsion-free
subgroup such that δ(Γ) ≤ 1− ε for some ε > 0 and Λ∩BSL2(R)(e

−0.1εR) = {I} for
some R ≥ Rε. Then

#Λ ∩BSL2(R)(R) ≤ e
(1−0.1ε)R,(4.1)

mSL2(R)

({
h ∈ BSL2(R)(R) : #{γ ∈ Γ : γh ∈ BSL2(R)(R)} > e(1−0.1ε)R

})
(4.2)

< e(1−ε/2)R.

To use this, we need to replace Γ with a torsion-free subgroup of finite index.
To do so we need two claims. The first is a special case of [29, Cor. 6.13], and the
second will be proved in the appendix.

Claim 4.3. Every finitely generated subgroup in a Λ < G has a torsion-free sub-
group of finite index.

Claim 4.4. For every two subgroups Λ1 < Λ2 < SL2(R) with [Λ2 : Λ1] < ∞, we
have δ(Λ1) = δ(Λ2).

4.2. Beginning of the proof. Recall that for every g ∈ G we define Γg = gΓg−1∩
SL2(R). We first use Claim 4.3 to replace Γ with a finite index subgroup which
is also torsion-free. The critical exponents of the subgroups Γg do not change by
Claim 4.4, hence we may assume from now on that Γ is torsion-free, and apply
Theorem 4.2 to its subgroups.

The contrary Theorem 1.2 is the existence of a sequence (gk)
∞
k=1 ⊂ G such that

δ(Γgk)
k→∞−−−−→ 1 but Γgk is never a lattice. Note that if there is an element g0 ∈ G

such that δ(Γg0) = 1 but Γg is not a lattice, the sequence (gk)
∞
k=1 may be the

constant sequence g0. We assume to the contrary that such a sequence exists.

Claim 4.5. For every k > k0 there is a finitely generate subgroup Γk < Γgk such

that δ(Γk)
k→∞−−−−→ 1. In addition, Γk

zar
= SL2(R).
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Proof. For each k ≥ 0 by the definition of critical exponent, we can find arbitrarily
large Rk > 0 so that

#BSL2(R)(Rk) ∩ Γgk > eRk(δ(Γk)−1/k).

Let Γk =
〈
BSL2(R)(Rk) ∩ Γgk

〉
. We now choose Rk sufficiently large to apply The-

orem 4.2 and deduce that

δ(Γk) > 1− 10(1− δ(Γk))− 10/k.

Thus δ(Γk)
k→∞−−−−→ 1. The subgroups (Γk)

∞
k=1 are finitely generated by their defini-

tion. For every k > 0 sufficiently large, δ(Γk) > 0 and hence Γk
zar

= SL2(R). □

Let µ′
k be the Bowen-Margulis-Sullivan probability measure on SL2(R)/Γk. It

is a(t) invariant. Define rk : SL2(R)/Γk → G/Γ as the map sending πΓk
(x) 7→

πΓ(xgk). Then define µk = (rk)∗(µ
′
k). We wish to show that µk

k→∞−−−−→ mG/Γ. By

Theorem 4.1, h(µ′
k) = δ(Γk)

k→∞−−−−→ 1. The following is a simple fact on the entropy
of ergodic systems:

Claim 4.6. Let (X1, ν1, T ), (X2, ν2, T2) invertible ergodic systems and f : X1 → X2

a factor map with countable fibers, such that f∗ν1 = ν2 and f ◦ T1 = T2 ◦ f . Then
hν1

(T1) = hν2
(T2).

We will use it as follows: factor rk : SL2(R)/Γk → G/Γ as

rk : SL2(R)/Γk
r′k−→ SL2(R)/Γgk

r′′k−→ G/Γ

Note that r′′k is one-to-one and r′k has countable fibers. Hence

1
k→∞←−−−− h(µ′

k)
4.6
= h((r′k)∗µ

′
k)

3.8
= dimu((r′k)∗µ

′
k)

3.5
= dimu((r′′k)∗(r

′
k)∗µ

′
k) = dimu(µk).

We introduce now the geometric nondegeneracy lemma, which excludes degen-
erate limits to the sequence µk. We will prove it in Section 5.

Lemma 4.7 (Geometric nondegeneracy). Let µk be a sequence of a(t)-invariant

probability measures on G/Γ such that dimu µk
k→∞−−−−→ 1. Then µk has no escape of

mass, that is,
sup

K⊂G/Γ
compact

lim inf
k→∞

µk(K) = 1.

In addition, there is no nontrivial convergence to a periodic SL2(R)-orbit of G/Γ. In
other words, let g ∈ G such that Γg is a lattice. The SL2(R)-orbit SL2(R).πΓ(g) ⊂
G/Γ is thus a closed set. Suppose that µk(SL2(R).πΓ(g)) = 0 for every k. Then

sup
K⊂(G/Γ)\SL2(R).πΓ(g)

compact

lim inf
k→∞

µk(K) = 1.

Consequently, restricting to a subsequence of k we may assume that µk
k→∞−−−−→

µ∞, where µ∞ is a probability measure. By Theorem 3.9, µ∞ is u-invariant. By
Theorem 3.9 applied for the negative time a(t) action, together with the transpose
inverse action of B on G/Γ, we obtain that µ∞ is ut-invariant. Hence µ∞ is SL2(R)-
invariant. Let µ∞ =

∫
X
µx
∞dµ∞(x) be the SL2(R)-ergodic decomposition. Then

by Lemma 4.7, we deduce that µ∞(SL2(R).πΓ(g)) = 0 for every periodic orbit
SL2(R).πΓ(g). Thus µx

∞(SL2(R).πΓ(g)) = 0 for µ∞-almost every x ∈ G/Γ. By
Ratner’s Measure Classification Theorem [32], µx

∞ is algebraic, i.e., there exists a
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connected intermediate group SL2(R) ≤ Lx ≤ G such that µx
∞ is the Haar measure

on a periodic Lx-orbit. However, we showed that Lx ̸= SL2(R) almost surely. One
can see that there are no nontrivial connected intermediate subgroups between
SL2(R) and G, and hence µx

∞ is the constant measure mG/Γ, which implies that
µ∞ = mG/Γ.

4.3. Completion of the proof using rigidity - lifting the measures to a

projective bundle. The weak-∗ convergence µk
k→∞−−−−→ mG/Γ is what we need to

initiate the reduction to [1], with the measures µk supported on the dense orbits
SL2(R).πΓ(gk), in place of the infinitely many periodic orbits. The proof goes the
same, except for one point, where we need to prove some extra invariance. We will
recite some details up to that point from [1, §2].

Definition 4.8 (Witness of the non-arithmeticity). Let ℓ be the field generated
by traces of the adjoint representations of Γ-elements. Here G is thought of as
a real algebraic group, thus ℓ ⊆ R. The field ℓ is a number field ([34], [7], [28],
[18]) contained in R. The inclusion map is a real embedding σ : ℓ → R. By [41],
there is an ℓ-algebraic group G which is an ℓ-form of the image of G under the
adjoint homomorphism such that Ad(Γ) lands in G(ℓ). In other words, there is
an isomorphism ι′ : AdG → G(R)0 such that when we consider the composition
ι = ι′ ◦ Ad : G → G(R) we have ι(Γ) ⊆ G(ℓ). Since Γ is nonarithmetic, there is a
place ν ∈ S(ℓ) such that

ιν = (G(ℓ)→ G(ℓν)) ◦ ι|Γ : Γ→ G(ℓν)

does not factor continuously through Γ→ G, and the image ιν(Γ) does not lie in a
compact subgroup of G(ℓν).

Claim 4.9 (Construction of invariant points). Up to restricting to a subsequence
of k-s, there is an irreducible algebraic G(ℓν)-representation V independent of k
and a point Pk ∈ P(V ), for which the following holds.

(1) Consider the action Γ ↷ P(V ) induced by the homomorphism ιν composed
with the G(ℓν) action on P(V ). Then Pk is Γ1

k invariant, where Γ1
k =

g−1
k Γkgk ⊆ Γ.

(2) The representation V is in fact a representation of H(ℓν), where H is the
image of G under the adjoint representation. As such it is a faithful rep-
resentation of H(ℓν).

The proof mimics one-to-one parts of [1, Prop. 3.4], however, we recite the main
details.

Proof. For each k = 1, 2, . . . , consider Γ1
gk

= g−1
k Γgkgk = Γ ∩ g−1

k SL2(R)gk ⊆ G.

Consider now the ℓ-Zariski closure of ι(Γ1
gk
) in G. This is an ℓ-algebraic subgroup

Lk ⊆ G. The localization at σ is

Lk(R) = ι
(
g−1
k Γgkgk

zar)
= ι(g−1

k SL2(R)gk).

Thus Lk is an SL2-form over ℓ, and in particular, is three dimensional. Since
SL2(R) is not a normal subgroup of G, we deduce that Lk is not a normal subgroup
of G. Let g = Ad(G) and lk = Ad(Lk) be the algebraic adjoint representations.

The exterior product
∧3

g(ℓν) is an ℓν-algebraic representations of G(ℓν). The 3-

dimensional subspace lk(ℓν) of g(ℓν) induces a vector pk ∈
∧3

g(ℓν), well defined
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up to multiplication by scalar. Since Lk is not a normal subgroup of G, it follows
that pk is not G(ℓν)-invariant. Thus, it projects nontrivially to some nontrivial

irreducible G(ℓν) sub-representation V of
∧3

g(ℓν). Denote this projection by πV .
Restricting to a subsequence we may assume that V is constant, that is, independent
of k. The point Pk = [πV (pk)] ∈ P(V ) is Lk(ℓν) invariant. It is not G(ℓν)-invariant,
as this would imply that V is one-dimensional, but G(ℓν) is a semisimple group and
has no nontrivial one-dimensional representations. Thus one observes the first point
of the claim. The second follows from the construction, except for the faithfulness
part. It follows in the same way as in [1, Prop. 3.4]. □

Consider the right action G× P(V ) ↶ Γ by (g, P )γ = (gγ, ιν(γ
−1)P ). Consider

the P(V )-bundle G × P(V )/Γ, and the projection π̃ : G × P(V ) → G × P(V )/Γ.
Forgetting the P(V ) coordinate yields a projection ρ : G× P(V )/Γ→ G/Γ. It has
a left action by SL2(R), acting only on the G coordinate. The following claim is
analogous to the result of [1, Prop. 3.4] in our setting.

Claim 4.10. There is an SL2(R)-invariant measure µ̃ on P(V ) × G/Γ such that
ρ∗µ̃ = mG/Γ.

Proof. Consider the point Q̃k = (gk, Pk) ∈ G× P(V ), Qk = π̃(Q̃k) ∈ G× P(V )/Γ,
and the map r̃′k : SL2(R)→ G×P(V )/Γ defined by h 7→ hQk. This map is invariant
to Γk from the right, indeed,

r̃′k(hγ) = hγQk = π̃(hγgk, Pk) = π̃(hgkg
−1
k γgk, Pk)

= π̃(hgkg
−1
k γgk, ιν(g

−1
k γ−1gk)Pk) = π̃(hgk, Pk).

The fourth equality follows from the fact that Pk is g−1
k Γkgk invariant, and the last

follows from the definition of the quotient map π̃, which is the quotient by the right
Γ-action. Hence we may define r̃k : SL2(R)/Γk → G×P(V )/Γ as the descent of r̃′k.
Thus in fact we factored rk : SL2(R)/Γk → G/Γ as a composition of SL2(R)-maps,
rk = ρ ◦ r̃k. In a diagram,

SL2(R)/Γk
r̃k //

rk

''

G× P(V )/Γ

ρ

��
G/Γ

Therefore, the measure µk = (rk)∗µ
′
k on G/Γ lifts to probability measures µ̃k =

(r̃k)∗µ
′
k satisfyies that ρ∗µ̃k = µk. Similarly to µk, we obtain dimu(µ̃k)

k→∞−−−−→ 1.
Since (µk)

∞
k=1 weak-∗ converges to the probability measure mG/Γ and the fibers

of ρ are compact, we deduce that there is no escape of mass in (µ̃k)k, and hence
we may restrict to a subsequence of k-s and assume that µ̃k weak-∗ converges to
a measure µ̃, satisfying that ρ∗µ̃ = mG/Γ. By Theorem 3.9, the measure µ̃ is u-
invariant. By Theorem 3.9 applied for the negative time a(t) action, together with
the transpose inverse action of B on G/Γ, we obtain that µ̃ is ut-invariant, and
hence SL2(R)-invariant. □

The existence of such a measure µ̃ is required in [1, Thm. 1.6]. The rest of the
proof is now identical to the reduction of [1, Thms. 1.1 and 1.5.] to [1, Thm. 1.6].
[1, §3.4] implies the compatibility assumption of [1, Thm. 1.6], and hence its result
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holds, and shows that in fact ιν : Γ → G(ℓν) extends to a continuous homomor-
phism G→ G(ℓν), which contradicts the assertion made in Definition 4.8. □

5. Proof of Lemma 4.7

The proof of Lemma 4.7 employs the linearization method. Linearization is a
general technique, introduced by Dani and Margulis [10], and it uses representations
to control the distance to homogeneous subvarieties.

In Subsection 5.1 we introduce the notion of (ε;T0, T1)-additive Margulis func-
tion. In Subsection 5.2 we prove Lemma 4.7, assuming a representational descrip-
tion of certain geometric notions, and prove them in Subsections 5.3, 5.4.

Remark 5.1. The results in this section are related to Mohammadi and Oh [26,
Thm. 1.5]. In [26] the authors prove a separation result for closed SL2(R)-orbits in
geometrically finite quotients of G. To do so, Mohammadi and Oh show that the
Bowen-Margulis-Sullivan measure on one SL2(R)-orbit must be separated from the
other SL2(R)-orbit. In this section, we also prove a separation result of measures
and closed orbits. Although we allow our measures to be more general than Bowen-
Margulis-Sullivan’s measures, they are the ones in our application.

The proofs in this section and [26] share several similarities. First, the repre-
sentation framework is similar. Second, both approaches use a Markov operator,
though a different one. Third, we use a Margulis function similar to [26]; however,
their Margulis function satisfies the Margulis inequality everywhere, while ours sat-
isfies it only with high probability. The reason for this difference is how each paper
effectivizes the high dimension of the leafwise measures µux for the Bowen-Margulis-
Sullivan measures µ.

Here we use Lemma 3.10. Mohammadi and Oh [26] use a different way to

effectivize the dimension, by using a uniform bound
µu
x([−r,r])1/δ

′

rµu
x([−1,1])1/δ′

≤ p for µ-almost-

all x and for all r ∈ (0, 2]. Here δ′ is either δ or 1− 2(1− δ). For our purposes this
approach cannot be applied, since it requires a uniform bound for the p of all our
µk, which we were not able to obtain.

5.1. (ε;T0, T1)-additive Margulis function. In this section, we introduce the no-
tion on (ε;T0, T1)-additive Margulis function and prove some results on the notion.

Definition 5.2 ((ε;T0, T1)-additive Margulis function). Let (X,µ) be a measure
space, x 7→ νx a measurable map from X to measures on X such that µ =∫
X
νxdµ(x). In other words, (X,x 7→ νx) is a Markov chain and µ is a station-

ary measure. A measurable function α : X → [0,∞) is called (ε;T0, T1)-additive
Margulis function for some T1 > T0 > 0 large and ε > 0 if the following conditions
hold:

M-a) For µ-almost all x ∈ X, and for νx-almost all y ∈ X, we have α(y) ∈
α(x) + [−T1, T1].

M-b)

µ

({
x ∈ X : T1 ≤ α(x) < T0 +

∫
X

α(y)dνx(y)

})
< ε.(5.1)

Having equality to 0 in Eq. (5.1) is an additive version of the standard definition
of a Margulis function.
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Lemma 5.3. In the setting of Definition 5.2,

µ({x ∈ X : α(x) ≥ t}) ≤ 1

log⌊t/T1⌋ − 1
+
T0 + T1
T0

ε,(5.2)

for all t ≥ 3T1.

Proof. For every interval I ⊆ R denote

AI = {x ∈ X : α(x) ∈ I},

BI =

{
x ∈ AI : α(x) < T0 +

∫
X

α(y)dνx(y)

}
.

For every t1 ≥ T1, t2 > t1 + 2T1, we use the stationarity of µ and Condition
(M-a) to obtain∫

A[t1+T1,t2−T1]

α(y)dµ(y) ≤
∫
A[t1,t2]

∫
X

α(y)dνx(y)dµ(x)

≤
∫
A[t1,t2]

(α(x)− T0)dµ(x) + µ(B[t1,t2]) · (T0 + T1).

Canceling common terms yields

T0µ(A[t1,t2]) ≤ (t1 + T1)µ(A[t1,t1+T1)) + t2µ(A[t2−T1,t2]) + ε(T0 + T1).(5.3)

Replacing t2 by t2 + nT1 for some n yields different bounds

T0µ(A[t1,t2+nT1])

≤ (t1 + T1)µ(A[t1,t1+T1)) + (t2 + nT1)µ(A[t2+(n−1)T1,t2+nT1]) + ε(T0 + T1).

(5.4)

Now, note that

lim inf
n≥0

(t2 + nT1)µ(A[t2+(n−1)T1,t2+nT1]) = 0.

Otherwise we have µ(A[t2+nT1,t2+(n+1)T1]) >
δ

t2+(n+1)T1
for some δ > 0 and all n

sufficiently large, but this is a divergent series. Taking liminf over n in Eq. (5.4)
gives us

T0µ(A[t1,∞)) ≤ (t1 + T1)µ(A[t1,t1+T1)) + ε(T0 + T1).(5.5)

Let n ≥ 3 and n ≥ m ≥ 1. Substitute t1 = mT1 to Eq. (5.5) and get

T0µ(A[nT1,∞)) ≤ T0µ(A[mT1,∞)) ≤ (m+ 1)T1µ(A[mT1,(m+1)T1)) + ε(T0 + T1).

(5.6)

Now, for every n consider

δn =
n

min
m=1

(m+ 1)µ(A[mT1,(m+1)T1)).

We deduce that µ(A[mT1,(m+1)T1)) ≥
T1δn

(m+1)T0
, and by additivity,

1 ≥ µ(A[T1,(n+1)T1)) ≥
T1δn
T0

n∑
m=1

1

m+ 1
≥ T1δn

T0
(log n− 1).

Altogether, δn ≤ T0

T1(logn−1) . Plugging this to Eq. (5.6) yields

T0µ(A[nT1,∞)) ≤
T0

log n− 1
+ ε(T0 + T1).
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Hence, for all t ≥ 3T1,

µ(A[t,∞)) ≤
1

log⌊t/T1⌋ − 1
+ ε

T0 + T1
T0

,

as desired. □

Remark 5.4. The summand T0+T1

T0
ε in Eq. (5.2) is tight, and cannot be improved.

Claim 5.5. In the setting of Definition 5.2, suppose that α : X → [0,∞) is an
(ε;T0, T1)-additive Margulis function with T0 > T1/2, and β : X → [0,∞) is a
function satisfying Condition (M-a) for T1 and

µ

({
x ∈ X : α(x) + T1 ≤ β(x) < T0 +

∫
X

β(y)dνx(y)

})
< ε.(5.7)

Then γ = max(0, α−2T1, β−5T1) is a (2ε; 2T0−T1, T1)-additive Margulis function.

Proof. One can easily see that γ satisfies Condition (M-a) for T1. Let T
′
0 = 2T0−T1.

We claim that

Xγ−bad =

{
x ∈ X : T1 ≤ γ(x) < T ′

0 +

∫
X

γ(y)dνx(y)

}
,

is contained in the union of the setsXα−bad andXβ−bad estimated in Eqs. (5.1) and
(5.7) respectively. Indeed, let x ∈ Xγ−bad be generic in the sense that it satisfies
Condition (M-a) for α and β. We have

−T ′
0 <

∫
X

γ(y)dνx(y)− γ(x) =
∫
X

(γ(y)− (γ(x)− T1))dνx(y)− T1

Note that the integrand of the right-hand side is almost surely positive. Now denote
α′ = α− 2T1, β

′ = β − 5T1 and distinguish between the following three cases:

Case-a) γ(x) = α′(x) and β′(x) ≤ α′(x)− 2T1.
Case-b) γ(x) = β′(x) and α′(x) ≤ β′(x)− 2T1.
Case-c) α′(x), β′(x) > γ(x)− 2T1.

In (Case-a), for νx(y)-almost all y,

α′(y) ≥ α′(x)− T1 ≥ β′(x) + T1 ≥ β′(y).

In addition, since γ(x) = α′(x) ≥ T1, Condition (M-a) for α show that α′(y) ≥ 0,
which implies that γ(y) = α′(y). Consequently,

−T ′
0 <

∫
X

(γ(y)− (γ(x)− T1))dνx(y)− T1

=

∫
X

(α′(y)− (α′(x)− T1))dνx(y)− T1

=

∫
X

(α(y)− (α(x)− T1))dνx(y)− T1

Since α(x) = α′(x) + 2T1 = γ(x) + 2T1 ≥ T1 we have x ∈ Xα−bad.
In (Case-b), for almost all y we have γ(y) = β′(y) as in the previous case. The

inequality −T ′
0 <

∫
X
(β(y)− (β(x)− T1))dνx(y)− T1 follows as well. Since

α(x) = α′(x) + 2T1 ≤ γ(x) = β′(x) = β(x)− 5T1,

we deduce that x ∈ Xβ−bad.
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In (Case-c),

−T ′
0 <

∫
X

(γ(y)− (γ(x)− T1))dνx(y)− T1

≤
∫
X

(
(α(y)− (γ(x)− T1))+ + (β(y)− (γ(x)− T1))+

)
dνx(y)− T1

≤
∫
X

((α(y)− (α(x)− T1)) + (β(y)− (β(x)− T1))) dνx(y)− T1,

where x+ = max(x, 0) for all x ∈ R. Hence either∫
X

(α(y)− (α(x)− T1))νx(y) >
T1 − T ′

0

2
= T1 − T0(5.8)

or ∫
X

(β(y)− (β(x)− T1))νx(y) >
T1 − T ′

0

2
= T1 − T0(5.9)

If Eq. (5.8) holds, x ∈ Xα−bad. Indeed, to show that α(x) ≥ T1, we use

α(x) = α′(x) + 2T1 ≥ γ(x) ≥ T1.
If Eq. (5.9) holds, x ∈ Xβ−bad. Indeed, to show that β(x) ≥ T1 + α(x), we use

β(x) = β′(x) + 5T1 ≥ γ(x) + 3T1 ≥ α′(x) + 3T1 = α(x) + T1.

Consequently, Xγ−bad ⊆ Xα−bad ∪Xβ−bad, and hence µ(Xγ−bad) ≤ 2ε. □

5.2. Proof assuming representational description. The proof of Lemma 4.7
will go as follows: given a closed SL2(R)-orbit S we will find a height function on its
complement (G/Γ)\S which measures both how close a point is to S and how deep
it is in the cusp. Then we show that it is an (ε;T0, T1)-additive Margulis function
with respect to the leafwise Markov chain.

We will first describe representation-theoretic ways to view the cusps of G/Γ and
with the periodic SL2(R)-periodic orbits in it. Note that the normalizer of SL2(R)
in G is an index 2 extension SL2(R)◁N(SL2(R)) < G, and more explicitly,

N(SL2(R)) = SL2(R) ⊔ {ih : h ∈M2×2(R) with deth = −1}.
Any periodic orbit S = SL2(R).πΓ(gS) is contained in the periodic N(SL2(R))-orbit
S̄ = N(SL2(R))πΓ(gS). Let CuspsΓ denote the set of cusps of G/Γ.

Lemma 5.6 (Description of the cusps of G/Γ using representations). There exists
a 2 dimensional complex representation V of G equipped with a norm ∥ − ∥, and
a Γ-invariant subset VCuspsΓ ⊂ V such that for every g ∈ G all the vectors in
g.VCuspsΓ ∩ {v ∈ V : ∥v∥ < 1} has the same length. This implies that the function
αCuspsΓ : G→ [0,∞) defined by

αCuspsΓ =

{
− log ∥g.v∥, if ∥g.v∥ < 1 for some v ∈ VCuspsΓ ,

0, otherwise,

is well-defined. Moreover, we claim that αCuspsΓ is continuous, right Γ-invariant,

and descends to a proper map αCuspsΓ |G/Γ : G/Γ→ [0,∞), that is, αCuspsΓ |
−1
G/Γ([0, T ]) =

α−1
CuspsΓ

([0, T ])/Γ is compact for every T > 0.

For the rest of the paper, we will use αCuspsΓ both as a function on G and G/Γ.
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Remark 5.7. For every v ∈ VCuspsΓ the set {πΓ(g) : ∥g.v∥ < 1} is a cusp neighbor-
hood, and πΓ(g) gets deeper in the cups the smaller ∥g.v∥ is.

Lemma 5.8 (Description of N(SL2(R))-periodic orbits using representations).
There exists a 4-dimensional real representation W equipped with norms ∥ − ∥,
such that the following happen: There is a vector w0 ∈ W such that such that
SL2(R) = stabG(w0), and N(SL2(R)) = stabG({±w0}). Let W/w0 = W/Rw0

∼=
w⊥

0 be the quotient space. It is an irreducible SL2(R)-representation (equivalent to
Sym2 of the standard representation). Let πw0

: W → W/w0, be the standard pro-
jection. Let S̄ = N(SL2(R))πΓ(gS̄) be a periodic N(SL2(R))-orbit, wS̄ = g−1

S̄
.w0 be

a vector which is stabilized by g−1
S̄
N(SL2(R))gS̄ up to sign and WS̄ = Γ.wS̄. Define

αS̄ : G→ R ⊔ {∞} by
αS̄(g) = max

w∈WS̄

− log ∥πw0(g.w)∥.(5.10)

Then

(1) αS̄ is continuous and attains ∞ only on π−1
Γ (S̄).

(2) There is CS̄ > 0 such if αS̄(g) > 2αCuspsΓ(g)+CS̄ for some g ∈ G then for
every w ∈WS̄ exactly one of the following holds
• − log ∥πw0

(g.w)∥ = αS̄(g),
• − log ∥πw0

(g.w)∥ < 2αCuspsΓ(g) + CS̄.

We postpone these lemmas’ proofs to Subsections 5.3 and 5.4. Now that we
have the height function, we recall that Lemma 3.10 gives us a the leafwise Markov
chain on the space X with stationary measure S1[0,1)

µk and a transformation law

x 7→ ν
(k)
x given by

ν(k)x =

{
a(log 2)x with probability p(k)(x),

u(1)a(log 2)y with probability 1− p(k)(x).
(5.11)

where p(k) : X → [0, 1] satisfies∫
X

H(p(k)(x), 1− p(k)(x))dS1[0,1)
µk(x) = dimu(µk) log 2.

Fix a positive integer ℓ to be specified later.

Definition 5.9 (Iteration of the leafwise Markov chain x 7→ ν
(k)
x ). The ℓ iteration

of the Markov chain x 7→ ν
(k)
x is defined by

x0 7→ ν(k,ℓ)x0
=

∫
X

∫
X

· · ·
∫
X

δxℓ
dν(k)xℓ−1

(xℓ)dν
(k)
xℓ−2

(xℓ−1) . . . dν
(k)
x2

(x1)dν
(k)
x1

(x0).

In other words, given x0 we sample x1 via ν
(k)
x0 , then sample x2 via ν

(k)
x1 , and

so on, until we sample xℓ via ν
(k)
xℓ−1 , and ν

(k,ℓ)
x0 = Law(xℓ|x0). Explicitly, xi =

u(bi)a(log 2)xi−1 for all i = 1, . . . , ℓ where

bi =

{
0 with probability p(k)(xi−1),

1 with probability 1− p(k)(xi−1),

chosen independently of b1, . . . , bi−1. Altogether,

xℓ = u(bℓ)a(log 2)u(bℓ−1)a(log 2) · · ·u(b1)a(log 2)x0 = u

(
ℓ∑

i=1

2ℓ−ibi

)
a(n log 2)x0.
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Let b =
∑ℓ

i=1 2
ℓ−ibi and denote p

(k,ℓ)
j (x0) := P(b = j|x) for every j = 0, 1, . . . , 2ℓ−1

so that

xℓ =
{
u(j)a(ℓ log 2)x0 with probability p

(k,ℓ)
i (x0) for each i = 0, . . . , 2ℓ−1.

We have seen in Eq. (3.25) that∫
X

H
(
p
(k,ℓ)
0 (x0), p

(k,ℓ)
1 (x0), . . . , p

(k,ℓ)

2ℓ−1
(x0)

)
d(S1[0,1)

µk)(x0)

= H(xℓ|x0) = ℓdimu µk log 2.

(5.12)

Since the map q1, . . . , qn 7→ H(q1, . . . , qn) obtain its maximal value only atH(1/n, . . . , 1/n) =
log n, we obtain the following observation.

Observation 5.10. For every δ > 0 and n > 0 there is ε > 0 so that the following
holds. Suppose that

∫
Z
H(p1(z), p2(z), . . . , pn(z))dν ≥ (1− ε) log n, where (Z, ν) is

a probability space and p1, . . . , pn : Z → [0, 1] has p1 + · · ·+ pn ≡ 1. Then

ν({z ∈ Z : |pi(z)−
1

n
| < δ, ∀i = 1, . . . , n}) > 1− δ.(5.13)

Let δ > 0 to be determined later. By Observation 5.10 and Eq. (5.12), for all k

large enough as a function of ℓ and δ we have S1[0,1)
µk(X

(k,ℓ,δ)
good ) > 1− δ, where

X
(k,ℓ,δ)
good = {y ∈ X : |p(k,ℓ)i (y)− 2−ℓ| < δ for all i = 0, . . . , 2ℓ − 1}.

We will now recall the following property of SL2(R)-representations.

Claim 5.11. For every nontrivial irreducible real or complex representation W of
SL2(R) with highest weight n equipped with a norm ∥ − ∥, there is CW > 0 such
that for every m ≥ 0 and for every w ∈W \ {0},

1

2m

2m−1∑
i=0

log ∥u(i)a(m log 2).w∥ − log ∥w∥ ≥ nm log 2

2
− CW .

Proof. Note that there is C0 > 0 such that for all s ∈ [−1, 1], w ∈ W we have
|log ∥u(s).w∥ − log ∥w∥| ≤ C0. Let χW denote the maximal weight character onW .
This is a character satisfying χW (a(t).w) = ent/2χW (w). Then

1

2m

2m−1∑
i=0

log ∥u(i)a(m log 2).w∥ ≥ 1

2m

∫ 2m

0

log ∥u(s)a(m log 2).w∥ds− C0

=

∫ 1

0

log ∥a(m log 2)u(s).w∥ds− C0 ≥
∫ 1

0

log |χW (a(m log 2)u(s).w)|ds− C0

=
mn

2
log 2 +

∫ 1

0

log |χW (u(s).w)|ds− C0

(5.14)

Now consider the function

f :W \ {0} → R ∪ {−∞}, f(w) =

∫ 1

0

log |χW (u(s).w)|ds.

It satisfies ∀α ∈ R×, f(αw) = log |α| + f(w), hence is determined by its values on
the unit sphere. One can see that it is continuous. We wish to show that it attains
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real values, (in contrast to −∞). For that, we need to have that for every w ̸= 0,
the polynomial s 7→ χW (u(s).w) does not vanish. This is a standard result on SL2-
representations, which follows from their classification as homogeneous polynomials
of degree n. Hence, f has a lower bound on the unit sphere, that is, for some C1 ∈ R,
for all w ∈W with ∥w∥ = 1 we have f(w) ≥ −C1. Hence

∀w ∈W \ 0, f(w) ≥ −C1 + log ∥w∥.

Thus we can bound the right-hand side of (5.14) by

mn

2
log 2 +

∫ 1

0

log |χW (u(s).w)|ds− C0 ≥
mn

2
log 2− C1 + log ∥w∥ − C0.

The desired inequality follows for CW = C0 + C1.
□

We now have a representation-theoretic tool to construct our (ε;T0, T1)-additive
Margulis functions.

Claim 5.12. Let k, ℓ ≥ 1 and consider the Markov chain (G/Γ, S1[0,1)
µk, ν

(k,ℓ)
y ).

The functions 2αCuspsΓ and αS̄ satisfy Condition (M-a) with T1 = ℓ log 2 + C0

respectively for some C0 > 0.

Proof. There is C0 > 0 such that

• for all v ∈ V \ {0} and s ∈ [−1, 1] we have
∣∣∣log ∥u(s).v∥

∥v∥

∣∣∣ < C0/2,

• for all w ∈W \ {0} and s ∈ [−1, 1] we have
∣∣∣log ∥u(s).w∥

∥w∥

∣∣∣ < C0.

Note that for all t ∈ R,∣∣∣∣log ∥a(t).v∥∥v∥

∣∣∣∣ ≤ t/2 for all v ∈ V \ {0},∣∣∣∣log ∥a(t).w∥∥w∥

∣∣∣∣ ≤ t for all w ∈W \ {0}.

The desired follows from the definition of the functions and the Markov chain. □

Claim 5.13. In the setting of Claim 5.12, there exists δ0 such that for all δ ∈ (0, δ0)
the function 2αCuspsΓ is (δ;T0, T1)-additive Margulis function, for

T1 = ℓ log 2 + C0 + 1, T0 = ℓ log 2− 2CV − 2ℓδT1,

provided that T0 > 0 and S1[0,1)
µk(X

(k,ℓ,δ)
good ) > 1 − δ. Here C0 is as in Claim 5.12

and CV as in Claim 5.11.

Proof. Let T1 = ℓ log 2 + C0 + 1. Let x = πΓ(g) ∈ X(k,ℓ,δ)
good with 2αCuspsΓ(x) ≥ T1.

In particular, αCuspsΓ(x) = − log ∥g.v∥ for some v ∈ VCuspsΓ . As in the proof

of Claim 5.12, we deduce that for every y = u(i)a(ℓ log 2)x ∈ supp (ν
(k,ℓ)
x ) for

i = 0, 1, . . . , 2ℓ−1,

−2 log ∥u(i)a(ℓ log 2)g.v∥ > −2 log ∥g.v∥ − T1 = 2αCuspsΓ(x)− T1 ≥ 0.
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Thus, by its definition, αCuspsΓ(y) = − log ∥u(i)a(ℓ log 2)g.v∥. We estimate∫
X

2αCuspsΓ(y)dν
(k,ℓ)
x (y)

= 2αCuspsΓ(x) + 2

2ℓ−1∑
i=0

p
(k,ℓ)
i (x)(αCuspsΓ(u(i)a(ℓ log 2)y)− αCuspsΓ(x))

x∈X
(k,ℓ,δ)
good

≤ 2αCuspsΓ(x) + 2

2ℓ−1∑
i=0

2−ℓ(αCuspsΓ(u(i)a(ℓ log 2)y)− αCuspsΓ(x)) + 2ℓδT1

= 2αCuspsΓ(x)− 2

2ℓ−1∑
i=0

2−ℓ log
∥u(i)a(ℓ log 2)g.v∥

∥g.v∥
+ 2ℓδT1

5.11
≤ 2αCuspsΓ(x)− ℓ log 2 + 2CV + 2ℓδT1.

Consequently, 2αCuspsΓ is a (δ;T0, T1)-additive Margulis function, with T0 = ℓ log 2−
2CV − 2ℓδT1. □

Claim 5.14. In the setting of Claim 5.12, there exists ℓ ≥ 1 large and δ0 > 0 small
such that for all δ ∈ (0, δ0) the function max(0, αCuspsΓ − 2T1 −CS̄ , αS̄ − 6T1) is a
(2δ;T ′

0, T1)-additive Margulis function, for some T ′
0 < T1, provided that k ≥ kδ for

some kδ depending on δ.

Proof. Let x = πΓ(g) ∈ X
(k,ℓ,δ)
good with αS̄(x) ≥ 2T1 + 2αCuspsΓ(x) + CS̄ . Then

αS̄(x) = − log ∥πw0(g.w)∥ for some w ∈ WS̄ . As in the proof of Claim 5.12, we
deduce that for every y = u(i)a(ℓ log 2)x for i = 0, 1, . . . , 2ℓ−1,

− log ∥πw0
(u(i)a(ℓ log 2)g.w)∥ > − log ∥πw0

(g.w)∥ − T1 = αS̄(x)− T1
≥ 2αCuspsΓ(x) + T1 + CS̄ > 2αCuspsΓ(y) + CS̄ .

Hence, Lemma 5.8 point 2 implies that αS̄(y) = − log ∥πw0(u(i)a(ℓ log 2)g.w)∥. As
in the proof of Claim 5.14, we deduce that∫

X

αS̄(y)dν
(k,ℓ)
x (y) ≤ αS̄(x)− ℓ log 2 + CW + 2ℓδT1.

Let T ′′
0 = min(ℓ log 2 − CW − 2ℓδT1, ℓ log 2 − 2CV − 2ℓδT1). Let ℓ be sufficiently

large so that

min(ℓ log 2− CW , ℓ log 2− 2CV ) >
T1
2

=
ℓ log 2 + C0 + 1

2
.

For δ > 0 sufficiently small, T ′′
0 > T1/2. Thus, applying Claim 5.5 for α = αCusps,

β = max(αS̄(x) − T1 − CS̄ , 0), T
′′
0 and T1 we deduce that max(0, αCuspsΓ − 2T1 −

CS̄ , αS̄ − 6T1) is a (2δ; 2T ′′
0 − T1, T1)-additive Margulis function, as desired. □

Claim 5.14 and Lemma 5.3 imply that

lim
k→∞

µk(α
−1
CuspsΓ,S̄

([0, t])) ≥ 1− 1

log⌊t/T1⌋ − 1
.

Since αCuspsΓ,S̄
is continuous and proper on (G/Γ)\S, and attains values in [0,∞),

we deduce the result of 4.7. □
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5.3. Proof of Lemma 5.6. We will prove a more general version of Lemma 5.6,
which works also for SL2(R), and later use it to understand periodic SL2(R)-orbits.

Definition 5.15 (General setting). Let F = R or C and H = SL2(F ). UF =

{uF (s) : s ∈ F} where uF (s) =
(
1 s
0 1

)
. Let a(t) = diag(et/2, e−t/2) for t ∈ R, and

KH be either SO(2) or SU(2) the maximal compact subgroup in H.

We will use this setting for the rest of the subsection.

Claim 5.16 (QR Decomposition). Any element g ∈ H can be represented uniquely
and continuously as g = ka(t)uF (s) for t ∈ R,k ∈ KH , and s ∈ F where F , H,
KH , and uF are as in Claim 5.19.

Definition 5.17. Let B∗
F =

{(
a b
0 a−1

)
∈ SL2(F ) : |a| = 1

}
. Let M < B∗

F be a

lattice, that is, a discrete subgroup such that B∗
F /M has finite volume. For every

such lattice, the intersection M ∩UF is a lattice in UF and hence of finite index in
M .

Let H≥τ = {ka(−t)uF (s) : k ∈ KH , t ≥ τ, s ∈ F} for every τ ∈ R∪{−∞}. Then
H≥τ is preserved by the right B∗

F action, and for every lattice M < B∗
F denote

DM,τ = H≥τ/M . Explicit computations show that DM,τ has finite volume via the
Haar measure on H.

Claim 5.19 is a reformulation of [38, Prop. 5.11.1.] when we replace a ho-
mogeneous space H/Γ by the corresponding hyperbolic manifold Hk/Γ, where

k =

{
2, if F = R,
3, if F = C.

It states that lattice quotients H/Γ are composed of a com-

pact part as well as disjoint sets of the form DM,0, and will help us prove this both
Lemmals 5.6 and 5.8.

Definition 5.18 (Quotient product). For every two discrete subgroupM1,M2 < H
and an element h0 ∈ H such that h−1

0 M1h0 ⊆ M2, the map h 7→ hh0 descends to
a map

x 7→ x • h0 : H/M1 → H/M2.

Sometimes we will use this notation to denote the restriction of −• h0 into subsets
of H/M1. To avoid confusion, whenever we use this notation, we will specify the
source and target of − • h0.

Claim 5.19 (Siegel domains). Let H = SL2(F ), with F = R,C. Let Γ be a lattice
in H. Then there is a finite set CuspsΓ parameterizing the cusps of H/Γ, that
satisfies the following properties:

S-1) For every c ∈ CuspsΓ there is a chosen element gc ∈ H.
S-2) For every c ∈ CuspsΓ the group Mc = B∗

F ∩ gcΓg−1
c is a lattice in B∗

F and
satisfying g−1

c Mcgc < Γ.
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S-3) Let Dc,τ = DMc,τ for every τ ∈ R. The map

− • gc : Dc,−∞ = H/Mc → H/Γ,(5.15)

restricts to a bijection on the image (− • gc)|Dc,0
: Dc,0

∼−→ Dc,0 • gc, and
the map (− • gc)|Dc,0

: Dc,0 → H/Γ is proper.
S-4) The images Dc,0 • gc for c ∈ CuspsΓ are disjoint, and the complement

(H/Γ) \
⋃

c∈CuspsΓ
Dc,0 • gc is precompact.

Definition 5.20. Consider the representation VF = F 2. Denote its standard basis
by e1, e2. It has the standard Euclidean norm ∥ − ∥. Note that H≥τ = {h ∈ H :

∥he1∥ < e−τ/2}. Let αSiegel : H → R be αSiegel(h) = − log ∥he1∥ satisfying that
whenever h = ka(−t)uF (s) is the QR-Decomposition of h, then αSiegel(h) = t/2.
This function is B∗

F -invariant from the right, hence descends to αSiegel : H/M → R
for every lattice M < B∗

F .

Definition 5.21 (First definition of αCuspsΓ : G→ [0,∞)). Define αCuspsΓ : G/Γ→
[0,∞) by

αCuspsΓ(x) =

{
αSiegel(z), x = z • gc for some c ∈ CuspsΓ, z ∈ Dc,0,

0, otherwise.
,

Here − • gc is defined as in Eq. (5.15). We see that it is proper and continuous.

Definition 5.22. For any c ∈ CuspsΓ consider the vector vc = g−1
c .e1 ∈ VF . Let

VCuspsΓ =
⋃

c∈CuspsΓ
Γ.vc ⊆ VF .

Corollary 5.23 (Reformulation of Lemma 5.6 in the general setting). The function
αCuspsΓ : H → [0,∞) satisfies

αCuspsΓ(h) =

{
− log ∥h.v∥, if ∥h.v∥ < 1 for some v ∈ VCuspsΓ ,

0, otherwise.
(5.16)

Proof. Suppose that v = hγ.vc = hγg−1
c .e1 ∈ h.VCuspsΓ , satisfies that ∥v∥ < 1 for

some h ∈ H, c ∈ CuspsΓ. Then hγg
−1
c ∈ H≥0, and hence πΓ(h) = πMc(hγg

−1
c ) • gc

and αCuspsΓ(h) = αSiegel(hγg
−1
c ) = − log ∥v∥. Here − • gc is defined as in (5.15).

This implies Eq. (5.16).
□

This claim proves Lemma 5.6 when using F = C. We recall the following corol-
lary, which is well known but follows easily from Corollary 5.23.

Definition 5.24. Let BF =

{(
a b
0 a−1

)
: b ∈ F, a ∈ F×

}
, and note that BF =

stabH Fe1. Note that the restriction αSiegel|BF
: BF → R sends αSiegel

((
a b
0 a−1

))
=

− log a is a homomorphism.

Corollary 5.25. Let h ∈ H. The following are equivalent:

(1) The trajectory a(−t)πΓ(h) diverges as t→∞.
(2) h = h0gcγ for h0 ∈ BF , c ∈ CuspsΓ, γ ∈ Γ.
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Proof. The trajectory a(−t)πΓ(h) diverges as t→∞, iff αCuspsΓ(a(−t)πΓ(h))
t→∞−−−→

∞. Let t0 > 0 be such that for all t ≥ t0 we have αCuspsΓ(a(−t)πΓ(h)) > 0.
Let v ∈ VCuspsΓ satisfy that αCuspsΓ(a(−t0)πΓ(h)) = − log ∥a(−t0)h.v∥. The two
functions f1 : t 7→ αCuspsΓ(a(−t)πΓ(h)) and f2 : t 7→ − log ∥a(−t)h.v∥

• are continuous,
• coincide at t = t0,
• satisfy that f1(t) > 0 for all t ≥ t0, and
• for every t ≥ t0, if f2(t) > 0, f1(t) = f2(t).

We deduce that for all t ≥ t0 we have f1(t) = f2(t), that is,

αCuspsΓ(a(−t)πΓ(h)) = − log ∥a(−t)h.v∥ t→∞−−−→∞.

This is equivalent to a(−t)h.v t→∞−−−→ 0. Note that

a(−t)h.v t→∞−−−→ 0 ⇐⇒ h.v = hγg−1
c .e1 ∈ Fe1 ⇐⇒ hγg−1

c ∈ BF .

The desired equivalence follows. The desired follows. □

5.4. Proof of Lemma 5.8. We now return to our original setting with Γ < G, as
in Definition 2.1. Let S = SL2(R).πΓ(gS) be a periodic SL2(R)-orbit in G/Γ. Let
Λ = stabSL2(R) πΓ(gS) = gSΓg

−1
S ∩ SL2(R), and πΛ : SL2(R) → SL2(R)/Λ denote

the standard projection. Since S is a periodic SL2(R)-orbit, it follows that Λ is a
lattice in SL2(R). Let S̄ = N(SL2(R))πΓ(gS) be a periodic N(SL2(R))-orbit.

Remark 5.26. The distinction between S and S̄ bears no mathematical difficulties.

If stabN(SL2(R)) πΓ(gS) ⊆ SL2(R), then S̄ = S ⊔ g0S, where g0 =

(
0 i
−i 0

)
∈

N(SL2(R)) \ SL2(R). Otherwise S̄ = S = g0S.

Let

− • gS : SL2(R)/Λ→ G/Γ,(5.17)

be defined as in Definition 5.18. In particular, it defines an isomorphism − • gS :
SL2(R)/Λ

∼−→ S, which enables us to use Claim 5.19 for F = R to describe its cusps.
We will need the following claim which describes how the cusps of S sit inside the
cusps of G/Γ.

Claim 5.27 (How the cusps of S sit in the cusps of G/Γ). Let cΛ ∈ CuspsΛ be a
cusp of SL2(R)/Λ. Then there are

(1) a unique cusp cΓ,cΛ = cΓ ∈ CuspsΓ;
(2) hcΛ ∈ BC;
(3) and γcΛ ∈ Γ

such that

hcΛgcΓγcΛ = gcΛgS ,(5.18)

McΛ = hcΛMcΓh
−1
cΛ ∩B

∗
R.(5.19)

Proof. By Corollary 5.25 applied for SL2(R)/Λ, we deduce that a(−t)πΛ(gcΛ) di-
verges in SL2(R)/Λ as t→∞. Thus ι(a(−t)πΛ(gcΛ)) = a(−t)πΓ(gcΛgS) diverges in
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G/Γ as t → ∞. Corollary 5.25 applied for G/Γ now implies Eq. (5.18). To show
Eq. (5.19), use the notation ab = b−1ab for conjugation and note that

McΛ = B∗
R ∩ Λg−1

cΛ = B∗
R ∩ Γg−1

S g−1
cΛ = B∗

R ∩ Γg−1
cΓ

hcΛ

= B∗
R ∩

(
Γg−1

cΓ ∩B∗
C

)hcΛ

= B∗
R ∩ (McΓ)

hcΛ .

□

Observation 5.28. Using (5.19) we may apply Definition 5.18 and define

z 7→ z • hcΛ : SL2(R)/McΛ → G/McΓ .(5.20)

Eq. (5.18) shows that for every z ∈ DcΛ,−∞ = SL2(R)/McΛ with g ∈ SL2(R),
(z • gcΛ) • gS = (z • hcΛ) • gcΓ .(5.21)

Equivalently, the following diagram is commutative,

DcΛ,−∞
−•hcΛ //

−•gcΛ
��

DcΓ,−∞

−•gcΓ
��

SL2(R)/Λ
−•gS // G/Γ

(5.21′)

A useful corollary is the following:

Corollary 5.29 (Only the cusps of S reach deep into the cusps of G/Γ). There
is a constant TΓ,S ≥ 0 such that the following holds. For every point x0 ∈ S with
αCuspsΓ(x) > TΓ,S, is of the form

x0 = (z0 • gcΓ,cΛ
) • gS for z0 ∈ DcΛ,0,

αCuspsΓ(x0) = αCuspsΛ(z0) + αSiegel(hcΛ).
(5.22)

Proof. For every cusp cΛ ∈ CuspsΛ, let TcΛ = max(−αSiegel(hcΛ), 0) + 1 and cΓ =

cΓ,cΛ . Let z1 ∈ DcΛ,TcΛ
, and let x1 = (z1 • gcΓ) • gS

(5.21)
= (z1 • hcΛ) • gcΓ . Since

αSiegel(z1 • hcΛ) = αSiegel(z1) + αSiegel(hcΛ) ≥ 0

we deduce that z1 • hcΛ ∈ DcΓ,0 and hence x1 satisfy Eq. (5.22). Therefore, by
Point (S-4), the set

Sbad = {x0 ∈ S that does not satisfy Eq. (5.22)}
is precompact and we can take TΓ,S = supSbad

αCuspsΓ .
□

Observation 5.30. Observing the definition of αSigel, we notice that it has no local
maxima on SL2(R). In view of Corollary 5.29 and Eq. (5.22), αCuspsΓ has no local

maxima on S ∩ α−1
CuspsΓ

((TΓ,S ,∞)).

We introduce the representation W .

Claim 5.31. There is a 4-dimensional irreducible real representation W = R4

of G and a vector w0 ∈ W , such that SL2(R) = stabG(w0) and N(SL2(R)) =
stabG({±w0}). G preserves the real quadratic form Q(x1, x2, x3, x4) = x21 − x22 −
x23 − x24 on W of type (1, 3), satisfying Q(w0) = −1.
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Proof. We first introduce W as the space of Hermitian 2× 2 matrices, on which G
acts by g.A = g−∗Ag−1. Here g∗ refers to the complex conjugate of the transposed
matrix, and g−∗ = (g∗)−1. The quadratic form det is preserved by the G action.
Identify W with R4 using the basis((

1 0
0 1

)
,

(
1 0
0 −1

)
,

(
0 1
1 0

)
,

(
0 i
−i 0

))
.(5.23)

The remaining follows with w0 =
(

0 i
−i 0

)
. □

Recall that wS̄ = g−1
S .w0 and WS̄ = Γ.wS̄ .

Claim 5.32. The set WS̄ is discrete.

Proof. Denote by πSL2(R) : G→ G/SL2(R) the natural projection. Note that

WS̄ ⊆ R = {w ∈W : Q(w) = −1}
g.e1 7→πSL2(R)(g)∼= G/SL2(R),

and R is closed in W . Hence to verify that Γ.wS̄ is discrete in W , it is sufficient to
verify that πSL2(R)(Γg

−1
S ) is discrete. Suppose that there is a sequence of points

πSL2(R)(γig
−1
S )

i→∞−−−→ γ∞πSL2(R)(g0),

for γ1, γ2, . . . ∈ Γ and g0 ∈ G. Hence there is a sequence of matrices hi ∈ SL2(R)
such that

γig
−1
S hi

i→∞−−−→ g0.(5.24)

Inverting and projecting to G/Γ we deduce that

πΓ(h
−1
i gS)

i→∞−−−→ πΓ(g
−1
0 ).

Since πΓ(h
−1
i gS) ∈ S and S is closed, also πΓ(g

−1
0 ) ∈ S. Since S is a closed or-

bit, for some ε > 0 sufficiently small (depending on g0), for every p ∈ S with
dG/Γ(πΓ(g

−1
0 ), p) < ε we have p = h.πΓ(g

−1
0 ) for some h ∈ SL2(R) with dSL2(R)(h, I) =

O(dG/Γ(πΓ(g
−1
0 ), p)). Here dSL2(R) is the right invariant Riemannian metric on

SL2(R). It follows that for sufficiently large i, there is h′i ∈ H such that

πΓ(h
′−1
i h−1

i gS) = πΓ(g
−1
0 ),(5.25)

and dSL2(R)(h
′
i, I)

i→∞−−−→ 0. Eq. (5.25) is equivalent to

g−1
S hih

′
i ∈ Γg0.(5.26)

However, Eq. (5.24) and the size estimate for h′i imply that

γig
−1
S hih

′
i = g0.(5.27)

for all i sufficiently large. Consequently, πSL2(R)(γig
−1
S ) = πSL2(R)(g0) for all i

sufficiently large. This means that every converging sequence in πSL2(R)(Γg
−1
S )

fixes on its limit, which implies that this set is discrete, as desired. □

We can now prove the remaining of Lemma 5.8. To construct αS̄ we consider
the quotient map and projection πw0

: W = R4 → R3 sending (xi)
4
i=1 to (xi)

3
i=1.

Thus we consider the standard norm on R3 and Define αS̄ : G→ R ⊔ {∞} by
αS̄(g) = sup

w∈WS̄

− log ∥πw0
(g.w)∥.(5.28)
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Claim 5.33. The supremum in Eq. (5.28) is attained and the function αS̄ is
continuous.

Proof. Let R = {w ∈ W : Q(w) = −1} and ℓ : R → R ∪ {∞} be defined by
g(w) = − log ∥πw0

(w)∥. Note that Rt := ℓ−1([t,∞]) is compact for all t ∈ R. Since
WS̄ is discrete, g.WS̄ is discrete as well for all g ∈ G, hence Rt ∩ g.WS̄ in a finite
set, for every t ∈ R and g ∈ G. Rewrite Eq. (5.28),

αS̄(g) = sup{ℓ(w) : w ∈ g.WS̄} = sup{ℓ(w) : w ∈ g.WS̄ , ℓ(w) ≥ αS̄ − 1}(5.29)

= sup{ℓ(w) : w ∈ g.WS̄ ∩RαS̄−1}.(5.30)

The rightmost supremum in Eq. (5.29) ranges over a finite set and must be attained.
Let C ⊆ G be a compact subset. We will prove that αS̄ is continuous on C. Then
the infimum

zC = inf
g∈C

αS̄(g) ≥ inf
g∈C

ℓ(g.wS̄),

satisfies zC ∈ R ∪ {∞} by the compactness of C. The set

WS̄,C =WS̄ ∩ C−1.RzC ,

is finite by the discreteness of WS̄ . Then for all g ∈ G,

αS̄(g) = sup{ℓ(w) : w ∈ g.WS̄ , ℓ(w) ≥ zC}
= sup{ℓ(w) : w ∈ g.(WS̄ ∩ g−1RZC

)} = sup{ℓ(w) : w ∈ g.WS̄,C}.

However, WS̄,C is finite, and hence αS̄ is continuous on C. Since G is locally
compact, this implies that αS̄ is continuous everywhere. □

Proof of Claim 5.8 Point 1. Let g ∈ G. Note that αS̄(g) = ∞ if and only if there
exists γ ∈ Γ such that πw0

(gγg−1
S .w0) = 0. Since Q(gγg−1

S .w0) = Q(w0) = −1
and ±w0 are the only vectors w ∈ kerπw0

satisfying Q(w) = −1 we deduce that
gγg−1

S .w0 = ±w0, and hence gγg−1
S ∈ N(SL2(R)). Altogether, we have the equiva-

lence

αS̄(g) =∞⇔ g ∈ N(SL2(R))gSΓ = π−1
Γ (S̄).

□

It remains to show the Point 2. We will use the following claims:

Claim 5.34. There is a form Ψ : V ×W → R that satisfies the following conditions

(1) Ψ is G-invariant in the sense that Ψ(g.v, g.w) = Ψ(v, w) for all v ∈ V and
w ∈W .

(2) Ψ is linear in W and Hermitian in V .
(3) It satisfies that |Ψ(v, w0)| = infg∈SL2(R) ∥g.v∥2.
(4) If the infimum is nonzero then it is attained.

Proof. Since V = C2 and W is the space of hermitian matrices, we can define the
form Ψ(v, w) = v∗wv, where v∗ is the complex conjugate of v, thought of as a row
vector. Writing v =

(
x
y

)
∈ C2, algebraic manipulations show that

Ψ(v, w0) = 2Im(xȳ) = det(v, v̄)/i.

Here, by det(v, v̄) we refer to the determinant of the matrix whose columns are
v, v̄. Suppose that Ψ(v, w0) = 0. Then xȳ ∈ R, which is equivalent to saying that
v is proportional to a real vector. We know that SL2(R) can shrink arbitrarily
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real vectors, which implies infg∈SL2(R) ∥g.v∥2 = 0. Suppose now that 2Im(xȳ) ̸= 0.

Then the two vectors denote by v1 = v+v̄
2 and v2 = v−v̄

2i are real. Hence,

Ψ(v, w0) = det(v, v̄)/i = −2 det(v1, v2).

Note that ∥v∥2 = ∥v1 + iv2∥2 = ∥v1∥2 + ∥v2∥2. One can verify that

|2 det(v1, v2)| ≤ ∥v1∥2 + ∥v2∥2(5.31)

for every pair of real vectors. Moreover, equality holds in Eq. (5.31) if and only if
v1 ⊥ v2 and ∥v1∥ = ∥v2∥. Since whenever v1 and v2 are linearly independent, there
is always h ∈ SL2(R) such that g.v1 ⊥ g.v2 and ∥g.v1∥ = ∥g.v2∥, the desired result
holds. □

Claim 5.35. There is ε = εΓ,S̄ = e−2TΓ,S > 0 such that for all v ∈ VCuspsΓ and
w ∈WS̄ we have that either Ψ(v, w) = 0 or |Ψ(v, w)| ≥ εΓ,S̄.

Proof. Let v = γ1g
−1
cΓ .e1 ∈ VCuspsΓ , w = γ2g

−1
S .w0 ∈ WS̄ be two vectors with

0 ̸= |Ψ(v, w)| < ε. Let g0 = gSγ
−1
2 , be a matrix satisfying that g0.w = w0. We

deduce that g0v satisfy that Ψ(v, w) = Ψ(g0.v, w0).
By Claim 5.34, there is h0 ∈ SL2(R) such that |Ψ(g0.v, w0)| = |Ψ(h0g0.v, w0)| =

∥h0g0.v∥2. Then αCuspsΓ(h0g0) = − log ∥h0g0.v∥ > TΓ,S . However, for every h1
sufficiently small,

αCuspsΓ(h1h0g0) = − log ∥h1h0g0.v∥ ≤ −
1

2
log |Ψ(h0g0.v, w0)| = αCuspsΓ(h0g0),

which implies that − 1
2 log |Ψ(v, w)| is a local maximum of αCuspsΓ at πΓ(h0g0) along

the SL2(R)-orbit SL2(R).πΓ(g0) = S. This contradicts Observation 5.30, and hence
the equation 0 ̸= |Ψ(v, w)| < ε.

□

Claim 5.36. Consider the space

W 0+ = {w : Ψ(e1, w) = 0} =
{(

0 ∗
∗ ∗

)}
⊂W,

which contains w0 and is the space of a(t) noncontracting elements in W . Then
for all k ∈ SU(2), w ∈W 0+, t ≥ 0,

∥πw0(ka(t).w)∥ ≤ 4et∥πw0(k.w)∥.

Proof. Here we will use the matrix description of W , and will distinguish between
the matrix multiplication denoted without a dot, and the group action on the
representation w, denoted (g, w) 7→ g.w : G ×W → W . We will prove the claim
with the Hilbert-Schmidt norm given by∥∥∥∥(a b

b̄ d

)∥∥∥∥ =
√
a2 + 2|b|2 + d2.
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This norm is proportional to the one given by the basis Eq. (5.23). Let w =

(
0 a
b c

)
and define w1 =

(
0 a
b 0

)
, w2 =

(
0 0
0 c

)
. Then

∥πw0(ka(t).w)∥ ≤ ∥πw0(ka(t).w1)∥+ ∥πw0(ka(t).w2)∥
≤ ∥πw0

(k.w1)∥+ et∥πw0
(k.w2)∥ ≤ et(∥πw0

(k.w1)∥+ ∥πw0
(k.w2)∥)

≤ et(∥πw0
(k.w)∥+ 2∥πw0

(k.w2)∥) ≤ et(∥πw0
(k.w)∥+ 2∥k.w2∥)

= et(∥πw0(k.w)∥+ 2|c|)

To interpret c in matrix terminology, note that

c = tr(w) = tr(kwk−1) = tr(k−∗wk−1) = tr(k.w) = trπw0(k.w).

Hence we may continue the estimate

= et(∥πw0
(k.w)∥+ 2| trπw0

(k.w)|) ≤ et(∥πw0
(k.w)∥+ 2

√
2∥πw0

(k.w)∥)

= (1 + 2
√
2)et∥πw0

(k.w)∥ ≤ 4et∥πw0
(k.w)∥.

□

Proof of Lemma 5.8 Point 2. Let T0 > 0 to be determined later, X̃comp,1 ⊆ G be a
compact set so that

Xcomp,1 = πΓ(X̃comp,1) = (G/Γ) \
⋃

cΓ∈CuspsΓ

DcΓ,T0
• gcΓ = α−1

CuspsΓ
([0, T0/2]),

where α−1
CuspsΓ

is the preimage map of αCuspsΓ : G/Γ→ [0,∞), and −•gcΓ is defined

as in Claim 5.19.
For every g ∈ G denote by

β(g) = inf
{
r > 0 :

there are w1,w2∈g.WS̄ with {±w1}̸={±w2}
such that ∥πw0 (w1)∥,∥πw0 (w2)∥<r

}
.

Note that β(g) > 0 for every g ∈ G. Indeed, otherwise there exist w1, w2 ∈ g.WS̄

such that ∥πw0
(w1)∥ = ∥πw0

(w2)∥ = 0 and {±w1} ≠ {±w2}. But kerπw0
∩ {w ∈

W : Q(w) = −1} = {±w0}, which contradicts this existence of two different such
vectors. Denote by δ0 = minX̃comp,1

β > 0, and set CS̄ = − log δ0 + 2 log 2 + 1.

Suppose that αS̄(g) > 2αCuspsΓ(g) + CS̄ for some g ∈ G. Since αS̄(g) > 0 there
is γ1 ∈ Γ such that αS̄(g) = − log ∥πw0

(gγ1.wS̄)∥. Suppose that gγ2.wS̄ is another
vector with− log ∥πw0

(gγ2.wS̄)∥ ≥ 2αCuspsΓ(g)+CS̄ , and {±gγ1.wS̄} ≠ {±gγ2.wS̄}.
Let wi = γi.wS̄ ∈ WS̄ . By the definitions of CS̄ and δ0 we deduce that β(g) < δ0,
and hence πΓ(g) /∈ Xcomp,1.

Remark 5.37. This shows that Claim 5.8 Point 2 holds provided that πΓ(g) ∈
Xcomp,1 for any C ′

S̄
> − log δ0, and in particular, for C ′

S̄
= − log δ0 + 1.

We deduce that for some v ∈ VCuspsΓ we have αCuspsΓ(g) = − log ∥g.v∥ > T0/2.
To estimate Ψ(v, wi), note that there is a constant C0 > 0 such that for all v′ ∈
V,w′ ∈ W with ∥v′∥, ∥w′∥ ≤ 1 we have |Ψ(v′, w′)| ≤ C0 (direct computation leads

to C0 =
√
2). Then |Ψ(v, wi)| = |Ψ(g.v, g.wi)| ≤ C0∥g.v∥2∥g.wi∥ ≤ C0e

−T0∥g.wi∥
for i = 1, 2. To estimate ∥g.wi∥, note that there is a constant C1 > 0 such if w′ ∈W
satisfies ∥πw0w

′∥ ≤ 1 and Q(w′) = −1 then ∥w′∥ ≤ C1 (direct computation leads

to C1 =
√
3). This shows that ∥g.wi∥ ≤ C1, and hence |Ψ(v, wi)| ≤ C0C1e

−T0 . Set
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T0 = − log(εΓ,S̄/(C0C1))+1 for εΓ,S̄ as in Claim 5.35, and deduce that Ψ(v, wi) = 0
for i = 1, 2.

Suppose that

v = γ.vcΓ = γg−1
cΓ .e1,(5.32)

for some γ ∈ Γ and c ∈ CuspsΓ. QR-Decomposition 5.16 shows that one can
represent

gγg−1
cΓ = ka(−t)uC(s)(5.33)

for some k ∈ KG, t ∈ R, s ∈ C. Since ∥gγg−1
cΓ .e1∥ = ∥g.v∥ < e−T0/2 and ∥gγg−1

cΓ .e1∥ =
∥ka(−t)uC(s).e1∥ = e−t/2, it follows that t > T0.

For every τ > 0 write gτ = ka(−t + τ)uC(s)gcΓγ
−1 = ka(τ)k−1g. Let τ0 =

t− T0 > 0. Note that

αCuspsΓ(gτ0) = − log ∥gτ0 .v∥ = − log ∥ka(−T0)uC(s).e1∥ = T0.

Consequently, πΓ(gτ0) ∈ Xcomp,1, and Remark 5.37 is applicable for gτ0 . However,
let us estimate − log ∥gτ0 .wi∥.

Note that ∥gτ0 .wi∥ = ∥ka(τ0)k−1g.wi∥. Denote w′
i = k−1g.wi and notice that

0 = Ψ(k−1g.v, w′
i)

(5.32)+(5.33)
= Ψ(k−1ka(t)uC(s)gcΓγ

−1γg−1
cΓ .e1, w

′
i) = Ψ(a(t).e1, w

′
i) = etΨ(e1, w

′
i).

Hence Ψ(e1, w
′
i) = 0. Now we may apply Claim 5.36, and deduce that

∥πw0
(gτ0 .wi)∥ = ∥πw0

(ka(τ0).w
′
i)∥

5.36
≤ 4eτ0∥πw0

(k.w′
i)∥ = 4eτ0∥πw0

(g.wi)∥.

Therefore,

− log ∥πw0(gτ0 .wi)∥ ≥ − log ∥πw0(g.wi)∥ − 2 log 2− τ0
≥ 2αCuspsΓ(g) + CS̄ − 2 log 2− τ0
= 2αCuspsΓ(gτ0)− log δ0 + 1.

This contradicts Claim 5.8 Point 2 as shown in Remark 5.37 for πΓ(gτ0) ∈ Xcomp,1.
□

6. Example with low εΓ

In this section, we Prove Theorem 1.3. The section is divided into five subsec-
tions. In Subsection 6.1 we construct a nonarithmetic lattice Γ such that G/Γ is
glued from two homogeneous subspaces G/Γ1, G/Γ2. In Subsection 6.2 we construct
an orbits H.x in G/Γ, which comes from a piece of a periodic orbit in G/Γ1. Then
we reduce the problem of evaluating δ(stabH(x)) into two independent problems.
One arithmetic and one geometric. We then solve them in Subsections 6.3 and 6.4
respectively.

6.1. Construction of a lattice. In this subsection, we will construct a sublattice
Γ < G and show that it is nonarithmetic.
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General setting. Let Q
(
(xi)

4
i=1

)
= x21 − x22 − x23 − x24 be a quadratic form. Let

W op be R4 thought of as row vectors, on which SL4(R) acts from the right, and we
consider Q as a quadratic form on W op. Here we will use

G = SO(3, 1)0 = {g ∈ SL4(R) : Q(w.g) = Q(w), ∀w ∈W op}0,

which is isogenic to SL2(C), via the action of SL2(C) onW as in Claim 5.31. Recall
that H3 is a right G-space, where here we identify

H3 = {w ∈W op : Q(w) = 1, w1 > 0}.

Let p0 = (1, 0, 0, 0) ∈ H3, and note that KG := stabG(p0) is the maximal compact
subgroup in G and is a copy of SO(3) embedded in G by the action on the last
3 coordinates. Let H = SO(2, 1)0, embedded in SO(3, 1)0 by action of the first
3 coordinates. The H action preserves the sign of the last coordinate, that is, it
preserves

H2 = {v ∈ H3 : v4 = 0} ⊂ H3,

(H3)± = {v ∈ H3 : ±v4 > 0} ⊂ H3,

The maximal compact subgroup in H is KH = KG ∩H and is isomorphic to SO(2)
acting by rotations on the second and third coordinates of W op.

The arithmetic components. Recall that Γ(7) = ker(SL4(Z)→ SL4(Z/7)) < SL4(Z)
is a finite index torsion free subgroup. Let A1, A2 > 0 be big integers ≡ 1 mod 8
such that A1/A2 is not a rational square. Let

Qi = 7x21 − x22 − x23 −Aix
2
4 ∈ Z[x1, x2, x3, x4] for i = 1, 2,

be quadratic forms on W op. Define

SO(Qi,Z) = {γ ∈ SL4(Z) : Qi(w.γ) = Qi(w) ∀w ∈W}.

This is a subgroup of SO(Qi,R), which is a lattice in it by Borel and Harish-
Chandra’s Theorem [3]. Let SO(Qi,Z)′ = SO(Qi,Z) ∩ Γ(7). This is a lattice in

SO(Qi,R) and torsion-free. Let Γi = g−1
i SO(Qi,Z)′gi where gi = diag(

√
7, 1, 1,

√
Ai).

Then Γi is a torsion-free lattice in G. Note that, Γ3 = H ∩Γ1 = H ∩Γ2 is a lattice
in H similarly constructed from the quadratic form Q3 = 7x21 − x22 − x23.

Claim 6.1. For i = 1, 2 we have vol(G/Γi) = Ω(A
1/2
i ).

The proof relies on a certain arithmetic aspect of Γi and is given in Subsection
6.3.

Claim 6.2. The lattices Γ1,Γ2 are cocompact in G and Γ3 is cocompact in H.

Proof. For a quadratic form Q in d variables, the lattice SO(Q,Z) is cocompact if
and only if Q(v) ̸= 0 for all v ∈ Qd \{0} (see [42, Prop. 5.3.4]). Hence it is sufficient
to show that Qi(v) ̸= 0 for all v ∈ Q4. However, one can normalize v so that v ∈ Z4

and one of its coordinates is odd. Then there are no solutions modulo 8. □



38 OMRI NISAN SOLAN

Construction of a hybrid manifold. Fix i = 1, 2 and consider the manifold Mi =
H3/Γi the submanifold V = H2/Γ3, and the cover M̄ = H3/Γ3 of Mi. These are
indeed manifolds since Γi has no torsion elements. Let ρ̄ : H3 → M̄ , ρi : H3 →Mi,
τi : M̄ → Mi for each i and ρ3 : H2 → V denote the standard projections. We
think of V as a subset of M̄ .

H3

ρ̄
����

ρ2

!! !!

ρ1

}}}}
M1 M̄

τ1
oooo

τ2
// // M2

Claim 6.3. The projection τi : M̄ →Mi restricts to an embedding on V .

V � _

��

� p

!!

nN

}}
M1 M̄

τ2
// //

τ1
oooo M2

The proof relies on a certain arithmetic aspect of Γi and is given in Subsection
6.3. Denote by Vi = τi(V ). By Claim 6.3 this is a submanifold.

We can now describe a new hyperbolic threefold R.

Definition 6.4 (A hybrid manifold). Cut Mi along Vi. The resulting manifold
M cut

i is a hyperbolic threefold with a hyperbolic surface boundary composed of two
isometric copies of Vi, namely, V +

i , V
−
i . Near V ±

i , the manifold M cut
i is locally

isometric to H2 ⊔ (H3)±. Glue M cut
1 to M cut

2 by gluing V +
1 to V −

2 and V −
1 to V +

2 .
The resulting manifold is an orientable compact hyperbolic threefold R.

For i = 1, 2 the embeddings χi :M
cut
i → R, and the projections σi :M

cut
i →Mi.

Connectivity of R.

Theorem 6.5. For each i = 1, 2, the manifold Mi \ Vi is connected provided that
Ai is sufficiently large.

Proof. Assume to the contrary that Mi \ Vi is not connected. This implies that
Mi = Vi⊔M+

i ⊔M
−
i , whereM±

i are the different connected components ofMi \Vi.
We will estimate vol(M±

i ). Since the matrix g−1 = diag(1, 1, 1,−1) normalize Γi,
it acts on Mi. Since the g−1 action replaces the two sides of V in M̄ , it replaces
the two sides of Vi in Mi. Thus vol(M+

i ) = vol(M−
i ) = 1

2 vol(Mi). By Claim 6.1,

vol(M±
i ) = 1

2 vol(Mi) = Ω(A
1/2
i ). This implies that the Cheeger constant

h(Mi) := inf
S⊆Mi

vol(∂S)

min(vol(S), vol(Mi \ S))
≤ vol(Vi)

min(vol(M+
i ), vol(M−

i ))
= O(A

−1/2
i ).

By Burger’s inequality [6], we deduce that λ1(Mi) = O(h(Mi)
2+h(Mi)) = O(A

−1/2
i ),

where λ1(Mi) is the minimal nontrivial eigenvalue of minus the laplacian operator
−∆ on Mi. By Property (τ) for congruence subgroups in arithmetic groups (See
[35, 20, 5, 8]), there is an absolute constant λ0 such that λ1(Mi) ≥ λ0. This

contradicts our previous estimate λ1(Mi) = O(A
−1/2
i ), as desired. □

We conclude that R is connected.
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Remark 6.6 (Avoiding property (τ)). The use of property (τ) is the least elementary
piece of the arguments in this section and can be avoided, as Theorem 6.5 is not
necessary to the proof, and is only provided to give the reader a better picture of
R and simplify the terminology.

Since R is a connected compact hyperbolic threefold, we deduce that R ∼= H3/Γ
for some cocompact lattice Γ < G, which is our desired nonarithmetic lattice. Since
A1/A2 is not a square we get the following theorem.

Theorem 6.7 ([19, §2.9]). The lattice Γ is non-arithmetic.

6.2. Reduction of Theorem 1.3 into arithmetic and hyperbolic questions.
In this section, we will reduce the construction of an element g as in Theorem 1.3
to an arithmetic question.

Definition 6.8. For every complete hyperbolic manifold M and a point p ∈ M
denote by Rayp the collection of geodesic rays γ : [0,∞) → M originating from

p = γ(0). The derivative at 0 gives a metric isomorphism Rayp
∼= SdimM−1.

Claim 6.9. Let Λ < H be a subgroup and U ⊆ H2/Λ be a precompact open subset.
Then for every p ∈ U we have

H.dim(
{
γ ∈ Rayp : γ(t) ∈ U ∀t ≥ 0

}
) ≤ δ(Λ).

Proof. Let πΛ : H2 → H2/Λ denote the standard projection. Let U0 ⊆ H2 be

precompact open set so that πΛ(U0) = U and denote Ũ = π−1
Λ (U) =

⋃
λ∈Λ U0.λ.

Let Λ′ = ⟨λ ∈ Λ : U0.λ ∩ U0 ̸= ∅⟩. Since U0 is precompact and Λ discrete, it follows
that the set of generators we wrote to Λ′ is finite and hence Λ′ is geometrically
finite. We will use Sullivan [36, Thm. 1] to give a lower bound on δ(Λ′) ≤ δ(Λ).

Let p̃ ∈ U0 be a preimage of p and note that there is a bijection between rays
Rayp and Rayp̃ that gives an equality of the Hausdorff dimensions

H.dim
({
γ ∈ Rayp : γ(t) ∈ U ∀t ≥ 0

})
= H.dim

({
γ ∈ Rayp̃ : γ(t) ∈ Ũ ∀t ≥ 0

})
.

Denote X =
{
γ ∈ Rayp̃ : γ(t) ∈ Ũ ∀t ≥ 0

}
and let γ ∈ X. We will show that

limt→∞ γ(t) ∈ ∂H2 in fact lies in the limit set D(Λ′).
Since ({t ∈ [0,∞) : γ(t) ∈ U0.λ})λ∈Λ is an open cover of [0,∞) by bounded sets,

there is a sequence t0 = 0 < t1 < t2 < . . . such that limj→∞ tj =∞ and a sequence
(λj)

∞
j=0 ⊆ Λ so that λ0 = I and for all j = 0, 1, . . . and for all t ∈ [tj , tj+1] we have

γ(t) ∈ U0.λj . Note that for all j = 1, 2, . . . we have that γ(tj) ∈ U0.λj ∩ U0.λj−1.

Hence λj−1λ
−1
j ∈ Λ′. By induction we deduce that λj ∈ Λ′ for all j ≥ 0. This

implies that
lim
t→∞

γ(t) = lim
j→∞

p̃.λj ∈ D(Λ′).

Hence the limit embeds X in D(Λ′) which implies that

H.dim(X) ≤ H.dim(D(λ′))
[36, Thm. 1]

= δ(Λ′) ≤ δ(Λ).
□

Direct computation shows that the normalizer N(H) of H is given by

N(H) = H ∪ g0H, g0 = diag(1, 1,−1,−1).
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Observation 6.10 (The relation between H-orbits and immersed hyperbolic sur-
faces). Let πKG

: G/Γ→ H3/Γ be the standard projection. AnyH-orbitH.πΓ(g) in
G/Γ is projected to an immersion ιg : H2/Γ′

g → H3/Γ, where Γ′
g = gΓg−1 ∩N(H).

The immersion is not necessarily bijective, however, the self-intersection is a count-
able union of geodesics, that is, the set {p ∈ H2/Γg : ι−1(ι(p)) ̸= {p}} is a countable
union of geodesics in H2/Γ′

g.

On the other hand, every immersion of open hyperbolic surface ιU : U → H3/Γ
that satisfies that the self-intersection is a countable union of geodesics factors as
ιU = ιg ◦ ι0 for some g ∈ G, where ι0 : U → H2/Γ′

g is an isometric embedding.

Definition 6.11 (Semi-periodic immersed hyperbolic surface). Let H.x0 be a pe-
riodic orbit in G/Γ1, where x0 = πΓ1(g). Assume that it is not the periodic orbits
πΓ1(H) or πΓ1(Hg0), whose projection to M1 lands in V1. Let ι0 : H2/Λ → M1

denote the corresponding immersion of hyperbolic surface, where Λ = (Γ1)
′
g =

gΓ1g
−1
1 ∩N(H) is a lattice in N(H). Then H2/Λ is a finite volume compact space.

Let U1 be a connected component of (H2/Λ) \ ι−1
0 (V1). Then ι0 restricts to an

embedding ι0|U1
: U1 → M cut

1 . Let ι1 = χ1 ◦ ι0|U1
: U1 → H3/Λ. By Observation

6.10 the immersion ι1 factors as ι1 = ιg2 ◦ ι2 for some g2 ∈ G, ι2 : U1 → H2/Γ′
g2 .

Then ιg2 : H2/Γ′
g2 → H3/Γ is a semi-periodic surface.

Reduction of Theorem 1.3 into two propositions. Let g0,Λ, U1, ι1, g2, ι2 as in Defi-
nition 6.11. Since V1 is a hyperbolic surface in M1 that differs from ι0(H2/Λ),
we deduce that ι−1

0 (V1) is a union of geodesics in H/Λ, and hence U1 has finite
diameter. Hence ι2(U1) is precompact in H2/Γ′

g2 . Let ρ : H2/Γg2 → H2/Γ′
g2 denote

the standard projection. It is a proper covering map of index at most 2. Hence
ρ−1(ι2(U1)) is precompact in H2/Γg2 . Let p ∈ ρ−1(ι2(U1)). It follows that

δ(Γg2)
6.9
≥ H.dim(

{
γ ∈ Rayp : γ(t) ∈ ρ−1(ι2(U1)) ∀t ≥ 0

}
)

= H.dim(
{
γ ∈ Rayρ(p) : γ(t) ∈ ι2(U1) ∀t ≥ 0

}
)

= H.dim(
{
γ ∈ Rayp′ : γ(t) ∈ U1 ∀t ≥ 0

}
).

(6.1)

for p′ = ι2ρ(p) ∈ U1 ⊆ H2/Λ. Let πΛ : H2 → H2/Λ denote the projection. We will
express the right-hand side of Eq. (6.1) by this universal cover. Let p̃ ∈ π−1

Λ (p′).

Since U1 is the connected component of (H2/Λ) \ ι−1
0 (V1), we can lift each geodesic

ray to the universal cover H2 of U1 get an equality

H.dim(
{
γ ∈ Rayp′ : γ(t) ∈ U1 ∀t ≥ 0

}
) = H.dim(

{
γ ∈ Rayp̃ : γ(t) /∈ L ∀t ≥ 0

}
),

(6.2)

where L = π−1
Λ (ι−1

0 (V1)) is a union of lines. we now introduce the following propo-
sitions on L.
Proposition 6.12. Let ζ : H2 → M1 be a locally isometric immersion. Then the
set Lζ = ζ−1(V1) is a union of hyperbolic lines such that for every two geodesic
lines ℓ1 ̸= ℓ2 ⊆ L we have dH2(ℓ1, ℓ2) >

1
2 logA1 +O(1).

Proposition 6.13. Let L ⊆ H2 be a union of lines so that for every two geodesic
lines ℓ1 ̸= ℓ2 ⊆ L we have dH2(ℓ1, ℓ2) > A. Then

H.dim(
{
γ ∈ Rayp : γ(t) /∈ L ∀t ≥ 0

}
) > 1−O(1/A),

for every p ∈ H2 \ L.
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The combination of Propositions 6.12 and 6.13, together with Eqs. (6.1) and
(6.2), show that δ(Γg2) > 1−O(1/ logA1).

Leaving the proofs of these propositions to the next subsections, it is left to find
ι0, g0,Λ, U1, ι1, g2, ι2 as in Definition 6.11 so that Γg2 is not periodic. It follows from
[16, Thm. 4.1] or [2, Prop. 12.1.], that if ι0(H2/Λ) intersects V1 non-orthogonally
then Γg2 is not periodic. Such an immersion exists by the density of closed H-orbits
in G/Γ1.

□

6.3. Behavior of the arithmetic space near the cutting plane. In this section
we prove Proposition 6.12, as well as claims 6.3 and 6.1. We begin the section by
linearising the distance from a hyperbolic plane in H3.

Linearization of the distance from a hyperbolic plane.

Definition 6.14 (The representation W ). Let W ∼= R4 denote the standard rep-
resentation of SL4(R) on which it acts from the left. Note that the quadratic form
Q(x1, x2, x3, x4) = x21−x22−x23−x24 is preserved by the G action (this time thought
of as a quadratic form on W ), similarly to the case with W op.

Observation 6.15 (Identifying H2 in H3). Let πKG
: G→ H3 denote the standard

projection. Note that stabG(w0) = H and

KG.w0 = {(0, w2, w3, w4)
t : w2

2 + w2
3 + w2

4 = 1} = {w ∈W : Q(w) = −1, ∥w∥ = 1}.
Hence

{g ∈ G : ∥g.w0∥ = 1} = {g ∈ G : g.w0 ∈ KG.w0} = KgH.

Hence KGH = π−1
KG

(H2).

Definition 6.16 (Hyperbolic geometry relative to a hyperbolic plane). Let φ :
H3 → R be the signed distance form H2, that is,

φ(p) =


dH3(p,H2), if p ∈ (H3)+,

−dH3(p,H2), if p ∈ (H3)−,

0, if p ∈ H2.

Note that φ is differentiable and the gradient is of fixed size 1.
Through every point p ∈ H2 passes a unique geodesic ξp : R→ H3 with ξp(0) = p,

which is orthogonal to H2 and oriented towards (H3)+. These geodesics forms a
foliation of H3, and satisfy φ(ξp(t)) = t for all p ∈ H2, t ∈ R. For every h ∈ H
we have that ξp.h = ξp.h. Recall w0 = (0, 0, 0, 1)t ∈ W , and define ψ : G → R
by ψ(g) = (g.w0)1. Since ψ is invariant from the left to KH it descends to a map
ψ : H3 → R.

Claim 6.17. For every p ∈ H3 we have sinh(φ(p)) = ψ(p).

Proof. Both functions p 7→ ψ(p) and p 7→ sinh(φ(πKG
(p))) are invariant from the

right to H, which allows us to test this equality only on points of the form ξp0(t) =
(sinh(t), 0, 0, cosh(t)), on which the equality holds. □

Corollary 6.18. Let H2.g1 be a hyperbolic plane and p2 = πKG
(g2) be a point.

Then dH3(p2,H2.g1) = log ∥g2g−1
1 .w0∥+O(1).
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Proof. Using Claim 6.17 we deduce that

dH3(p2,H2.g1) = dH3(p2.g
−1
1 ,H2) = |φ(p2.g−1

1 )|
6.17
= | sinh−1(ψ(g2g

−1
1 ))| = | sinh−1((g2g

−1
1 .w0)1)|.

The result follows from the fact that for every vector w ∈ W with Q(w) = −1 we
have

| sinh−1(w1)| = log ∥w∥+O(1),

which is a direct computation. □

Denote by C0 the implicit constant in Corollary 6.18 so that∣∣dH3(p2,H2.g1)− log ∥g2g−1
1 .w0∥

∣∣ ≤ C0.(6.3)

Finally, we prove the following claim

Claim 6.19. Let v ∈ W so that Q(v) = −1. Then there are k, k′ ∈ KG and t ∈ R
such that k′a(t)k.v = w0 and cosh(t) ≤ ∥v∥.

Proof. Express v = (v1, v2, v3, v4)
t. For some k ∈ KG, we have k.v = (v1, v

′
2, 0, 0)

t

with v′2 > 0 and v21 − (v′2)
2 = −1. This implies that for some t′ > 0 we have v1 =

sinh t′ and v′2 = cosh(t′). In particular cosh(t′) < ∥v∥ and a(−t′)k.v = (0, 1, 0, 0)t.

The desired follows for t = −t′ and k′ =
(

1 0 0 0
0 0 0 −1
0 0 1 0
0 1 0 0

)
. □

Arithmetic properties. Fix i = 1, 2 for the entire subsection. Consider the vector
w0 = (0, 0, 0, 1)t ∈W and the set WΓi = Γi.w0 ⊂W .

Claim 6.20. Let v ∈WΓi
. Then either v = w0, or ∥v∥ ≥

√
Ai/7.

Proof. Let WZ ∼= Z4 be the integer vectors in W ∼= R4. By the definition of Γi

we deduce that Γi preserves that lattice WZ,i =
√
Aig

−1
i WZ ⊂ W , where gi =

diag(
√
7, 1, 1,

√
Ai).

Let v ∈ WΓi
\ {w0} ⊆ WZ,i. Note that Q(v) = −1. Assume to the contrary

that v ∈ Rw0. Then we must have v = −w0. However, since Γi-s action on WZ,i
descends to a trivial action on WZ,i/7WZ,i, we deduce that WΓi

∩−WΓi
= ∅, which

contradicts v = −w0. Hence we have v /∈ Rw0. Let j = 1, 2, 3 be an index satisfying

(v)j ̸= 0. Then since v ∈ WZ,i we must have |(v)j | ≥

{√
Ai, if j = 2, 3,√
Ai/
√
7, if j = 1.

.

Hence ∥v∥ ≥
√
Ai/7. □

Claim 6.21. There is c > 0 independent of Ai such that for all g ∈ G there is at

most one z ∈ g.WΓi such that ∥z∥ < cA
1/4
i .

Proof. Suppose that z ̸= z′ ∈ g.WΓi and ∥z∥, ∥z′∥ < cA
1/4
i . Assume that

z = gγ.w0 and z′ = gγ′.w0.(6.4)

Every z ∈ g.WΓi has Q(z) = −1. Applying Claim 6.19 to z, we get that there are

k, k′ ∈ KG and t ∈ R with cosh(t) ≤ ∥z∥ ≤ cA
1/4
i such that k′a(t)k.z = w0. In

particular, et < 2cA
1/4
i . Substituting z = gγ.w0 to the previous equality, we obtain

k′a(t)kgγ.w0 = w0. Using H = stabG(w0), we deduce that k′a(t)kgγ ∈ H.
Since Γi ∩ H = Γ3 is cocompact in H (see Claim 6.2) and independent of

Ai, there is C > 0 such that for every h ∈ H there is γ3 ∈ H ∩ Γi such that
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∥γ3h∥op < C. Here we use the operator norm defined by the action on W . Ap-
plying this to (k′a(t)kgγ)−1 ∈ H, we deduce that for some γ3 ∈ H ∩ Γi we have
∥γ3(k′a(t)kgγ)−1∥op < C. Set

h = γ3(k
′a(t)kgγ)−1, satisfying ∥h∥op < C.(6.5)

Then hk′a(t)k.z = w0. Denote v = hk′a(t)k.z = w0 and v′ = hk′a(t)k.z′. We will
now estimate v′. Note that

v′ = hk′a(t)k.z′
(6.4)
= hk′a(t)kgγ′.w0

(6.5)
= γ3γ

−1γ′.w0 ∈WΓi
.

By Claim 6.20, we obtain that ∥v′∥ ≥
√
Ai/7. On the other hand,

∥v′∥ ≤ ∥z′∥ · ∥ka(t)k′h∥op ≤ cA1/4
i ∥h∥ope

t ≤ cA1/4
i · C · 2cA1/4

i ≤ 2c2CA
1/2
i .

Therefore, choosing c for which c2 < 1
2C

√
7
, we obtain a contradiction to Claim 6.20

and the desired uniqueness follows. □

Claim 6.22. Let A = 1
4 logAi−C0+log c = Θ(logAi), wehre C0 is as in Eq. (6.3)

and c as in Claim 6.21. Define

S = {p ∈ H3 : d(p,H2) < A}.

Then for every γ ∈ Γi, either

(1) γ ∈ Γ3 and then S.γ = S,
(2) or γ /∈ H and then S.γ ∩ S = ∅.

Proof. If γ ∈ H then the first option holds. If γ /∈ H, assume to the contrary that
πKG

(g) ∈ S.γ ∩ S. Then

log ∥g.w0∥
(6.3)

≤ d(πKG
(g),H2) + C0 < A+ C0 =

1

4
logAi + log c

Similarly,

log ∥gγ−1.w0∥
(6.3)

≤ d(πKG
(g),H2.γ) + C0 < A+ C0 =

1

4
logAi + log c

Hence, by Claim 6.21 we deduce that gγ−1.w0 = g.w0, which implies that γ ∈ H.
This contradicts the assumption and completes the proof. □

The following corollary is immediate.

Corollary 6.23. For every two different hyperbolic planes H2.γ,H2.γ′ for γ, γ′ ∈ Γi

we have dH3(H2.γ,H2.γ′) ≥ 2A. □

Corollary 6.24 (Strengthening of Claim 6.3). Recall the projection ρ̄ : H3 →
H3/Γ3 = M̄ and recall the standard projection τi : M̄ → Mi. Let S̄ = ρ̄(S). Then
τi|S̄ is one to one.

Proof. Assume that for p1, p2 ∈ S̄ we have τi(p1) = τi(p2). Choose p̃j ∈ ρ̄−1(pj)
for j = 1, 2. Since τi ◦ ρ̄ = πΓi

agrees on p̃1, p̃2 we deduce that for some γ ∈ Γi we
have p̃1 = p̃2.γ. Hence p̃1 ∈ S ∩ S.γ. Claim 6.22 implies that γ ∈ Γ3, which in turn
implies that p1 = p2. This proves the injectivity of τi on S̄. □

Proof of Claim 6.1. In view of Corollary 6.24 it is sufficient to show that vol(S̄) =

Ω(A
1/2
i ).



44 OMRI NISAN SOLAN

Recall the map φ : H3 → R form definition 6.16. Its gradient is of fixed size 1.
This implies that for every set Ω ⊆ H3,

Vol(Ω) =

∫ ∞

−∞
Area

(
Ω ∩ φ−1(t)

)
dt.(6.6)

Recall the foliation {ξp : p ∈ H2} of H3 form definition 6.16. This gives a
parametrization H2 → φ−1(t0) for every t0 ∈ R by p 7→ ξp(t0). This parametriza-
tion can be seen to expand the Riemannian metric by cosh(t). Therefore, for every
Ω ⊆ H2, t0 ≥ 1,

vol({ξp(t) : t ∈ [−t0, t0], p ∈ Ω}) = Area(Ω)

∫ t0

−t0

cosh2(t)dt = Θ(e2t0Area(Ω)).

(6.7)

The function φ is H invariant and hence descends to a function φ̄ : H3/Γ3 =
M̄ → R. For every h ∈ H, we have that ξp.h = ξp.h. Thus, the foliation ξ• descends
to M̄ as follows: for every q ∈ V = H2/Γ3 there is a geodesic ξ̄q : R → M̄ , and
these geodesics form a foliation of M̄ . Choosing a fundamental domain Ω ⊆ H2 to
V = H2/Γ3 we deduce from Eq. (6.7) that

vol(S̄) = vol({ξ̄q(t) : t ∈ (−A,A), q ∈ V }) = vol({ξp(t) : t ∈ (−A,A), p ∈ Ω})

= Θ(e2AArea(Ω)) = Θ(
√
AiArea(V )).

Since Area(V ) is fixed we deduce that vol(S̄) = Θ(
√
Ai). By Corollary 6.24 we

obtain vol(Mi) = Ω(
√
Ai). The equality vol(G/Γi) = Ω(vol(Mi)) completes the

proof. □

Proof of Proposition 6.12. Let ζ : H2 → Mi be a locally isometric immersion. Re-
call the standard projection ρi : H3 → Mi. Then ζ factors as ζ = ρi ◦ ζ̃ for some
isometric embedding ζ̃ : H2 → H3.

Note that since Vi = ρi(H2) we have

ρ−1
i (Vi) = ρ−1

i (ρi(H2)) =
⋃

γ∈Γi

H2.γ.

Hence

ζ−1(Vi) =
⋃

γ∈Γi

ζ̃−1(H2.γ)

This is a representation of ζ−1(Vi) as a union of lines. To complete the proof we

need to show that for every γ, γ′ for which ζ̃−1(H2.γ) ̸= ζ̃−1(H2.γ′) we have

dH2(ζ̃−1(H2.γ), ζ̃−1(H2.γ′)) ≥ 2
1

2
logAi +O(1).

However, since ζ̃−1 is an isometric embedding we obtain

dH2(ζ̃−1(H2.γ), ζ̃−1(H2.γ′)) ≥ dH3(H2.γ,H2.γ′)
6.23
≥ 2A.

□

6.4. Proof of Proposition 6.13. To prove Proposition 6.13, we will first rephrase
it as a question on an estimate of the Hausdorff dimension of a certain Cantor set,
and then bound it.
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Reformulation of Proposition 6.13. Let L =
⋃

ℓ∈L ℓ such that for every ℓ1, ℓ2 ∈ L
we have dH2(ℓ1, ℓ2) ≥ A. We may assume without loss of generality that A ≥ 10.
Let p ∈ H2 \ L. Denote by U the connected component of H2 \ L containing p.
Denote by L′ ⊆ L the collection of lines composing the boundary of U . Denote by
D(U) ⊆ ∂H2 the limit set of U . Since U is convex,

D(U) = {q ∈ ∂H2 : [p, q) ⊆ U}.
Hence we have an equality of Hausdorff dimensions

H.dim(
{
γ ∈ Rayp : γ(t) /∈ L ∀t ≥ 0

}
) = H.dim(

{
γ ∈ Rayp : γ(t) ∈ U ∀t ≥ 0

}
)

= H.dim(D(U)).

For every geodesic line ℓ ⊆ H2 \ {p} denote by xℓ, yℓ ∈ ∂H2 the limit points of ℓ so
that the ray [p, xℓ) can be rotated less then π degrees counterclockwise about p to
obtain [p, yℓ). Denote by Iℓ ⊂ ∂H2 the open interval with the boundary points xℓ
and yℓ, which lies on the other side of ℓ than p. Then D(U) = ∂H2 \

⋃
ℓ∈L′ IL. The

intervals IL are disjoint.

Claim 6.25. If ℓ1, ℓ2 are nonintersecting lines in H2 \ {p} then

sinh(d(ℓ1, ℓ2)/2) =
√
|[xℓ1 , xℓ2 ; yℓ2 , yℓ1 ]|,(6.8)

where [a, b; c, d] = (a−c)(b−d)
(a−d)(b−c) is the cross ratio on P1

R
∼= ∂H2.

Proof. The choice to labeling of the limit points of ℓ1, ℓ2 ensures that and xℓ1 , yℓ1 , xℓ2 , yℓ2
are in this circular order on ∂H2. Up to an isometry, we may assume that

xℓ1 = et, yℓ1 = −et, xℓ2 = −1, yℓ2 = 1,

where t = dH2(ℓ1, ℓ2). Then Eq. (6.8) is a direct computation. □

Identify H2 with the Poincaré half-plane model in C∪{∞}. Sample one ℓ0 ∈ L′.
Up to an isometry we may assume that xℓ0 = 1, yℓ0 = 0 so that |p − 1/2| < 1/2
and Iℓ0 = P1

R \ [0, 1]. Let L′′ = L′ \ {ℓ0}. Then Iℓ = (xℓ, yℓ) for every ℓ ∈ L′′ and
D(U) = [0, 1] \

⋃
ℓ∈L(xℓ, yℓ), where

L-a) for all ℓ ∈ L′′ we have xℓ < yℓ ∈ (0, 1);

L-b) for all ℓ ∈ L′′ we have xℓ(1−yℓ)
xℓ−yℓ

≥ sinh(A/2)2;
L-c) for all ℓ1, ℓ2 ∈ L′′ we have

(xℓ2
−yℓ1

)(yℓ2
−xℓ1

)

(yℓ1
−xℓ1

)(yℓ2
−xℓ2

) ≥ sinh(A/2)2.

Denote A′ = sinh(A/2)2 > 5000.

Lower bound on the dimension of the Cantor set D(U).

Observation 6.26. The function a, b, c 7→ b(a+b+c)
ac is monotone increasing in b

and monotone decreasing in a, c whenever a, b, c > 0.

Definition 6.27 (A random variable in z in D(U)). We construct a random se-
quence of decreasing intervals [0, 1] = J0 ⊃ J1 ⊃ J2 ⊃ · · · such that Jk+1 is
one of the three thirds of Jk for every k. That is, if Jk = [ak, ak + 3−k], then
Jk+1 = [ak+1, ak+1 + 3−k−1] for some ak+1 ∈ {ak, ak + 3−k−1, ak + 2 · 3−k−1}.
We will show how to sample iteratively J1, J2, J3, . . . so that so that for every
ℓ ∈ L′′, k ≥ 0 we have

|Jk ∩ Iℓ| < 3−k−1.(6.9)
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Note that Eq. (6.9) is satisfied for J0 = [0, 1] as for every ℓ ∈ L′′ we have

|Jk ∩ Iℓ| = xℓ − yℓ <
xℓ − yℓ
xℓ(1− yℓ)

(L−b)

≤ 1

A′ ≤
1

3
.

Suppose that we have constructed Jk that satisfies Eq. (6.9). We say that Jk is a
regular interval if for all ℓ ∈ L′′ we have |Jk ∩ Iℓ| < 3−k−2, and irregular interval
otherwise. If Jk is a regular interval, we may choose each of the three thirds of Jk
to be Jk+1. We sample Jk+1 uniformly from these three thirds.

Claim 6.28. If Jk is irregular, then the interval ℓ ∈ L′′ with |Jk ∩ Iℓ| ≥ 3−k−2 is
unique.

Proof. Otherwise there are ℓ1 ̸= ℓ2 ∈ L′′ with |Jk ∩ Iℓi | ≥ 3−k−2 for i = 1, 2. This
implies that yℓi − xℓi ≥ 3−k−2. Assume without loss of generality xℓ2 > yℓ1 . Then
since the two intervals intersect Jk we get that xℓ2 − yℓ1 < 3k. Then

A′ ≤ (xℓ2 − yℓ1)(yℓ2 − xℓ1)
(yℓ1 − xℓ1)(yℓ2 − xℓ2)

≤ 3−k · (2 · 3−k−2 + 3−k)

3−2(k+2)
= 99

which is a contradiction. The last inequality follows from Observation 6.26 applied
to a = yℓ1 − xℓ1 ≥ 3−k−2, b = xℓ2 − yℓ1 ≤ 3−k, c = yℓ2 − xℓ2 ≥ 3−k−2. □

Consequently, if Jk is an irregular interval, then there is a unique ℓk ∈ L′′ such
that |Jk ∩ Iℓk | ≥ 3−k−2. By Eq. (6.9) we obtain that |Jk ∩ Iℓk | ∈ [3−k−2, 3−k−1).
Hence at least one of the three thirds J of Jk satisfies J ∩ Iℓk = ∅ and hence we
choose Jk+1 uniformly among these intervals. For every ℓ ∈ L′′, eihter ℓ = ℓk and
then Jk+1 ∩ Iℓ = ∅, or ℓ ̸= ℓk, and then

|Jk+1 ∩ Iℓ| ≤ |Jk ∩ Iℓ| ≤ 3−k−2.

Hence Jk+1 satisfies Eq. (6.9), as desired for the iterative process to continue. Let
z be the unique element in

⋂∞
k=0 Jk.

Claim 6.29. Sample z as in Definition 6.27. Then z ∈ D(U).

Proof. By its definition z ∈ [0, 1]. Suppose that z ∈ Iℓ for some ℓ ∈ L′′. Then
since Iℓ is open, for some k we have Jk ⊆ Iℓ. However, by Eq. (6.9) we have
|Jk ∩ Iℓ| < 3−k−1 < 3−k = |Jk|. This contradicts Jk ⊆ Iℓ and hence z ∈ [0, 1] \⋃

ℓ∈L Iℓ = D(U). □

Claim 6.30. For every J = [a/3m, (a+ 1)/3m] we have

P(Jm = J) < 3−(1−1/A′′)m+1,

where A′′ = log3A′ − 5 > 2.

Proof. Let Fm = {k = 0, . . . ,m−1 : Jk is an irregular interval}. Let k1 < k2 ∈ Fm.
Then Iℓk1

∩Jk1 ̸= ∅, Iℓk1
∩Jk1+1 = ∅ and Iℓk2

∩Jk2 ̸= ∅. This implies that ℓk1 ̸= ℓk2 .

Note that |Iℓk1
| ≥ 3−k1−2, |Iℓk2

| ≥ 3−k2−2 and since both intervals intersect Jk1
we

deduce that dR(Iℓk1
, Iℓk2

) < 3−k1 . Applying Observation 6.26 and Point (L-c) to
Iℓk1

, Iℓk2
we deduce that

A′ ≤ 3−k1(3−k1 + 3−k1−2 + 3−k2−2)

3−k1−2 · 3−k2−2
≤ 35 · 3k2−k1 .

Hence k2 − k1 ≥ log3A′ − 5. Therefore, #Fm < m/(log3A′ − 5) + 1. Note that
when sampling Jk+1 iteratively for k = 0, ...,m− 1, if k /∈ Fm then Jk+1 is sampled
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uniformly between the the three options. Hence the probability Jm was sampled is
at most

1

3m−#Fm
≤ 1

3m−m/(log3 A′−5)−1
.

□

Consequently, for every J = [a/3m, (a+1)/3m] we have P(z ∈ J) ≤ 3−(1−1/A′′)m+1.
This fact, together with Claim 6.29 and standard covering arguments shows that

H.dim(D(U)) ≥ 1− 1/A′′ = 1−O(1/ logA′) = 1−O(1/A).
This concludes the proof of Proposition 6.13.

Appendix A. Proofs of critical exponent-related results

Here we gather a few proofs that are fairly standard, and unrelated to the rest
of the paper.

Proof of Theorem 4.2. Recall the Laplace-Beltrami operator ∆ on C∞(Λ\H2). It
is self-adjoint. The Elstrodt formula (see [13, 14, 15, 27, 37, 9]) relats the maximal
eigenvalue λ0(∆) with the critical exponent as follows,

−λ0(∆) =

{
1
4 , if δ(Λ) ≤ 1

2

δ(Λ)(1− δ(Λ)) if δ(Λ) ≥ 1
2 .

(A.1)

We deduce that −λ0(∆) ≥ ε(1− ε) ≥ ε/2.
Let x0 be the SO(2)-invariant point in the hyperbolic plane H2, and πΛ : H2 →

Λ\H2 the quotient map. Note that πΛ locally preserves the measure, hence defines
a map πΛ

∗ : L1(H2) → L1(Λ\H2) by (πΛ
∗ f)(x) =

∑
y∈(πΛ)−1(x) f(y). One can see

that πΛ
∗ commutes with et∆.

To do so, let f = 1(BH2(1)). This is an element of L2(H2) with ∥f∥2 ≍ 1. The
computation of the Heat kernel [24] shows that

et∆f(x) ≍ ρ+ 1

t3/2
e−

(t+ρ)2

4t , where ρ = dH2(x, x0).(A.2)

Let g = πΛ
∗ f , and estimate ∥g∥2.

∥g∥2 =

∫
Λ\H2

g(p)2dmΛ\H2(p) =

∫
BH2 (1)

g(πΛ(q))dmH2(q)

≪ max
q∈BH2 (1)

g(πΛ(q)).
(A.3)

For every q ∈ BH2(1),

g(πΛ(q)) = #{g ∈ Λ : gq ∈ BH2(1)}
≤ #Λ ∩ {g ∈ SL2(R) : gBH2(1) ∩BH2(1) ̸= ∅} = #Λ ∩K,

where K is a compact set. The assumption on the minimal element in Λ promises
that g(πΛ(q))≪ e0.3εR, and hence ∥g∥2 ≪ e0.3εR.

To prove Eq. (4.1), we will estimate
〈
g, eR∆g

〉
. On the one hand,〈

g, eR∆g
〉
≤ ∥g∥2eRλ0(∆) ≤ e0.3εReRλ0(∆) ≤ e0.3εRe−Rε/2 = e−0.2εR.

On the other hand,〈
g, eR∆g

〉
=
〈
πΛ
∗ f, e

R∆g
〉
=

∫
BH2 (1)

eR∆g(πΛ(p))dmH2(p).
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For any point p ∈ BH2(1) we have

(eR∆g)(p) = (πΛ
∗ e

R∆f)(p) =
∑
λ∈Λ

(eR∆f)(λp) ≥
∑

λ∈Λ∩BSL2(R)(R)

(eR∆f)(λp)

≍
∑

λ∈Λ∩BSL2(R)(R)

dSL2(R)(λ, e) + 1

R3/2
e−

(R+dSL2(R)(λ,e))2

4R

≫
∑

λ∈Λ∩BSL2(R)(R)

1

R3/2
e−R =

#Λ ∩BSL2(R)(R)

eRR3/2

Altogether, e−0.2εR ≫ #Λ∩BSL2(R)(R)

eRR3/2 , which implies that #Λ ∩ BSL2(R)(R) ≪
R3/2e(1−0.2ε)R, and hence, for R sufficiently large as a function of ε we have Eq.
(4.1).

To show Eq. (4.2), denote

X =
{
h ∈ BSL2(R)(R) : #{γ ∈ Γ : γh ∈ BSL2(R)(R)} > e(1−0.1ε)R

}
,

X ′ =
{
q ∈ BH2(R) : #{γ ∈ Γ : γq ∈ BH2(R)} > e(1−0.1ε)R

}
⊇ X.

We will estimate ∥et∆g∥2. On the one hand,

∥et∆g∥2 ≤ e−2tλ2(∆)∥g∥2 ≪ e−εRe0.3εR = e−0.7εR.

On the other hand, similarly to Eq. (A.3),

∥et∆g∥2 =

∫
Λ\H2

(et∆g)(p)2dmΛ\H2(p) =

∫
H2

∑
λ∈Λ

(et∆f)(p)(et∆f)(λp)dmH2(p)

(A.4)

Using (A.2), we deduce that whenever p ∈ BSL2(R)(R), we have (et∆f)(p) ≫
1√
R
e−R. Consequently, we can use for every p ∈ X ′ the integrand in the LHS of

Eq. (A.4) is roughly bounded from below by

≫ e(1−0.1ε)R ·
(

1√
R
e−R

)2

.

Hence, to estimate ∥et∆g∥2,

∥et∆g∥2 ≫ mH2(X ′) · e(1−0.1ε)R ·
(

1√
R
e−R

)2

=
mH2(X ′)

Re(1+0.1ε)R
.

Altogether,

mH2(X) ≤ mH2(X ′)≪ Re(1+0.1ε)R · e−0.7εR = Re(1−0.6ε)R,

which proves Eq. (4.2). □

Proof of Claim 4.4. Let k = [Λ2 : Λ1]. Let X be a system of representatives for
the right cosets in Λ2/Λ1. The inequality δ(Λ1) ≤ δ(Λ2) is simple. As for the
other inequality let ε > 0, let R > 0 be a big number such that BSL2(R)(R) ∩ Λ2 >

eR(δ(Λ2)−ε/2), and denote r = dSL2(R)(X, I). For every λ ∈ BSL2(R)(R)∩Λ2, let xλ ∈
X such that λΛ1 = xλΛ1. The collection YR = {x−1

λ λ : λ ∈ BSL2(R)(R)∩Λ2} ⊆ Λ1
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is of size eR(δ(Λ2)−ε/2)/k, and lies in BSL2(R)(R+ r). For R sufficiently big we have

ker < eRε/2, and hence

#YR ≥ eR(δ(Λ2)−ε/2)/k ≥ eR(δ(Λ2)−ε/2) ·er−Rε/2 = eR(δ(Λ2)−ε) ·er ≥ e(R+r)(δ(Λ2)−ε),

as desired. □
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