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Coherent dynamics of interacting quantum particles plays a central role in the study of strongly
correlated quantum matter and the pursuit of quantum information processors. Here, we present
the state-space of interacting Rydberg atoms as a synthetic landscape on which to control and
observe coherent and correlated dynamics. With full control of the coupling strengths and energy
offsets between the pairs of sites in a nine-site synthetic lattice, we realize quantum walks, Bloch
oscillations, and dynamics in an Escher-type “continuous staircase”. In the interacting regime, we
observe correlated quantum walks, Bloch oscillations, and confinement of particle pairs. Addition-
ally, we simultaneously tilt our lattice both up and down to achieve coherent pair oscillations. This
work establishes synthetic Rydberg lattices of interacting atom arrays as a promising platform for
programmable quantum many-body dynamics with access to features that are difficult to realize in
real-space lattices.

Quantum walks describe the propagation of quantum
particles on periodic potentials, and are the quantum me-
chanical analog of classical random walks. They play
an important role in quantum simulation [1–3], quan-
tum search algorithms [4, 5], and even universal quan-
tum computation [6, 7]. Moreover, quantum walks of-
fer a way to benchmark the coherence and entanglement
of interacting dynamics in programmable quantum de-
vices [8]. Quantum walks have been studied with neu-
tral atoms in optical lattices [9, 10], superconducting cir-
cuits [11], trapped ions [12, 13], photonics [14], and other
platforms [15]. These systems have demonstrated coher-
ent evolution over tens of sites, where the geometry of
the walks are constrained by the geometry of the un-
derlying physical systems. The addition of a potential
energy gradient leads to the observation of Bloch oscil-
lations (BOs) [9, 16, 17] in which the particles remain
localized and undergo periodic oscillations within nearby
sites.

Synthetic dimensions provide an alternative bottom-
up approach for Hamiltonian engineering to explore
quantum walks and coherent dynamics of quantum parti-
cles [18–27]. Instead of tunneling between real-space sites
such as the anti-nodes of an optical lattice or the trans-
mons in a superconducting circuit, the “particle” hops
within the state space of a host quantum system. The
hopping rates between each pair of sites in the synthetic
dimension is controlled with a drive that couples the two
states. The local energy offset depends on the detuning
of that drive. This paradigm offers several new oppor-
tunities: First, the “connectivity” between each pair of
sites is fully programmable, enabling an emergent geom-
etry and even the addition of topological phases [22, 28].
Second, the energy landscape is also fully programmable,
which allows for the addition of any disorder pattern, lat-
tice tilts [24, 25], or non-Euclidean geometry such as in
the Escher-type “impossible” continuous stairs [29].

Here we utilize the large state space of individual Ry-

dberg atoms to encode a synthetic lattice [23, 28, 30, 31]
with nine sites. Tunneling amplitudes and energy off-
sets are controlled with “nearest neighbor” drives, while
interactions between the particles arise from the Ryd-
berg dipolar exchange. Starting with single particles, we
demonstrate highly coherent quantum walks in a flat lat-
tice, Bloch oscillations in a tilted lattice, and dynam-
ics within an Escher-type “continuous staircase” with a
periodic boundary condition (PBC). We then introduce
interactions by preparing a pair of closely-spaced Ryd-
berg atoms, where we study the interplay of interactions
and lattice tilt on the dynamics. We observe that mod-
erate interactions induce free transport by a breakdown
of Stark localization [32], but that strong interactions
lead to re-entrant localization. Finally, we explore the
scenario where the lattice is tilted both up and down
simultaneously, observing the Floquet control of corre-
lated pair hopping. Straightforward upgrades to our sys-
tem could increase the state space and tunneling rates
by an order of magnitude, enable two-dimensional ge-
ometries, and extend to hundreds of atoms. This work
demonstrates the coherence and programmability of the
Rydberg atom state space as a new platform for quan-
tum simulation, quantum search algorithms, and even
universal quantum computing.

Single particle dynamics.— Our synthetic lattice is
routinely implemented in a probabilistically loaded one-
dimensional tweezer array of single 39K atoms with a
series of dimerized trap configurations [28, 31, 33]. We
postselect the singly loading in each trap dimer to ob-
serve the non-interacting single particle dynamics. The
trapped atoms are globally excited to Rydberg state
|0⟩ =

∣∣42S1/2,mJ = 1/2
〉
. We then couple it to eight oth-

ers – four on each side – with microwave drives [23, 28]
such that the “particle” is initialized in the middle of the
lattice chain [see Fig. 1(a)]. In this work, we primar-
ily detect the initial Rydberg state, |0⟩, or the state on
one of the ends, |4⟩, by mapping it back to the ground
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FIG. 1. Bloch oscillations in a synthetic Rydberg state lattice. (a) Level structure used to implement a 9-site Rydberg
state lattice. Each state pair is coupled by a corresponding microwave tone (black arrows) with a Rabi rate Ω and a detuning
of ∆. (b,c) Quantum walk [(b), ∆ = 0] and BO [(c), ∆/h = 0.4(1) MHz] dynamics in a 9-site lattice with Ω/h = 0.45(1) MHz.
(d,e) Time evolution of the population in the initial |0⟩ state, P0, and the wavepacket spreading width λ for different detunings
(see text). (f,g) BO frequency ω and amplitude A as functions of detuning ∆. Solid lines indicate the theory predictions. The
error bars in (d,e) relate to the standard error of multiple independent data sets. The vertical (horizontal) error bars in (f,g)
relate to the standard error of the fits (uncertainty of the calibrated detunings).

state such that it is bright to subsequent fluorescence
detection of the atom. However, we are also able to de-
tect each site independently, which we use to track the
full single-particle dynamics in the synthetic lattice. We
note that our experimental data throughout has been re-
scaled based on the known preparation and measurement
errors [28, 31, 34].

We first investigate the effect of different tilts on the
wavepacket spreading described by the one-atom Hamil-
tonian

Hsp = ∆
∑
j

jc†jcj +
Ω

2

∑
j

(
c†j+1cj + h.c.

)
(1)

with the hopping rates Ω/2 between each adjacent state
pair and the programmable on-site potential. Fig-
ures 1(b,c) track the time evolution of the populations
in all nine sites, showing both experimental results and
simulations, respectively for the flat lattice case (∆ = 0)
and for a tilted lattice (∆/h = 0.4 MHz; ∆ ≈ Ω).
Our observations highly agree with the numerical simu-
lations based on Eq.(1) with no free parameters. For the
flat lattice case the wavepacket follows continuous-time
quantum walk with reflections from the open boundaries,
while in tilted lattice we see the breath-mode feature of
the Bloch oscillation [9], i.e., the wavepacket primarily
oscillates between the initial center site and nearby neigh-
bors.

To further quantify our results and benchmark them
against simulations, we plot in Fig. 1(d,e) both the
center-site population, P0, and the width of the
wavepacket across the full lattice, λ =

∑
j |j|Pj , as a

function of time for three different ∆ values. We find
excellent agreement with the simulations, including sig-
natures of ballistic spreading and reflection for ∆ = 0
and tilt-dependent localized breathing dynamics. Fi-
nally, Figs. 1(f,g) show the amplitude and frequency of
the Bloch oscillations as a function of the tilt ∆. Fit-
ting results with the measured wavepacket spreading
width λ are consistent with the theoretical prediction
λ(t) = A[1 − cos (2πωt)], with frequency ω = ∆/h and
amplitude A = Ω/(2∆). For large ∆, the oscillation fre-
quency can also be resolved from the measured P0 dy-
namics, which we employ in the following to describe the
oscillating behaviors of an interacting pair.

Next, we build a ring geometry with eight states un-
der PBCs, again initializing in |0⟩. As shown in Fig. 2(a),
finite detunings lead to an Escher-type “continuous stair-
case” configuration [29], where the energy cost is always
positive (negative) when moving clockwise (counterclock-
wise). The left panels in Figs. 2(b-e) illustrate simula-
tions of the population dynamics for four different tilts
up to ∆ = Ω/2. When ∆ = 0, the particle delocalizes
around the ring, with transient refocusing at the initial
|0⟩ site and at the opposing |4⟩ site. As the step height of
the continuous staircase grows, the quantum walks per-
sist but the gradient disrupts the refocusing at site |4⟩.
By tracking the population in the initial state |0⟩ and the
state |4⟩ on the opposite side [right panels in Figs. 2(b-
e)], we again find good agreement with simulations. We
include simulations for the case with PBCs (matching
the data) as well as the case in which sites |4⟩ and | − 3⟩
are unconnected, corresponding to the open boundary
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FIG. 2. Dynamics for a non-interacting 8-site Ry-
dberg lattice with Escher structure. (a) State con-
figuration to implement the continuous-staircase. Here
we use Ω/h = 0.90(2) MHz. (b-e) Left panels: simu-
lated population dynamics for different detunings ∆/h =
{0, 0.15, 0.30, 0.45} MHz. Right panels: measured P0 (green
squares) and P4 (orange circles) dynamics for corresponding
detunings in left panels. Solid lines are the same simulations
as those in the left panels, while the dashed lines, for compar-
ison, indicate the population dynamics under open boundary
condition by disconnecting the |4⟩ → |−3⟩ transition. The er-
ror bars relate to the standard errors of multiple independent
data sets.

conditions. When the tilt is small, such that the Bloch
oscillation amplitude exceeds our finite system size, the
two simulations are quite different, and the data agrees
with the continuous staircase theory. However, for large
tilt where the BO amplitude becomes small, the bound-
ary conditions do not significantly impact the dynamics.

Interacting atom pairs.— We now discuss interacting
dynamics and pair hopping by utilizing a pair of closely-
spaced Rydberg atoms labelled as A and B with a spatial
separation dAB . The interacting Hamiltonian is

Hint =
∑
i,j

Vijc
†
i,Ac

†
j,Bcj,Aci,B + h.c., (2)

with Vij ∝ Cij
3 /d3AB for the dipolar exchange |i⟩A |j⟩B ↔

|j⟩A |i⟩B . We scale all Vij to V = V0,−1 with the calcu-
lated C3 coefficients. In the experiment we vary the inter-
action strength by changing the tweezer separation dAB .
Here we return to the 9-state synthetic lattice in Fig. 1,
and each atom also experiences the single-particle Hamil-
tonian (1). In our numerical simulations, the largely de-
tuned state-changing interaction terms are excluded as
we work in relatively weak interaction regime [34].

We consider the case of a highly tilted lattice with
∆/h = 0.8(1) MHz. Figure 3(a) shows simulations of
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FIG. 3. BO in an interacting atom pair. (a) Simulated
averaged population dynamics for atom pair in an interact-
ing Rydberg state lattice under different interaction strength
V/h = {0.34, 0.75, 1.40} MHz. (b) Time evolution of P0 un-
der different interaction strength. Solid lines give the ideal
numerical simulation results. The errorbars show the stan-
dard errors from multiple independent datasets. (c) Oscilla-
tion frequency ω v.s. interation-to-detuning ratio V/∆. With
an increase of V/∆, the oscillation first slows down, then gets
breakdown but finally revival. The boundaries of the break-
down region are determined by V = ∆± Ω. The solid line is
obtained by fitting the numerically simulated ideal P0 dynam-
ics. The dashed line with hω = ±(∆−V ) gives the energy gap
between pair state |0, 0⟩ and triplets (|±1, 0⟩+ |0,±1⟩)/

√
2 in

Ω → 0 limit. The dotted line is the energy gap modified by
finite small Ω in formula hω ≈

√
|∆− V |2 +Ω2 for 3-state

system {|0⟩ , |±1⟩} under interaction [34]. In experiment, we
use ∆/h = 0.8(1) MHz, Ω/h = 0.45(1) MHz. The vertical
(horizontal) errorbars come from fittings to the experimental
datasets (uncertainties of both V and ∆).

the dynamics for three values of V , where the middle
value corresponds to V ≈ ∆ > Ω. We expect to ob-
serve Bloch oscillations when V < ∆ and interaction-
induced confinement when V > ∆. In the intermediate
regime where V ≈ ∆, we expect to observe delocaliza-
tion in an anti-correlated quantum walk of the A and
B atoms [34]. Our experimental results are consistent
with these expectations. Here we use the dynamics of
P0 = (⟨c†0,Ac0,A⊗IB⟩+⟨IA⊗c†0,Bc0,B⟩)/2 to describe the
oscillation behaviors for interacting pairs; see Fig. 3(b).
For both weak and strong V , we observe small-amplitude
oscillations of P0, with the frequency modified by the in-
teraction. However, a damping feature without revival
shows up when V ≈ ∆, indicating the breakdown of BOs.

Based on our observations, numerics, and energy argu-
ments [34], we expect a “localization breakdown” region
with interaction-induced transport for ∆ − Ω < V <
∆ + Ω. In the regions V < ∆ − Ω and V > ∆ + Ω,
where we observe localization and clear oscillations of
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P0, we quantify the agreement between theory and ex-
periment by analyzing the oscillation frequency vs. the
interaction strength. In these limits, we can relate this
frequency to the energy gap between the |0, 0⟩ and the
(| ± 1, 0⟩ + |0,±1⟩)/

√
2 triplet states. For Ω → 0, this

is given by ±(∆ − V ) [34]. Considering small but fi-
nite Ω, the energy gaps of the truncated lattice (|−1⟩,
|0⟩, and |1⟩) are refined to ∼

√
|∆− V |2 +Ω2. This lat-

ter form agrees well with our observations outside of the
breakdown region. We note a slight deviation from the
frequency based on numerics in the large V limit, which
we attribute to the role of outer sites (|j| > 1). Over-
all, these observations illustrate how correlated quantum
walks and Bloch oscillations can be used to probe the
effective band structure of the interacting system.

Finally, we explore a unique capability of synthetic lat-
tices by simultaneously tilting the lattice both upward
and downward. This scenario corresponds to a bichro-
matic drive with detunings ±∆ for each pair of states; see
Fig. 4. We explore the interplay of this bichromatic drive
and interactions V between the atoms when ∆ ≈ 4Ω. We
start with a two-level system, |0⟩ and |1⟩, as illustrated
by the gray box in Fig. 4(a). In the non-interacting case,
this corresponds simply to highly detuned Rabi dynam-
ics, with a nearly static P0 ≈ 1. However, when in-
teractions with strength V = 0.2∆ are added, we ob-
serve large-amplitude pair oscillations between |0⟩ and
|1⟩. Measuring for different V values [see Fig. 4(c)], we
find good agreement with the expected rate of activated
pair hopping, Ωeff = 2|V |Ω2/|∆2−V 2|. We note that this
activated pair-hopping [35] is controlled independently
from the hopping of singles, and is thus distinct from
the hopping of bound pairs in flat lattices (∆ = 0) when
V ≫ Ω [9, 28, 36]. This process can also be viewed as the
activation of “flip-flip” (σ+σ+) and “flop-flop” (σ−σ−)
spin interactions [34], relevant for, e.g., the realization
of Kitaev spin chains [37]. Lastly, this process is anal-
ogous to the recent Floquet activation [38] of Rydberg
anti-blockade [39].

With this understanding of the bichromatic drives for
the two-level system, we now return to the full nine-level
system shown in Fig. 1(a), but with bichromatic drives.
We measure the evolution of the |0, 0⟩ population under
different interaction strength V ; see Fig. 4(d). In the
limit of zero interaction, P|0,0⟩ remains high just as it
did for the two-level case. As the interaction strength
is increased, we find that P00 decays with an increasing
rate. The measured dynamics are in good agreement with
simulations, which suggest a coherent correlated delocal-
ization that appears as a Gaussian decay on the short
timescales probed in the experiment [34]. By fitting to

the expected Gaussian decay e−βt2 , we find the damp-
ing coefficient β agrees with the theory predicted scale
as ∼ V 2 in weak interacting limit [34]; see Fig. 4(e).

Concluding discussion.— This work establishes syn-
thetic Rydberg lattices in interacting atom arrays as a
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FIG. 4. Pair hopping and pair dynamics under bichro-
matic driving. (a) The driving scheme. Each Rydberg
state pair is coupled by two equal strength (Ω) microwave
tones, respectively detuned from resonance by ±∆. In (b,c),
we study only the two-state system of |0⟩ and |1⟩ (gray box)
under a bichromatic drive. (b) Time evolution of the pop-
ulations in |0⟩ for single atoms (orange circles) and |0, 0⟩ for
interacting pairs with V/h = −1.56(9) MHz (green squares).
Here Ω/h = 1.92(4) MHz and ∆/h = 7.2(1) MHz. The
solid lines are numerical simulations. (c) Comparison of
the experimentally measured pair-hopping (|0, 0⟩ ↔ |1, 1⟩)
rate Ωeff to the perturbation theory prediction (solid line).
The dashed line shows the result from fittings to the numer-
ically calculated P|00⟩ dynamics. (d) Time evolution of the
SPAM-corrected |0, 0⟩ population for the 9-site lattice under
bichromatic driving of each nearest-neighbor transition. The
data plots, from top to bottom, relate to interactions V/h =
{0, 0.80(5), 1.56(9), 2.70(16)} MHz with Ω/h = 0.90(2) MHz
and ∆/h = 5.0(1) MHz. Solid lines are exponential fits
P|0,0⟩(t) = a + b exp

(
−βt2

)
to the experimental data, while

the dashed lines are numerical simulations. (e) The damping
coefficient β vs. the interaction strength. The dashed line
shows the fit of short-time numerics [dashed lines in (d)] to
the same form. The solid line is a polynomial fit to the experi-
mental data, showing the scale β ∝ V 2. The shaded regions in
(c,e) result from accounting for the known parameter uncer-
tainties. The vertical error bars in (b,d) are standard errors
from multiple independent measurements, while in (c,e) they
give the standard errors of the fit. The horizontal errorbars
in (c,e) reflect our uncertainties of the calibrated values of V ,
Ω, and ∆.

promising platform to explore programmable quantum
many-body dynamics. By studying quantum walks for
single particles and correlated pairs, we demonstrate that
the coherence of our system is comparable with that of
other atomic platforms. Additionally, we leverage the
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unique capabilities of synthetic dimensions to explore
scenarios that are challenging to achieve with real di-
mensions, such as arbitrary energy landscapes, simulta-
neous tilting in two directions, and non-Euclidean geom-
etry such as the Escher-type “continuous staircase.”

We note several straightforward ways to advance the
coherence and increase the timescales of dynamics in this
platform. First, it would be beneficial to implement trap-
ping of our Rydberg states, either by blue-detuned bot-
tlebeam traps [40] or with alkaline earth(-like) atoms
with trappable ionic cores [41]. Second, a larger mag-
netic field would offer a larger spacing between the de-
sired states and other Zeeman states, which would re-
duce unwanted off-resonant couplings and enable faster
dynamics. Third, the use of higher Rydberg states or
circular Rydberg states [42] – potentially even in a cryo-
genic environment [43] – would mitigate the effect of the
finite Rydberg state lifetime. Already, this work sets the
stage for complex many-body Rydberg dynamics with
a large degree of programmability that can enable the
study of few-body and many-body localized [44–48] and
topological [49, 50] phases.

We thank Tabor Electronics greatly for the use of an
arbitrary waveform generator demo unit. This material
is based upon work supported by the National Science
Foundation under grant No. 1945031 and the AFOSR
MURI program under agreement number FA9550-22-1-
0339.
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correlated dynamics in an interacting synthetic Rydberg lattice”

Calibration of the global flux for staircase lattice with ∆ = 0

The population dynamics strongly depend on the global flux in the 8-state ring structure with ∆ = 0 in Fig. 2(a).
Here we focus on the zero flux case. In the experiment, we adjust the phase ϕ01 of the microwave frequency tone
that drives |0⟩ ↔ |1⟩ transition (relative to the other tones, which all start with zero phase at the source) to achieve
zero global flux. The calibration of the global flux and its dependence on ϕ01 is based on the measured population
dynamics of single atoms. Figure S1 shows the population in state |4⟩ after an evolution time of 2.25 µs (∼ 2h/Ω
with Ω/h = 0.90(2) MHz) for different ϕ01. Since we expect P4 to peak for zero global flux at t = 2h/Ω, we use
ϕ01 = 0.60(2)π (based on the simple Gaussian fit shown in Fig. S1) to achieve zero flux for all the measurements
shown in Fig. 2 of the main text.
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FIG. S1. Calibration of the global flux for 8-state ring structure. Measured population in state |4⟩, P4, after an
evolution time of 2.25 µs under different values of the phase ϕ01. The solid line indicates the Gaussian fit to the data points.
The error bars represent the standard errors from several independent measurements.

Details of the interaction terms

As discussed in [28], two different dipolar exchange processes should be addressed in our setup: (i) resonant state-
conserved flip-flop interactions for |i⟩A |j⟩B ↔ |j⟩A |i⟩B , (ii) non-resonant state-changing interactions for |i⟩A |j′⟩B ↔
|j⟩A |i′⟩B with a detuning ∆i′j′

ij . For the states employed to implement our synthetic lattice in Fig. 1(a), the smallest

detuning |∆i′j′

ij |min ∼ h × 50 MHz under the quantization B-field of ∼ 27 G. Since we work in the weak interaction

regime with the maximum interaction strength V = h × 2.7 MHz, i.e., V ≪ |∆i′j′

ij |min, the non-resonant state-
changing interaction terms have negligible effect on the pair dynamics and consequently can be safely excluded. In
our numerical simulations, we directly use the flip-flop interacting Hamiltonian (2) in the main text. The interaction
strength Vij ∝ Cij

3 /d3AB with dAB the spatial separation of the atom pair. Similar to our previous work [28], we scale

all Vij to the calibrated value V = V0,−1 according to the relevant calculated Cij
3 coefficients, as listed in Table SI.

Renormalization of the experimental measurements

As discussed in Ref. [28], the primary data we measure for the state population dynamics has a lower contrast as
compared to the renormalized data presented in the main text. There are two main effects that reduce the contrast
of the raw population dynamics data. First, the data typically features an average upper “ceiling” value Pu, which
stems from inefficiency of STIRAP, as well as loss during release-and-recapture. There is also a lower baseline of the
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|i⟩ |j⟩ C3 |i⟩ |j⟩ C3

|0⟩ |1⟩ -756.4

|0⟩ |−1⟩ 756.4

|1⟩ |2⟩ -639.1 |−1⟩ |2⟩ 639.1

|1⟩ |−2⟩ 639.1 |−1⟩ |−2⟩ -639.1

|2⟩ |3⟩ -834.4 |−2⟩ |3⟩ 834.4

|2⟩ |−3⟩ 834.4 |−2⟩ |−3⟩ -834.4

|3⟩ |4⟩ -705.0 |−3⟩ |4⟩ 705.0

|3⟩ |−4⟩ 705.0 |−3⟩ |−4⟩ -705.0

TABLE SI. Calculated C3 coefficients (units of MHz µm3) for the resonant dipolar exchange interaction terms.

measurements, having an average value Pl, that we believe stems from the decay (and subsequent recapture) of the
short-lived Rydberg states, which results in the non-depumped Rydberg states having some probability to appear
bright to subsequent fluorescence detection. These infidelities limit the contrast of state population dynamics.

For the averaged population dynamics in non-interacting singles (Pi = ⟨c†i ci⟩) and the interacting pairs [Pi =
1
2 (⟨c

†
i,Aci,A⊗IB⟩+⟨IA⊗c†i,Bci,B⟩)], we renormalize the measured P bare

i to Pi = (P bare
i −Pl)/(Pu−Pl) with Pu = 0.93(1)

and Pl = 0.32(1). For the pair state dynamics, i.e., P|0,0⟩ = ⟨c†0,Ac0,A ⊗ c†0,Bc0,B⟩, we renormalize with Pu = 0.86(1)
and Pl = 0.32(1). To note, when performing this normalization we systematically do not account for the statistical
variations of the renormalization factors, which will lead to additional (and unaccounted for) uncertainties on the
values of the renormalized population data.

Determination of the oscillation frequency and breakdown region for atom pairs

Here we show how the interactions affect the oscillation frequency for atom pairs, and additionally we estimate the
region in which interactions lead to a breakdown of localization effects. For large detunings, e.g., ∆ > Ω as used in
Fig. 3 in the main text, the non-interacting Bloch oscillation is almost restricted to the center three sites. In this
large-bias regime, the oscillation frequency is approximately equal to the energy gap between |0⟩ and |±1⟩ under the
dressed state picture. That is, when the dipolar exchange interaction is introduced, the atom pair in |0, 0⟩ undergoes
collective coupling to the neighboring triplet states (or superpositions of multiple triplets if we consider beyond the
truncated |−1⟩, |0⟩, |1⟩ system). Then the oscillation frequency is determined by the energy gap between |0, 0⟩ and
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FIG. S2. Eigenenergy distribution under different interaction strengths for the 3-state subsystem. (a) With
Ω = 0, the zero energy band (solid black line) corresponds to the eigenstate |0, 0⟩. The eigenstate for the neighboring band
(solid orange line) is the pair triplet: (|0, 1⟩ + |1, 0⟩)/

√
2 for V < ∆ and (|0,−1⟩ + |−1, 0⟩)/

√
2 for V > ∆ (and vice-versa for

the neighboring negative energy branch). The energy gap between the central bands is labelled as G = ±(∆ − V ). (b) For
finite small Ω/∆ = 0.2, the central bands open up a gap at V/∆, corresponding to an eigenstate as a superposition of the |0, 0⟩
state and pair triplets. The green dashed line indicates the approximated formula G =

√
|V −∆|2 +Ω2. All gray lines in (a)

and (b) correspond additional energy bands for this truncated system.
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the neighboring eigenstates.
Instead of considering the whole 9-state system, we restrict ourselves to the 3-state subsystem, {|0⟩ , |±1⟩}, to get

the approximate relation between the oscillation frequency and the energy gap. The Hamiltonian is

H = ±∆ |±1⟩ ⟨±1|+ Ω

2
(|0⟩ ⟨±1|+ h.c.) + V0,±1 (|0,±1⟩ ⟨±1, 0|+ h.c.) (S1)

with V0,±1 = ∓V . We first consider the case with Ω → 0, for which the eigenenergy distribution under different
interaction strengths is shown in Fig. S2(a). The initial |0, 0⟩ state is the eigenstate of the zero energy band, while
the eigenstates for the neighboring bands with energy En = ±(V − ∆) are pair triplet states. The atom pair
should in principle oscillate with a frequency given by the energy difference of the two bands, i.e., G = ±(V − ∆)
(although there would be zero amplitude of oscillation in the Ω → 0 limit). This simple prediction relates to the
dashed line shown in Fig. 3(c) of the main text. Small but finite Ω introduces perturbations to the energy bands
and opens up a gap at V/∆ = 1; see Fig. S2(b). Now the exact formula of the energy gap between the bands reads
G = 1

2{10∆
2 − 4∆V + 2V 2 + 5Ω2 − [(6∆2 + 4∆V − 2V 2 + Ω2)2 + 8Ω2(3∆2 − 10∆V + 3V 2 + Ω2)]1/2}1/2. For small

Ω, we can neglect the second 8Ω2 term under the inner square root and get the approximated form

G ≈
√
|∆− V |2 +Ω2, (S2)

as shown by the dotted line in Fig. 3(c) of the main text. We can see from Fig. S2(b) that this approximation works
well.

Additionally, we can estimate the parameter region over which this approximated form should be invalid. Here we
determine the breakdown boundaries of the localization and pair oscillations by letting the energy gap between the
two bands be fully covered by the collective pair hopping rate, i.e.,√

|∆− V |2 +Ω2 =
√
2Ω . (S3)

This leads to the simple relation V = ∆±Ω, shown as the two vertical dashed lines in Fig. 3(c) of the maintext. We
also validate this formula from our numerical simulations, as the oscillatory fits to the P0 dynamics with collapse in
this “breakdown” region.

Time evolution of the atom-pair correlations

Figure S3 shows the time evolution of the atom-pair correlation Cij = ⟨c†i,Ac
†
j,Bci,Acj,B⟩ for two of the quantum

walk situations discussed in the main text - the case of two interacting particles hopping in a static, tilted lattice (the
Cij plots of Fig. S3(a), corresponding to the scenario explored in Fig. 3) and the case of two interacting particles
hopping in a tilted lattice under bichromatic driving (the Cij plots of Fig. S3(b), corresponding to the scenario
explored in Fig. 4). In these two respective scenarios, the dynamics of the Cij distributions reveal the anti-correlated
and correlated nature of the hopping of the two particles (Rydberg electrons) in the synthetic dimension.

In the case of Fig. S3(a), the anti-correlated dynamics of the two interacting particles can be understood simply
from a consideration of energy conservation. In this context, it is helpful to consider the Cij graphs as plotting the
density dynamics of pair states |i⟩ |j⟩ in an effective two-dimensional lattice. The energies of these pair states represent
an effective potential landscape. In the case where atoms A and B both experience a tilted lattice, the effective pair
state potential energy landscape has a gradient along the diagonal direction (i = j), with lines of equal-energy states
along the anti-diagonal (i = −j). The single-particle hopping terms act separably as hopping in the i and j directions.
In the absence of interactions, because of this separability of the Hamiltonian along i and j, the atoms independently
experience Stark localization in the presence of a tilted lattice. Dipolar exchange interactions, having the form
|i⟩ |j⟩ ↔ |j⟩ |i⟩, introduce effective hopping in this two-dimensional pair-state lattice that is not separable along i and
j. Thus, interactions between the atoms facilitate the breakdown of Stark localization, essentially allowing the atom
pair states to delocalize along the resonant anti-diagonal channel. This pair state delocalization along the i = −j
direction naturally leads to the buildup of anti-correlations. When the the interactions V become sufficiently strong,
pair dynamics along the resonant channel become disrupted. This suppression is also easy to understand: the initial
|0⟩ |0⟩ state is only (by symmetry) connected to the triplet states (|−1⟩ |0⟩ + |0⟩ |−1⟩)/

√
2 and (|1⟩ |0⟩ + |0⟩ |1⟩)/

√
2.

Each of these states experiences a large interaction shift relative to the non-interacting |0⟩ |0⟩ state, such that direct
dynamics are arrested for V ≫ Ω.

The dynamics seen in Fig. S3(b), under a strong lattice tilt and bichromatic driving, reveal a contrasting buildup
of mostly positive (along the diagonal) Cij correlations. This is consistent with the microscopic derivation and
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FIG. S3. Numerically simulated time evolution of the atom pair correlations. (a) Pair correlation Cij after different
evolution times t for the tilted 9-state lattice depicted in Fig. 1(a) of the main text [i.e., same conditions as in Fig. 3 of the
main text]. Here ∆/h = 0.8 MHz and Ω/h = 0.45 MHz. (b) Pair correlation Cij after different evolution times t for the 9-state
lattice driven by bichromatic microwaves, as depicted in Fig. 4(a) of the main text. Here ∆/h = 5.0 MHz and Ω/h = 0.90 MHz.

description of activated pair-hopping (Eq. S4), and its generalization to the multi-state driven lattice. As can be seen
in Fig. S3(b), the buildup of correlations is not purely along the diagonal. This imperfect correlation stems from the
presence of additional processes (e.g., |0⟩ |0⟩ ↔ |0⟩ |2⟩) as discussed below, which are allowed because of the equal ∆
values applied along adjacent links. As discussed below, such processes can in principle be suppressed, in which case
one would expect purely potitive (diagonal) correlations to build up in the strongly tilted and driven lattice.

Perturbation theory for the pair hopping rate in the bichromatic driving field

In large ∆ limit, i.e., ∆ ≫ Ω, |V |, the pair oscillation |0, 0⟩ ↔ |1, 1⟩ under the bichromatic microwave field is
activated by two resonant 2-photon transitions via the intermediate triplet state, as shown in Fig. S4. By directly
applying second-order perturbation theory to the two processes, with the collective Rabi frequency

√
2Ω and the

single-photon detuning ∆±|V | respectively, we have the effective Rabi frequency for the |0, 0⟩ ↔ |1, 1⟩ pair transition

Ωeff =
(
√
2Ω)2

2(∆− |V |)
+

(
√
2Ω)2

2(∆ + |V |)
=

2|V |Ω2

∆2 − V 2
. (S4)

This is the form used in Fig. 4(c). To note, the summed microwave phase of the two driving fields (both defined with
the same real parameter Ω in Fig. S4, but able to take controlled complex phases as well) can impart a controlled
hopping phase for this correlated hopping process. And, as noted in the main text, this pair-hopping can be controlled
entirely independently of the resonant hopping of individual atoms.
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FIG. S4. Decomposition of the pair hopping under the two-color microwave field into two 2-photon transitions
that operate via the intermediate triplet state |+⟩. To note, the |−⟩ singlet state is decoupled from the initial |0, 0⟩ ≡
|0⟩ |0⟩ state due to the symmetry of the global driving fields. The processes depicted at right are what give rise to the form of
the effective pair-hopping term presented in Eq. S4.

When considering how this effective pair hopping rate generalizes when more states (beyond |0⟩ and |1⟩) are included
(as in Fig. 4(d,e) of the main text), two effects become apparent. First, when all of the ∆ applied at the different
transitions are set to be equal, additional resonant processes are in principle also allowed, such as |0⟩ |0⟩ ↔ |0⟩ |2⟩.
This type of process is responsible for the fact that the pair correlations that develop in Fig. S3(b) do not lie purely
along the diagonal (i = j). Second, one finds that, because the relevant exchange interactions V along different links
vary along the synthetic dimension, and given the scaling of Ωeff with V , one expects that in general the pair hopping
along a synthetic lattice will be quite non-uniform, and nearly disordered.

Importantly, the ability to control the parameters for each site-to-site link affords enough flexibility to both (1)
suppress processes that are not of the form |i⟩ |i⟩ ↔ |i+ 1⟩ |i+ 1⟩ by setting unique (or simply staggered) values of ∆
and (2) compensate for non-uniformities of the V and ∆ values by locally controlling the Ω terms to achieve uniform
values of the Ωeff pair-hopping rates across each link.

Long time pair dynamics for the 9-state lattice under bichromatic driving with weak interactions

In our experiment on the 9-state lattice with each Rydberg state pair driven by a bichromatic field, we only
measure the short time dynamics due to the short trap-release-recapture time window (less than 10 µs). Here we
show in Fig. S5(a) the long-time dynamics from numerical simulations. In the weak interaction regime, the population
in |0, 0⟩ undergoes slow, but periodic oscillations with an oscillation frequency ω that is nearly proportional to the
interaction strength V ; see Fig. S5(b).
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FIG. S5. Long time P|0,0⟩ dynamics for the 9-state lattice under bichromatic microwave fields. (a) Numerically
calculated time evolution of the population in |0, 0⟩ in the 9-state lattice with the bichromatic driving scheme of Fig. 4(a) in the
main text. From top to bottom, the interaction strengths are V/h = {0.2, 0.4, 0.6, 0.8, 1.0} MHz. Here we use Ω/h = 0.90 MHz
and ∆/h = 5.0 MHz. (b) The fit-determined oscillation frequency of P|0,0⟩, ω, from fits to the dynamics in (a) with a cosine
function P|0,0⟩(t) = a + cos(ωt). The solid line shows the approximately linear relationship between the oscillation frequency
and the interaction strength V .
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On the short experimentally relevant timescales (over just a few µs), where ωt → 0 for kHz-scale ω, we see that
the relevant fitting function P|0,0⟩ = a + b cos(ωt) can be approximated as (a − b) + 2b exp

(
−ω2t2/4

)
. In the main

text, we fit the short time dynamics with the formula P|0,0⟩ = c+ de−βt2 . By comparing these two forms, we see that
β ∼ ω2/4. Since ω ∝ V , we arrive at the simple approximated relationship β ∝ V 2, as shown in Fig. 4(e) of the main
text.
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