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We study superfluidlike spin transport facilitated by thermal diffusion of magnetic domain walls,
where the positive and negative chiralities of domain walls act as opposite topological charges. The
topological charge conservation leads to algebraic decay of the topological current, allowing for the
transport of spin over extended distances. We demonstrate that the presence of the Dzyaloshin-
skii–Moriya interaction can lead to nonreciprocity in topological flow. In one scenario, the non-
reciprocity arises due to diode-like behavior where the nucleation of domain walls is governed by
thermal activation for one direction of spin current and by viscous injection for the other direction
of spin current. We confirm our predictions by micromagnetic simulations of domain walls in TmIG
nanowire.

Using spin for transfer of information can make future
electronics more energy efficient [1]. Spin currents are
used in a type of magnetic memory relying on spin-orbit
torque, allowing us to change magnetic state with very
little energy loss by employing spin currents [2]. Re-
cently, spintronics has greatly benefited from using new
ideas relying on topology. These ideas give us a math-
ematical way to discover processes characterized by low
dissipation [3–5]. Studies of topological solitons for spin-
tronic applications have parallels in other fields of physics
ranging from metamaterials to black holes [6–8].

Magnetic insulators [1] and in particular antiferromag-
nets [9] are uniquely useful for low dissipation spin trans-
port due to the absence of contributions associated with
charge carriers. Long-distance spin superfluid transport
relying on the presence of U(1) symmetry has been stud-
ied in collinear [10–21] and noncollinear [22, 23] magnets.
However, the presence of additional uniaxial anisotropy
can break the U(1) symmetry. In this situation, the
long-distance spin transport is still possible and it can
be carried by topological solitons, such as domain walls
(DWs) [24], which can be characterized by the conser-
vation of topological charge [25]. This can also lead to
situations in which magnetic solitons with positive and
negative charge can coexist while undergoing Brownian
motion at finite temperature [25–30]. In another example
of topological solitons, i.e., skyrmions and antiskyrmions
with positive and negative topological charge, they can
also coexist within the same system [31–33]. This situa-
tion somewhat resembles semiconductor systems with p-
or n-doping where by combining different types of doping
one can obtain useful functionality.

In this work, we study superfluidlike topological
spin transport facilitated by thermally populated DWs
in an easy-plane ferromagnet with additional in-plane
anisotropy. We also include Dzyaloshinskii–Moriya inter-
action (DMI) which creates preference for one topologi-
cal charge over the other, effectively realizing topological
charge doping. We show how this topological charge dop-
ing can lead to nonreciprocity in our system. The notion
of topological charge naturally arises for DWs in the XY

Figure 1. The domain walls with the topological charge q = 1
in (a) and (b), and the topological charge q = −1 in (c)
and (d) realizable in an easy-plane magnetic nanowire with
additional easy-axis anisotropy.

ferromagnet and can be associated with the chirality of
DWs, see Fig. 1 for the types of DWs considered in this
work. At low enough temperatures, an easy-plane ferro-
magnet can effectively approximate the XY ferromagnet.
The conservation of topological charge and DW diffusion
can then lead to long-distance spin transport with alge-
braic decay within a typical setup used for observation
of spin superfluidity, see Fig. 2.

Domain wall diffusion in a nanowire. We consider a
long ferromagnetic nanowire along the x-axis with the
cross section S described by the Free energy density:

U = A(∂xn)
2 − κn2

z +Kn2
y +Dŷ · (n× ∂xn), (1)

where A describes the exchange stiffness, positive K
and κ correspond to magnetic anisotropies, and D de-
scribes the interfacial DMI. We mostly concentrate on
the limit K ≫ κ considered in Ref. [34]. The model in
Eq. (1) realizes an easy-plane ferromagnet within x − z
plane with an extra easy z-axis, thus admitting domain
wall (DW) solutions. We describe the local spin den-
sity s using a unit vector n, i.e., s = sn. The direc-
tion is further parametrized using an inplane angle as
n = (sinϕ, 0, cosϕ). A static DW solution can be writ-

ar
X

iv
:2

40
4.

00
81

8v
1 

 [
co

nd
-m

at
.m

es
-h

al
l]

  3
1 

M
ar

 2
02

4



2

𝐣𝑐
𝐣1
𝑠

metal metal

y x

𝐣2
𝑠

Magnetic wire

z

Figure 2. Schematics of a 1D magnetic nanowire that can
host domain walls with the topological charge q = ±1. The
nanowire has an easy x − z plane anisotropy with an extra
easy z-axis. Spin current is injected into the nanowire at the
left interface using a heavy metal such as Pt, resulting in
preferred injection of domain walls with certain topological
charge. Annihilation of domain walls at the right interface
generates spin current in the right metal via spin pumping.

ten as

ϕ(x,X) = cos−1(q tanh[
x−X

∆
]) , (2)

where X is the position of DW, q = ±1 is the topo-
logical charge, and ∆ =

√
A/κ is the DW width. The

energy of DW is given by Eq = S(4
√
Aκ + qπD). The

topological charge q can be calculated from the rela-
tion q = − 1

π

∫
dx ∂xϕ where the integral is taken along

the length of the magnetic wire. In the limit of large
anisotropy K, the DWs are created and annihilated in
pairs of opposite charge within the bulk of the mag-
netic wire. At finite temperatures, a wire with length
L ≫ ∆ will be characterized by an equilibrium density
ρ± of DWs with positive and negative topological charge,
where due to finite DMI ρ+ ̸= ρ−. Overall, the topolog-
ical charge described by density, ρ = ρ+ − ρ−, has to
be conserved in the bulk while unpaired charges can be
injected through boundaries of the magnetic wire.

The thermal diffusion of DWs at finite temperatures
can be described by the Landau-Lifshitz-Gilbert (LLG)
equation:

s(1 + αn×)ṅ = n× (h+ hth) , (3)

where hth is the stochastic field described by the cor-
relator ⟨hth

i (r, t)hth
j (r′, t′)⟩ = 2αsTδijδ(r − r′)δ(t − t′)

and h = −∂U/∂n is the effective field. We obtain the
Langevin equation for the overdamped dynamics of DWs
using the collective coordinate approach [34–36] or equiv-
alently the Thiele equation applied to the 1D case for a
single variable X [25, 37],

αηẊ = F + F th , (4)

where η = s
∫
dV (∂xn)

2 = 2sS/∆ corresponds to dis-
sipative dyadic tensor within the Thiele approach, F =

−∂U/∂X is the force associated with the field h, and
F th = −

∫
dV (hth·∂xn) has the meaning of the stochastic

force acting on the DW with the force correlation func-
tion, ⟨F th(X, t)F th(X ′, t′)⟩ = 2αkBTηδ(X−X ′)δ(t− t′).
Finally, the constant of DW thermal diffusion can be
expressed as D = kBT/αη. We study the stochastic
movement of DWs within a nanowire, giving rise to dif-
fusion characterized by the Fokker-Planck equation for
the topological charge and current [29],

∂tρ+ ∂xI = 0 , (5)

where the topological current becomes I = µ(F+ρ+ −
F−ρ−)−D∂xρ in the absence of the temperature gradient,
and µ = 1/αη is the DW mobility. In a steady state,
Eq. (5) realizes long range superfluidlike spin transport
due to the conservation of topological charge [34].
Injection and transport of topological charge. To in-

ject a topological current into magnetic nanowire one can
use a heavy metal contact in which a charge current jc

induces dampinglike spin-orbit torque, see Fig. 2. The

magnetization torque τ = ϑjc

a n× (ŷ × n) then performs
positive or negative work,

W q = S

∫
dtdx τ · (n× ∂tn) = qπSϑjc , (6)

during the injection process depending on the sign of
charge q where ϑ is the effective coefficient describing
the efficiency of dampinglike spin-orbit torque and a is
a small length scale over which the torque is being ab-
sorbed [38].
We adopt the reaction-rate theory [34, 39] to describe

the transport of DWs. For each boundary in Fig. 2, we
can write the injection rate:

I± = Γ±(T )− γ±(T )ρ± , (7)

where Γ±(T ) describes the DW nucleation rate and
γ±(T ) describes the DW annihilation rate per unit den-
sity at the boundary. For the nucleation rate, we can
write Γ±(T ) = ν(T ) exp(−E±/T+W±/T ) where ν(T ) is
a characteristic frequency describing the nucleation pro-
cess. For the annihilation rate parametrizing the escape
of DWs through the boundary, we identify the topological
charge independent γ0(T ) ∼ D(T )/∆ and the topological
charge dependent ∼ qπµSD/∆ parts.
For injection through the left and right interfaces we

can write

I+L
γ+
L

−
I−L
γ−
L

= ρ+0 e
W+/T − ρ−0 e

W−/T − ρL ,

I+R
γ+
R

−
I−R
γ−
R

= −ρ+0 + ρ−0 + ρR ,

where we use a notation ρ±0 =
νL(R)(T ) exp(−E±/T )/γ±

L(R). For simplicity, we

initially disregard the topological charge dependent part
in γ assuming γ+

L = γ−
L = γ0

L and γ+
R = γ−

R = γ0
R and use
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Figure 3. Density of the positive ρ+, negative ρ−, and topological ρ = ρ+−ρ− charge as a function of coordinate x for different
values of spin-orbit torque j = 2e

ℏ ϑjc applied to the left side of the nanowire.

I = −D∂xρ within the magnetic nanowire. This leads
to a steady state solution with a uniform topological
current:

I =
ρ+0 (e

W+/T − 1)− ρ−0 (e
W−/T − 1)

1/γ0
L + 1/γ0

R + L/D
. (8)

Under conditions ρ+0 ̸= ρ−0 and |W q| ∼ T above equa-
tion leads to nonreciprocal topological current. The reci-
procity is recovered when |W q| ≪ T . The numerator
in Eq. (8) has the meaning of applied bias while the de-
nominator can be interpreted as the resistance of the sys-
tem composed of the sum of interfacial resistances 1/γ0

L
and 1/γ0

R, and the bulk resistance L/D. We expect that
Eq. (8) will be valid qualitatively in the general case of
γ+ ̸= γ− as long as the resistance is properly renormal-
ized. As the bias is increased further beyond the values
for which the barrier becomes equal to the work per-

formed during the injection, i.e., W q = Eq, the ther-
mally activated behavior is replaced by viscous injection
of DWs. The corresponding critical currents are different
for different polarities of the bias,

jc± = ±4
√
Aκ± πD

πϑ
. (9)

This shows that we can realize a diode-like behavior in
our system where one direction of spin flow is described
by thermally activated behavior while the opposite di-
rection of spin flow is described by viscous injection of
DWs. The viscous injection rate can be roughly esti-
mated using the equation of motion of a single domain
wall as Iinj = Ẋ/∆ ≈ (W q − Eq)/2αsS∆. Equation (8)
and a possibility of nonreciprocal topological transport
are main results of this paper.
Micromagnetic simulations. To confirm our analyti-

cal predictions, we perform micromagnetic simulations
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using mumax3 [40] code. Within this framework, the
thermal field hth with required correlation properties is
added to the effective field and the magnetization dynam-
ics is found by numerical integration. The magnetization

torque τ = ϑjc

a n × (ŷ × n) is applied to the leftmost
spins of 1D system in Fig. 2 where a is the lattice spac-
ing. We first confirm that the simulation has reached
the steady state, then we perform averaging over 20000
uncorrelated spin configurations by running different in-
stances and taking snapshots at different times.

We use parameters corresponding to Tm3Fe5O12

(TmIG/Pt) nanowire that can be grown on gadolinium
gallium garnet (GGG or SGGG) [41, 42]. We consider
long thin nanostrip with thickness t = 8 nm and width
w = 40 nm. For an infinitely long nanowire with ellip-

tical cross section, we expect a shape anisotropy
µ0M

2
s t

2(t+w)

along the x axis and an easy x-y plane shape anisotropy
µ0M

2
sw

2(t+w) . The (111)-oriented epitaxial iron garnet films

also have easy axis anisotropy Ku along the z axis which
can be tuned by strain. Overall, such system can be
tuned to realize a dominant easy x-z plane anosotropy

with K =
µ0M

2
s t

2(t+w) and a smaller easy axis anisotropy with

κ = Ku − µ0M
2
sw

2(t+w) − µ0M
2
s t

2(t+w) , see Eq. (1). It is known that

for TmIG/Pt thin films grown on GGG or SGGG sub-
strates, the value of an easy axis anisotropyKu−µ0M

2
s /2

is highly tunable by substrate induced strain and com-
position, and can change between the easy axis and easy
plane regimes [43]. If not specified otherwise, the sim-
ulations are performed at temperature T = 300K, and
we take typical for TmIG/Pt film material parameters:
the exchange stiffness A = 1.8 × 10−12 J/m, DMI D =
0.015 mJ/m2, K = 1.1× 103 J/m3, κ = 1.1× 102 J/m3,
and the Gilbert damping α = 0.01 [41, 42]. We simu-
late a nanowire containing 1600 sites with lattice spac-
ing a = 8nm. To characterize the strength of spin-orbit
torque, we introduce a parameter j = 2e

ℏ ϑjc.

In Fig. 3, we calculate the density of positively and
negatively charged DWs, ρ±, as well as the topological
charge density, ρ, for different strengths and signs of in-
jected spin currents in a steady state. The spin current
is injected from the left lead, as shown in Fig. 2. We
first estimate the currents characterizing the transition
from thermally activated behavior to viscous injection in
Eq. (9) arriving at j+ = 2e

ℏ ϑjc+ = 1.0 × 1011A/m2 and

j− = 2e
ℏ ϑjc− = −0.1 × 1011A/m2, for the above choice

of parameters. This results in diode-like asymmetry of
topological flows in Fig. 3, which becomes larger as we
diminish the Gilbert damping (not shown in the figure).
We also observe that for large biases the slope of topo-
logical density curves can depend on densities of positive
and negative DWs, especially when one type of DWs be-
comes depleted.

To get further insight into the topological transport, we
calculate the topological current in Fig. 4 as a function of
spin-orbit torque strength j. We calculate the azimuthal
angle and the topological current at the right interface of

-1.5 -1.0 -0.5 0.5 1.0 1.5
j (1011A/m2)

-0.05

0.05

I (ns-1)

Figure 4. The dots represent the topological current I at the
right side of the nanowire as a function of the strength of
spin-orbit torque j = 2e

ℏ ϑjc applied to the left side of the
nanowire. The plot is obtained using micromagnetic simu-
lations. The dashed line corresponds to fit to Eq. (8). The
vertical lines mark transition to viscous injection mechanism
at larger biases.

setup in Fig. 2 using the following relation:

I = ϕ̇/π. (10)

We can use the topological current to calculate the spin
current density pumped into the right metal using the
relation jsR = ŷ · [ℏ(g′R + gRn×)ṅ/4π] = ℏgRI/4, where
we are only interested in the y polarization of spin cur-
rent (see Fig. 2), and gR and g′R are the real in imag-
inary parts of the effective spin mixing conductance of
the right interface between the nonmagnetic lead and
the magnetic wire [44]. In Fig. 4, we also plot the topo-
logical current calculated using Eq. (8) by dashed line
where the denominator is treated as a fitting parameter
and all other parameters are the same as in micromag-
netics. For spin-orbit torque strengths corresponding to
the thermal activation regime (the region between the
vertical lines), we observe agreement between analyti-
cal results and micromagnetics. By taking the ratio of
topological current in Fig. 4 to the slope of topological
density plots in Fig. 3, we can estimate the diffusion con-
stant. Using slope instances in Fig. 3 when both topo-
logical charges have comparable densities, we arrive at
the diffusion constant D ≈ 10−4m2/s which agrees with
the estimate based on the Thiele approach in Eq. (4).
The thermal diffusion of a single DW also shows agree-
ment with the Thiele approach as has been demonstrated
in Ref. [25]. At temperatures that are higher than the
magnon’s energy gap the diffusion constant will be mod-
ified due to interactions between DWs and magnons.
Conclusions. We demonstrated the realization of

nonreciprocal topological spin transport in a magnetic
nanowire. At lower temperatures, nonreciprocity arises
due to asymmetric injection of DWs with opposite topo-
logical charges. As we increase temperature, we uncover
a diode-like behavior where the injection of domain walls
for one topological charge is governed by thermal activa-
tion while injection of the opposite topological charge is
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governed by viscous process without any barrier. The re-
ported behavior also arises within the bulk of a nanowire,
at an interface defined by a step-like change in DMI.
Our predictions can be tested in TmIG/Pt magnetic

nanowires [45, 46]. As the realization of nonreciprocity
and diode-like behavior are crucial for electronics func-
tionalities, our results pave the way for electronic devices
relying on topological spin currents.
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