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We identify two metastable excited states in Sm10+ highly charged ion as candidates for high ac-
curacy optical clocks. Several atomic properties relevant to optical clock development are calculated
using relativistic many-body methods. This includes energy levels, transition amplitudes, lifetimes,
scalar polarizabilities, black body radiation shift, and the sensitivity to the fine structure constant
variation. We found that the clock transitions are not sensitive to perturbation, e.g., relative black
body radiation shifts are ∼ 10−19. The enhancement factor for the α variation is ∼ 0.8 for one clock
transition and ∼ 16 for another.

I. INTRODUCTION

In recent times, there has been significant progress in
the accuracy of frequency measurements in optical clock
transitions of various atomic systems, including Sr, Yb,
Al+, Hg, Hg+, and Yb+. The fractional precision of
these measurements has reached a remarkable level of
10−18 [1–10]. This progress has led to increased interest
in finding clock transition which combine high accuracy
of the measurements with high sensitivity to the mani-
festations of new physics, such as e.g. the variation of
the fundamental constants and dark matter which may
produce this variation.

Highly charged ions (HCI) have been proposed as a
way to search for optical transitions that are sensitive to
fine structure constant variations over time [11]. HCI can
be used to measure the relative change of the clock fre-
quencies which then can be translated to the time varia-
tion of the fine structure constants thereby revealing new
physics [12–14]. The key to find optical transitions in
HCI sensitive to variation of the fine structure constant is
level crossing (when energies of the states are considered
as functions of the ionisation degree). Highest sensitivity
can be found in ions with high Z and ionisation degree Zi

in transitions which in single-electron approximation can
be considered as s−f or p−f transitions [11]. The search
for such transitions is now a popular area of research (see
e.g. reviews [15, 16]).

The Sm+10 ion is examined in this work as a potential
candidate for next-generation atomic clock. The ion has
several advantages. Two excited metastable states are
considered as clock states (see Fig. 1). Corresponding
transitions between ground and metastable states have
different sensitivity to the variation of the fine structure
constant because one is the transition between states of
the same configuration while the other correspond to the
p−f single-electron transition. A change of fine-structure
constant can be monitored by measuring one frequency
versus another over long period of time. Samarium has
seven stable isotopes, five of which have no nuclear spin,
which makes it ideal for studying King plot nonlineari-
ties. For a study of this kind, at least four stable iso-

topes and two transitions with potentially high accuracy
of measurements are required. This may lead to useful in-
formation about nuclear structure, and limit the strength
of new interactions mediated by scalar bosons [17–19].
The transitions are not sensitive to external perturba-
tions, e.g. the relative blackbody radiation shift (BBR)
is small, ∼ 10−19 and can be further suppressed by com-
bining two frequencies [20].
The calculations of this work were performed using the

configuration interaction with single-double coupled clus-
ters (CI+SD) [21] method and the configuration interac-
tion with perturbation theory (CIPT) [22] method. We
calculated energy levels, Landé g-factors, transition am-
plitudes between low-lying states, quadrupole moments,
and clock state lifetimes. For the estimation of the black-
body radiation shifts of clock frequencies, we also calcu-
lated the scalar polarizabilities of the ground and excited
clock states. We also calculated the sensitivity of the
clock transitions to the variation of the fine structure
constant.

II. METHOD

A. Calculation of energy levels

The ground state configuration of Sm10+ ion is
[Pd]5s25p4f3. We consider it as a system with Pd-
like closed-shell core with six valence electrons above it.
Thus, we atribute the 5s electrons to the valence space.
We use a combination of configuration interaction (CI)
with linearized single-double coupled cluster (SD) meth-
ods [21]. The calculations are performed using the V N−M

approximation [23], where N is the total number of elec-
trons and M is the number of valence electrons (N = 46,
M = 6 in our case). The initial relativistic Hartree-
Fock (RHF) procedure is done for the Pd-like closed-shell
Sm16+ ion. The RHF Hamiltonian includes Breit inter-
action and quantum electrodynamic (QED) corrections,

ĤRHF = cα · p+ (β − 1)mc2 + Vnuc(r) + (1)

Vcore(r) + VBreit(r) + VQED(r),
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1FIG. 1. The first three states of the Sm10+ ion. Both excited
states are metastable and corresponding transitions to the
ground state are considered as clock transitions. Dominating
contributions are indicated by symbols M1 (magnetic dipole)
and E2 (electric quadrupole). Note that the M1 contribution
to the transition at λ = 761 nm is strongly suppressed due
to the difference in leading configurations. Therefore, the
electric quadrupole also gives significant contribution.

where c is the speed of light, α and β are the Dirac ma-
trices, p is the electron momentum, m is the electron
mass, Vnuc is the nuclear potential obtained by integrat-
ing the Fermi distribution of the nuclear charge density,
Vcore(r) is the self-consistent RHF potential created by
the electrons of the closed-shell core, VBreit(r) is Breit
potential [24], VQED(r) is a model QED potential [25].
After completing the self-consistent procedure for the

core, the B-spline technique [26, 27] is used to create
a complete set of single-electron wave functions. The
functions are constructed as linear combinations of B-
splines, which are eigenstates of the RHF Hamiltonian.
We use 40 B-splines of order 9 in a box with a radius of
Rmax = 40aB ; the orbital angular momentum 0 ≤ l ≤ 6.
These basis states are used to solve the SD equations for
the core and for the valence states [21] and for constract-
ing the many-electron basis states for the CI calculations.

Solving the SD equations gives us two correlation op-
erators, Σ1 and Σ2. Σ1 describes the correlation interac-
tion between a particular valence electron and the core,
whereas Σ2 describes the Coulomb interaction screening
between a pair of valence electrons [23, 28, 29].

The effective CI+SD Hamiltonian has the form

ĤCI =

M∑
i=1

(
ĤRHF +Σ1

)
i
+

M∑
i<j

(
e2

|ri − rj |
+Σ2ij

)
(2)

Here i and j enumerate valence electrons, summation
goes over valence electrons, e is the electron charge, and

r is the position operator of the electrons.
There is a well-known fact that increasing the num-

ber of valence electrons exponentially increases the size
of the CI matrix. We have six valence electrons, result-
ing in a matrix with an exceptionally large size. It will
require considerable computational power to handle such
matrix. In exchange for some accuracy, the size of the
CI matrix can be reduced by orders of magnitude by
using the CIPT (configuration interaction with pertur-
bation theory) method suggested in [22]. By dividing
many-electron basis states into two large groups, low-
energy states and high-energy states and ignoring the
off-diagonal matrix elements between high-energy states
the CI equations can be reduced to

⟨i|Heff |j⟩ = ⟨i|HCI|j⟩+
∑
k

⟨i|HCI|k⟩⟨k|Heff |j⟩
E − Ek

. (3)

Here, HCI is given by (2), i, j ⩽ Neff , Neff < k ⩽
Ntotal, Neff is the number of low-energy states and Ntotal

is the total number of many-electron basis states. Note
that the chose of Neff is arbitrary. One can increase it
until the results are stable. In our calculations Neff ∼
104 and Ntotal ∼ 107.
Parameter E in (3) is the energy of the state of in-

terest, and Ek denotes the diagonal matrix element for
high-energy states, Ek =

〈
k
∣∣HCI

∣∣ k〉. The summation in
(3) runs over all high-energy states. Note that the pa-
rameter E in the denominator of (3) is the same as the
energy of the state of interest which is to be obtained
from solving the CI equations. Since this energy is not
known in advance, iterations over E are needed to find
it. More detailed explanations of the technique can be
found in Ref. [22].
Knowing the values of the state’s g-factors together

with their energies, total angular momentum (J) and
parity is very useful for the states identification. There-
fore, we calculate the g-factors as an expectation value
of the magnetic dipole (M1) operator. Comparing the
result with the non-relativistic expression

gNR = 1 +
J(J + 1)− L(L+ 1) + S(S + 1)

2J(J + 1)
(4)

helps to label the states with standard notations
(2S+1)LJ . Here the values of total spin (S) and orbital
momentum (L) are chosen to fit the calculated values of
the g-factors.

B. Calculation of transition probabilities and
lifetimes

To determine the values of the transition probabil-
ities (T) of the atomic states, we need to calculate
the transition amplitudes (A). To do this, we use the
time-dependent Hartree-Fock (TDHF) method, which is
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equivalent to the random-phase approximation (RPA). A
TDHF equation for the core can be written as follows:(

ĤRHF − ϵc

)
δψc = −

(
f̂ + δV f

core

)
ψc. (5)

Here, ĤRHF is the RHF Hamiltonian (1), index c numer-
ates states in the core, ϵc is the energy of electron state
c, and ψc is the wave function of the state, δψc is a cor-

rection to the wave function due to the external field f̂ ,
δV f

core is the correction to the self-consistent RHF poten-
tial of the core generated by the modifications to all core
states in the external field.

After solving the RPA equations (5) self-consistently
for finding δV f

core, the off-diagonal matrix element then
gives the transition amplitude between valence states

Aij =
〈
Ψi

∣∣∣f̂ + δV f
core

∣∣∣Ψj

〉
(6)

Here, |Ψi⟩ , |Ψj⟩ are the many-electron wave functions ob-
tained by solving Eq. (3).

Once the transition amplitudes have been obtained,
the transition probabilities can be determined using the
following formulae (atomic units are assumed):

TM1
ab =

4

3
(αωab)

3 A2
M1

2Jb + 1
, (7)

TE2
ab =

1

15
(αωab)

5 A2
E2

2Jb + 1
, (8)

We consider two types of transitions: magnetic dipole
(TM1) transition (7), and electric quadrupole (TE2) tran-
sition (8). In both equations, α is the fine structure con-
stant (α ≈ 1

137 ), ωab is the energy difference between the
lower (a) and upper (b) states, A is the transition am-
plitude (reduced matrix element) derived from Eq. (6),
and Jb is the total angular momentum of the upper state
b. Note that magnetic amplitudes AM1 contain the Bohr
magneton µB (µB = α/2 ≈ 3.65×10−3 in the Gauss-type
atomic units).

The lifetime (in seconds) of the upper state b is given
by

τb = 2.4189× 10−17/
∑
a

Tab, (9)

where the summation goes over all possible transitions to
lower states a.

III. RESULTS AND DISCUSSIONS

A. Energy levels, g-factors, transition amplitudes,
and lifetimes

We present the energy levels, g-factors and lifetimes of
some states of the Sm10+ ion in Table I. First two long-
living excited states are considered as clock states. The

TABLE I. Excitation energies (E, cm−1), g-factors, and life-
times for low-lying states of the Sm10+ ion.

No. Conf. SLJ Energy g τ
1 5s25p4f3 7J5 0.00 0.7469
2 5s25p4f3 7I4 7882.62 0.7410 4.03 s
3 5s24f4 5I4 13139.18 0.6670 120.1 s
4 5s25p4f3 7J6 13290.72 0.9426 10.03 ms
5 5s25p4f3 1H5 16880.47 0.9711 31.84 ms
6 5s25p4f3 3I7 17214.24 1.1589 0.48 s
7 5s25p4f3 3F2 18525.27 0.6117
8 5s25p4f3 7J8 19447.18 1.1825
9 5s25p4f3 3I7 20337.14 1.1519
10 5s24f4 5I8 20830.77 1.2413
11 5s25p4f3 7I6 20979.87 1.1312
12 5s24f4 5I5 23156.45 0.9092
13 5s25p4f3 3D1 23203.75 0.6597
14 5s25p4f3 3G3 24770.00 0.7638
15 5s24f4 5I6 26355.12 1.0683
16 5s25p4f3 1H5 26839.37 0.9644
17 5s24f4 5I7 27056.60 1.1721
18 5s25p4f3 7G2 27528.76 0.8476
19 5s25p4f3 3G3 28247.93 0.8296
20 5s25p4f3 3G4 28259.67 1.0888
21 5s25p4f3 3S1 29073.92 2.0820
22 5s25p4f3 3D2 29457.53 1.0945
23 5s25p4f3 3G4 31509.39 1.0703
24 5s25p4f3 1D2 32264.43 0.9642
25 5s25p4f3 5G4 32323.63 1.1831
26 5s25p4f3 5F3 32520.38 1.2525
27 5s25p4f3 5H5 33467.08 1.1459
28 5s25p4f3 3D2 33575.59 1.1598
29 5s24f4 5F1 33694.72 0.1278

energies and g-factors are presented for 29 lowest even
states with 1 ≤ J ≤ 8. Odd states lie very high on the
energy scale, E > 170000 cm−1.
As shown in Table II, we have calculated the transition

amplitudes (A) and transition probabilities (T) for six
low states of the Sm10+ ion. Since all low states have
the same parity, only magnetic dipole (M1) and electric
quadrupole (E2) contributions are significant. By using
Eq. (9), we derived the lifetimes (τ) of the excited states
using the transition rates from Table II.

B. Polarizabilities and blackbody radiation shifts

An important source of uncertainty in clock frequencies
is blackbody radiation shift (BBR). To estimate this shift
one needs to know static scalar polarizability (αv(0)) for
both states of the clock transition.
The polarizability of state v can be expressed as a sum

over a complete set of states connected to state v via the
electric dipole (E1) transitions

αv(0) =
2

3(2Jv + 1)

∑
n

A2
vn

ωvn
, (10)
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TABLE II. Transition amplitudes (A, a.u.) and transition probabilities (T, 1/s) for some low states.

(ω) Present
Transition Jb Type [cm−1] [a.u.] A [a.u] T [s−1]

2-1 4 M1 7882.62 0.0359 -1.50E-03 2.484E-01
2-1 4 E2 7882.62 0.0359 -0.2125 1.708E-05

3-1 4 M1 13139.18 0.0599 1.14E-04 6.637E-03
3-1 4 E2 13139.18 0.0599 -0.49522 1.194E-03
3-2 4 M1 5256.56 0.0240 1.19E-04 4.606E-04
3-2 4 E2 5256.56 0.0240 -0.85906 3.682E-05

4-1 6 M1 13290.72 0.0606 1.63E-02 9.675E+01
4-1 6 E2 13290.72 0.0606 0.35168 4.414E-04
4-2 6 E2 5408.1 0.0246 -0.43874 7.664E-06
4-3 6 E2 151.54 0.0007 -0.1065 7.801E-15

5-1 5 M1 16880.47 0.0769 2.22E-03 4.352
5-1 5 E2 16880.47 0.0769 -4.91E-02 3.361E-05
5-2 5 M1 8997.85 0.0410 1.42E-02 2.705E+01
5-2 5 E2 8997.85 0.0410 -2.38E-02 3.398E-07
5-3 5 M1 3741.29 0.0170 -8.92E-04 7.664E-03
5-3 5 E2 3741.29 0.0170 0.22821 3.883E-07
5-4 5 M1 3589.75 0.0164 -7.58E-03 4.895E-01
5-4 5 E2 3589.75 0.0164 -6.97E-02 2.948E-08

6-1 7 E2 17214.24 0.0784 4.16E-03 1.953E-07
6-4 7 M1 3923.52 0.0179 -1.60E-02 2.091
6-4 7 E2 3923.52 0.0179 -0.21774 3.288E-07
6-5 7 E2 333.77 0.0015 -3.01E-01 2.799E-12

TABLE III. Scalar static polarizabilities of the ground state, α0(GS), and clock states, α0(CS), and BBR frequency shifts for
the clock transitions. δνBBR/ν is the fractional BBR shift; ν is the clock transition frequency. The values presented for α0(GS)
and α0(CS) include core and valence contributions. The value of the core polarizability is 0.246 a3

B .

∆α(0) BBR, (T= 300 K)
Transition α0(GS)[a3

B ] α0(CS)[a
3
B ] α0(CS)− α0(GS) δνBBR[Hz] ν[Hz] δνBBR/ν

2 − 1 1.4603 1.4544 −0.0059 0.5081×10−4 2.3631×1014 2.150×10−19

3 − 1 1.4603 1.7222 0.2619 −0.2255×10−2 3.9390×1014 −5.725×10−18

where Jv is the total angular momentum of state v and
ωvn is the frequency of the transition. Notations v and n
refer to many-electron atomic states. For the calculations
of the polarizabilities of clock states, we apply the tech-
nique developed in Ref. [30] for atoms or ions with open
shells. The method relies on Eq. (10) and the Dalgarno-
Lewis approach [31], which reduces the summation in
Eq. (10) to solving a matrix equation ( for more details,
see Ref. [30]).

A comparison of the polarizabilities of the ground and
excited clock states is presented in Table III. The ground
and the first excited clock state seem to have similar po-
larizabilities. The reason for this is that the frequency
of the transition is small compared to the frequencies
of the transitions to odd states (Eodd > 170000 cm−1).
We have seen similar facts before in some other ions, see
Refs. [32–34].

In atomic clocks, the BBR shift can considerably affect

the frequency of the clock’s transition. Its value in Hz is
given by

δνBBR = −1.063× 10−12T 4∆α(0), (11)

where T is temperature (room temperature is T= 300
K) and ∆α(0) = α0(CS) − α0(GS) is the difference be-
tween the excited and ground state polarizabilities given
in atomic units. A summary of the BBR shifts for the
clock states investigated in this work is presented in Ta-
ble III. As can be seen, the relative BBR shifts for these
transitions are among the smallest that have been exam-
ined so far, ∼ 10−19.

C. Quadrupole moments

The ground and clock states of the ion being consid-
ered have high values of total angular momentum (J=
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TABLE IV. Quadrupole moment (Θ, a.u.) of the considered
optical clock states.

No. Conf. LSJ E (cm−1) ME (a.u.) Θ
⟨J∥Θ0∥J⟩

1 5s25p4f3 7J5 0000 -0.3580 0.0820
2 5s25p4f3 7I4 7882.62 -0.0611 -0.0145
3 5s24f4 5I4 13139.18 0.3950 0.0940

5 and 4). This makes them susceptible to the interac-
tion between the gradient of the external electric field
and the quadrupole moments of the states, which causes
a frequency shift. Hence, it is crucial to have knowledge
about the quadrupole moment values.

The quadrupole interaction Hamiltonian can be writ-
ten as (see, e.g., Ref. [35])

HQ =

1∑
q=−1

(−1)q∇E(2)
q Θ̂−q, (12)

where q is the operator component, and the ∇E(2)
q tensor

represents the gradient of the external electric field at the
position of the system. Θ̂q is the electric quadrupole op-
erator (the same as for the E2 transitions) and describes

as Θ̂q = r2C
(2)
q , where C

(2)
q is the normalized spherical

function.
The electric-quadrupole moment Θ is defined as an

expectation value of the Θ̂0 operator,

Θ =
〈
nJJ

∣∣∣Θ̂0

∣∣∣nJJ〉
= ⟨nJ∥Θ̂∥nJ⟩

√
J(2J − 1)

(2J + 3)(2J + 1)(J + 1)
,

(13)

where ⟨nJ∥Θ̂∥nJ⟩ denotes the reduced matrix element
(ME) of the electric-quadrupole operator. In Table IV,
the reduced ME of the electric quadrupole operators for
the considered states are shown along with their Θ.

D. Sensitivity of the clock transitions to variation
of the fine structure constant

The sensitivity of atomic transitions to α variation is
calculated by writing the frequencies of the transitions in
the following form

ω(x) = ω0 + qx (14)

Here ω0 is the present laboratory value of the transition
frequency and x = (α/α0)

2 − 1, where α0 is the physical
value of α, q is the sensitivity coefficient, which can be
determined by varying the value of α in computer codes
and calculating numerical derivatives

q ≈ ω(+δ)− ω(−δ)
2δ

(15)

TABLE V. Sensitivity of the clock transitions to the variation
of the fine-structure constant (q,K) of Sm10+.

No. Conf. LSJ ω (cm−1) q(cm−1) K
2 5s25p4f3 7I4 7882.62 3100 0.79
3 5s24f4 5I4 13139.18 108700 16.5

To achieve linear behaviour, δ should be sufficiently
small. On the other hand, it should be large enough
to suppress numerical noise. In our case, we used δ =
0.01 which leads to stable results.
To study possible variation of the fine structure con-

stant one needs to measure frequencies of at least two
atomic transitions over a long period of time. The ratio
of changes in frequencies can be written as

δ

(
ω1

ω2

)
/
ω1

ω2
=
δω1

ω1
− δω2

ω2
≡ (K1 −K2)

δα

α
. (16)

The K parameter is known as the enhancement factor
and has the formula K = 2q/ω . It is clear that the high-
est sensitivity can be achieved if two atomic transitions
have different sensitivity to the α variation. For both
studied clock transitions, q and K have been calculated
and are summarized in Table V. As one can see, the sen-
sitivities of the transitions to α variation are different.
For these two transitions Eq. (17) becomes

δ

(
ω1

ω2

)
/
ω1

ω2
≈ 16

δα

α
. (17)

For comparison, the highest sensitivity to α variation in
working clocks can be found in the monitoring of the fre-
quencies of E2 and E3 transitions in Yb+, where ∆K ≈ 7
[36]. It may be convenient that the measurements for two
frequencies can be done with the use of the same ion.

IV. SUMMARY

In this work we demonstrated that the Sm10+ ion has
two metastable states which can be used to build atomic
optical clocks with low sensitivity to perturbations and
high sensitivity to the hypothetical time variation of the
fine structure constant. Several atomic properties rele-
vant to optical clock development have been calculated.
These include energy levels, g-factors, lifetimes, electric
quadrupole moments, BBR shift and sensitivity of clock
frequencies to time variation of the fine structure con-
stant. The relative value of the BBR shift is very small,
∼ 10−19. We found, that if fine structure constant α
changes with time, the ratio of the two clock frequencies
changes 16 times faster. This is significantly better than
in best (in terms of sensitivity to α variation) operating
atomic clocks based on the E3 and E2 clock transitions
in the Yb+ ion.
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