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ABSTRACT
In recent years, short video platforms have gained widespread pop-
ularity, making the quality of video recommendations crucial for
retaining users. Existing recommendation systems primarily rely
on behavioral data, which faces limitations when inferring user
preferences due to issues such as data sparsity and noise from acci-
dental interactions or personal habits. To address these challenges
and provide a more comprehensive understanding of user affective
experience and cognitive activity, we propose EEG-SVRec, the first
EEG dataset with User Multidimensional Affective Engagement
Labels in Short Video Recommendation.

The study involves 30 participants and collects 3,657 interactions,
offering a rich dataset that can be used for a deeper exploration
of user preference and cognitive activity. By incorporating self-
assessment techniques and real-time, low-cost EEG signals, we offer
a more detailed understanding user affective experiences (valence,
arousal, immersion, interest, visual and auditory) and the cogni-
tive mechanisms behind their behavior. We establish benchmarks
for rating prediction by the recommendation algorithm, showing
significant improvement with the inclusion of EEG signals. Fur-
thermore, we demonstrate the potential of this dataset in gaining
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insights into the affective experience and cognitive activity be-
hind user behaviors in recommender systems. This work presents
a novel perspective for enhancing short video recommendation
by leveraging the rich information contained in EEG signals and
multidimensional affective engagement scores, paving the way for
future research in short video recommendation systems.
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1 INTRODUCTION
In recent years, short videos have emerged as a popular medium
for entertainment and communication across various social media
platforms, attracting millions of users worldwide. These videos typ-
ically span from a few seconds to several minutes and encompass a
broad spectrum of content. Short video platforms generally gather,
process, and analyze user behavior data and video information. To
enhance the recommendation quality and retain users, various rec-
ommendation strategies are employed, including interest-based rec-
ommendations [10, 43], popularity-based recommendations [2, 42],
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and personalized recommendations [47]. The choice of a recommen-
dation strategy can significantly impact users’ affective engagement
while browsing short videos.

Existing short video recommendation systems mainly focus on
behavioral metrics, such as likes, dwell time, view percentage, etc.,
to improve recommendation performance [16, 30, 33]. These be-
havior data are usually collected from user logs and applied as
implicit feedback signals to infer user preferences. Although these
observed data usually contain abundant information, only consid-
ering existing information is not enough to gain a comprehensive
understanding of users [1, 22]. There still exist challenges in captur-
ing user preference from behavioral data. Firstly, behavioral data,
such as likes and comments, is usually sparse. Secondly, the pres-
ence of noise, resulting from accidental interactions or personal
habits, can affect the reliability of the data.

In order to deeply understand users’ cognitive activities, we
record EEG (Electroencephalograph) signals during short video
browsing. EEG, as a neuroelectrical signal, containing rich spatial,
temporal, and frequency band information about human experience,
can be used to study the underlying neural mechanisms and can
reflect relevant information about user cognition, emotion, and
attention [20, 25, 35, 44]. Providing high temporal resolution data,
the application of EEG technology in the Information Retrieval (IR)
domain has been proven to be useful [5, 45]. At the same time,
the latest developments in EEG recording devices are known for
their high portability and low operating costs [15, 27], which are
necessary for real-world application scenarios. The high temporal
resolution of EEG data enables it to effectively address the real-time
demands of short video recommendation scenarios.

To further understand the relationship between user behavior
and EEG signals, it is essential to incorporate user affective expe-
riences into the annotation of short videos. These affective expe-
riences are from different dimensions. Emotion elicited by short
videos plays a significant role in the browsing experience, which is
commonly modeled via two dimensions: valence and arousal [36].
Both the degree to which short videos align with user interest and
the level of immersion experienced by users while browsing short
videos influence user behavior and perception. Besides, short videos
serve as a combined visual and auditory medium, so understanding
the impact of visual and auditory features on users’ perceptions can
be helpful. Accordingly, we collect six Multidimensional Affective
Engagement Scores (MAES), which are valence, arousal, immersion,
interest, visual and auditory, and extract the visual and auditory
features of the videos.

By employing self-assessment techniques, we obtain a more
detailed and multidimensional perspective of user experience. Fur-
thermore, real-time, low-cost EEG signals can be utilized to gain
insights into users’ cognitive activity.

Therefore, We proposed to build EEG-VSRec1, an EEG dataset
with user Multidimensional Affective Engagement in Short Video
Recommendations. We conducted the user study where partici-
pants continuously viewed short videos in several sessions. After
each session, the participants rated the MAES for each video. We
recruited 30 participants and collected 3,657 interactions, each with
temporal EEG signals during viewing as well as user behavior and

1Dataset and codes are available at https://anonymous.4open.science/r/Z-SV-CFB1

multidimensional labels. Finally, we collected three types of data:
user behavior log, EEG signals, and self-assessment of six MAES.

Subsequently, we present the statistical information of the dataset
and show the rich information contained in the dataset. Besides,
we discuss the possible applications for the dataset. We first show
its impact on user understanding in the short video recommender
system, with some primary discoveries thrown. We also establish
benchmarks for rating prediction inferred from EEG signals and
prevalent recommendation algorithms. Experiments show signifi-
cant performance improvement with the inclusion of EEG signals,
demonstrating the importance of introducing brain signals to rec-
ommender systems.

These are our main contributions:
• We proposed the first dataset that contains EEG signals in
a real scenario of watching short video streaming. On the
basis of user behavior, we provided multidimensional affec-
tive engagement scores (MAES), which are valence, arousal,
immersion, interest, visual and auditory, as explicit feedback.

• We establish benchmarks for rating prediction by the rec-
ommendation algorithm. Comparative experiments show
significant performance improvement with the inclusion of
EEG signals, demonstrating the importance of introducing
brain signals to recommender systems.

• We show the perspective of understanding the affective ex-
perience and cognition activity behind user behaviors in the
recommender system.

The remainder of this paper is organized as follows: we review
related datasets in Section 2. Then we introduce our dataset and its
collecting procedure in Section 3. Section 4 presents the combina-
tion and the statistical analysis for our dataset. Next, we conducted
experiments to show the potential applications in Section 5. Finally,
Section 6 and Section 7 discuss and conclude our work.

2 RELATED DATASETS
In this section, we review the work of datasets in the short-video
recommendation scenario and EEG datasets in affective computing
and compare our dataset with theirs (Table 1).

2.1 Dataset in Short Video Recommendation
Short videos, a new type of online streaming media, have attracted
increasing attention and have been one of the most popular in-
ternet applications in recent years. Thus, research on short video
recommendations has gained traction, and some related datasets
have been released.

The datasets in short video recommendations are usually col-
lected from online platforms with user id, item id, and their inter-
action behavior. An unbiased sequential recommendation dataset
KuaiRand [8] contains millions of intervened interactions on ran-
domly exposed videos. Tenrec [46] is a large-scale andmultipurpose
real-world dataset with the item either a news article or a video. Mi-
croLens [26] consists of one billion user-item interactions with raw
modality information about videos. MMSSL [37] is collected from
the TikTok platform to log the viewed short videos of users. The
multi-modal characteristics are visual, acoustic, and title textual
features of videos. Some researchers conduct experiments on the
Micro-Video dataset to validate their model [21]. They construct
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Table 1: Comparison of the EEG-SVRec with other datasets in the video/music recommendation and the video affective
computing domain. U&I represents user and item id. Peri.Bio represents peripheral biosignal (such as, heartbeat, eye tracking,
ECG).

Domain Datasets Item/Stimulus U&I Impression Ratings Emotion Peri. Bio EEG

Recommendation
(open domain)

Movielens Movie ✓ ✓

Toffee Short Video ✓ ✓

KuaiRand Short Video ✓ ✓

MMSSL Short Video ✓ ✓

Tenrec News, Short Video ✓ ✓

Last.fm Music ✓ ✓

MUMR Music ✓ ✓ ✓ ✓ ✓

Affective
computing

(closed domain)

DEAP 1min music videos ✓ ✓ ✓ ✓ ✓

SEED 4min movie clips ✓ ✓ ✓ ✓ ✓

AMIGOS short and long movies ✓ ✓ ✓ ✓ ✓

Recommendation
(open domain)

EEG-SVRec
(ours) Short Video ✓ ✓ ✓ ✓ ✓ ✓

a dataset by randomly sampling 100K users and their watched
micro-videos over a period of two days. Other researchers crawled
micro-videos from Jan 2017 to Jun 2018 from Toffee, a large-scale
Chinese micro-video sharing platform [38]. Though the item is not
a short video, the dataset Movielens [11] interacting with the movie
contains user ratings (ranged 1-5), which have large scale and have
had a substantial impact on education, research, and industry.

Different from above, music dataset Last.fm-1k2 represents the
whole listening habits for nearly 1,000 users. MUMR [18] used a
dataset in the music recommendation scenario with the collection
of the contexts from low-cost smart bracelets. He et al. [13] con-
sider immersion in online short videos with psychological labels,
video features, and EEG signals. In contrast to them, we provide
the dataset with various multidimensional affective engagements,
giving a deep understanding of users.

Since we collected from user studies, our data contains detailed
video and audio features, behavior logs, user multidimensional
affection engagement scores, and EEG and ECG signals.

2.2 EEG Dataset in Affective Computing
EEG (Electroencephalogram) has been popular in neuroscience and
psychology since it is a non-invasive technique used to measure
the electrical activity of the brain. Utilizing physiological signals
to help understand people’s affection and cognition has become
widespread in affection computing for its good balance between
mechanistic exploration and real-world practical application. By
analyzing EEG signals, researchers can identify patterns that are
associated with different emotional states. Researchers collected
EEG and peripheral physiological signals when usingmusic, images,
and videos as stimulation. Affection is annotated by the participants.

MIIR [32] record the EEG signals from 10 participants when
listening to and imagining (by tapping the beat) 12 short music

2https://www.last.fm/

fragments. Then they rate their taping ability and familiarity. Im-
ages can also be the stimulus. A dataset in neuromarketing con-
taining EEG signals of 14 electrodes from 25 participants and their
likes/dislikes on e-commerce products over 14 categories with 3
images each [41].

The stimulation of videos includes both visual and auditory as-
pects, making the information more diverse and rich. DEAP [17] is
the dataset of 32 participants whose EEG and peripheral physiolog-
ical signals were recorded as each watched 40 one-minute excerpts
of music videos. The SEED database [49] contains EEG data of 15
subjects, which are collected via 62 EEG electrodes from the partici-
pants when they are watching 15 Chinese film clips with three types
of emotions, i.e., negative, positive, and neutral. Moreover, AMI-
GOS [24] collected EEG, ECG, and GSR from 40 participants when
watching 16 short videos and 4 long videos. Participants annotate
their emotions during watching these videos with self-assessment
of valence, arousal, control, familiarity, liking, and basic emotions.

Datasets play a very important role in EEG affective computing.
New methods and models have been proposed based on existing
datasets to facilitate evaluation. However, the videos given to partic-
ipants to watch are pre-selected for stimulating different emotions
and are consistent between participants (closed domain). Partici-
pants were unable to actively influence the video playback, e.g.,
slide done at any time to switch to the next video. Unlike them,
our experiments take place in a real online short video browsing
scenario, where videos come from among millions of videos on the
platform and are presented to participants through personalized
recommendation algorithms or in non-personalized or randomized
ways (open domain). During browsing, participants actively engage
in behaviors such as swiping and liking videos.

These existing research efforts show the application potential
of EEG in various fields. In the context of short video recommen-
dations, there still has no dataset to find the correlation between
physiological signals and affective engagement during real short
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Figure 1: EEG and ECG data acquisition setup: (a) A partic-
ipant wears an EEG cap while watching short videos in a
laboratory setting (Image display has been approved). (b) In-
ternational 10-20 electrode placement standard for EEG.

video scenarios. What we add on top of these works is that we
conduct a user study where participants browse short videos in a
real scenario and collect their behavior, multidimensional affective
engagement labels, and EEG and ECG signals.

3 DATASET CONSTRUCTION
This section mainly covers ethical and privacy, participants, video
stimuli material, apparatus, and experimental procedure (browsing
stage and labeling stage).

3.1 Ethical and Privacy
Our user study has underwent review and obtained approval from
the institutional ethics committee, xxx University (approve number:
xxx 3). This study has undergone a rigorous ethical review process
to ensure the protection of the participant’s rights. In compliance
with established ethical guidelines, we have taken multiple mea-
sures to protect the participants’ privacy, including anonymizing
the collected data and obtaining informed consent from all par-
ticipants before the study. Furthermore, participants were fully
informed about the study’s objectives, procedures, and potential
outcomes. The EEG data collection method employed in this re-
search is non-invasive and poses no harm to the participants. This
approach ensures that the study adheres to ethical standards while
maintaining the integrity of the research findings. As for the item in
the dataset, we only provide anonymized video ids, encoded video
tags, and extracted video characteristics (shown in Section 4.3).

3.2 Participants
We recruited 30 college students aged between 18 and 30 (M=22.17,
SD=2.20) for our study. The participant group consisted of 16 males
and 14 females, majoring in various fields such as computer sci-
ence, law, medicine, and sociology. All participants were familiar
with at least one short video platform and used it at least once a
day. To protect participants’ privacy, we provided each participant
with a new account on the short video platform. Each participant
was required to participate in two experimental settings: a 10-hour

3The protocol ID is hidden for double-blinded review

preference collection phase and a 3-hour lab study phase as Fig-
ure 1(a). (including preparation and rest time). Upon completion of
the experiments, each participant received approximately 60 dollars
in research compensation.

3.3 Video Stimuli Material
Participants browse short videos on a popular video platform, and
all items are on the platform. The platform has two settings: per-
sonalized and non-personalized. Since they are all affected by the
strategy of the platform, we present randomized videos as well.
Thus, we categorized the short video stimuli to be presented to the
participants into three video pools: personalized, non-personalized,
and randomized.

The personalized video poolmainly consists of videos selected
based on the preference information collected during the 10-hour
preference acquisition phase for each participant, obtained through
the short video platform’s algorithm. The non-personalized video
pool, with personalized-off, disregards user interaction history
and distributes videos may be based on their current popularity
ranking. It is worth mentioning that the videos in personalized
and randomized pools have a duration of 30-60 seconds, while the
non-personalized video pool’s time restriction of 30-60 seconds
was removed due to the distribution mechanism by platforms. The
randomized video pool is sampled from the large video platform’s
video collection, filtered by different popularity levels. We first
divided the large video pool into three levels based on view counts,
and then randomly selected 100 videos from each level. After that,
to ensure the category richness and healthiness of the selected short
videos, we filtered 25 videos in each group.

The selection of videos from these three pools results in different
session compositions. Four distinct session modes were established:
personalized mode, randomized mode,mixed mode, and non-
personalized mode. It is clear that the personalized and random-
ized modes consist of 20-30 specific videos from their respective
video pools, with a duration of 30-60 seconds each. In the mixed
mode, an assortment of 20-30 videos is presented, with an equal pro-
portion of personalized and randomized videos, maintaining a 1:1
ratio. Video sequences are random, ensuring a well-distributed and
varied exposure for the study participants. The non-personalized
mode involves extracting a certain number of videos from the non-
personalized video pool.

3.4 Apparatus
We used a smartphone with a 6.67-inch screen and a 120Hz refresh
rate, which connected to a stable local area network (LAN) Wi-Fi
to ensure network stability. Participants were allowed to adjust the
screen brightness and device volume to a comfortable level before
the experiment. They can also adjust the seat position and the angle
of the smartphone to a suitable position. During the browsing stage,
participants were required to minimize body and head movements
to ensure the high quality of the collected physiological signals in
Figure 1(a). A Scan NuAmps Express system (Compumedics Ltd.,
VIC, Australia) along with a 64-channel Quik-Cap (Compumedical
NeuroScan) was utilized for recording the participants’ EEG data in
Figure 1(b) [14]. Some electrode points were also used to eliminate
head movement and other artifacts. The impedance of the EEG
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Figure 2: The overall procedure of the lab study for data collection.
channels was calibrated to be under 10 kΩ in the preparation step,
and the sampling rate was set at 1,000 Hz.

3.5 Experiemental Procedure
Each participant underwent 10-hour preference information collec-
tion phase in a week, followed by laboratory experiment phase that
included browsing and labelling stages. In the laboratory experi-
ment, participants viewed 4 to 5 sessions of short videos, with each
session comprising a 15-minute browsing stage and a roughly 10-
minute labelling stage. After completing the video labelling for each
session, participants were given a 5-minute rest before proceeding
to the next session’s browsing stage.

During the browsing stage, participants watched sessions of
short video sequences distributed from different video pools with
each session comprised of 20-30 short videos. Throughout the short
video browsing process, participants were allowed to interact with
the videos primarily through liking and swiping away (the video).
If participants enjoyed the video they were currently watching, they
could click the like button at any time during playback. Additionally,
if participants did not wish to continue watching the video, they
were allowed to swipe away anytime. It’s noted that the video will
be replayed when done without swiping away. Electroencephalo-
gram (EEG) and electrocardiogram (ECG) physiological signals
were continuously collected.

After each participant has completed browsing a short video
sequence within a specific session, we conducted a video-level
multidimensional affective engagement self-assessment labelling
stage. Participants were given a brief recap of each video chrono-
logically based on their browsing history. Subsequently, they rated
each short video on a 5-point Likert scale across six multidimen-
sional affective engagement indicators. the labelling instructions are

given to the participants 1. The six dimensions are valence, arousal,
immersion, interest, visual, and auditory. Valence represented the
positive and negative aspects of emotions, while Arousal indicated
the intensity of emotions. Immersion denoted the degree of the
participant’s involvement while watching the video, and Interest
indicated the extent to which the video aligned with the partici-
pant’s personal interests. Visual and Auditory scores described the
presentation quality of visual elements (e.g., scenery, graphics) and
auditory elements, (e.g., voices, music).

Our experiment collected MAES through questionnaires, gath-
ering ratings for videos within each session after its completion.
Participants were asked to recall the videos by viewing the first
few seconds and to rate them across the six dimensions until they
could adequately recall the video. In post-experiment interviews,
participants reported that the number of videos per session did
not cause memory difficulties, so they could generally recall the
browsing history and complete labelling after watching the ini-
tial seconds of each video. Having completed the video labelling
for each session, participants were given a 5-minute rest before
proceeding to the browsing stage in the next session. Thus, the
labelling stage generated a corresponding score for each of the six
MAES for every short video.

Ultimately, we obtained three types of video-level data: browsing
behavior logs, EEG and ECG signals, and multidimensional affective
engagement self-assessment labelling.

4 DATASET DESCRIPTION
In this EEG dataset, we ultimately collected 3,657 interactions from
30 users involving 2,636 items (short videos). Due to the different
participants watching the same short video in randomized mode,
multiple interactions can be associated with the same item. Each
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interaction (U-I pair) corresponds to a related EEG and ECG seg-
ment. Additionally, each interaction is associated with a behavioral
log and a self-assessment of MAES. To further describe the dataset,
we introduce it from four aspects: the EEG signals, behavioral,
self-assessment data, and characteristics of short videos.

Table 2: The Statistics of Dataset. Each interaction has corre-
sponding MAEs and EEG signals.

#User #Item #Interaction #EEG datasize

EEG-SVRec 30 2,636 3,657 62GB

4.1 EEG statistics and preprocessing
Here, EEG data are collected through all 3,657 interactions. For
each interaction, the size of EEG data is (𝐶ℎ, 𝑓 𝑠 · 𝑇 ), where 𝑓 𝑠 is
the sample rate (1000 Hz), 𝑇 denotes the recording duration of the
interaction, and𝐶ℎ is the number of electrode channels (62 in total).
We preprocess EEG data extract features as follows:

The raw EEG data is subjected to a series of preprocessing steps
to eliminate noise and artifacts and enhance the signal quality. The
preprocessing pipeline comprises the following stages. First, base-
line correction: We first perform baseline correction to remove
any constant offsets or drifts in the EEG signals, ensuring that the
baseline amplitude is zero. Second, rereferencing: Re-referencing
employs the average of M1 and M2 mastoid electrodes as the new
reference, minimizing potential bias and improving the signal-to-
noise ratio. Third, filtering: Filtering applies a 0.5 Hz to 50 Hz
band-pass filter to remove low-frequency drifts (<0.5 Hz) and high-
frequency noise (>50 Hz), as well as 50 Hz powerline interference.
Last, artifact removal: Artifact removal eliminates abnormal ampli-
tude signals and artifacts induced by eye blinks or head movements.

After the preprocessing steps, we proceed to extract features
from the cleaned EEG signals. In this study, we focus on the ex-
traction of differential entropy (DE) as a feature, which has been
shown to be useful in characterizing the complexity and informa-
tion content of EEG signals [6]. Firstly, we estimate power spectral
density (noted as P(f)) using Welch’s method [39] (sampling fre-
quency is 1000) based on sliding window. The window length is
two divided by the lower bound of the frequency band. Secondly,
we normalized for each band and calculated DE using the following
formula:

𝐷𝐸 = −
∫

𝑃 (𝑓 ) log(𝑃 (𝑓 )) 𝑑 𝑓 (1)

The frequency bands are delta (0.5-4 Hz), theta (4-8 Hz), alpha
(8-13 Hz), beta (13-30 Hz), and gamma (25-50 Hz). Finally, for each
second of EEG signals, we extract a DE of each electrode and each
frequency band.

4.2 User Behavior log and self-assessment of
MAES

After integrating the log and label files and corresponding them
to the EEG via timestamps, we obtained each subject’s interaction

(a) 

(b) 

Figure 3: (a) Proportion of likes for short videos: overall and
across three session modes (personalized, randomized, and
mixed). (b) View percentage distribution across different ses-
sion modes (View percentage is the viewing duration divided
by the video duration. 1.0 represents viewing the video once.)

behavior (liking and viewing duration) and MAES for their video
viewing. For each interaction, the UNIX timestamps of browsing
are aligned with the start and end time of the corresponding piece
of the psychological signals. The video sequence and session mode
are also important. Thus, we provide the order of the video in the
interaction sequence and session mode (Randomized, Personalized,
and Mixed). As for the Mixed mode, we use further distinguish the
personalized recommendation video from the random one.

In Figure 3 (a), we present the distribution of the proportion of
likes for short videos in both the overall context and across three
distinct session modes: personalized, randomized, and mixed (a
combination of personalized and randomized). Notably, the like
rate in the personalized mode (35.9%) and the mixed mode (35.4%)
are relatively similar. In contrast, the like rate in the randomized
mode (21.4%) falls below. Same as the like rate, view percentage in
personalized mode and mixed mode in Figure 3 (b) is higher than
randomized overall. It’s surprising that the performance of mixed
mode is relatively similar to the personalized mode. Likes and view
percentages are presumably influenced by contexts in the session.
Focusing on user experience from behavior may shed a little light
on recommender systems.

In Figure 4, it can be observed that the distribution of the six
MAES exhibits noticeable differences. It can be observed that va-
lence and arousal, commonly utilized as two-dimensional indices
in the field of emotion recognition, both exhibit a distinct distribu-
tion with 3 being the highest point. Immersion, interest, visual and
auditory demonstrate a relatively uniform distribution compared
to the former two, indicating a more effective differentiation in
representing video content.

4.3 Characteristic of Short Videos
We meticulously extracted comprehensive video features, encom-
passing both visual and auditory aspects, to further investigate
components related to audio and visual ratings.
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Figure 4: The distribution for six MAES (valence, arousal,
immersion, interest, visual and auditory).

For video featurization, we sampled each frame per second and
computed an array of features. Specifically, we determined the
mean (representing brightness) and standard deviation (represent-
ing contrast) by converting each frame to grayscale. Additionally,
we assessed hue, saturation, value (in terms of HSV), Laplace varia-
tion, and color cast for each frame. Regarding audio, we initially
extracted audio signals from the short videos using their native
sampling rate. We then employed openSMILE to compute features
from the ComParE2016 acoustic feature set [29], maintaining the
same sampling rate. Subsequently, we utilized the Audio Spectro-
gram Transformer [9], trained on AudioSet, to classify audio events
with a sampling rate of 16,000 to comply with the classifier. If the
event was classified as music, we employed Librosa to detect beats
and determine the tempo.

5 EXAMPLE APPLICATIONS
5.1 Impact on User Understanding in

Recommendation

Figure 5: Heatmap presents the correlations of behavior (lik-
ing, and view percentage) and MAES (valence, arousal, im-
mersion, interest, visual, and auditory).

5.1.1 Analysis of MAES and Browsing Behavior. Figure 5 presents
the correlation between behavioral and MAES attributes. It can
be observed that Liking has the strongest correlation with Inter-
est (0.56), followed by Immersion (0.53) and Valence (0.51). This
suggests that the users’ preferences are more closely related to their
interest in the content and the degree of immersion they experience
while viewing the video, rather than simply the valence or arousal
induced by the content. On the other hand, the View Percentage
attribute exhibits the highest correlation with Immersion (0.50) and
Interest (0.52), indicating that the percentage of browsing is more
likely to be influenced by their interest in the content and the level
of immersion they experience. This further highlights the impor-
tance of considering users’ interests and immersion levels when
designing recommender systems to improve user engagement and
browsing experience. The above findings emphasize the need to
consider users’ interests and the degree of immersion they expe-
rience when designing effective recommendation algorithms. We
are expecting more findings to be discovered by the researchers.

5.1.2 The Relation of EEG with MAE and Behaviors. Figure 6 dis-
plays the topographical maps illustrating the correlations between
EEG signals and the six MAES as well as the two behaviors. These
maps reveal distinct correlation patterns for each MAES and be-
havior. Furthermore, some unique findings emerge, such as the
consistent presence of strong correlations between gamma-band
electrodes in the frontal lobe area across all six emotion annotations.

Gammawaves are known to play a critical role in numerous brain
functions and cognitive processes, including attention, memory,
perception, and consciousness [19, 23]. The activation of gamma
waves in the frontal lobe suggests the involvement of this region
in the associated cognitive processes. As a key area of the brain,
the frontal lobe is closely linked to higher cognitive functions, such
as decision-making, planning, problem-solving, working memory,
and attention control [7]. The observed activation of gamma waves
in the frontal lobe may be indicative of the engagement of these
higher cognitive functions during the tasks.

5.2 Recommendation in Terms of Various User
Feedback Signals

The proposed EEG-SVRec is also feasible for personalized recom-
mendation tasks. Beyond the traditional way of taking liking as
the user feedback signal, various user feedback signals provided
in the dataset can be leveraged as the ground truth. We conduct
experiments for item recommendation task while leveraging liking,
immersion, interest, valence, arousal, visual preference, and auditory
preference as user feedback signals, respectively. As an example,
we provide the benchmark for item recommendation with and
without EEG information. We use the popular recommendation
toolkit Recbole [48] for different algorithms, which only support
point-wise evaluations for context-aware recommendation models
rather than ranking-based evaluation, and report AUC scores but
not NDCG performances.

The dataset is split into training set, validation set, and test set by
7:1:2. As for the EEG data, we utilize the 310-dimensional (62 chan-
nels * 5 frequency bands) DE (EEG feature described in Section 4.1)
corresponding to interactions and project them into an embedding
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Figure 6: The mean correlations (overall participants) of the MAES (emotion of valence and arousal, immersion, interest, and
rating of visual and auditory, ranged 1-5) and behaviors (like and view percentage) with DE in the broad frequency bands of theta
(4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz), and gamma (30-45 Hz). The white circle marks the significant correlation (p <0.05).

Table 3: The recommendation performance (in terms of AUC) that leverages liking, interest, immersion, visual preference, and
auditory preference as user feedback respectively. The two-sided t-test is conducted . ∗ indicates p-value < 0.05. bold shows the
higher result of the two settings.

Model Feature Like Immersion Interest Valence Arousal VisualPref AudioPref

FM id 0.7152 0.6776 0.6950 0.6348 0.6917 0.6685 0.6419

id+EEG 0.7312∗ 0.6857 0.6933 0.6492 0.6929 0.6690 0.6675∗

DeepFM id 0.7331 0.6869 0.7005 0.6379 0.6930 0.6691 0.6600

id+EEG 0.7368 0.6927 0.7010 0.6586∗ 0.7077 0.6711 0.6608

AFM id 0.7188 0.6774 0.6935 0.6406 0.6962 0.6736 0.6251

id+EEG 0.7236 0.6955∗ 0.6910 0.6583∗ 0.6898 0.6688 0.6578∗

WideDeep id 0.7324 0.7033 0.7027 0.6651 0.7066 0.6718 0.6735

id+EEG 0.7387 0.7056 0.7121 0.6660 0.7094 0.6978∗ 0.6767

DCN-V2 id 0.6937 0.6190 0.6698 0.5855 0.6340 0.6443 0.6585

id+EEG 0.6924 0.6582∗ 0.6802∗ 0.6249∗ 0.6715∗ 0.6585 0.6440

through a fully connected layer. We tune hyperparameters and
choose the best result for each setting (id and id+EEG).

From the Table 3, it is observed that in most instances, models
incorporating EEG signals achieve superior results, suggesting the
general potential of EEG signals in recommendation tasks. It is
worth noting that only simple way of introducing EEG informa-
tion is implemented in the benchmark experiments, which directly

embeds EEG signals as features, and has already effectively en-
hanced recommendation performance. This verifies that EEG con-
tains additional valuable information. Thus, leveraging EEG signals
presumably assists recommender systems in better understanding
user multidimensional affective engagement and behaviors, thereby
providing better personalized recommendations.
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EEG reflects the cognitive activity of viewing short videos, which
can be used as auxiliary information to enhance representations.
Thus, a natural idea is to enhance user and item embeddings with
their corresponding EEG signals. The idea is widely used in exist-
ing recommendation models, such as review-based [3, 34], social-
based [40], knowledge graph-based [4], and visual-based [12] mod-
els. However, EEG directly reflects the user’s brain activities, which
can bring more in-depth user understanding beyond the above
auxiliary information. This opens a novel avenueto enrich the rep-
resentation of items and further help the recommender systems
understand the users with incognizable, subject, and direct feed-
back with cognitive information. The comparison of EEG data and
other information, as well as more sophisticated recommendation
models, are left as future work.

6 DISCUSSIONS AND LIMITATIONS
6.1 Possible Research Directions
In this section, we discuss the potential applications of the EEG-
SVRec dataset in various aspects of short video recommendation
systems and beyond.

(1) Human-centric Evaluation Metrics: The dataset offers
a more human-centric perspective on evaluation metrics, going
beyond traditional measures such as dwell time and likes. It enables
researchers to assess recommender systems based on their ability
to enhance users’ overall experience, considering multidimensional
aspects of user engagement, rather than merely maximizing utility
metrics.

(2) Uncovering the Relationship Between User Behavior
and Cognitive Acitvity: Utilizing the dataset to study user behav-
ior and cognitive activities during the recommendation process can
reveal insights into how brain activity can inform adjustments in
recommendations. This knowledge potentially helps reduce infor-
mation echo chambers and enhance content diversity, leading to a
more balanced and varied user experience.

(3) EEG-guided Recommendation Algorithms: The EEG-
SVRec dataset opens up opportunities to explore the development
of EEG-guided recommendation algorithms that incorporate EEG
signals for a deeper understanding of user preferences and behavior.
By leveraging a smaller labeled EEG dataset alongside a larger
unlabeled dataset, algorithms can potentially learn more accurate
and personalized recommendations by generalizing the knowledge
gained from EEG signals across a broader user base. Furthermore,
EEG reflects the cognitive activity of viewing short videos which
can be used as auxiliary information to enhance representation.

(4) Accessibility for Users with Disabilities in Short Video
Streaming: The EEG-SVRec dataset has the potential to facilitate
the development of more inclusive recommendation systems tai-
lored for individuals with disabilities. By analyzing the unique
cognitive and emotional experiences of these users through EEG
data, algorithms can be adapted to better cater to their needs and
preferences, ultimately improving their experience with short video
recommendations.

In summary, the EEG-SVRec dataset presents an array of poten-
tial applications that can contribute to the development of more
effective, personalized, and inclusive recommendation algorithms.
By focusing on a more human-centric approach and leveraging the

rich information provided by EEG signals, researchers and practi-
tioners can drive innovation in the field of recommender systems
and enhance user experiences across various contexts.

6.2 Limitations
In this study, we present the EEG-SVRec dataset. Despite its poten-
tial value for the recommender systems community, there are some
limitations that should be considered:

(1) Sample Size: The dataset was constructed with a scale of 30
participants from the university, which may not fully capture the
diversity of users on social media platforms. Although the sample
size might seem limited, it is important to note that the high cost
associated with EEG data collection can hinder the ability to gather
larger sample sizes. Many published EEG datasets are with the same
scale of participants universities [17, 28, 49].

(2) Generalizability: EEG’s applicability in large-scale real-
world scenarios could be challenging due to the required equipment
and expertise. Meanwhile, personalized and randomized videos
are 30-60s, which may differ from general contexts. The reason
to choose 30-60s refers to Section 3.3. Despite this, investigating
the temporal dynamics of user behavior and emotions in various
recommendation settings would be a valuable direction for future
research.

(3) Algorithmic bias: The EEG-SVRec dataset might contain
biases from the underlying recommendation algorithms from the
platform, which could impact the generalizability of the findings.
However, we provide the interaction with randomized video as
unbiased data for this purpose. It is essential for future research to
identify and address any potential biases present in the dataset.

Despite these limitations, the EEG-SVRec dataset provides a
valuable resource for exploring user behavior and emotions in
short video recommendations and can inspire further research in
this area.

7 CONCLUSION AND FUTUREWORK
This paper introduces EEG-SVRec, a novel dataset including EEG
and ECG signals, multidimensional affective engagement annota-
tions, and user behavior data for short video recommendation. This
dataset bridges a critical gap by providing insights into user intrin-
sic experience and behavior in real-world short video scenarios.
Our key contributions include proposing the first EEG dataset in
short video streaming scenario, collecting multidimensional affec-
tive engagement scores, and providing both implicit and explicit
user feedback. We carried out a rigorous experimental process for
30 participants and obtained a dataset, which is highly versatile
and applicable to various research problems. We establish bench-
marks for rating prediction by including EEG signals and prevalent
recommendation algorithms. Experimental results demonstrate the
usefulness of EEG signals in recommendation scenarios. It is worth
noting that our current application of EEG signals is primary, leav-
ing room for future improvements.

For future work, it is expected that more sophisticated mod-
els, such as DGCNN [31], could be employed to utilize electrode
position information from the EEG signals and further improve
recommendation performance on the EEG-SVRec dataset. By lever-
aging more advanced techniques, deeper insights into the role that
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EEG signals play in short video recommendation systems could be
uncovered. Furthermore, the application of EEG and ECG signals
could be expanded to a broader range of research areas, such as de-
veloping more affective-centric evaluation metrics and applications
for individuals with disabilities. Lastly, the dataset holds significant
societal value in further exploring the occurrence and changes in
user emotions and cognitive behavior within short video recommen-
dation scenarios. We anticipate that our work will inspire further
exploration and innovation in the field of recommendation and
encourage researchers to delve into these potential applications.
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