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We investigate irreversible aggregation processes driven by a source of small mass clusters. In the
spatially homogeneous situation, a well-mixed system is consists of clusters of various masses whose
concentrations evolve according to an infinite system of nonlinear ordinary differential equations. We
focus on the cluster mass distribution in the long time limit. An input-driven aggregation with rates
proportional to the product of merging partners undergoes a percolation transition. We examine
this process analytically and numerically. There are two theoretical schemes and two natural ways
of numerical integration on the level of a truncated system with a finite number of equations. After
the percolation transition, the behavior depends on the adopted approach: The giant component
quickly engulfs the entire system (Flory approach), or a non-trivial stationary mass distribution
emerges (Stockmayer approach). We also outline generalization to ternary aggregation.

I. INTRODUCTION

Aggregation processes underlie numerous physical and
chemical phenomena ranging from micro- to macro-scale
[1–3]. Examples include blood clotting [4], formation of
aerosol particles in the atmosphere [5–9], molecular beam
epitaxy [10, 11]), astrophysical systems [12–15], etc.

We assume that each cluster participating in aggre-
gation consists of a finite number of elementary blocks
(monomers). This description is appropriate in many
situations, e.g., in polymer science [1], and it provides an
accurate description of the most interesting large mass
behavior in systems with continuous mass distribution.

Aggregation proceeds through merging events. Binary
merging events dominate in many applications, particu-
larly in dilute systems. Symbolically, the binary aggre-
gation process is represented by the reaction scheme

[i] + [j]
Ki,j−−−→ [i+ j] (1)

with aggregation rates Ki,j = Kj,i ≥ 0. The set of ki-
netic coefficients Ki,j is called an aggregation kernel. We
consider spatially homogeneous systems and study con-
centrations cs(t) of the particles of size s per unit vol-
ume. The kinetic description of such a system is provided
by Smoluchowski equations [16–18]. These equations
and generalizations accounting for shattering (possible
complete fragmentation into monomers in binary colli-
sions) [19–21], spontaneous binary fragmentation [22],
exchange-driven reactions [23–26], etc. [27–30] form an
active research area.

We study aggregation processes driven by a constant
source of small mass clusters. The state of the system be-
fore we turn on the source and the details of the source
play a minor role. For concreteness, we assume that the
system is initially empty and limit ourselves to the mono-
disperse source. We consider the most natural source of
monomers, so each cluster is composed of an integer num-
ber s of monomers. The reaction scheme ∅ → [1] repre-

senting the source emphasizes that the source is external,
i.e., decoupled from the merging process. Equations

dcs
dt

=
1

2

∑

i+j=s

Ki,jcicj − cs

∞∑

j=1

Ks,jcj + δs,1 (2)

describe the evolution of concentrations cs(t) of clusters
of mass s in the binary aggregation process (1) driven by
constant input of monomers.
The input-driven binary aggregation has already been

investigated both analytically [27] and numerically [28].
Among interesting behaviors, we mention scaling solu-
tions [3], non-decaying oscillations [31] (seemingly arising
via Hopf bifurcations), oscillating stationary particle size
distributions [32] and instantaneous gelation [33].
In the long time limit, concentrations of clusters in

input-driven aggregation often become stationary. In
contrast, concentrations evolve ad infinitum for pure ag-
gregation processes, and hence input-driven aggregation
is often more amenable to analysis than non-driven ag-
gregation. For a broad family of aggregation kernels, the
stationary concentrations have a power-law tail, cs ∼ s−α

with α < 2, see [2, 3, 27, 34–37]. In the case of mass-
independent rates, Ki,j = const, an exact solution is
known (see Sec. II), and the tail exponent is α = 3/2.
Ternary aggregation, symbolically

[i] + [j] + [k]
Ki,j,k−−−−→ [i+ j + k] (3)

has been also investigated [38–42] both on the mean-field
level based on equations like (2) and in low spatial dimen-
sions, particularly in one dimension, where the diffusion-
controlled aggregation process is not accounted by the
mean-field equations. As in the binary case, the reaction
rates Ki,j,k are non-negative and symmetric in masses
i, j, k of merging aggregates. Generalizations to n−body
aggregation processes are also possible [38, 39]. Mod-
els with mass-independent rates, Ki1,...,in = 1, and with
rates Ki1,...,in = i1 + . . .+ in equal to the sum of masses
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of the reactants, are exactly solvable. The instantaneous
gelation is also possible for many-body aggregation prob-
lems [43]. In Sec. II, we analyze steady-state solutions for
the process with binary and ternary aggregation, both
mass-independent.

For some kernels, the input-driven binary aggregation
does not admit stationary concentrations. The simplest
example is the binary aggregation with product rates
Ki,j = ij which we analyze in Sec. III. This process
undergoes a gelation transition. Without a source, the
model with kernel Ki,j = ij is exactly solvable. It goes
through the gelation catastrophe [44] due to the emer-
gence of the giant component rapidly engulfing the whole
system. The model is essentially identical to Erdős–
Rényi random graphs [45, 46]. The source-driven model
with product rates is more challenging for analytical and
numerical investigation. In contrast to the model without
source, the concentrations cs(t) do not admit an explicit
solution, but we derive an exact parametric representa-
tion of the generating function associated with cs(t). In
Sec. IV, we study the pure ternary aggregation with prod-
uct kernel Ki,j,k = ijk.

Analytical solutions are crucial for tests of the numer-
ical methods. Indeed, one must solve a large number
of nonlinear kinetic equations and hopefully get faithful
conclusions about an infinite system, or at least a system
with so many cluster species that the numerical integra-
tion is beyond the limit of what is currently feasible with
the best available methods.

Our numerical experiments (Sec. V) rely on the second-
order Runge-Kutta numerical time-integration method
and utilize an approach based on the low-rank matrix
structure of the kinetic coefficients for efficient evalua-
tion of the right-hand side. This approach allows us to
perform numerical integration of up to N = 220 equa-
tions within a modest time on a single workstation.

Numerical investigations of gelling systems require ef-
ficient algorithms and a careful choice of the target dif-
ferential equations. One can only perform a numerical
integration of a truncated system (i.e., account for a fi-
nite number N cluster species). The convergence to the
infinite system holds only before the gelation transition.
An advantage of the aggregation process withKi,j = ij is
that the loss term in (2) can be replaced by scsM(t). We
can then rely on the exact expression for mass concentra-
tion, M(t) = t in the case of the source of monomers of
the unit strength used in (2). A truncated system with
such carefully chosen loss term accounts for merging of
finite clusters with gel. If instead M(t) we use the sum
only over first N cluster species, very different behaviors
emerge as we demonstrate in Sec. V. Amusingly, this
natural numerical implementation is essentially equiva-
lent to the Stockmayer treatment of gelation. In gelling
systems without input, both standard (Flory) and Stock-
mayer approaches predict that cs(t) decay to zero for ev-
ery fixed s and t → ∞. In gelling systems with input,
concentrations also decay to zero in the realm of the Flory
approach, while the steady state is reached in the realm

of the Stockmayer approach. We determine the steady
state analytically (Secs. III C and IVB) and confirm our
analytical predictions numerically.

II. INPUT-DRIVEN AGGREGATION WITH
MASS-INDEPENDENT RATES

Input-driven aggregation processes in which the steady
states emerges are significantly more tractable than stan-
dard aggregation processes with never-ending evolution.
As a historical illustration, we recall that the aggrega-
tion framework based on an infinite set of coupled differ-
ential equations (2) without source was introduced by
Smoluchowski in the context of Brownian coagulation
[47]. Smoluchowski argued that the appropriate reac-
tions rates for Brownian coagulation in three dimensions
are [47, 48]

Ki,j =
(
i1/3 + j1/3

)(
i−1/3 + j−1/3

)

=

(
i

j

)1/3

+

(
j

i

)1/3

+ 2 (4)

Smoluchowski equations with Brownian kernel (4) have
never been solved analytically. For the input-driven
Brownian coagulation, the emerging steady state ad-
mits an analytical description [36]. In particular, the
asymptotic decay of the stationary concentration is the
same [36] as for the aggregation with mass-independent
reaction rates, cs ≃ Cs−3/2, and only the amplitude
C =

√
5/23(4π)−1/2 is different from the amplitude

C = (4π)−1/2 in the model with mass-independent rates
Kij = 2, see (7).
The simplest input-driven binary aggregation with

mass-independent merging rates has been studied in the
past [34, 35]. This model still provides the best illus-
tration of the emergence of stationary mass distribution
in the input-driven aggregation which first appears con-
troversial as the mass density grows with time ad infini-
tum. In this section we re-derive the stationary mass
distribution, recall why it does not contradict the un-
limited mass growth, and then show how to generalize
to ternary aggregation with mass-independent merging
rates, and to aggregation with both binary and ternary
merging events.

A. Binary aggregation with input

The binary aggregation process with mass-independent
merging rates (we choose Ki,j ≡ 2) and a source of
monomers is described by the rate equations

dcs
dt

=
∑

i+j=s

cicj − 2csc+ δs,1. (5)

Here c(t) =
∑

j≥1 cj(t) is the concentration of clusters,

c1(t) is the concentration of monomers and cs(t) is the
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concentration of clusters of “mass” s, that is, clusters
composed of s monomers. We have set the strength of
the source of monomers and the rate of merging to unity
— this can always be achieved by appropriate rescaling
of the concentrations and time.

In the long time limit, the system reaches a steady
state which is universal and well-known [2, 3, 27], namely
independent on the initial condition

cs =
1√
4π

Γ(s− 1
2 )

Γ(s+ 1)
. (6)

We are mostly interested in the steady state, so to make
formulas less cluttered we write cs instead of cs(∞). The
concentrations decay algebraically, viz.

cs ≃
1√
4π

s−3/2 (7)

when s ≫ 1. This asymptotic is well supported by nu-
merical integration of a finite number N ≫ 1 equations
when s ≪ N , see Fig. 1.

10−10

10−8

10−6

10−4

10−2

100

20 25 210 215 220

c s

s

numerical, 220 eqs.
analytical, s−3/2/

√
4π

FIG. 1. Analytical and numerical results for the mass
distributions in input-driven binary aggregation with mass-
independent rates governed by Eqs. (2).

In order to derive (6) we use the generating function

C(z) =
∑

s≥1

cs z
s. (8)

In the steady state, we use (8) and transform Eqs. (5) into
a quadratic equation 0 = C2 − 2C+ z for the generating
function, from which C(z) = 1 −

√
1− z. Expanding

C(z) we arrive at (6). Let us now briefly discuss the
approach to the steady state (6). The results now depend
on the initial condition, and we consider the simplest
situation of an initially empty system. The total cluster
concentration satisfies

dc

dt
= −c2 + 1, (9a)

so for initially empty system

c(t) = tanh(t). (9b)

By inserting (9b) into the first equation (5) we obtain

dc1
dt

= −2c1 tanh(t) + 1 (10a)

from which

c1(t) =
1

2

[
t

cosh2(t)
+ tanh(t)

]
. (10b)

Using (9b) we can present Eqs. (5) as

dcs
dt

+ 2cs tanh(t) =
∑

i+j=s

cicj (11a)

for s ≥ 2. Multiplying Eq. (11a) by cosh2(t) we arrive at

d

dt

[
cs(t) cosh

2(t)
]
= cosh2(t)

∑

i+j=s

ci(t)cj(t) (11b)

which is integrated to yield

cs(t) =
1

cosh2(t)

∫ t

0

dt′ cosh2(t′)
∑

i+j=s

ci(t
′)cj(t

′) (11c)

allowing (in principle) to obtain all cs recurrently. Equa-
tions (9b) and (10b) show that c(t) and c1(t) relax expo-
nentially to the steady state values, e.g., 1−c(t) ≃ 2e−2t.
This holds for other concentrations, but extracting the
relaxation and even the final steady-state concentrations
from the recursive solution (11c) is impractical.
The asymptotic behavior (7) is consistent with the di-

vergence of the mass conservation
∑

scs. Indeed, mass
conservation requires

∑
scs(t) = t at finite time, so the

total mass diverges when t → ∞. When t is large, the
mass distribution cs(t) is very close to stationary for suf-
ficiently small masses s ≪ s∗, while for s ≫ s∗, the mass
distribution is essentially zero. The crossover mass s∗ is
found from

t =

∞∑

s=1

scs(t) ≈
s∗∑

s=1

scs ∼
s∗∑

s=1

s−1/2 ∼ √
s∗ (12)

implying that s∗ ∼ t2.

B. Ternary aggregation with input

For aggregation with both two- and three-body merg-
ing events and the source of monomers with strength J ,
the governing equations read

dcs
dt

=
1

2

∑

i+j=s

Ki,jcicj − cs
∑

j≥1

Ksjcj

+
1

6

∑

i+j+k=s

Ki,j,kcicjck − cs
2

∑

i,j≥1

Ks,i,jcicj

+ Jδs,1 (13)
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The numerical studies of these equations are complicated
due to the higher nonlinearity of the model as well as
the complexity of evaluation of the right-hand side, even
with a finite number of equationsN . The straightforward
evaluation of the right-hand side for N equations takes
O(N3) operations, making simulations too long even with
several thousands of equations.

This problem requires advanced computational meth-
ods. Recently proposed [49, 50] tools allow one to com-
pute the right-hand side within O(N logN) operations
for a special family of kernels having low-rank tensor de-
composition in the tensor train [51] or canonical polyadic
[52] format. Such a decrease in complexity allows one to
deal with hundreds of thousands or even millions of ki-
netic equations using modest computing resources.

For pure ternary aggregation (Ki,j ≡ 0) with mass-
independent merging rates, we set Ki,j,k = 6 and J = 2
by properly re-scaling the units of concentrations and
time. The governing equations become

dcs
dt

=
∑

i+j+k=s

cicjck − 3csc
2 + 2δs,1. (14)

The total cluster concentration varies according to

dc

dt
= −2c3 + 2 (15)

The stationary value is c = 1 explaining the choice of the
strength of the source of monomers. The time-dependent
exact (albeit implicit) solution to (15) subject to c(0) = 0
can also be found

ln

√
1 + c+ c2

1− c
+
√
3 tan−1

(
1 + 2c√

3

)
= 6t+

π
√
3

6
(16)

The relaxation to the steady state value is again expo-

nential: 1− c(t) = Ae−6t +O(e−12t) with A =
√
3 e

π
√

3
6 .

Stationary concentrations are encapsulated in the gen-
erating function

∑

s≥1

cs z
s = 2 sin

arcsin z

3
(17)

In the steady state, an infinite system (14) simplifies to
∑

i+j+k=s

cicjck − 3cs + 2δs,1 = 0 (18)

Using (8) we transform Eqs. (18) into a cubic equation
3C = C3+2z for the generating function. One can write a
solution in quadratures. It is more convenient, however,
to express it through transcendental functions, and this
leads to (17). The concentrations cs with even s equal to
zero. The first five non-vanishing concentrations are

c1 = 2
3 , c3 = 8

81 , c5 = 32
729 , c7 = 512

19683 , c9 = 28160
1594323

From the behavior of C(z) around z = 1 we find that for
odd s ≫ 1, the asymptotic is

cs ≃
√

2

3π
s−3/2 (19)

Hence, the decay exponent is the same as in the binary
case, cf. Eq. (7).
If both binary and ternary merging events occur and

proceed with mass-independent rates

dcs
dt

= λ
∑

a+b=s

cacb − 2λcsc

+
∑

i+j+k=s

cicjck − 3csc
2 + (2 + λ)δs,1 (20)

where the strength of the source of monomers was chosen
in such way that the stationary total cluster density is
c = 1 as it was in our previous examples of pure binary
and pure ternary aggregation. The total cluster density
satisfies a rate equation

dc

dt
= −λc2 − 2c3 + (2 + λ) (21)

admitting an exact but implicit solution as in the case of
pure ternary aggregation, cf. Eq. (16).

0.0001

0.001

0.01

0.1

1

0.5 1 1.5 2 2.5 3 3.5 4

t

c1(t)
c1, analytical

c2(t)
c2, analytical

c3(t)
c3, analytical

FIG. 2. Convergence of the concentrations c1(t), c2(t), c3(t)
to analytical predictions (22) with λ = 0.01. A few hundred
equations suffices to obtain very accurate results for the con-
centrations of light clusters.

In the steady state, an infinite system (20) simplifies
to an infinite set of recurrent equations

λ
∑

a+b=s

cacb +
∑

i+j+k=s

cicjck + (2 + λ)δs,1 = (2λ+ 3)cs.

The first three stationary concentrations

c1 =
λ+ 2

2λ+ 3
, c2 =

λ(λ+ 2)2

(2λ+ 3)3
,

c3 =
(2λ2 + 2λ+ 3)(λ+ 2)3

(2λ+ 3)5
(22)

illustrate that results quickly become unwieldy. However,
even these few exact expressions are useful for validation
of numerical simulations (as we demonstrate in Fig. 2
and discuss in Sec. V).
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The generating function is a root of a cubic equation

(2λ+ 3)C = λC2 + C3 + (2 + λ)z. (23)

One can express C(z) in quadratures, but extracting ex-
plicit general results from such a cumbersome solution
seems impossible. The large s behavior is easy to de-
duce from the asymptotic behavior of C(z) near z = 1.
Equation (23) yields

1− C ≃
√

2 + λ

3 + λ

√
1− z

from which

cs ≃
√

2 + λ

4π(3 + λ)
s−3/2 (24)

when s ≫ 1. Numerical integration of a finite number
N ≫ 1 equations agree with the asymptotic (24) when
s ≪ N , see Fig. 3.

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

20 22 24 26 28 210 212 214 216

c s

s

λ = 0.01
λ = 0.05
λ = 0.10
λ = 1.00

s−3/2

FIG. 3. Numerical results for stationary cluster mass distri-
bution for binary and ternary aggregation for various values
of the ratio λ characterizing relative strength of the binary
aggregation events. The number of equations in numerical
integration is 216.

The estimate (12) of the crossover time is also sup-
ported by numerical integration, see Fig. 4.

III. BINARY AGGREGATION WITH
PRODUCT KERNEL

Input does not necessarily drive an aggregation pro-
cess to the steady state. We illustrate this assertion
for the process with product rates, Kij = ij, arguably
the most famous aggregation process capturing gelation
and percolation phenomena [53–56] that remains an ac-
tive research subject [57–60]. This aggregation process
is equivalent to evolving random graphs (also known as
Erdős–Rényi random graphs [45, 46]). Aggregation pro-
cesses with rates proportional to the product of masses

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

20 22 24 26 28 210 212 214 216 218

c s

s

t=1
t=5

t=25
t=50

t=100
s−3/2

FIG. 4. Numerical solutions of equations (20) with λ = 0.01
approaches to the analytical prediction (24) for the steady
state. The vertical lines correspond to the estimate s∗ = t2

of the crossover mass for t = 5, 25, 50, 100. The number of
equations in numerical integration is 218.

of reactants are popular throughout several branches of
sciences, from mathematics and computer science [61–66]
to polymer physics and chemistry [1, 67–69].
The influence of input on the aggregation process with

reaction rates Kij = ij is intriguing as we show below.

A. Basic results

The governing equations read

dcs
dt

=
1

2

∑

i+j=s

ijcicj − tscs + δs,1 (25)

Initial conditions affect only the earlier behavior. Hence,
as before, we focus on the most clean situation of initially
empty system, cj(0) = 0. With this initial condition

∑

j≥1

jcj(t) = t (26)

explaining the loss term in (25).
Using (25) we deduce the governing equation

dM2

dt
= M2

2 + 1 (27)

for the second moment M2 =
∑

k≥1 s
2cs. Solving (27)

subject to M2(0) = 0 yields

M2(t) = tan t (28)

The second moment diverges at time

tg =
π

2
(29)

when the giant component is born, so (28) is applicable
only in the pre-gel phase, t < tg. Similarly the third
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moment M3 =
∑

k≥1 s
3cs satisfies

dM2

dt
= 3M2M3 + 1 (30)

whose solution

M3(t) = tan t+ 2
3 tan

3 t (31)

also diverges at tg. Equation (31) is also applicable only
in the pre-gel phase, t < tg.
Summing Eqs. (25) we deduce the evolution equation

dc

dt
= 1− t2

2
(32)

valid when t < tg. Thus

c(t) =
∑

s≥1

cs(t) = t− t3

6
(33)

when t < tg. The zeroth moment c(t) ≡ M0(t) undergoes
a continuous phase transition as we now demonstrate.
In the percolating phase, t > tg, the sum

∑
j≥1 jcj ap-

pearing after summation of Eqs. (25) is taken over finite
clusters, and therefore

∑

j finite

jcj(t) = t− g (34)

where g is the mass of the giant component. Thus instead
of (32) we obtain

dc

dt
= 1− t2 − g2

2
(35)

Therefore

c(t) =

{
t− t3

6 t ≤ tg

t− t3

6 + 1
2

∫ t

tg
dτ g2(τ) t > tg

(36)

In the long-time limit, every injected monomer is im-
mediately engulfed by the giant component. Hence we
deduce t2 − g2 → 2 from (35) leading, for t ≫ tg, to

t− g ≃ 1

t
(37)

One can solve Eqs. (25) recurrently. Solving the rate
equation ċ1 = 1− tc1 subject to c1(0) = 0 gives

c1 =

∫ t

0

dτ e(τ
2−t2)/2 =

√
π

2
e−

t2

2 Erfi

[
t√
2

]
(38a)

where Erfi(·) is an imaginary error function. In the long-
time limit

c1 = t−1 + t−3 + 3t−5 + 15t−7 + 105t−9 + . . . (38b)

The amplitude in the t−(2n−1) term is (2n− 1)!!. There-
fore, c1(t) admits an asymptotic expansion

c1 =
∑

n≥1

(2n− 1)!!

t2n−1
(38c)

Keeping more and more terms in the sum in Eq. (38c)
provides better and better approximation as the first
omitted term gives an estimate of the deviation from the
exact result; e.g., (38b) is valid up to O(t−11). The infi-
nite sum in Eq. (38c) diverges as typically happens with
asymptotic expansions [62].

We then solve ċ2 + 2tc2 = c21/2 and find

c2 =

√
π

2
e−t2 Erfi[t]− c1 +

t

2
c21 (39a)

with c1 given by (38a). In the long-time limit

c2 = 1
4 t

−3 + 7
8 t

−5 + 63
16 t

−7 + 729
32 t−9 + . . . (39b)

The next equation ċ3 + 3tc3 = 2c1c2 is also solvable:

c3 = 2e−
3t2

2

∫ t

0

dτ c1(τ)c2(τ) e
3τ2

2 (40a)

In the long-time limit

c3 = 1
6 t

−5 + 37
36 t

−7 + . . . (40b)

The asymptotic behaviors (38b) and (39b) suggest that
in the general case cs ≃ s−1Ast

−(2s−1) for t ≫ 1. Sub-
stituting this asymptotic ansatz into Eqs. (25) we arrive
at the recurrence

As =
1

2

∑

i+j=s

AiAj + δs,1 (41)

Using the generating function

A(z) =
∑

s≥1

As z
s (42)

we recast the recurrence (41) into A2−2A+2z = 0 from
which A = 1−

√
1− 2z leading to

As =
2s−1

√
π

Γ(s− 1
2 )

Γ(s+ 1)
(43)

Therefore

cs ≃
2s−1

√
π

Γ(s− 1
2 )

sΓ(s+ 1)
t−(2s−1) (44)

when t ≫ 1. If additionally s ≫ 1, (44) becomes

cs ≃ π−1/2s−5/2 2s−1

t2s−1
(45)

Recall that without input the mass of finite clusters
vanishes exponentially, namely as e−t. In the same sys-
tem with input the mass of finite clusters decays alge-
braically, namely as 1/t in the long time limit, Eq. (37).
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B. Generating function technique

We have established a few exact results in the pre-
percolation phase; see (28), (31) and (33). We have also
shown how to compute cs(t) throughout the evolution,
0 < t < ∞, and presented explicit results for small clus-
ters: (38a) and (39a). All cs(t) remain infinitely smooth
throughout the evolution, yet there is a phase transition
at t = tg. The challenge is finding the behavior of g(t)
in the percolating phase, t > tg. The recurrent nature
of the governing equations (25) suggests employing the
generating function technique [62, 70].

1. Exponential generating function

Instead of the ordinary generating function (8) it is
convenient to use an exponential generating function

E(z, t) =
∑

s≥1

scs(t) e
sz (46)

associated with the sequence scs(t). Multiplying Eq. (25)
by sesz and summing over all s ≥ 1 we reduce an infinite
system (25) of ordinary differential equations to a single
hyperbolic partial differential equation

∂tF = F∂zF + ez − 1, F(z, t) ≡ E(z, t)− t (47)

The homogeneous part of this equation is the (inviscid)
Burgers equation. The general solution of (47) is found
by the method of characteristics

t+

∫ 0

z

dw√
2(f − ew + w)

= Φ(f) (48a)

f = f(z, t) = ez − z + 1
2 F(z, t)

2 (48b)

To fix Φ, we note that for the initially empty system

E(z, 0) = F(z, 0) = 0 (49)

Specializing (48a) to t = 0 yields

∫ 0

z

dw√
2(ez − z − ew + w)

= Φ(ez − z) (50)

which implicitly determines the function Φ.

2. Giant component

Recall that

F(0, t) = E(0, t)− t =

{
0 t < tg
−g t > tg

(51)

Specializing (48a)–(48b) to z = 0 when t > tg we obtain

t = Φ(1 + 1
2g

2) (52)

1 2 3 4 5
t

1

2

3

4

5

g

FIG. 5. The mass g of the giant component vanishes when
t < tg. In the percolating phase, g is represented by (53).

Thus, the mass g = g(t) of the giant component admits
a parametric representation

g =
√

2(eζ − ζ − 1)

t =

∫ 0

ζ

dw√
2(eζ − ζ − ew + w)

(53)

The mass of the giant component is shown in Fig. 5. The
asymptotic behaviors admit more explicit descriptions.
Massaging the parametric representation (53), one finds
such explicit formulae. The asymptotic expansion for the
mass of finite clusters in the t → ∞ limit

t− g = t−1 +
3

2
t−3 +

21

4
t−5 +

319

12
t−7 + . . . (54a)

The asymptotic expansion of the mass of the giant com-
ponent just above the transition point (δ = t− tg → +0)

g = 3δ − 9π

16
δ2 +

3

128
(224− 96π + 9π2)δ3 + . . . (54b)

The asymptotic (54a) is even easier to deduce from (38b),
(39b), (40b) and c4 ≃ 5

32 t
−7.

The mass M1 = t− g of finite components (see Fig. 7)
reaches the maximum max[M1(t)] = M1(tg) = tg at the
percolation point; M1(t) undergoes a continuous phase
transition with first derivative exhibiting a jump at the
percolation point:

dM1

dt

∣∣∣
tg−0

= 1,
dM1

dt

∣∣∣
tg+0

= −2 (55)

3. Total cluster concentration

The total cluster concentration, equivalently the zeroth
moment, satisfies c ≡ M0 ≤ M1. Hence c(t) → 0 as
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t → ∞, and integrating (35) we obtain

c(t) =

∫ ∞

t

dτ
τ2 − g2(τ)− 2

2
(56)

for t > tg. When t < tg, the concentration of clusters is
given by (33). However, using (53) and (56) to plot c(t)
in the percolating phase is challenging. Since simulations
perfectly agree with theoretical predictions, it suffices to
plot numerical predictions for c(t). The asymptotic be-
haviors of c(t) in the percolating phase admit more ex-
plicit descriptions. The long-time asymptotic is

c = t−1 +
5

4
t−3 +

97

24
t−5 +

5795

288
t−7 + . . . (57a)

Just above the transition point

c =
π

2
− π3

48
+

(
1− π2

8

)
δ − π

4
δ2 +

4

3
δ3

− 27π

64
δ4 +

9(896− 384π + 45π2)

2560
δ5 + . . . (57b)

where δ = t− tg → +0.

0

0.2

0.4

0.6

0.8

1

0 1
√
2 2 3 4 5

t

c(t)
2
√
2/3

c1(t)
c2(t)

FIG. 6. Top to bottom: Total cluster concentration c(t), the
concentration of monomers c1(t) given by (38a) and the con-
centration of dimers c2(t) given by (39a). Numerical results
for c(t) are in excellent agreement with theoretical predictions,
e.g., the maximal value 2

√
2/3 is reached at time t =

√
2.

The total cluster concentration reaches maximum at
t =

√
2 where max[c(t)] = c

(√
2
)
= 2

√
2/3, see Fig. 6.

The maximum occurs before the percolation point; c(t)

is a decreasing function of time when
√
2 < t ≤ tg and

in the entire percolating phase t > tg. At the percola-
tion point, c(t) undergoes a continuous phase transition.
More precisely, c together with first and second deriva-
tives are continuous at t = tg and equal to

c =
π

2
− π3

48
,

dc

dt
= 1− π2

8
,

d2c

dt2
= −π

2
(58a)

while the third derivative exhibits a jump:

d3c

dt3

∣∣∣
tg−0

= −1,
d3c

dt3

∣∣∣
tg+0

= 8 (58b)

4. Moments Mn with n ≥ 2

The momentsM0 and M1 remain finite throughout the
evolution. The moments Mn with n ≥ 2 diverge at the
percolation point. These moments can still be defined
in the percolating phase if the sum is taken over finite
components:

Mn(t) =
∑

j finite

jncj(t) (59)

All these moments with integer n ≥ 2 are encapsulated
in the derivatives of the generating function:

Mn = (∂z)
n−1F

∣∣
z=0

(60)

This formula applies to the entire time range.
Specializing (47) to z = 0 and recalling that

F
∣∣
z=0

= −g, ∂zF
∣∣
z=0

= M2 (61)

we deduce a neat formula expressing the second moment
via the mass of the giant component:

M2 = g−1 dg

dt
(62)

As a consistency check, one can use (38b), (39b), (40b),
etc. to deduce the asymptotic expansion of M2. Using
the asymptotic expansion (54a), one obtains the asymp-
totic expansion of the right-hand side of Eq. (62). The
expansions coincide in all orders.
Higher moments can be similarly extracted, e.g., the

third moment can be obtained by applying ∂z to (47) and
then specializing to z = 0. Equivalently, we can begin
with the evolution equation for the second moment

dM2

dt
= 1 +M2

2 − gM3 (63)

The extra term compared to Eq. (27) arises since we
must be more careful in the percolating phase and in-
clude M3(

∑
s≥1 scs − t) = −gM3; when t < tg, this term

vanishes and hence does not appear in Eq. (27). The hi-
erarchical nature of (63) does not allow one to determine
M2 from (63). However, we already established M2 using
a different approach, and hence we can now use (63) to
determine the third moment:

M3 = g−1

[
1 +M2

2 − dM2

dt

]
(64)

Since M2 given by (62) is expressed via g, Eq. (64) ex-
presses M3 via g.
The same strategy works for higher moments. Using

(25) we deduce the evolution equation

dM3

dt
= 1 + 3M2M3 − gM4 (65)

from which

M4 = g−1

[
1 + 3M2M3 −

dM3

dt

]
(66)
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effectively expressing M4 via g. Continuing, one writes
the evolution equation for the forth moment from which
one extracts the fifth moment

M5 = g−1

[
1 + 4M2M4 + 3M2

3 − dM4

dt

]
(67)

This equation in conjunction with previous results for the
moments M2,M3,M4 effectively expresses M5 via g.

5. Cluster mass distribution

At the percolation point, Eqs. (48a)–(48b) become

π

2
+

∫ 0

z

dw√
2(f∗ − ew + w)

= Φ(f∗) (68a)

f∗ = ez − z + 1
2 F

2
∗, F∗ = F(z, tg) (68b)

and the cluster mass distribution has an algebraic tail

cs(tg) ≃ C s−5/2 as s → ∞ (69)

By inserting this asymptotic into the definition of the ex-
ponential generating function we deduce the asymptotic

F∗ = −B
√
−z +O(z), B = CΓ

(
− 1

2

)
(70)

Combining (68b) and (70) we obtain

f∗ = 1− 1
2zB

2 +O(z2) (71)

By inserting (71) into the left-hand side (LHS) of (68a)
we obtain

LHS =
π

2
−B−1

√
−z +O(z) (72)

Using (50) and expanding near the origin one gets

Φ

(
1 +

ζ2

2
+ . . .

)
=

π

2
− ζ

3
+ . . . (73)

which in conjunction with (71) leads to the expansion of
the right-hand side (RHS) of (68a)

RHS =
π

2
− B

3

√
−z +O(z). (74)

Comparing (72) and (74) we fix B = −
√
3. Thus we

confirm (69) and fix the amplitude

cs ≃
√

3

4π
s−5/2 as s → ∞ (75)

In the percolating phase (t > tg), the tail is exponential

with s−5/2 algebraic pre-factor

cs(t) ≃ C(t) s−5/2e−sΛ(t) (76)

To determine the rate Λ(t) of the exponential decay and
the amplitude C(t) one should expand Eqs. (48a)–(48b)

near z = Λ. Equating the zeroth order terms gives an
implicit equation

t =

∫ Λ

0

dw√
2(λ− ew + w)

+ Φ(λ) (77a)

λ = eΛ − Λ + 1
2F(Λ, t)

2 (77b)

for Λ. Equating the
√
Λ− z terms one can fix the ampli-

tude C(t) in (76).

C. Stockmayer approach

So far, we have employed an approach originated in the
work of Flory [53–55]. This approach is physically well-
motivated as it accounts for merging between finite clus-
ters. Furthermore, the concept of the order parameter
crucial for phase transitions is natural within the Flory
framework — the fraction of mass in the giant component
(gel) plays the role of the order parameter. The Flory
framework is traditionally used in applications [2, 3, 71],
and the evolution of random graphs [45, 46, 59, 61–65, 72]
is also treated in the Flory framework.
Almost simultaneously with Flory [53], Stockmayer

[56] proposed a competing theory, see [3, 67] for mod-
ern expositions. Merging of finite clusters to gel is ig-
nored by the Stockmayer approach. Both methods give
identical results only in the pre-percolating phase, and
the percolation transition occurs at the same moment in
both frameworks. The concept of gel becomes ill-defined
in the Stockmayer framework. One can still define the
order parameter as the mass discrepancy, but it loses the
natural meaning of the mass of the gel. The Stockmayer
approach has several applications, and it also makes sense
in some random graph processes [68, 73, 74]. A straight-
forward numerical integration based on truncating an in-
finite system of equations to a finite system is essentially
equivalent to the Stockmayer approach (Sec. V).
We now analyze the aggregation process with product

rates and the source of monomers using the approach of
Stockmayer. Mathematically, one ought to solve

dcs
dt

=
1

2

∑

i+j=s

ijcicj −M1(t)scs + δs,1 (78)

In the pre-percolating phase, the mass of finite clusters
is M1 = t. In the post-percolating phase, M1 is a priori
unknown and should be determined self-consistently.
Flory and Stockmayer’s approaches predict greatly dif-

ferent asymptotic behaviors. Without input, all concen-
trations vanish when t = ∞ and the asymptotic decay
laws greatly differ. For instance, if the evolution begins
with the mono-disperse initial condition, cs(0) = δs,1, the
mass of the finite clusters is M1 = 1/t for all t ≥ tg = 1 in
the realm of the Stockmayer approach [3, 67]; the Flory
approach gives M1 = e−t + te−2t + . . . as t → ∞.

For the input-driven aggregation process with product
rates, the concentrations vanish in the realm of the Flory
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approach, while the Stockmayer approach predicts a non-
trivial steady state. Moreover, the steady state is uni-
versal, i.e., independent of the initial condition. The sta-
tionary solution predicted by the Stockmayer approach
is non-trivial. The relaxation to the steady state is quick,
so we focus on the stationary solution and disregard the
relaxation.

The determination of the stationary mass distribution
cs, the cluster concentration c and µ = M1 is surprisingly
easy if we rely on an ‘experimental’ observation following
(see Fig. 8) from numerical integration: cs decays slower
than exponentially with mass s. Indeed, in the steady
state (78) simplifies to

µAs =
1

2

∑

i+j=s

AiAj + δs,1 (79)

where As = scs. Using the generating function (42) we
recast the recurrence (79) into A2 − 2µA + 2z = 0 from

which A = µ −
√
µ2 − 2z. Different behaviors emerge

depending on whether µ is smaller, equal, or larger than√
2. If µ <

√
2, the dominating behavior of As is the ex-

ponential As ∝ (2/µ2)s growth which is inconsistent with

µ =
∑

s≥1 As being finite. If µ >
√
2, the dominating be-

havior is the exponential As ∝ (2/µ2)s decay, which is
inconsistent with numerical integration. Therefore

µ = M1(∞) =
√
2 (80a)

and using A =
∑

s≥1 scsz
s =

√
2
(
1−

√
1− z

)
and ex-

panding the right-hand side we find stationary concen-
trations

cs =
1√
2π

Γ(s− 1
2 )

sΓ(s+ 1)
(80b)

The total cluster concentration is found by summing
(80b) to give

c = (1− ln 2)
√
8 = 0.8679108378 . . . (80c)

IV. TERNARY AGGREGATION WITH
PRODUCT KERNEL

Here, we consider a ternary aggregation process with
reaction rates equal to the product of masses of the merg-
ing clusters. This aggregation process is equivalent to
evolving random two-dimensional simplicial complexes.
Traditionally, one starts with a set with N vertices and
creates triangles consisting of (randomly chosen) triplets
of vertices. We shall continue to talk about clusters,
i.e., maximal connected components, and we characterize
each cluster by the number of vertices. This characteriza-
tion is formally incomplete. However, almost all clusters
are topologically similar, namely their Euler character-
istic χ = V − E + T is χ = 1. Here V is the number
of vertices, E is the number of edges, T is the num-
ber of triangles. (Similarly, in the Erdős–Rényi random
graphs almost all clusters are trees with Euler character-
istic χ = V − E = 1.)

A. Flory approach

For the input-driven pure ternary aggregation process
with reaction rates Ki,j,k = ijk and the strength of
source J = 1, Eqs. (13) become

dcs
dt

=
1

6

∑

i+j+k=s

ijkcicjck − 1

2
t2scs + δs,1 (81)

In the initially empty system, only clusters with odd mass
are formed.
As in the binary case, we detect the formation of the

gel from the divergence of the second moment. Using
(81) we deduce

dM2

dt
= tM2

2 + 1 (82)

which is solved to yield

M2(t) =
Bi(−t)−

√
3Ai(−t)√

3Ai′(−t)− Bi′(−t)
(83)

where Ai and Bi are Airy functions and f ′(x) = df/dx.
The second moment diverges at time

tg = 1.514 906 050 . . . (84)

found from
√
3Ai′(−tg) = Bi′(−tg), The giant compo-

nent appears when t > tg, so (83) is applicable only in
the pre-percolation phase, t < tg.
The third moment satisfies

dM3

dt
= 3tM2M3 +M3

2 + 1 (85)

whose solution

M3 =

∫ t

0

dτ
[
M3

2 (τ) + 1
]
e3

∫ t
τ
dt1 t1M2(t1) (86)

also diverges at tg. All moments Mn(t) with n ≥ 2 di-
verge at tg. The analytical expressions of Mn(t) with
n ≥ 4 in the pre-percolating phase quickly become un-
wieldy as n increases.
The zeroth moment remains finite throughout the evo-

lution. This assertion follows already from c ≡ M0 < M1.
In the pre-percolating phase, the zeroth moment obeys

dc

dt
= 1− 1

3
t3 (87)

from which

c = t− 1

12
t4 (88)

for t < tg. The maximum is again reached before tg,

namely at t∗ = 3
√
3 where c∗ = 3 3

√
3/4 (see Fig. 9). In

the percolating phase

dc

dt
= 1− 1

3
t3 +

3tg2 − g3

6
(89)
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Solving Eqs. (81) recurrently one finds formulae for
concentrations valid during the entire evolution:

c1 = e−t3/6

∫ t

0

dτ eτ
3/6 (90a)

c3 =
1

6
e−t3/2

∫ t

0

dt1

(∫ t1

0

dτ eτ
3/6

)3

(90b)

etc. The large time expansions are

c1 =
2

t2
+

8

t5
+

80

t8
+

1280

t11
+

28160

t14
+ . . . (91a)

c3 = 8
9 t

−8 + 416
27 t−11 + 21248

81 t−14 + . . . (91b)

c5 = 32
15 t

−14 + 14848
225 t−17 + 5328896

3375 t−20 + . . . (91c)

c7 = 512
81 t−20 + 2399744

8505 t−23 + . . . (91d)

etc. The asymptotic behaviors (91) suggest that in the
general case cs ≃ s−1Ast

−(3s−1) for t ≫ 1. Substituting
this asymptotic ansatz into Eqs. (81) one arrives at

As =
1

3

∑

i+j+k=s

AiAjAk + 2δs,1 (92)

The generating function
∑

s≥1 Asz
s is a root of cubic

polynomial which can be written in the form [cf. Eq. (17)]

∑

s≥1

Asz
s = 2 sin

[
arcsin(3z)

3

]
(93)

This generating function encapsulates the amplitudes As.
We merely mention the asymptotic behavior

cs ≃
√

2

3πs5
3s

t3s−1
(94)

valid for t ≫ 1 and odd s ≫ 1.
For more comprehensive analysis of the infinite sys-

tem of differential equations (81), one can rely again on
the recurrent nature of Eqs. (81). Using the exponential
generating function (46) one reduces an infinite system
of equations (81) to a single equation

∂tE =
E2 − t2

2
∂zE+ ez (95)

for the generating function. The method of characteris-
tic allows one to recast a hyperbolic partial differential
equation (95) to ordinary differential equations, but so
far we haven’t found even a parametric solution.

Here we merely show how to determine the moments
(59). Specializing (95) to z = 0 and using

E
∣∣
z=0

= t− g, ∂zE
∣∣
z=0

= M2 (96)

we obtain

M2 =
2

2tg − g2
dg

dt
(97)

in the percolating phase; in the pre-percolating phase, the
second moment is given by (83). Similarly one expresses
the third moment

M3 =
2

2tg − g2

[
1 + (t− g)M2

2 − dM2

dt

]
(98)

in the percolating phase via g. In the pre-percolating
phase, the third moment is given by (86).

B. Stockmayer approach

The evolution equations

dcs
dt

=
1

6

∑

i+j+k=s

ijkcicjck − 1

2
M2

1 scs + δs,1 (99)

coincide with (25) in the pre-percolating phase where
M1 = t. For t > tg, the mass concentration M1(t) of
finite clusters is a priori unknown. We leave the analysis
of relaxation to the future and focus on the steady state,
which we probe using the same method as in the binary
case (Sec. III C). Writing again As = scs, we arrive at
the recurrence

µ2As =
1

3

∑

i+j+k=s

AiAjAk + 2δs,1 (100)

in the steady state (t = ∞). Using the generating func-
tion (42) we recast Eqs. (100) into A3 − 3µ2A + 6z = 0
from which

∑

s≥1

Asz
s = 2µ sin

[
arcsin(3z/µ3)

3

]

Similarly to the binary case one finds different behaviors
depending on whether µ smaller, equal, or larger than
3
√
3. The consistent results emerge when

µ = M1(∞) =
3
√
3 (101)

Thus
∑

s≥1

scsz
s = 2

3
√
3 sin

[
arcsin z

3

]
(102)

The concentrations cs with even s equal to zero. The
first four non-vanishing stationary concentrations are

c1 = 2 3√3
3 , c3 = 8 3√3

243 , c5 = 32 3√3
3645 , c7 = 512 3√3

137781
(103)

From the behavior of the right-hand side of (102) around
z = 1 we find that for odd s ≫ 1, the asymptotic is

cs ≃ 3−
1
6

√
2

π
s−5/2 (104)

To determine the concentration c =
∑

s≥1 cs, we divide

(102) by z and integrate over 0 < z < 1 to yield

c =
3
√
3
24 +

√
3 ln

(
18817− 10864

√
3
)

8
(105)

Our numerical integration gives value close to the above
theoretical prediction c = 1.03692265 . . ..
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V. NUMERICAL SIMULATIONS

A. Overview of an algorithm

We truncate an infinite system to a finite number of
differential equations. Such an approximation is applica-
ble as long as mass is conserved (on the numerical level
of accuracy). One may then apply any time-integration
method for solving the target finite system. As soon as
mass conservation law breaks down numerically, we ex-
tend the system, i.e., use more equations, and continue
the computations. The maximal allowed number of equa-
tions cannot exceed a threshold reflecting memory and
complexity limitations. Such techniques are often suffi-
cient for the investigation of the asymptotic properties of
the solution.

We employ an effective numerical scheme for Smolu-
chowski equations accounting for binary and ternary ag-
gregation. We rely on an approach developed in several
papers. The main idea is based on low-rank approxi-
mation of binary and ternary operators with canonical
polyadic [52] or tensor train [51, 75] decomposition and
consecutive evaluation of discrete convolution with fast
Fourier transform (FFT) [76]. Discrete convolution is a
set of sums with the following structure:

cs =
∑

i+j=s

aibj , s = 1, . . . , N (106)

where a and b are vectors with N elements. The FFT-
based algorithm of convolution computation proceeds by
(i) computation of FFT of a and b, (ii) element-wise mul-
tiplication, (iii) inverse FFT of the resulting array.

0

c

√
2

π/2

0 1 π/2 2 3 4 5

t

Flory M1(t)
Stockmayer M1(t)

Stockmayer c(t)

FIG. 7. Comparison of M1(t) for Flory and Stockmayer ap-
proaches to input-driven binary aggregation with product ker-
nel. In the pre-percolating phase, M1 = t in both cases. In the
percolating phase, M1 asymptotically vanishes in the Flory
framework, namely M1 ≃ t−1 in the long time limit. In the
Stockmayer framework, M1 approaches to

√
2, and the total

cluster density also saturates, c(t) → c, with numerical value
very close to the theoretical prediction c = (1 − ln 2)

√
8.

Evaluation of the discrete convolutions with FFT re-
quires O(N logN) operations [76]. The remaining oper-

ations on the right-hand side are multiplications of the
rank-1 matrices by vectors taking O(N) operations. Such
organization of computational process allows one to de-
crease the formal complexity of evaluation of the right-
hand side from O(N3) operations to O(N logN). In a
previous work [49], we investigated binary and ternary
kernels, Ki,j and Ki,j,k, allowing one to obtain good rep-
resentations in tensor-train format (both constant and
product kernels belong to this class).

As soon as the complexity of evaluation of the right-
hand side is reduced we apply the explicit second-order
Runge-Kutta method for solving the system of differen-
tial equations (20) numerically with modest computa-
tional cost for each time-step.

B. Binary case

For numerical verification of the stationary solution
for the model with mass-independent rates, we used 220

equations. We obtained an excellent agreement between
the numerical integration of a finite but very large num-
ber of equations and an analytical solution, Eq. (7), for
the infinite system (Fig. 1).

The numerical investigation of the binary aggregation
with product kernel is more subtle than the model with
mass-independent rates, or other models where gels do
not arise. A natural truncated version of Eqs. (2) with
product kernel is

dcs
dt

=
1

2

∑

i+j=s

ijcicj − scs

N∑

j=1

jcj + δs,1. (107)

In Figs. 7–8 we demonstrate that in the percolating phase
(t > tg), numerical integration of Eqs. (107) gives approx-
imations of the solution corresponding to the Stockmayer
approach (78). Quality of the approximation grows with
increase of the size of the truncated system N . In our
experiments we vary it from 214 to 216 equations.

In earlier studies of gelation, two ways of describing
the evolution in the post-gel regime were suggested by
Flory [53] and Stockmayer [56]. The Flory approach ac-
counts for the merging of finite clusters and gel. The
Stockmayer approach disregards this phenomenon and it
is mute about the gel. Both the Flory and Stockmayer
approaches predict the phase transition at the same tg.

Numerical integrations of truncated systems converge
to the predictions of the Flory and Stockmayer ap-
proaches for the infinite system. One just ought to trun-
cate Eqs. (25) for the former and Eqs. (107) for the latter.
The numerical integration of Eqs. (107) shows the emer-
gence of the steady state. Results of simulations for the
mass and cluster concentrations are very close to our an-
alytical predictions (80a) and (80c), see Figs. 7–8. The
analytical prediction for the stationary mass distribution,
Eq. (80b), is also in excellent agreement with simulations.
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FIG. 8. An algebraic decay of concentrations following from
numerical integration of Eqs. (107) at t = 5 with number of
equations N = 214 , 215 , 216. The large s asymptotic of the
stationary solution, (2π)−1/2s−5/2, following from the exact
solution (80b), is also shown for comparison.

C. Ternary case

For the truncated version of Eqs. (20) describing aggre-
gation with binary and ternary mass-independent merg-
ing events, the convergence of concentrations of the small
aggregates to stationary values occurs on a relatively
short time and it can be verified with modest computing
resources (see Fig. 2) using straightforward computations
with just three hundred equations.

Finding the asymptotic behavior of the concentrations
is more challenging. In Fig. 3, we present the results of
numerical integration of Eqs. (20) with ternary merging
events using 216 equations. We obtain the same asymp-
totic structure of the solution even though concentrations
of the light clusters exhibit significant oscillations when
λ ≪ 1. The binary aggregation process dominates for
the large aggregates (s ≫ 1) where oscillations disappear,
the solution is monotonically decaying in agreement with
theory, and the asymptotic cs ∼ s−3/2 becomes manifest.

In Fig. 4, we show a gradual change of the concentra-
tions for Eqs. (20) coming at the analytical steady state
with increasing time from t = 1 to t = 100 using 218 equa-
tions. The apparent decline on the right side of the dis-
tributions for both Fig. 3–4 for the large particles stems
from a finite number of equations and goes in agreement
with crossover rule (12). Stationary concentrations of
particles stabilize close to the observed asymptotic rule
with further exponential decrease for the masses larger
than the crossover rule (see Fig. 4).

The numerical integration of the ternary aggregation
process with product rates is again more subtle. We use
a truncated version of Eqs. (81) in the Flory framework,
and a truncated version of Eqs. (99), that is,

dcs
dt

=
1

6

∑

i+j+k=s

ijkcicjck−
scs
2


∑

i≤N

ici




2

+δs,1 (108)

with s = 1, . . . , N in the Stockmayer framework. Both
truncated versions well approximate an infinite system
and give almost identical results (when N ≫ 1) up to
the gelation point (see Fig. 9). In the long time limit,
however, the numerical integration of Eqs. (108) gives
concentrations quickly approaching the steady state. The
asymptotic behavior in the bulk, namely when s ≫ 1 and
N − s ≫ 1, is cs ∼ s−5/2 for the odd sizes s. The ana-
lytical predictions for the steady state, Eqs. (101), (104),
and (105) are in excellent agreement with simulations.

0

1
c∗

tg

0 1 t∗tg 2 3

t

M1(t), Flory
c(t), Flory

M1(t), Stockmayer
c(t), Stockmayer

FIG. 9. Comparison of M1(t) and c(t) for the Flory and
Stockmayer approaches to input-driven ternary aggregation
with product kernel.

VI. DISCUSSION

We studied aggregation processes driven by the source
of monomers. For the aggregation process with mass-
independent merging rates, the well-known cs ∼ s−3/2

asymptotic can be generalized from the binary aggrega-
tion to the model involving ternary merging events. One
can similarly generalize to higher-order merging events.
The exact and asymptotic expressions for the stationary
concentrations are useful for the verification of miscel-
laneous numerical methods. For the model with mass-
independent merging rates, theory and simulations are
in excellent agreement.
The input-driven aggregation with product aggrega-

tion rates is particularly interesting and challenging be-
cause of the phase transition known as gelation. The ex-
act gelation time tg for the initially empty system is given
by Eq. (29) for the binary aggregation and by Eq. (84) for
pure ternary aggregation. For pure n−ary aggregation,
starting with

dcs
dt

=
∑

i1+...+in=s

i1 . . . inci1 . . . cin
n(n− 1)

− tn−1

n− 1
scs + δs,1

one deduces the equation for the second moment

dM2

dt
= 1 + tn−2M2

2 (109)
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in the pre-percolation phase. The solution of (109) di-
verges: M2 ≃ t2−n

g (tg − t)−1 as tg − t → +0. We know
that Eq. (109) admits an analytical solution in the binary
case, Eq. (28), and ternary case, Eq. (83). We haven’t
succeeded in expressing the solution of Eq. (109) subject
to M2(0) = 0 via standard special functions when n ≥ 4.
One can still determine tg by solving Eq. (109) numeri-
cally, or approximately using an exact series expansion

M2 = t+
t1+n

1 + n
+

2t1+2n

(1 + n)(1 + 2n)

+
(5 + 6n)t1+3n

(1 + n)2(1 + 2n)(1 + 3n)

+
2(7 + 12n)t1+4n

(1 + n)2(1 + 2n)(1 + 3n)(1 + 4n)

+
2(21 + 118n+ 214n2 + 120n3)t1+5n

(1 + n)3(1 + 2n)2(1 + 3n)(1 + 4n)(1 + 5n)
+ . . .

This expansion simplifies to t(1 − n−1tn)−1 for large n,
from which tg → n1/n, or tg−1 → n−1 lnn when n → ∞.
We analyzed the input-driven binary and ternary ag-

gregation processes with the product kernel, and we
also analyzed the problem numerically. One ought to
distinguish two possible ways of evolution in the post-
percolation phase. A steady state is formed in the realm
of the Stockmayer approach. The analytical predictions
for the steady state, Eqs. (80a)–(80c) in the binary case
and Eqs. (101)–(105) in the ternary case, are well cap-
tured by numerical integration.

An interesting challenge is to study other aggregation
processes exhibiting gelation. We only mention a one-
parameter family of models with generalized product ker-
nel Ki,j = (ij)ν . Gelation occurs when 1

2 < ν ≤ 1. (In-
stantaneous gelation occurs when ν > 1.) The governing
equations read

dcs
dt

=
1

2

∑

i+j=s

(ij)νcicj − sνcsMν + δs,1 (110)

where Mν =
∑

j≥1 j
νcj is the νth moment. The product

kernel (ν = 1) is very special. We know the gelation
time only in this case. The exact value of Mν(t) which
is necessary for the analysis of the Flory version is also
known only when ν = 1. Therefore, it is unclear how
to write an appropriate truncated version of (110) in the
Flory framework. In contrast, the steady-state emerging
in terms of Stockmayer is easy to extract for arbitrary ν.
One arrives at the same recurrence (79) as before, and the
only difference is that now As = sνcs and µ = Mν(∞).
Therefore

µ = Mν(∞) =
√
2 (111a)

cs =
1√
2π

Γ(s− 1
2 )

sνΓ(s+ 1)
(111b)

The generalized product kernel and a few other ker-
nels have been studied numerically using a less accurate
coarse-graining approach [33, 77]. Extending our numer-
ical treatment to such kernels using the Flory framework
is left for the future.

We relied on the Smoluchowski equations providing
the mean-field description of the well-mixed system. Ex-
tending our analyses to diffusion-controlled aggregation
processes in low spatial dimensions where the mean-field
description fails [2] is the major challenge requiring dif-
ferent analytical and numerical tools. Even well-mixed
systems undergo fluctuations when the total mass is fi-
nite. Numerical integration methods are inadequate for
probing fluctuations and large deviations. Monte Carlo
methods might shed light on rare events [78] or finite size
effects [79].
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