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We investigate the topological properties of a two-chain quantum ladder with uneven legs, i.e.
the two chains differ in their periods by a factor of two. Such an uneven ladder presents rich
band structures classified by the closure of either direct or indirect bandgaps. It also provides op-
portunities to explore fundamental concepts concerning band topology and edge modes, including
the difference of intracellular and intercellular Zak phases, and the role of the inversion symmetry
(IS). We calculate the Zak phases of the two kinds and find excellent agreement with the dipole
moment and extra charge accumulation, respectively. We also find that configurations with IS fea-
ture a pair of degenerate two-side edge modes emerging as the closure of the direct bandgap, while
configurations without IS feature one-side edge modes emerging as not only the closure of both
direct and indirect bandgap but also within the band continuum. Furthermore, by projecting to the
two sublattices, we find that the effective Bloch Hamiltonian corresponds to that of a generalized
Su–Schrieffer–Heeger model or Rice-Mele model whose hopping amplitudes depend on the quasimo-
mentum. In this way, the topological phases can be efficiently extracted through winding numbers.
We propose that uneven ladders can be realized by spin-dependent optical lattices and their rich
topological characteristics can be examined by near future experiments.

Keywords: ladder model, symmetry-protected topological phase, topological invariant, bulk-
boundary correspondence

PACS: 02.40.-k, 03.65.-w, 03.65.Vf, 37.10.Jk

I. INTRODUCTION

Topological order has been an active theme in vari-
ous branches of physics over the past decades. Among
different topological matters, a unified paradigm focuses
on the symmetry-protected topological (SPT) phases [1].
Distinct SPT phases cannot be smoothly transformed
into each other without closing the gap if the Hamiltonian
respects certain protected global symmetries. A nontriv-
ial SPT phase is different from a trivial one due to the
existence of nontrivial edge states on open boundaries,
and its bulk topological invariant is related to the num-
ber of the topological edge states, dubbed bulk-boundary
correspondence (BBC) [2–5].

A prominent demonstration of SPT matters in one
dimension is the Su–Schrieffer–Heeger (SSH) model [6]
which is simply a single bipartite chain with two alter-
nating hopping amplitudes. It hosts two different SPT
phases distinguished by the relative strength of intracel-
lular and intercellular hopping and such phases are pro-
tected by chiral symmetry and (spatial) inversion sym-
metry (IS). Bulk topological properties therein can be
described by invariants such as winding number [7] or
Zak phase [8]. There exists a pair of degenerate zero-
energy two-side edge states in the nontrivial SPT phase
corresponding to nonzero topological invariants. By fur-
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ther including an on-site staggered potential to the SSH
model, one obtains the Rice-Mele (RM) model [9], which
breaks both chiral symmetry and IS. The winding num-
ber is not well-defined therein, and the Zak phase for each
energy band is not quantized, implying the absence of
SPT phases. However, a pair of edge states, although be-
ing non-degenerate and chiral, still exist in the same pa-
rameter regimes same as that of the SSH model [10, 11].

Since the discovery of topological matters, intensive
efforts have been devoted to more complicated architec-
tures, among which, topological ladders, consisting of
several coupled chains, become a focus. Due to the quasi-
one-dimensional (1D) nature and compatibility with var-
ious experimental tools, versatile topological properties
have been explored in ladder architectures by further in-
cluding interactions [12–14], orbital degree [15–17], spin
degree [18–21], disorder [22, 23], or implementing spin-
orbit coupling and synthetic gauge field [24, 25], or en-
gineering flat bands [26–28]. Recently, nonequilibrium
dynamics [29–32] and quantum Hall signatures [33–39]
induced by topology have also been investigated in lad-
der systems both theoretically and experimentally.

Provious studies on the ladder architectures commonly
set the legs as even, i.e. the composing chains possess the
same periodicity, at most differ by certain parallel trans-
lation [13, 22, 30, 32, 40]. Releasing the constraint on the
identity of the composing chains will potentially enable
new perspectives on topological characteristics. Moti-
vated by such a scenario, in this paper, we propose a new
type of ladder model with uneven legs. For demonstra-
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tion, we investigate a minimal uneven ladder model with
two legs whose periods differ by a factor of two. Such an
uneven ladder provides opportunities to explore funda-
mental topological properties. Our main results can be
outlined as follows.

(i) We map this two-chain ladder to a single tripartite
chain with hopping terms up to fourth order in the tight-
binding limit. Under periodic boundary conditions, this
model features three basic bands, with either direct or
indirect gaps in between. We classify its band structure
according to the closure and reopening of these gaps.

(ii) By projecting to the two sublattices, we find that
the effective Bloch Hamiltonian corresponds to that of a
generalized SSH model or RM model whose hopping am-
plitudes depend on the quasimomentum. In this way, the
topological phases can be efficiently extracted through
winding numbers.

(iii) We calculate both the intracellular and intercellu-
lar Zak phases [4]. These two phases are then found to
be in excellent agreement with the dipole moment and
extra charge accumulation, respectively.

(iv) Under open boundary conditions, we find different
types of edge states that are closely related to the exis-
tence of the IS. Configurations with IS feature a pair of
degenerate two-side edge modes emerging as the closure
of the direct bandgap, while configurations without IS
feature chiral edge modes emerging as not only the clo-
sure of both direct and indirect bandgap but also within
the band continuum.

The paper is organized as follows. Sec. II introduces
the model Hamiltonian and discusses its symmetries,
as well as band structure classified by the closure of
bandgaps. Sec. III presents the projection of the ladder
model to the generalized SSH model. Sec. IV discusses
the two kinds of Zak phases and their relation to the
dipole moment and extra charge accumulation. Sec. V
presents the edge states and discusses BBC. Sec. VI out-
looks on more generic two-leg uneven ladders. Finally
Sec. VII presents conclusions.

II. UNEVEN LADDER MODEL

Uneven ladders are composed of several chains with
different periods and hopping amplitudes, and their pe-
riods can be either commensurate or incommensurate.
For simplicity, here we consider a two-leg ladder, and
the composing chains are just simple ones with only the
nearest-neighbor hopping. Furthermore, we choose the
periods of the two chains differing by a factor of two.
We note that more complicated configurations can be
constructed and the physical properties can be discussed
based on analysis in this paper.

The ladder architectures can be realized in experi-
mental platforms including photonics [31], superconduc-
tor circuits [28], thermal atoms [23, 27, 30], and cold
atoms [12, 17, 22, 24, 25, 29, 41], etc. Uneven ladders
can be implemented by tools with separate control of
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FIG. 1. (a) Experimental scheme of a two-leg uneven lad-
der constructed by spin-dependent optical lattices and mi-
crowaves. (b) Schematic of three ladder configurations: sym-
metric configuration (S.C.), left-asymmetric configuration (L-
As.C.), and right-asymmetric configuration (R-As.C.). These
configurations are the same in the bulk but are different at
the edges and they correspond to three different kinds of unit
cells as shown by purple dashed boxes. (c) Illustration of the
mapped single chain equivalent to the uneven ladder. Dif-
ferent colored lines represent couplings of different configura-
tions.

each leg. In terms of cold atoms, ladders can be possibly
realized by spin-dependent optical lattices [42–44]. Such
a technology has already been proven to be successful
in realizing twisted-bilayer lattices [45]. To implement
our minimal ladder model in cold atoms, one can first
impose a pair of counterpropagating laser beams, which
confine atoms of two internal spins (denoted as ↑ and ↓)
independently, such that the two leg chains (denoted as
1 and 2 respectively) are created. The periods of lat-
tices for each spin are taken as a/2 and a, respectively.
The other two spatial degrees can be frozen out by ex-
tra strong optical lattices or optical dipole traps, such
that the system is quasi-1D. The two spins can be fur-
ther coupled by microwave (or radio-frequency wave de-
pending on the spin-flip frequency) such that the two
chains are effectively linked. The proposed experimental
scheme and the corresponding ladder configurations are
illustrated in Fig. 1(a, b).
In the tight-binding limit, the Hamiltonian of the min-

imal two-leg uneven ladder reads

H = −t1
∑
j1

(a†j1aj1+1 +H.c.)− t2
∑
j2

(b†j2bj2+1 +H.c.)

+ Ω
∑

⟨j1,j2⟩

(a†j1bj2 +H.c.), (1)

where aj1(a
†
j1
) and bj2(b

†
j2
) are creation (annihilation) op-

erators at site j1 and j2 of chain-1 and chain-2 respec-
tively, t1 and t2 are the intra-chain hopping amplitudes,
and Ω is the inter-chain coupling strength. Due to the
exponential decay of hopping/coupling strengths as the
increase of site distance, here we can consider only the
nearest-neighbor site hopping and coupling. The uneven
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ladders can be mapped to a single chain. Here, our mini-
mal ladder model is equivalent to a tripartite single chain
with the subsite denoted as A, B, C. The hopping am-
plitudes of such a chain count up to the fourth order,
as shown in Fig. 1(c). The mapped chain belongs to the
general class of trimer SSH models while goes beyond pre-
vious studies [46–49] due to the inclusion of long-range
hoppings.

A. Ladder configurations and symmetries

In the SSH model, different choices of the origin of unit
cells lead to different kinds of topological phases and dif-
ferent behavior of edge states, even though the system pa-
rameters are taken the same [50]. Here, we demonstrate
that the two-leg uneven ladder enables more configura-
tions of unit cells, thus supporting more peculiar topo-
logical properties. The ladder configurations basically
can be classified into three types as shown in Fig. 1(b):
symmetric configuration (S.C.), left-asymmetric configu-
ration (L-As.C.), and right-asymmetric configuration (R-
As.C.). These configurations are the same in the bulk but
are different at the edges and the unit cells.

Naturally, one can adopt a unit cell with three sub-
sites including adjacent A and B in chain-1 and C site in
chian-2 just below A and B. This is the so-called S.C.,
see the first row in Fig. 1(b). The corresponding Hamil-
tonian reads

HSC =− t1
∑
m

(a†A,maB,m + a†A,m+1aB,m +H.c.)

− t2
∑
m

(a†C,m+1aC,m +H.c.)

+ Ω
∑
m

(a†C,maA,m + a†C,maB,m +H.c.),

(2)

where a†X,m (aX,m) is the creation (annihilation) op-

erator at the subsite X (X can be A, B, C) of the
m-th unit cell. Under periodic boundary conditions
(PBC), by performing a Fourier transformation aX,k =
1/
√
Mt

∑
m eikmaX,m, where Mt is the total number of

unit cells in the system, one obtains the Bloch Hamilto-
nian:

HSC(k) =

 0 −t1 − t1e
−ik Ω

−t1 − t1e
ik 0 Ω

Ω Ω −2t2 cos k

 .

(3)
By adopting another unit cell, with C site in chain-2 left
to the site A, one obtains the so-called L-As.C.. The
corresponding Hamiltonian in real space and the Bloch

Hamiltonian read

HLA =− t1
∑
m

(a†A,maB,m + a†A,m+1aB,m +H.c.)

− t2
∑
m

(a†C,m+1aC,m +H.c.)

+ Ω
∑
m

(a†C,maA,m + a†C,m+1aB,m +H.c.),

(4)

HLA(k) =

 0 −t1 − t1e
−ik Ω

−t1 − t1e
ik 0 Ωeik

Ω Ωe−ik −2t2 cos k

 ,

(5)
respectively. Similarly, the Bloch Hamiltonian of R-As.C.
reads

HRA(k) =

 0 −t1 − t1e
−ik Ωe−ik

−t1 − t1e
ik 0 Ω

Ωeik Ω −2t2 cos k

 .

(6)
It should be noted that, under PBC, Bloch Hamilto-
nians of different configurations are equivalent to each
other up to unitary transformation. One can find that

UHSC(k)U
† = HLA(−k) and U ′HSC(k)U

′† = HRA(−k),
where

U =

1 0 0
0 e−ik 0
0 0 1

 , U ′ =

eik 0 0
0 1 0
0 0 1

 ,

are unitary matrices, UU† = U ′U ′† = I. However, under
open boundary conditions (OBC), these configurations
are not equivalent. It is obvious to view their difference
at the edges as shown in Fig. 1(b).

In what follows, we discuss the symmetries of the
two-leg uneven ladder of different configurations, mainly
time-reversal symmetry, chiral symmetry and IS.

Firstly, we can readily verify that the uneven
ladder model possesses time-reversal symmetry, i.e.,
τH(k)τ−1 = H(−k), where τ represents the time-
reversal operator. For spinless systems, the time-reversal
operator results in the overall complex conjugation of the
Hamiltonian [51].

It is obvious that the chiral symmetry is absent for the
uneven ladder, as can be shown in Fig. 2 for PBC and
10(a) for OBC that the energy spectrum is not symmetric
against any reference energy. It means that no operator,
denoted as C, can be found to ensure CHC† = −H.
It is worth noting that, in a previous study on a trimer

SSH model with only nearest-neighbor hopping [49], a
generalized chiral symmetry, called point chirality, was
discovered. The corresponding Bloch Hamiltonian there
satisfies ΓH(k)Γ† = −H(2k0 + k), with Γ being the ma-
trix for point chirality. The energy spectrum then is sym-
metric against a reference energy for OBC, and also sym-
metric in the momentum-energy (k,E) diagram for PBC
with respect to a certain point, (k = k0, E = 0). How-
ever, in the uneven ladder model discussed here, which
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is equivalent to a trimer SSH chain, such point chirality
is broken down by the long-range hoppings.

Concerning the IS, the scenario for the uneven lad-
der is different from the chiral symmetry. Under
PBC, the uneven ladder of any configuration exhibits
IS. Specifically, we can ensure that the Bloch Hamil-
tonians of different configurations all satisfy the IS,

P0HSC(k)P
†
0 = HSC(−k), P+HLA(k)P

†
+ = HLA(−k),

and P−HRA(k)P
†
− = HRA(−k). Here, the operators P0

and P±, standing for the IS, read

P0 =

0 1 0
1 0 0
0 0 1

 , P± =

0 1 0
1 0 0
0 0 e±ik

 ,

and can be understood as swapping sublattices A and
B while maintaining sublattice C or just adding some
phases. Notice that P0 is independent of the momentum
k, while P± depends on k. Consequently, under OBC,
IS will be preserved in S.C., but is broken in As.C.s. In
fact, L-As.C. and R-As.C. are mirrors of each other since

P0HLA(k)P
†
0=HRA(−k), while S.C. is the mirror of its

own.
Additionally, we find that the Bloch Hamiltonian of

S.C., after some rearrangement, can be persymmetric,
i.e. symmetric with respect to the anti-diagonal line,
H̃SC = J3H̃

T
SCJ3. Here

J3 =

0 0 1
0 1 0
1 0 0

 ,

is the exchange matrix, and

H̃SC =

 0 Ω −t1 − t1e
−ik

Ω −2t2 cos k Ω
−t1 − t1e

ik Ω 0

 , (7)

is the Bloch Hamiltonian of S.C. when the order of the
sulattice basis is changed from {A,B,C} to {A,C,B}.
Note that the persymmetry is not host for As.C.s. The
persymmetry has been studied in certain quantum sys-
tems [52] but is less explored in topological matters. A
recent work [53] found that it may relate to indirect
bandgaps in certain systems. We will also discuss the
indirect bandgaps later.

In order to show IS more clearly, we also discuss it in
an OBC terminated system in real space,

P = JN ⊗ P0. (8)

For the real space Hamiltonian of a terminated system
with N = 3Mt sites, we have PHSCP

† = HSC and
PHLAP

† = HRA. Therefore, we refer to S.C. as the
inversion-symmetric case and As.C.s as the IS broken
cases.

Because L-As.C. and R-As.C. can be connected
through the unitary operator P , for simplicity, we only
discuss S.C. (symmetric case) and L-As.C. (IS broken
case) in the following.

B. Band structure

Since HSC(k), HLA(k), and HRA(k) can be trans-
formed into each other through unitary transformations
under PBC, they possess identical band structures.
Our investigation delves into the consequences of en-

ergy gap closures resulting from variations in the real-
valued parameters, Ω, t1, and t2. We present a compre-
hensive phase diagram illustrating diverse band closures
across different parameter regions, accompanied by rep-
resentative band structures (refer to Fig. 2).
Similar to the SSH model, the uneven ladder features

direct bandgap closure as shown by the blue line in
Fig. 2(a), where band indices c1 and c2 exist such that
Ec1(k) = Ec2(k), with c1 ̸= c2. However, unlike the SSH
model, due to the lack of chiral symmetry in our model,
the indirect bandgap closures occur as shown by the red
and black lines in Fig. 2(a), where band indices c1 and
c2 exist such that Ec1(k) = Ec2(k

′), with c1 ̸= c2 and
k ̸= k′. Additionally, there is a trivial bandgap closure
scenario when Ω = 0, in which case the system reverts
to two independently periodic simple chains. The over-
lap of the band structures of the two single chains within
the smaller first Brillouin zone leads to a trivial bandgap
closure.
As denoted by the blue line in Fig. 2(a), the bandgap

closure occurs at

Ω = ±2t1

√
1 +

t2
t1
, (9)

where t2/t1 ≥ −1. Notably, the gap closes and reopens
as the parameter crosses the blue line. Notice that if
t1 > 0 (t1 < 0), the direct bandgap is located in between
the second band and the third band (the first band and
the second band).
The red line in Fig. 2(a) corresponds to an indirect

gap closure or opening at

Ω = ± 2t1
t1/t2 + 2

√
1 +

t2
t1
, (10)

with t2/t1 ≥ 0. Bands within the parameter region at the
right side of the red line experience a global gap closure
and remain closed. Notice that if t1 > 0 (t1 < 0), this
indirect bandgap is located between the first band and
the second band (the second band and the third band).
The thick black line in Fig. 2(a) represents another

indirect gap closure or opening at

Ω =

±
√
2t1

√
1− t2

t1
, t2

t1
≤ − 1

3

± 2t1
t1/t2+2

√
1 + t2

t1
, − 1

3 <
t2
t1

≤ 0
. (11)

This indicates that if the parameters are located at the
left side of the thick black line, the bands will feature a
global gap closure, and will not be opened again. Notice
that if t1 > 0 (t1 < 0), this indirect bandgap is located
between the second band and the third band (the first
band and the second band).
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FIG. 2. (a) Bandgap closure scenarios. Lines denote gap closure between different bands, and divide the parameter space into
five regions accordingly. For t1 > 0, the blue line indicates the direct bandgap closure between the second and third bands,
the red line indicates the indirect bandgap closure between the first and second bands, and the black line indicates the indirect
bandgap closure between the second and third bands. (b1-b12) typical band structures corresponding to the labels in (a).
The dashed black lines denote the position where indirect band closures. When t1 < 0, the band structure undergoes a global
inversion relative to the case for t1 > 0 (symmetric about E = 0), implying the exchange of the first and third bands. for
(b1-b5), the parameters are set as t2/t1 = 2, and Ω/t1 = 4.5, 3.5, 2.5, 4

√
3/5, 0.5, respectively. For (b6-b8), Ω/t1 = 0.5, and

t2/t1 = −0.5, −0.938, −2, respectively. For (b9-b10), t2/t1 = −2, Ω/t1 =
√
6, 4.5, respectively. For (b11), corresponding to

the intersection of the blue and black lines in (a), t2/t1 = −1/3 and Ω/t1 = 2
√

2/3. For (b12), where a flat band with energy

2t1 emerges, t2 = 0 and Ω/t1 =
√
2.

We also note that when t2 = 0, such an uneven ladder
can be reduced to a triangular-like ladder [54] or a chain

with ring structure [55]. Specifically, if Ω/t1 =
√
2 is also

satisfied, there will be a flat band, i.e. a band whose
energy is independent of k, see Fig. 2 (b12).

III. PROJECTING TO BIPARTITE CHAIN

The proposed simplest uneven ladder establishes a
strong connection with the SSH model [6], whose Bloch
Hamiltonian reads

HSSH(k) =

(
0 −v − we−ik

−v − weik 0

)
, (12)

where v and w denote the constant inter- and intra-
cellular hopping strength. The case |v| < |w| corresponds
to a topological phase, while |v| > |w| corresponds to a
topology-trivial phase. In the following we demonstrate
the relationship between the simplest uneven ladder and
SSH model through a projection approach.

We first focus on S.C.. The Bloch Hamiltonian of S.C.
can be decomposed as three parts: HSC(k) = HAB +

HC +HΩ, where

HAB =

 0 Γ 0
Γ∗ 0 0
0 0 0

 , HC =

0 0 0
0 0 0
0 0 δ

 , HΩ =

0 0 Ω
0 0 Ω
Ω Ω 0

 .

Here Γ = −t1− t1e−ik, δ = −2t2 cos k. We project H1(k)
to the sub-space spanned by A and B sites of chain-1 (for
details, see Appendix A), and obtain a 2 × 2 projected
effective Hamiltonian,

H
(n)
SC,eff(k) = HAB + Ω2

E(n)(k)−δ

(
1 1
1 1

)
, (13)

which can be further written as

H
(n)
SC,eff(k) =

Ω2

E(n)(k) + 2t2 cos k
I

+

(
0 −v − we−ik

−v − weik 0

)
.

(14)

Here v = t1 − Ω2/[E(n)(k) + 2t2 cos k)], w = t1. The
first term in (14) can be viewed an overall energy shift;
the second term resembles the Bloch Hamiltonian of SSH
model, (12). Thus, we can regard H

(n)
SC,eff(k) as a general-

ized SSH model. The generalization involves the depen-
dence of the intercellular hopping coefficient v on (origi-

nal) band index n and momentum k. Since H
(n)
SC,eff lacks
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FIG. 3. Band structure of the original Hamiltonian and com-
parison of intracellular and intercellular hopping strength of
the effective projected Hamiltonian at t2 = 0 in S.C..

diagonal terms, it possesses chiral symmetry. it is worth
noting that, the existence of the mapping to SSH model
is ensured by the mutual symmetry between A and B
sites (the exchange of A and B sites preserves the sys-
tem’s properties). When on-site potential difference term
of the A and B sublattice or the intensity difference of
the C sublattice coupling to the A and B sublattice are
introduced, the effective projected Hamiltonians of this
two types will inevitably include σz term, thus corre-
sponding to the RM model instead of SSH model. In
the following we discuss the topological property of the
generalized SSH model.

We first set |Ω| sufficiently larger than t1, and set t2 =
0. The band energies now are approximately equal to
E(1) = −

√
2Ω, E(2) = 0, E(3) =

√
2Ω, so that v =

t1+Ω/
√
2, w = t1 for the first band, and v = t1−Ω/

√
2,

w = t1 for the third band. In this case, the first band
and the third band in S.C. correspond to the SSH model
with topological trivial phase since |v| > |w|.

Then, we assume |Ω| is sufficiently smaller than t1,
and set t2 = 0. In this way, the band energies are
approximately equal to E(1) = 2t1 cos(k/2), E

(2) = 0,
E(3) = −2t1 cos(k/2). For the first band, |v| > |w|
(|v| < |w|) since E(1) > 0 (E(1) < 0) for t1 > 0
(t1 < 0). On the other hand, for the third band, |v| < |w|
(|v| > |w|) since E(3) < 0 (E(3) > 0) for t1 > 0 (t1 < 0).
Consequently, for sufficiently small t2 and Ω, this results
in that, when t1 < 0, the third band is topologically non-
trivial and the first band is topologically trivial. On the
other hand, when t1 > 0, the third band is topologically
trivial and the first band is topologically nontrivial, as
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FIG. 4. Effective winding numbers of S.C.. (a1), (b1), (c1)
are band structures, with corresponding (a2), (b2), (c2) il-

lustrating trajectories of {h(n)} and {W (n)
eff } for each band,

shown at Ω = 3, 4, 5, respectively. Here, t2 = 3, t1 = 1.

Fig. 3(a) and (b) show.
Next, we consider the case of |v| = |w|, so that it re-

quires v = −w, i.e., Ω2/E = 2t1 for t2 = 0. We expect
it to be the same as the SSH model, with Dirac-like gap
closing at k = 0. In fact, when t2 = 0, |Ω| = 2|t1| and
t > 0 (t < 0), E(1,2)(k = 0) = +(−)2t1, the Dirac-like
gap closing does exist. Besides, they are indeed satisfied
with this relationship Ω2/E = 2t1, i.e, |v| = |w| (refer to
Fig. 3(c) and (d)].

Now let us think about how to figure out whether
system is in the topological phase for arbitrary t1, t2,
Ω. Although we can always map our model to the SSH
model no matter how the parameters are chosen, it is
complicated to directly compare |v| and |w| since the in-
volved band energy E(n) needs to be calculated numeri-
cally. Therefore we aspire to solve this problem through
the winding number of the effective SSH model. In fact,
winding number is not defined for a general 3×3 Hamilto-
nian, but we can define it for the 2×2 effective projected
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FIG. 5. Effective winding numbers of L-As.C.. (a), (b), (c)

illustrate trajectories of {h(n)} and {W (n)
eff } for each band,

shown at Ω = 3, 4, 5, respectively. Here, t2 = 3, t1 = 1.

Hamiltonian, which can be decomposed in terms of Pauli

matrices, H̃
(n)
SC,eff = h(n)σ̂ = h

(n)
x σx+h

(n)
y σy. Specifically,

the expressions of h
(n)
x and h

(n)
y in S.C. are

h(n)x (k) = −v − w cos k

= −t1(1 + cos k) +
Ω2

E(n)(k) + 2t2 cos k
,(15)

h(n)y (k) = −w sin k = −t1 sin k. (16)

In this way, the key point is the trajectory of the effective
Hamiltonian on the hx−hy plane as momentum k varies
continuously through the first Brillouin zone from 0 to
2π. Just like the SSH model, when the trajectory sur-
rounds the origin, the system is in the topological phase;
the opposite is true for the trivial phase. The winding
number of the effective projected Hamiltonian (dubbed
the effective winding number) can be written as

W
(n)
eff =

1

2π

∫ π

−π

dk[h̃(n)(k)× ∂kh̃
(n)(k)]z

=
1

π

∫ π

−π

dkh̃(n)x (k)∂kh̃
(n)
y (k), (17)

where h̃(k) = h(k)/|h(k)|. It is worth noting that each
energy band may independently correspond to an effec-
tive winding number as Fig. 4 shows. Note that, al-
though the trajectory of the second band extends in-
finitely at both ends and is not closed, positive infinity
and negative infinity are connected together.

The introduction of the effective winding number is
both convenient and efficient, since the winding number
is determined by the energy band rather the Bloch wave-
function. We shall also note that such an approach is not
limited to the uneven ladder studied here. It provides a
shortcut for analyzing the topology of generally tripartite
models (refer to Appendix A). It is in principle applicable
to be extended to more intricate lattice models.

In this section, we have only discussed the S.C. so
far. Now, let us discuss projected effective Hamilto-

nian H
(n)
LA,eff for L-As.C.. H

(n)
LA,eff will remain the form

of (14), while the effective hopping become v = t1,
w = t1 − Ω2/[E(n)(k) + 2t2 cos k]. We can calculate the
effective winding number as well, as shown in Fig. 5.

IV. ZAK PHASE

In 1D non-interacting fermionic systems with either
chiral symmetry or IS, the appearance of topological
phases is safeguarded by a topological invariant known
as the Zak phase [8]. Recent works reveal that the Zak
phase can be decomposed as intercellular Zak phase and
intracellular Zak phase [4, 56]. The former, contingent
upon space coordinates selection, serving as a Z2 topo-
logical invariant, categorizes topological phases aligning
with bulk-boundary correspondence, while the latter ex-
hibits independence. They also correspond to the dipole
moment and extra charge accumulation, respectively. In
this section, we explore the two types of the Zak phases.
As introduced in Sec. II, there can be two types of con-
figurations, based on the choice of unit cell or cut on the
edge—symmetric and asymmetric configuration. Under
periodic boundary conditions, these configurations prove
to be essentially identical up to a unitary transformation.
The symmetric configuration, characterized by IS, falls
within the Z2 classification concerning the intercellular
Zak phase.

A. Intracellular Zak phase vs intercellular Zak
phase

Zak phase of the nth band is defined as

γ(n) = i

∫ 2π

0

dk ⟨un,k|∂k|un,k⟩ . (18)

The inner product here can be explicitly written as

⟨un,k|∂k|un,k⟩ =
∫
Ωm′

dx u∗n,k(x)∂kun,k(x), (19)

where un,k(x) =
√
Ne−ikxψn,k(x), the periodic part of

the Bloch function. Ωm′ means the m′-th unit cell.
Within the tight-binding approximation, we use a set of
orthogonal wave functions localized on sites as the basis
to expand the Bloch function

ψn,k(x) =
1√
N

Mt∑
m

Lt∑
l

eikmαl
n,kϕ

m,l(x), (20)

where ϕm,l(x) is localized at the l-th intercelluar site of
the m-th cell. The coefficients αl

n,k are nothing but the
solutions of the tight-binding Hamiltonian. Zak phase
may change according to the gauge of coordinates of sites
(or we can say real-space origin). One can divide the Zak
phase into intracellular Zak phase and intercellular Zak
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FIG. 6. Intercellular Zak phase and intracelluar Zak phase of
third band of S.C. and L-As.C. at t1 = 1, t2 = 2.

phase as following [4, 56],

γ(n) = γ
(n)
intra + γ

(n)
inter, (21)

γ
(n)
intra = N

∫ 2π

0

dk

∫
Ωm′

dx x |ψn,k(x)|2 − 2πm′,(22)

γ
(n)
inter = i

Mt∑
m=1

Lt∑
l

∫
BZ

dk αl
n,k

∂

∂k
αl
n,k. (23)

where the intercellular Zak phase is independent of the
real-space origin. For the simplest uneven ladder, we
have

H(k)

αA
n,k

αB
n,k

αC
n,k

 = En,k

αA
n,k

αB
n,k

αC
n,k

 . (24)

The Bloch wave function will be

ψn,k(x) =
1√
N

Mt∑
m

eikm[αA
n,kϕ

m,A(x)

+ αB
n,k(x)ϕ

m,B + αC
n,kϕ

m,C(x)],

(25)

where ϕm,A(x) is localized at x = m + 1/4, ϕm,B(x) is
localized at x = m + 3/4, ϕm,C(x) is localized at x =
m + 1/2 (x = m) for S.C. (As.C.). In this way, we can
calculate intracellular and intercellular Zak phase under
PBC as Fig. 6 shows.

Actually, only the intercellular Zak phase is the topo-
logical invariant that satisfies the bulk-boundary corre-
spondence [4]. As TABLE I shows, we compare the in-
tercellular Zak phase with the winding number of the ef-
fective projected Hamiltonian in both S.C. and L-As.C.,

TABLE I. the comparison of intercellular Zak phase and ef-
fective winding number (t1 > 0).

I/V II/III/IV

γ
(1,2,3)
inter /π={0, 0, 0} γ

(1,2,3)
inter /π={1, 1, 0}

S.C.

W
(1,2,3)
eff ={0, 0, 0} W

(1,2,3)
eff ={1, 1, 0}

γ
(1,2,3)
inter /π=fractions γ

(1,2,3)
inter /π=fractions

L-As.C.

W
(1,2,3)
eff ={1, 1, 1} W

(1,2,3)
eff ={0, 0, 1}

where I, II, III, IV, V donate the parameters region
in Fig. 2(a). Notice that in S.C., there is correspon-
dence between intercelluar Zak phase and effective wind-

ing number W
(1,2,3)
SC,eff /π = γ

(1,2,3)
SC,inter; on the other hand,

there is no such correspondence in L-As.C..
We can comprehend the breakdown of the corre-

spondence between the intercelluar Zak phase and the
effective winding number in L-As.C. from the per-
spective of symmetry protection: On the one hand,
original Hamiltonian of L-As.C. lacks chiral symmetry
and spatial inversion symmetry, thus leading to the
loss of quantization properties in the Zak phase. On
the other hand, the effective projected Hamiltonians

H̃
(1)
LA,eff(k), H̃

(2)
LA,eff(k), H̃

(3)
LA,eff(k) of L-As.C. are protected

by chiral symmetry, hence maintaining quantized effec-

tive winding numbers W
(1,2,3)
SC,eff .

B. Physical counterparts

The physical counterpart of γ(n) is electric polariza-
tion P [57], so that it is equivalent to the corresponding
to σLS since we have the relationship σLS = P n̂, where
σLS is the surface bound charge of left side boundary
and we set n̂ = +(−)x̂ as the surface orientation for left
(right) edge in 1D terminated (OBC) system[4]. The
physical interpretations of intracellular and intercellular
Zak phase also have been given, that is, classical surface
bound charge σcl and extra charge accumulation σacc of
OBC system, respectively [4, 57]. it is a strong correspon-
dence since one can use the Zak phase calculated under
PBC to know the boundary charge physical quantities of
terminated system under OBC. More clearly, when we
consider the left edge, they are defined as [4, 56–58]

σLS = σLS
cl + σLS

acc

=

∫ xℓ+1

xℓ

dx xρts(x) +

∫ xℓ

x0

dx ρts(x), (26)

where σLS
cl and σLS

acc respectively are the two terms of the
above formula, x0 is the coordinate of the first site from
the left, xℓ is the coordinate of the site far from bound-
aries (as long as xℓ is selected sufficiently far away from
the boundaries, it will not affect the result) and ρts(x) =
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FIG. 7. (a-b) Comparison between the (total) Zak phase
(mod 2π) and the bound surface charge (mod 1) at the left
edge of OBC terminated coupled chain for third band in S.C.
and L-As.C., respectively. (c-d) Comparison between the in-
tercelluar Zak phase (mod 2π) and the extra charge accumu-
lation (mod 1) at the left edge of OBC terminated coupled
chain in S.C. and L-As.C., respectively. The length of the
terminated coupled chain we took is 360 unit cells for calcu-
lating bound surface charge and extra charge accumulation.
Note that due to size effects, there are discrepancies in the
correspondence near the direct bandgap closure for Ω → 0.
We set t1 = 1, t2 = 2, q = 1 here.

qψts(x)†ψts(x) is the charge density distribution of ter-
minated system which can be obtained by solving the

eigenvectors ψts(x) = {ψts
i (x), . . . , ψts

i′ (x)}
T

of OBC
Hamiltonian in real-space [4], where {i...i′} are indexes of
OBC eigenvectors we are interested in, and q is the charge
of a particle. In the example of tight binding OBC system
with size 3Mt, if we are only interested in the n-th band
(only consider occupied n-th band, n = 1, 2, 3), it can

be ψts,(n)(j) =
{
ψts
(n−1)Mt+1(j), . . . , ψ

ts
nMt

(j)
}T

, then we

can calculate ρ
(n)
ts (j) and σLS,(n), where j donates the

j-th site.
For the uneven ladder, we checked the relationship be-

tween Zak phase and surface bound charge, and the rela-
tionship between intercellular Zak phase and extra charge
accumulation for third band as Fig. 7 shows. We set lat-

tice constant a = 1, q = 1, and let γ(n), γ
(n)
intra, γ

(n)
inter

modulo 2π, and let σLS, σLS
cl , σ

LS
acc module 1. it is worth

noting that, when the parameters are not very close to
the direct band closing points, they correspond well with
each other. We did not demonstrate the right edge, since
the system as a whole appears neutral, and the right side
should differ from the left side only by a negative sign.

C. Relation between S.C.’s and L-As.C.’s
intercelluar Zak phases

Note that, although the Hamiltonians of S.C. and L-
As.C. under PBC are related by unitary transformations,
their intercellular Zak phases differ. On the one hand, the

intercellular Zak phase γ
(n)
SC,inter of S.C., possessing IS, is

constrained to integer multiples of π. On the other hand,

the intercellular Zak phase γ
(n)
LA,inter of L-As.C., lacking

IS, takes fractional multiples of π and lacks quantization
properties. Indeed, we can analytically demonstrate this
point. Next, we will discuss in detail the impact of uni-
tary transformations between S.C. and L-As.C. on their
intercellular Zak phases.
Again, we write down the connection betweenHSC and

HLA:

U(k)HSC(k)U
†(k) = HLA(−k). (27)

First, due to the similarity in the band structures of S.C.
and L-As.C., we may conveniently establish the following
eigenvalue equation,

HSC(k) |ψg1⟩ = Eg(k) |ψg1⟩ , (28)

HLA(k) |ψg2⟩ = Eg(k) |ψg2⟩ , (29)

where the eigenstates can be written as |ψg1⟩ =

(g
(1)
1 , g

(2)
1 , g

(3)
1 )T , |ψg2⟩ = (g

(1)
2 , g

(2)
2 , g

(3)
2 )T . Note that,

because S.C. possesses IS, the following relations hold:

Eg(k) = Eg(−k) and g(u)1 (k) = g
(u)
1 (−k) (for u = 1, 2, 3).

Then from (27) and (28), we obtain

HLA(k)U(−k) |ψg1⟩ = Eg(k)U(−k) |ψg1⟩ . (30)

Under the assumption of disregarding energy degeneracy
in the k-space (direct bandgap open), we obtain:

|ψg2⟩ = U(−k) |ψg1⟩ =

 g
(1)
1 (k)

eikg
(2)
1 (k)

g
(3)
1 (k))

 . (31)

We write down the intercelluar Zak phase of HSC and
HLA as

γSC,inter =i

∫ 2π

0

dk ⟨ψg1 |∂k|ψg1⟩

=i

∫ 2π

0

dk(g
∗(1)
1 i∂kg

(1)
1

+ g
∗(2)
1 i∂kg

(2)
1 + g

∗(3)
1 i∂kg

(3)
1 ),

(32)

γLA,inter =i

∫ 2π

0

dk ⟨ψg2 |∂k|ψg2⟩

=i

∫ 2π

0

dk(g
∗(1)
2 i∂kg

(1)
2

+ g
∗(2)
2 i∂kg

(2)
2 + g

∗(3)
2 i∂kg

(3)
2 ).

(33)
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FIG. 8. Intercellular Zak phases of S.C. and L-As.C. in the
entire parameter space. (a) and (b) depict the intercelluar

Zak phases of the third band, γ
(3)
inter , for S.C. and L-As.C.

respectively. The blue dashed lines represent parameters cor-
responding to direct bandgap closure. The green line corre-
sponds to Ω = 0, where there is no coupling resulting in band
overlap between the upper and lower chains, leading to an
ill-defined (Null) intercelluar Zak phases.

Notice that g
∗(1)
2 (k)i∂kg

(1)
2 (k) = g

∗(1)
1 (k)i∂kg

(1)
1 (k),

g
∗(3)
2 (k)i∂kg

(3)
2 (k) = g

∗(3)
1 (k)i∂kg

(3)
1 (k), and

g
∗(2)
2 (k)i∂kg

(2)
2 (k) = g

∗(2)
1 (k)i∂kg

(2)
1 (k)+ |g(2)1 (k)|2, (34)

where Eq. (31) is used. From Eq. (32), (33) and (34),
we finally obtain

γLA,inter − γSC,inter = i

∫ 2π

0

dk|g(2)1 (k)|2. (35)

Evidently, due to the constraint that γSC,inter can only
takes 0 or π, it follows that as long as (35) is non-zero,
γLA,inter must necessarily be fractional multiples of π and
non-quantized, as shown in Fig. 8. It is noteworthy that
γLA,inter still exhibits discontinuities akin to γSC,inter,
both before and after the closure of the direct bandgap.

V. EDGE STATES

The edge states, as localized at the boundaries, are
special quantum states permitted within the bandgap
and subject to topological protection. The BBC [2–
5] suggests that topological invariants computed under
PBC can predict number of edge states under OBC.
For example, in the SSH model, non-zero winding num-
bers/intercellular Zak phases correspond to the existence
of a pair of edge states under OBC; if the winding num-
bers/intercellular Zak phase are zero, the system exhibits
no edge states under OBC. In this section, we separately
check the edge states and BBC in the uneven ladder
model for two configurations S.C. and L-As.C., respec-
tively.

A. IS-equipped S.C.

0.15 1.5

Edge states vanish

In-gap edge states exist

FIG. 9. BBC of S.C. for t2/t1 > 0. Nδ2χ implies distribution of
edge modes. The blue dashed line represents the closing of the
direct bandgap. The region between the two blue dashed lines
harbors edge states, while two bands have non-zero values of
γinter and Weff. On either side of the two blue dashed lines,
there are no edge states, while all three bands have γinter and
Weff equal to zero. Here, we have considered 90 unit cells.
Due to finite size effects, the localization of edge states is
not pronounced when Ω is relatively small (but non-zero), as
indicated by the light blue shading near the abscissa.

To comprehensively investigate the edge modes, we de-
fine χ that can characterize the boundary-localized be-
havior of eigenstates φi as

χ(i) =

N∑
j=1

|2j −N |
N

|φi(j)|2 , (36)

where i is the index of eigenstate, j denotes j-th site
in real space. If χ(i) approach 1, it indicates the i-th
eigenstate is an edge state. For a system of size N , we
obtain a set {χ(i)}. We can calculate the variance δ2χ of
this dataset. Then,

Nδ2χ =

N∑
i=1

(χ(i) − χ̄)2, (37)

where χ̄ is the average value of the set {χ(i)}. Nδ2χ can be
used to determine whether the system exhibits boundary
states: if the system is entirely extended, then Nδ2χ is

small; if the system exhibits boundary states, then Nδ2χ
is large. We consider the case of t2/t1 > 0, noting that
this is the condition satisfied by the uneven ladder model
implemented in optical lattices.
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FIG. 10. OBC energy spectrum and edge states of S.C.. We
set t1 = 1, t2 = 3, and adjust Ω to obtain the energy spectrum
under OBC, as shown in (a). The colors in (a) indicate the
χi of the i-th eigenstate to distinguish between bulk and edge
states. The blue lines (Ω = ±4) mark the closing of the direct
bandgap between the second and third bands. The reopening
of this gap closure induces a sudden change in the intercellular
Zak phase (effective winding number). (b1) and (b2) show a
pair of degenerate edge states at Ω = 3 with t1 = 1, t2 = 2.
In the bar plots, red, blue, and orange represent sublattices
A, B, and C, respectively. Here, we use 30 unit cells.

From Fig. 9 and TABLE I, we observed that, when
t2/t1 > 0, the symmetry-protected S.C. follows the
BBC: there are no edge states when intercelluar Zak
phases (effective winding numbers) of the three bands
are all zero; however, when there are non-zero intercel-
luar Zak phases (effective winding numbers), a pair of

degenerate edge states emerge. In other words, when

Ω <
∣∣∣2t1√1 + t2/t1

∣∣∣(obtained from the direct bandgap

closing, i.e. (9)), edge states emerge.
Furthermore, from Fig. 10 we can see that the edge

states are degenerate and in-gap, but their energy is
non-zero. These non-zero edge modes are actually re-
lated to the lack of chiral symmetry in the system. A
Hamiltonian with chiral symmetry, due to the property
CHC† = −H, has a spectrum distribution with posi-
tive and negative symmetries (recalling the positive and
negative symmetry of the spectrum in the SSH model
protected by chiral symmetry). Therefore, the ener-
gies of the edge states within the bandgap of the two
bands should also exhibit positive and negative symme-

tries, meaning Eedge1
SSH = −Eedge2

SSH . Thus, the energies
of the two degenerate edge states should be zero, i.e.,

Eedge1
SSH = Eedge2

SSH = 0. On the other hand, in the S.C.,
there is no chiral symmetry, and the two degenerate edge
states are not required to satisfy the relationship of being

opposite in sign, i.e., Eedge1
SC ̸= −Eedge2

SC , thus naturally
allowing the appearance of non-zero-energy edge states.

B. IS broken L-As.C.

0.15 1.5

I

IV

II

IIIV

FIG. 11. The distribution of the edge modes of L-As.C.. The
blue dashed lines denote the direct bandgap closure, while
the red and black dashed lines mark distinct indirect bandgap
closures. Here, a system comprising 90 unit cells is employed.
There exists relatively clear boundary states across the entire
parameter space. For sufficiently small values of Ω, due to
finite size effects, boundary states are not prominent.

L-As.C. shares the same bulk properties with S.C.
(having identical band structures), differing only at the
boundaries, where the distinct boundary configurations
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FIG. 12. (a-b) OBC energy spectrum of L-As.C. for t1 = 1,
t2 = 3 (a), and t2 = −4 (b). R approaching 0 (1) corresponds
to edge states on the left (right) side. (c1-c3) Edge state
distribution within three bandgaps for t1 = 1, t2 = 3, and
Ω = 6. Here, a system comprising 30 unit cells is employed.

lead to S.C. possessing IS while L-As.C. does not. In this
section, we demonstrate the impact of the broken IS at
the boundaries on the edge states.

Aside from the scenario of weak coupling where Ω is
extremely small (where the local characteristics of edge
states are not prominent due to finite size effect), we
observe that edge states of L-As.C. can persist consis-
tently (as depicted in Fig. 11). However, the quantity
and local behavior of these edge states vary due to the
influence of different bandgap closures (as evident from
the magnitudes of Nδ2χ in Fig. 11 and the three dashed
lines). Hereafter, we delve into the effects brought upon
the edge states of L-As.C. by direct and indirect bandgap
closures, respectively.

Due to the absence of IS and chiral symmetry pro-
tection, L-As.C. only possesses edge states localized at
one-side of the boundary. We define average centroid
position of their wavefunctions, defined as follows:

R(i) =

N∑
j

j

N
|φi(j)|2 . (38)

Smaller R indicates a more localized wave function at the
left edge; conversely, larger R signifies a more localized
wave function at the right edge.

We first consider the case where t2/t1 > 0. The vari-
ation of the coupling strength Ω determines whether the
system undergoes a closure and reopening of the direct
bandgap and whether the indirect bandgap is closed. At
any given point, the system may fall into one of the re-

gions I, II, or III depicted in Fig. 2(a). We find distinct
behaviors of edge states in these three regions (refer to
Fig. 12).

In region I, characterized by relatively large Ω, the
system hosts three in-gap edge states between the three

bands. Here, the effective winding numbers W
(1,2,3)
eff are

{1, 1, 1}, as expected. When Ω is sufficiently large, all
three bands of L-As.C. can be mapped to the non-trivial
topological phase of the SSH model (Sec. III).

As Ω decreases gradually, the system undergoes a clo-
sure and reopening of the direct bandgap, falling into
region II. Here, an additional right-sided localized edge
state emerges (as observed in Fig. 12(a) and compared in
Fig. 13(a) and (b)). At this point, the effective winding

numbers become W
(1,2,3)
eff = {0, 0, 1}.

Further reduction of Ω allows the system to enter re-
gion III, where, for t1 > 0, the system experiences an
indirect bandgap closure between the first and second
bands. This integration of the originally inter-bandgap
edge states into bulk states weakens their boundary lo-
calization (akin to a critical mode blending between bulk
and boundary states, as observed in Fig. 12(a) and com-
pared in Fig. 13(a) and (c)). Additionally, it is notewor-
thy that, despite the merging of edge states with bulk
states, their energies remain continuous before and after
merging.

We also consider the case of t2/t1 < 0. When t1 > 0,
the size of Ω determines whether the indirect bandgap
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FIG. 13. The localized behavior of edge states of L-As.C.
across different parameter regions. We take t2/t1 = 3, and
Ω/t1 = 5, 3, 1 for (a), (b), (c), respectively, and take t2/t1 =
−3, Ω/t1 = 1 for (d), so that they represent the I, II, III,
VI/V regions in Fig. 2. R− 0.5 close to −0.5 (0.5) means the
local side is on the left (right). Here we use 30 unit cells, and
let t1 > 0.
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between the second and third bands of the system closes.
In region I, where this indirect bandgap is open, edge
states between the three bands can coexist. In regions IV
and V, where this indirect bandgap closes, the edge state
originally present in the bandgap between the second and
third bands will merge with bulk states, losing its edge-
localized character (refer to Fig. 12(b) and compare with
Figs. 13(a) and (d)).

VI. EXTENSION OF UNEVEN LADDERS

E.C. 1

C

....1t A B

....
2t

2Ω1Ω

E.C. 2

A B
....1t A B

....
2t

2Ω 1Ω

C

C

FIG. 14. Two configurations of uneven ladder model of ex-
tended configuration (E.C.).

In this section, we further explore more general config-
urations and propose a simple implementation of a topo-
logical pump. The configurations we discussed so far have
been rather coincidental, with the coupling strength of
the C sublattice hopping to the A and B sublattices be-
ing the same. To explore more general configurations,
we extend the model as shown in Fig. 14. In these con-
figurations, the coupling strengths of the two chains are
denoted as Ω1 for nearest neighbor sites of sublattice B
and C, and Ω2 for nearest neighbor sites of sublattice B
and C, and Ω1 ̸= Ω2. Consequently, IS will be broken.
Specifically, we consider two extended configurations

(referred as E.C. 1 and E.C. 2). E.C. 1 corresponds to
a scenario based on S.C. where the lower lattice moves
(−a/4, 0), while E.C. 2 corresponds to a scenario based
on S.C. where the lower lattice moves (−a/2,−a/4), with
a being the lattice constant. It is noteworthy that we did
not consider the lower chain’s movement of (0, a/2) as it
is symmetrical with respect to (−a/2, 0).
The Bloch Hamiltonian of E.C. 1 reads

HE1(k) =

 0 −t1 − t1e
−ik ΩE1

1

−t1 − t1e
ik 0 ΩE1

2

ΩE1
1 ΩE1

2 −2t2 cos k

 .

(39)
Similarly, the Bloch Hamiltonian of E.C. 2 reads

HE2(k) =

 0 −t1 − t1e
−ik ΩE2

1

−t1 − t1e
ik 0 ΩE2

2 eik

ΩE2
1 ΩE2

2 e−ik −2t2 cos k

 ,

(40)
where we set lattice constant a = 1. Notice that if ΩE1

1 =
ΩE2

1 = Ω1, Ω
E1
2 = ΩE2

2 = Ω2 their band structures are
identical due to UHE1(k)U

† = HE2(−k).

2

0

π

π

0

π

π2

(a) (b)

(c) (d)

FIG. 15. (a-b) Intercelluar Zak phase of E.C. 1, γ
E1,(3)
inter v.s.

Ω1, Ω2, for t2 = 0, 2, respectively. (c-d) Intercelluar Zak phase

of E.C. 2, γ
E2,(3)
inter v.s. Ω1, Ω2, for t2 = 0, 2, respectively. The

blue dashed lines in all of the four figures mark the direct gap
closing points. The black dashed lines in (c), (d) mark value
π. Here t1 = 1.

We can follow similar procedures as outlined in Sec.
III to project this tripartite model onto the upper chain
for E.C. 1, and the final result is

H
(n)
E1,eff(k) =HAB +

1

E
(n)
E1 (k)− δ

(
Ω2

1 Ω1Ω2

Ω1Ω2 Ω2
2

)
=

1
2 (Ω

2
1 +Ω2

2)

E
(n)
E1 (k) + 2t2 cos k

I

+

(
∆ −v − we−ik

−v − weik −∆

)
,

(41)

where E
(n)
E1 (k) is the eigenvalue of HE1(k) for n-th band,

v = t1 − Ω1Ω2/[E
(n)
E1 (k) + 2t2 cos k)], w = t1, ∆ =

(Ω2
1 −Ω2

2)/[E
(n)
E1 (k)+ 2t2 cos k)]. After ignoring the over-

all energy shift term, we obtain the effective projected
Hamiltonian

H̃
(n)
E1,eff(k) =

(
∆ −v − we−ik

−v − weik −∆

)
, (42)

which can be regarded as a generalized RM model [9].
Notice that due to the introduction of the σz term in

the effective projected Hamiltonian, the effective winding
number cannot be defined; however, the intracellular Zak
phase is always well-defined. Subsequently, we calculate

γ
(3)
inter (mod 2π) vs. Ω1, Ω2 for E.C. 1 and E.C. 2. As

shown in Fig. 15(a) and (b) of E.C. 1, since Ω1 ̸= Ω2
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breaks the IS, the intracellular Zak phase can be a frac-
tional multiple of π, whereas when Ω1 = Ω2, the system
reduce to S.C. with integer multiple of π. As shown in

Fig. 15(c) and (d) of E.C. 2, γ
E2,(3)
inter is a fractional multi-

ple of π. However, as indicated by the black dashed lines,
despite of the absence of symmetries protecting the topol-
ogy, there are instances in E.C. 2 where the topological

invariant γ
E2,(3)
inter = π.

Furthermore, as shown in Fig. 15, both γ
E1,(3)
inter and

γ
E2,(3)
inter exhibit continuity near the direct gap closing

point, with the value range spanning from 0 to 2π. There-
fore, by adjusting parameters to encircle the direct gap

closing point, γ
(3)
inter will inevitably undergo a change of

2π. This brings to light an insight regarding topological
pumps: if in some way we continuously alter the posi-
tional relationship between the upper and lower chains
as well as other configurations, such that Ω1 and Ω2 vary
continuously around the direct gap closing point, then
such a closed path around the gap closing point will cer-
tainly result in an integer multiple change of 2π in the
Zak phase. Since there is a correspondence between the
Zak phase and the Wannier center, this implies that the
system’s Wannier center will also shift by a quantized
unit distance [59].

VII. CONCLUSION

We systematically investigate the topological phases
and edge modes of the uneven ladder model. This model
consists of two chains with different periods. We fo-
cus on the case where the period ratio is two. In the
tight-binding limit, the uneven ladder is equivalent to a
single chain with a three-site unit cell containing up to
fourth-order hopping terms. We analyze its band struc-
ture and classify it based on whether the direct or indirect
bandgaps are closed or open.

We propose a semi-analytical method to characterize
its topological phases. This method projects the 1D
ternary lattice system onto the subspace corresponding
to the two sublattices, thereby constructing an effective
two-component Bloch Hamiltonian. If two of the three
sublattices exhibit exchange symmetry, the system can
be projected onto a generalized SSH model, allowing the
definition of effective winding numbers. For the uneven
ladder model, the results obtained by this method coin-
cide with numerical calculations of the Zak phase. Addi-
tionally, by breaking the symmetry of the sublattices, the
three-component system can be projected onto a gener-
alized RM model.

By selecting different unit cell arrangements, we con-
struct two different configurations (S.C. and As.C.) and
discuss their differences. These two configurations re-
spectively preserve and break IS. While they are equiva-
lent under PBC, they exhibit differences under OBC, par-
ticularly in the behavior of edge modes. Configurations
with IS can possess a pair of degenerate modes localized

at the edges on both sides, corresponding to a topologi-
cal phase transition where the direct band gap closes and
reopens. On the other hand, configurations without IS
have edge modes localized on one side only, which can
persist before and after the closing-and-reopening of the
direct band gap. Additionally, edge states can merge into
bulk states due to the closure of the indirect band gap.
Building upon previous research, we decompose the

Zak phase into intracellular and intercellular compo-
nents, corresponding to surface bound charge and extra
charge accumulation, respectively. We verify that both
S.C. and As.C. configurations satisfy the aforementioned
correspondence, and only the intercellular Zak phase of
the S.C. configuration can serve as a Z2 topological in-
variant.
Furthermore, we investigate a more general uneven

ladder model where the relative positions of the chains
can vary, leading to richer topological properties. We find
that the distribution of the Zak phase near the band clo-
sure points exhibits continuity, inspiring the construction
of novel quantum topological pumps.
In summary, we have demonstrated the topological

characteristics of the uneven ladder model, elucidating
its potential as a novel system for exploring fundamental
concepts in topological physics.
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Appendix A: Projective analysis

Consider a general Hermitian 3×3 Hamiltonian matrix
written as H = HAB +HC +HΩ, where

HAB =

 α Γ 0
Γ∗ β 0
0 0 0

 , (A1)

HC =

0 0 0
0 0 0
0 0 δ

 , (A2)

HΩ =

 0 0 Ω1

0 0 Ω2

Ω∗
1 Ω∗

2 0

 . (A3)

These matrices are spanned in the space of
{|A⟩ , |B⟩ , |C⟩}. Projection operators can be defined as

P̂AB = |A⟩ ⟨A|+ |B⟩ ⟨B| , (A4)

P̂C = |C⟩ ⟨C| , (A5)
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which naturally satisfy P̂AB + P̂C = I, P̂ 2
AB = P̂AB ,

P̂ 2
C = P̂C .
We project the Hamiltonian into that of the sublattice

with the Feshbach projection operator method which has
widely been used in the few-body studies [60–62]. We
write down the eigenequation

H |Ψn⟩ = E(n) |Ψn⟩ , (A6)

where n donates the n-th eigenstate. Then

P̂ABH(P̂AB + P̂C P̂C) |Ψn⟩ = E(n)P̂AB |Ψn⟩ , (A7)

P̂CH(P̂ABP̂AB + P̂C) |Ψn⟩ = E(n)P̂C |Ψn⟩ . (A8)

From (A8), we obtain

P̂C |Ψn⟩ = (E(n) − P̂CHP̂C)
−1P̂CHP̂ABP̂AB |Ψn⟩ .

(A9)
Then we bring (A9) into (A7),

(P̂ABHP̂AB − E(n)P̂AB) |Ψn⟩ =
− P̂ABHP̂C(E

(n) − P̂CHP̂C)
−1P̂CHP̂ABP̂AB |Ψn⟩ .

(A10)

After deforming (A10), we get

H
(n)
eff P̂AB |Ψn⟩ = E(n)P̂AB |Ψn⟩ , (A11)

where

H
(n)
eff =P̂ABHP̂AB

+ P̂ABHP̂C(E
(n) − P̂CHP̂C)

−1P̂CHP̂AB .
(A12)

Since P̂ABHP̂AB = HAB , P̂CHP̂C = δ |C⟩ ⟨C|,
P̂ABHSCP̂C = (Ω1 |A⟩ ⟨C| + Ω2 |B⟩ ⟨C|), P̂CHSCP̂AB =

(Ω∗
1 |C⟩ ⟨A|+Ω∗

2 |C⟩ ⟨B|), we can rewrite H
(n)
eff as

H
(n)
eff =HAB +G

(
|Ω1|2 Ω1Ω

∗
2

Ω∗
1Ω2 |Ω2|2

)
=G

|Ω1|2 + |Ω2|2

2
I

+

(
α+G |Ω1|2−|Ω2|2

2 Γ +GΩ1Ω
∗
2

Γ∗ +GΩ∗
1Ω2 β −G |Ω1|2−|Ω2|2

2

)
,

(A13)

where G = (E(n) − δ)−1.
For S.C. in Sec. III, α = β = 0, Γ = −t1 − t1e

−ik,
δ = −t2 cos k, Ω1 = Ω2 = Ω, and t1, t2, Ω are real
numbers, so that

H
(n)
SC,eff(k) =HAB +

Ω2

E
(n)
1 (k)− δ

(
1 1
1 1

)
=

Ω2

E
(n)
1 (k) + 2t2 cos k

I

+

(
0 −v − we−ik

−v − weik 0

)
,

(A14)

where v = t1 − Ω2E
(n)
1 (k) + 2t2 cos k, w = t1.

For E.C. 1 in Sec. VI, α = β = 0, Γ = −t1−t1e−ik, δ =
−t2 cos k, Ω1 ̸= Ω2, and t1, t2, Ω1, Ω2 are real numbers,
so that

H
(n)
E1,eff(k) =HAB +

1

E
(n)
E1 (k)− δ

(
Ω2

1 Ω1Ω2

Ω1Ω2 Ω2
2

)
=

1
2 (Ω

2
1 +Ω2

2)

E
(n)
E1 (k) + 2t2 cos k

I

+

(
∆ −v − we−ik

−v − weik −∆

)
,

(A15)

where v = t1 − Ω1Ω2/E
(n)
E1 (k) + 2t2 cos k, w = t1, ∆ =

(Ω2
1 − Ω2

2)/[E
(n)
E1 (k) + 2t2 cos k)].
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[18] S. Chen, H. Büttner, and J. Voit, Phys. Rev. B 67,

054412 (2003).
[19] Z.-X. Liu, Z.-B. Yang, Y.-J. Han, W. Yi, and X.-G.

Wen, Phys. Rev. B 86, 195122 (2012).
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