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Considering a spin-up and a spin-down fermion in a generic tight-binding lattice with a multi-site
basis, here we study the two-body problem using a multiband extended-Hubbard model with arbi-
trary but finite-ranged hopping and interaction parameters. We derive a linear eigenvalue problem
for the entire two-body spectrum, alongside a nonlinear eigenvalue problem for the bound states in
the form of a self-consistency equation. Our results are based on an exact variational approach and
their versatility offers practical applications in a broad range of lattice geometries. As an illustra-
tion, we apply them to the linear-chain model and demonstrate that the resultant spin singlet and
triplet bound states are in perfect agreement with the existing literature.

I. INTRODUCTION

Understanding the two-body problem lies at the heart
of the BCS theory of superconductivity, offering key in-
sights into the microscopic mechanisms underlying this
phenomenon [1, 2]. For instance, it elucidates how a large
number of Cooper pairs condense into a single quantum
state, leading to the formation of an energy gap in the
electronic density of states just below the Fermi energy
and determining the critical temperature for pairing [3–
5]. Moreover, recent investigations have highlighted the
crucial role of the exactly solvable two-body problem in
understanding quantum-geometric effects on some other
superconducting properties, including those of multiband
Hubbard lattices, flat-band superconductors and spin-
orbit coupled Fermi superfluids. This includes the su-
perfluid weight, superfluid density, velocity of the low-
energy collective modes, and the kinetic coefficient of the
Ginzburg-Landau theory but not limited to them [6–10].
Hence, the two-body problem still continues to provide
a bottom-up approach for untangling the complexities
of the many-body problem. There is no doubt that its
further extensions to previously unexplored settings may
also play fundamental roles [11], especially with the emer-
gence of newly discovered superconductors.

In our previous study on generic tight-binding lattices
with a multi-site basis [7], the focus was solely on the
onsite interaction between a spin-up and a spin-down
fermion. There, we derived a linear eigenvalue prob-
lem for the entire two-body spectrum and a nonlinear
eigenvalue problem for the spin-singlet bound states in
the form of a self-consistency relation. Our expressions
were obtained through an exact variational approach in
reciprocal space, and their application reproduced the re-
sults found in the literature on the Haldane model which
uses exact diagonalization in real space [12, 13]. Our
self-consistency relation was also derived in a subsequent
work using an alternative method [14]. More recently, we
investigated the evolution of the two-body Hofstadter-
Hubbard butterfly as a function of interaction strength,
and developed an efficient formulation for their Chern
numbers by utilizing the eigenvectors of the nonlinear

eigenvalue problem [15]. Motivated by the success of our
previous results on the Hubbard model, here we extend
the formalism and develop an exact variational approach
for the two-body problem within the context of a multi-
band extended-Hubbard model with arbitrary but finite-
ranged hopping and interaction parameters.
The remaining sections of this paper are structured as

follows. In Sec. II, we introduce the extended-Hubbard
model in real space and subsequently transform it into
reciprocal space. In Sec. III, we employ an exact varia-
tional approach to derive a linear eigenvalue problem for
the entire two-body spectrum and a nonlinear eigenvalue
problem for its bound-state branches. In Sec. IV, we
validate our approach by comparing it with the existing
literature on the linear-chain model. Finally, In Sec. V,
we provide a brief summary of our findings and offer an
outlook for future research.

II. LATTICE HAMILTONIAN

For spin-1/2 fermions with σ = {↑, ↓} denoting the
spin projections, the Hubbard Hamiltonian is typically
written as H =

∑
σ Hσ +H↑↓, where Hσ terms describe

the corresponding single-particle problem for each spin
projection and H↑↓ term describes the two-body interac-
tions between spin-up and spin-down particles [16, 17].
Within the tight-binding approximation, and considering
a generic sublattice structure in the lattice, these terms
can be written in general as

Hσ = −
∑

Si;S′i′

tσSi;S′i′c
†
SiσcS′i′σ, (1)

H↑↓ =
∑

Si;S′i′

USi;S′i′c
†
Si↑c

†
S′i′↓cS′i′↓cSi↑, (2)

where the hopping parameters tσSi;S′i′ describe tunneling

of a spin-σ particle from the sublattice site S′ in the unit
cell i′ to the sublattice site S in the unit cell i, and the in-
teraction parameters USi;S′i′ describe the density-density
interactions between a spin-↑ particle on site S ∈ i and
a spin-↓ particle on site S′ ∈ i′. The range of interac-
tions is assumed to be finite here, i.e., we are interested
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in studying the effects of not only the onsite but also
the nearest-neighbor, next-nearest-neighbor, etc., inter-
actions on the formation of two-body bound states in a
generic lattice. Any of these parameters can be attractive
or repulsive.

Next we reexpress H in the reciprocal space

through the canonical transformation [7] c†Siσ =
1√
Nc

∑
k e

−ik·rSic†Skσ, where Nc is the number of unit

cells in the system, k is the crystal momentum (in
units of ℏ → 1 the Planck constant) in the first Bril-
louin zone, and rSi is the position of site S ∈ i.
This leads to a generic Bloch Hamiltonian of the form

Hσ =
∑

SS′k h
σ
SS′kc

†
SkσcS′kσ, where the matrix elements

hSS′k are defined in the sublattice basis through the
Fourier transform hσSS′k = 1

Nc

∑
ii′ t

σ
Si;S′i′e

ik·rSi;S′i′ with
rSi;S′i′ = rS′i′ − rSi denoting the relative position. The
resultant eigenvalue problem∑

S′

hσSS′knS′kσ = εnkσnSkσ (3)

determines the Bloch bands εnkσ, where nSkσ is
the projection of the periodic part of the corre-
sponding Bloch state onto sublattice S. Similarly,
the interaction term takes the generic form H↑↓ =
1
Nc

∑
SS′kk′q U

k−k′

SS′ c†
S,k+ q

2 ↑
c†
S′,−k+ q

2 ,↓
cS′,−k′+ q

2 ,↓cS,k′+ q
2 ,↑,

where the amplitudes Uk−k′

SS′ of the interactions depend
on the exchanged momentum k−k′ through the Fourier

transform Uk−k′

SS′ = 1
Nc

∑
ii′ USi;S′i′e

i(k−k′)·rSi;S′i′ . Here

we note that Uk−k′

SS′ = Uk′−k
S′S = (Uk′−k

SS′ )∗ must be sat-
isfied by definition. Furthermore, upon transformation

to the band basis through c†Skσ =
∑

n n
∗
Skσc

†
nkσ, the

k-space Hamiltonians can be written as [7]

Hσ =
∑
nk

εnkσc
†
nkσcnkσ, (4)

H↑↓ =
1

Nc

∑
nmn′m′

kk′q

V nmk
n′m′k′(q)b†nm(k,q)bn′m′(k′,q), (5)

where the amplitudes V nmk
n′m′k′(q) of the inter-

actions are given in general by V nmk
n′m′k′(q) =∑

SS′ U
k−k′

SS′ n∗S,k+ q
2 ,↑
m∗

S′,−k+ q
2 ,↓
m′

S′,−k′+ q
2 ,↓n

′
S,k′+ q

2 ,↑,

and the operator b†nm(k,q) = c†
n,k+ q

2 ,↑
c†
m,−k+ q

2 ,↓
cre-

ates a pair of ↑ and ↓ particles in the corresponding
Bloch bands with a relative momentum k and a total
momentum q.

III. TWO-BODY PROBLEM

Having in mind a multiband lattice Hamiltonian
that is invariant under discrete translations, the ex-
act solutions for the two-body problem, i.e., for any
given center-of-mass momentum q, can in general be
obtained through the variational ansatz |Ψ(q)⟩ =

∑
nmkσσ′ ασσ′

nmk(q)c
†
n,k+ q

2 ,σ
c†
m,−k+ q

2 ,σ
′ |0⟩, where |0⟩ rep-

resents the particle vacuum. Here the variational param-
eters must satisfy ασσ′

nmk(q) = −ασ′σ
mn,−k(q) so that |Ψ(q)⟩

is anti-symmetric under fermion exchange. Furthermore,
given the absence of a spin-orbit coupling term in the
single-particle Hamiltonian, they must satisfy ασσ′

nmk(q) =

±ασσ′

mn,−k(q) = ∓ασ′σ
nmk(q) for the spin-singlet and spin-

triplet states, respectively. These conditions guarantee
that the singlet states are symmetric (anti-symmetric)
but the triplet states are anti-symmetric (symmetric) un-
der spatial (spin) exchange. For the simplicity of presen-
tation, here we choose [7]

|ψq⟩ =
∑
nmk

αq
nmkc

†
n,k+ q

2 ,↑
c†
m,−k+ q

2 ,↓
|0⟩, (6)

where αq
nmk ≡ α↑↓

nmk(q) parameters satisfy αq
nmk =

±αq
mn,−k for the singlet and triplet states, respectively.

They are in such a way that |ψq⟩ → ∓|ψq⟩ upon
the transformation ↑↔↓, corresponding, respectively,
to an anti-symmetric and symmetric combination, i.e.,
|↑↓⟩∓|↓↑⟩√

2
, for the singlet and triplet states under spin ex-

change.
For any given q, the exact two-body energies Eq are

determined by minimizing the expectation value ⟨ψq|H−
Eq|ψq⟩ with respect to αq

nmk [7]. This leads to a set of
linear equations(

εn,k+ q
2 ,↑ + εm,−k+ q

2 ,↓ − Eq

)
αq
nmk

+
1

Nc

∑
n′m′k′

V nmk
n′m′k′(q)α

q
n′m′k′ = 0, (7)

from which Eq can be determined as the eigenvalues of
an N2

bNc×N2
bNc matrix, where Nb is the number of sub-

lattice sites in a unit cell, i.e., the total number of lattice
sites in the system is NbNc. Note that αq

nmk → ±αq
nm,−k

upon spin exchange when ↑↔↓. Since the solutions of
Eq. (7) give the entire two-body spectrum, it does not
discriminate between the scattering (i.e., continuum) and
the bound states. As an alternative description, we de-
fine a set of dressed parameters

βq
SS′k =

∑
nmk′

Uk−k′

SS′ nS,k′+ q
2 ,↑mS′,−k′+ q

2 ,↓α
q
nmk′ , (8)

which are in such a way that βq
SS′k → ±βq

S′S,−k upon
spin exchange when ↑↔↓. It turns out these dressed
parameters are non-zero only for the two-body bound
states, i.e., they play the role of an order parameter for
pairing. See the related discussion at the end of this sec-
tion. In more general terms, one may define βσσ′

SS′k(q) =∑
nmk′ U

k−k′

SS′ nS,k′+ q
2 ,σ
mS′,−k′+ q

2 ,σ
′ασσ′

nmk′(q), where

βq
SS′k ≡ β↑↓

SS′k(q) is our dressed parameter. Given

that they must satisfy β↓↑
SS′k(q) = −β↑↓

S′S,−k(q) under

fermion exchange, we require βq
SS′k = ±βq

S′S,−k for the
singlet and triplet states, respectively. Note that, in the
presence of onsite interactions only [7], i.e., when the
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interaction amplitudes Uk−k′

SS′ = USδSS′ are constants
in k space for the intra-orbital interactions and vanish
for the inter-orbital ones, only the singlet bound states
are allowed since the order parameter for the triplet
pairs βq

SS′k → βq
S = −βq

S must vanish by the symmetry
requirement. Here δij is a Kronecker delta. With these
definitions, Eq. (7) reduces to a set of coupled integral
equations

βq
S̄S̄′k

= − 1

Nc

∑
nmk′SS′

Uk−k′

S̄S̄′ mS̄′,−k′+ q
2 ,↓nS̄,k′+ q

2 ,↑

εn,k′+ q
2 ,↑ + εm,−k′+ q

2 ,↓ − Eeq

×n∗S,k′+ q
2 ,↑
m∗

S′,−k′+ q
2 ,↓
βq
SS′k′ , (9)

from which the bound-state energies Eeq can be deter-
mined through heavy numerics. Note that Eq. (9) re-

duces to a self-consistency relation when Uk−k′

SS′ is inde-
pendent of momentum, i.e., in the case of usual Hubbard
model with onsite interactions [7].

In order to simplify Eq. (9) and make further analytical

progress, next we express Uk−k′

SS′ as a linear combination
of separable functions of k and k′ in the form

Uk−k′

SS′ =
∑
ℓ

Cℓ
SS′ [Γℓ

SS′(k)]∗Γℓ
SS′(k′), (10)

where the momentum-independent coefficients Cℓ
SS′ are

determined by the interaction parameters USi;S′i′ . For a
given SS′ sector, it proves convenient to choose the sym-
metry functions Γℓ

SS′(k) in such a way that they satisfy∑
k[Γ

ℓ
SS′(k)]∗Γℓ′

SS′(k) = κℓSS′δℓℓ′ , i.e., they are linearly
independent from each other. Note that the Hermitic-

ity requirement H↑↓ = H†
↑↓ for the Hamiltonian under

adjoint operation leads to V nmk
n′m′k′(q) = [V n′m′k′

nmk (q)]∗,
suggesting that Cℓ

SS′ = (Cℓ
SS′)∗ is a real parameter. In

addition, the invariance requirement H↑↓ = H↓↑ for the
Hamiltonian under spin exchange leads to V nmk

n′m′k′(q) =

V mn,−k
m′n′,−k′(q), suggesting that U

k−k′

SS′ = Uk′−k
S′S . Given that

Cℓ
SS′ = Cℓ

S′S parameters can always be chosen symmet-
rically under sublattice exchange, the latter condition al-
lows two distinct solutions Γℓ

SS′(k) = ±Γℓ
S′S(−k), lead-

ing to κℓSS′ = κℓS′S as well. In terms of these symmetry
functions, the dressed parameters can be reexpressed in
general as

βq
SS′k =

∑
ℓ

Λℓq
SS′ [Γ

ℓ
SS′(k)]∗, (11)

where the k-independent prefactor can be written as

Λℓq
SS′ = Cℓ

SS′
∑

nmk Γ
ℓnm
SS′ (k,q)α

q
nmk with Γℓnm

SS′ (k,q) =

Γℓ
SS′(k)nS,k+ q

2 ,↑mS′,−k+ q
2 ,↓. Thus, Eq. (11) suggests

that the singlet and triplet states are characterized by

Γℓ
SS′(k) = ±Γℓ

S′S(−k), respectively, and Λℓq
SS′ = Λℓq

S′S is
symmetric under sublattice exchange. Furthermore, the

requirement Uk−k′

SS′ = (Uk−k′

S′S )∗ suggests that Γℓ
SS′(k) =

±[Γℓ
SS′(−k)]∗ for the singlet and triplet states, respec-

tively. By plugging Eq. (11) into Eq. (9), we find a set

of nonlinear equations in the form of a self-consistency
relation

Λℓq
S̄S̄′ = −

Cℓ
S̄S̄′

Nc

∑
nmk
SS′ℓ′

Γℓnm
S̄S̄′ (k,q)[Γ

ℓ′nm
SS′ (k,q)]∗

εn,k+ q
2 ,↑ + εm,−k+ q

2 ,↓ − Eeq
Λℓ′q
SS′ ,

(12)

from which the bound-state energies Eeq can be deter-
mined efficiently through low-cost numerics.
We note in passing that a suggestive way of express-

ing the interaction amplitude V nmk
n′m′k′(q) in the band ba-

sis is V nmk
n′m′k′(q) =

∑
SS′ℓ C

ℓ
SS′ [Γℓnm

SS′ (k,q)]∗Γℓn′m′

SS′ (k′,q).
Then, Eq. (12) resembles the self-consistency equa-
tion that appears in the BCS theory of supercon-
ductivity. We also note that a suggestive way

of expressing the dressed parameters is β↑↓
SS′k(q) =∑

k′ U
k−k′

SS′ ⟨0|cS,k′+ q
2 ,↑cS′,−k′+ q

2 ,↓|ψq⟩ = −β↓↑
S′S,−k(q),

where |ψq⟩ is the two-body ansatz given in Eq. (6).
In comparison, considering stationary Cooper pairs
with q = 0, the BCS order parameters for
the multi-sublattice Hamiltonian can be written as
∆↑↓

SS′k(0) =
∑

k′ U
k−k′

SS′ ⟨ψBCS|cSk′↑cS′,−k′,↓|ψBCS⟩ =

−∆↓↑
S′S,−k(0), where |ψBCS⟩ is the coherent BCS ground

state [18]. Thus, the number conserving expectation
value ⟨0| · · · |ψq⟩ plays precisely the role of the so-called
anomalous average ⟨ψBCS| · · · |ψBCS⟩ in the BCS theory.
In other words, our variational parameters αq

nmk reduce
to the Leggett’s number-conserving variational BCS pa-
rameter Fk ≡ α0

k in the case of a single-band continuum
system [3].

IV. NUMERICAL BENCHMARK

To benchmark our approach with the existing litera-
ture [19–21], next we simulate the well-studied usual lin-
ear chain as a lattice with a two-point basis, i.e., with
Nb = 2. This model is illustrated in Fig. 1, where the
nearest-neighbor hopping parameter is taken as t > 0
uniformly across the lattice for both spin-up and spin-
down particles, i.e., the lattice sites belonging to sublat-
tices A and B are identical. Assuming periodic bound-
ary conditions, the Bloch Hamiltonian is governed simply
by the matrix elements hσABk = hσBAk = −2t cos(kxd)
and hσAAk = hσBBk = 0, and the reduced first BZ is
given by − π

2d ≤ kx < π
2d , where d is the lattice spac-

ing. Since there are precisely Nc states in the BZ, the
length L of the simulated lattice is in such a way that
L/d = NbNc gives the total number of sites. Thus, a
compact way to express the upper (s = +) and lower
(s = −) Bloch bands is εskσ = s2t cos(kxd), where the

projections sAkσ = 1/
√
2 and sBkσ = −s/

√
2 determine

the associated Bloch states.
Similar to the existing literature, here we consider only

the onsite (U) and nearest-neighbor (V ) interactions,

leading to Uk−k′

AA = U = Uk−k′

BB contribution for the intra-

sublattice interactions and Uk−k′

AB = 2V cos(kxd−k′xd) =



4

t

dd

t

A AB B

FIG. 1. Simulation of the usual linear chain as a lattice with
a two-point basis, where S = (A,B) denotes the underlying
sublattices, d is the lattice spacing and t > 0 is the nearest-
neighbor hopping parameter. Note that the reduced first BZ
− π

2d
≤ kx < π

2d
is folded into two in comparison to that of

the usual linear chain.

Uk−k′

BA for the inter-sublattice ones. The two-body spec-
trum that is shown in gray color in Fig. 2 is obtained by
plugging these expressions into Eq. (7) with U = V =
−6t, corresponding to attractive interactions. It is im-
portant to remark that, by construction, our approach
produces exact results for any signs or strengths of U
and V . In addition to a broad region of continuum states,
there are six two-body bound-state branches in the folded
BZ. To distinguish spin singlet branches from the triplet
ones, next we construct the appropriate symmetry func-
tions and employ them in Eq. (12). In accordance with
the analysis given in Sec. III, Γℓ

SS(k) = ±Γℓ
SS(−k) =

±[Γℓ
SS(−k)]∗ must be real for the intra-sublattice sec-

tors and Γℓ
S ̸=S′(k) = ±Γℓ

S′ ̸=S(−k) = ±[Γℓ
S ̸=S′(−k)]∗ for

the inter-sublattice sectors, where the upper and lower
signs correspond, respectively, to the singlet and triplet
states. Considering the singlet states, the appropriate
linearly-independent symmetry functions can be chosen
as Γa

AA(k) = 1 = Γa
BB(k) with C

a
AA = U = Ca

BB for the

intra-sublattice sectors, and Γa
AB(k) =

√
2 cos(kxd) =

Γa
BA(−k) and Γb

AB(k) = i
√
2 sin(kxd) = Γb

BA(−k) with
Ca

AB = V = Ca
BA and Cb

AB = V = Cb
BA for the

inter-sublattice sectors. Similarly, considering the triplet
states, the appropriate linearly-independent symmetry
functions can be chosen as Γa

AB(k) =
√
2 sin(kxd) =

−Γa
BA(−k) and Γb

AB(k) = i
√
2 cos(kxd) = −Γb

BA(−k)
with Ca

AB = V = Ca
BA and Cb

AB = V = Cb
BA for the

inter-sublattice sectors.

Equation (12) is equivalent to a non-linear eigenvalue
problem for Eeq. After recasting it as GqΛq = 0,
we determine its self-consistent solutions by setting the
eigenvalues of Gq to zero one at a time. For instance,
in the presence of two sublattices, i.e., S = (A,B),
and assuming ℓ = (a, {a, b}, a), respectively, for the
SS′ = (AA,AB,BB) sectors as in the singlet case dis-
cussed above, the corresponding eigenvectors can be writ-

ten as Λq = (Λaq
AA,Λ

aq
AB ,Λ

bq
AB ,Λ

aq
BB)

T, where T is the
transpose. Note that, since the matrix elements that in-

volve Λℓq
BA are not independent, they are absorbed into

the self-consistency equations via substitution by Λℓq
AB .

As a result, for a given q, we choose to label the re-
sultant self-consistency solutions as Eeq, where the label
e = {1, 2, 3, 4} indicates which eigenvalue of Gq is set
to 0 starting with the lowest one. Similarly, assuming
ℓ = {a, b} for the AB sector of the triplet case discussed
above, the corresponding eigenvectors can be written as

Λq = (Λaq
AB ,Λ

bq
AB)

T, leading to Eeq with e = {1, 2}.

FIG. 2. Two-body spectrum Eqx for the linear chain in
the reduced BZ. Here U = V = −6t for the onsite and
nearest-neighbor interactions, respectively. Full spectrum fol-
lows from Eq. (7) with Nc = 101, and it is shown in gray.
Singlet and triplet bound-state branches follow from Eq. (12)
where eige refers to Eeq. Note that the entire spectrum ap-
pears as folded into the BZ, e.g., there appears 4 (2) instead
of 2 (1) singlet (triplet) branches.

Thus, since the singlet (triplet) symmetry functions leads
to a 4× 4 (2× 2) nonlinear eigenvalue problem, Eq. (12)
gives rise to four (two) distinct singlet (triplet) branches.
These six branches are shown in Fig. 2 with different
symbols.

Our numerical benchmark shown in Fig. 2 clearly illus-
trates that bound-state solutions of Eq. (7) can be clas-
sified with respect to their exchange symmetry through
the self-consistent solutions of Eq. (12). Furthermore, it
is pleasing to see that these results are in perfect agree-
ment with the existing literature [19, 20], with the caveat
that the entire spectrum appears as folded into the BZ
leading to the appearance of 4 (2) instead of 2 (1) singlet
(triplet) branches. We also verified that the known ana-

lytical expression [19, 21] Etriplet
q = V + 4t2

V cos2(qxd/2)
for the triplet branch in the usual BZ −π

d ≤ qx ≤ π
d is

in perfect agreement with our numerical results. This
expression is valid only when the energy of the triplet
states are outside of the two-body continuum, i.e., it is
not valid in the V → 0 limit for which the triplet states
are not allowed.
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V. CONCLUSION

In summary, here we analyzed the two-body problem
within a generic multiband extended-Hubbard model,
including arbitrary but finite-ranged hopping and in-
teraction parameters. In particular, we derived self-
consistency relations for the two-body bound states us-
ing an exact variational approach, which can be easily
applied to various lattice geometries. To validate their
accuracy numerically, we compared our results to the ex-
isting literature on the linear-chain model. Our findings
demonstrated perfect agreement between the spin sin-
glet and triplet states obtained through our method and
those reported in the literature. As an outlook, it would
be intriguing to apply the recently proposed bulk-edge
correspondence for the nonlinear eigenvalue problems to

the two-body bound states by introducing their auxil-
iary eigenvalues [22]. Furthermore, one can also study
the Chern numbers for the triplet bound states by fol-
lowing our recent work on singlet bound states for the
onsite Hubbard model [15], i.e., by utilizing the eigen-
vectors Λq of the nonlinear eigenvalue problem. Finally,
in the spinless case, the two-body bound states for the
extended-Hubbard and extended-Bose-Hubbard models
can be studied through our triplet and singlet solutions,
respectively, by suppressing the spin labels.

ACKNOWLEDGMENTS

The author acknowledges funding from US Air
Force Office of Scientific Research (AFOSR) Grant No.
FA8655-24-1-7391.

[1] L. N. Cooper, Bound electron pairs in a degenerate Fermi
gas, Phys. Rev. 104, 1189 (1956).

[2] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theory of
superconductivity, Phys. Rev. 108, 1175 (1957).

[3] A. Leggett, Quantum Liquids: Bose condensation and
Cooper pairing in condensed-matter systems (Oxford
University Press, United Kingdom, 2008) publisher
Copyright: © Oxford University Press, 2014.

[4] A. J. Leggett, Cooper pairing in spin-polarized Fermi sys-
tems, Le Journal de Physique Colloques 41, C7 (1980).

[5] P. Nozieres and S. Schmitt-Rink, Bose condensation in
an attractive fermion gas: From weak to strong coupling
superconductivity, Journal of Low Temperature Physics
59, 195 (1985).
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