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Thermodynamic dissipation does not bound replicator growth and decay rates
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In a well-known paper, Jeremy England derived a bound on the free energy dissipated by a self-replicating

system [England, “Statistical physics of self-replication”, The Journal of Chemical Physics, 2013]. This bound is

usually interpreted as a universal relationship that links thermodynamic dissipation to the replicator’s per-capita

decay and growth rates. Contrary to this interpretation, we argue from thermodynamic principles that such a

relationship cannot exist. In particular, we show that it is impossible for a system to undergo both replication

and per-capita decay back into reactants. While it is possible for a system to undergo replication and decay into

separate waste products, in that case replication and decay are two independent physical processes, and there is

no universal relationship between their thermodynamic and dynamical properties.

I. INTRODUCTION

Research in thermodynamics has shown that there are uni-

versal relationships between the thermodynamic and dynamic

properties of nonequilibrium processes. The most famous re-

lationship, termed local detailed balance (LDB), says that the

temporal irreversibility of a stochastic physical process is re-

lated to the amount of entropy produced in the system and the

environment during that process [2]. The generality of LDB

suggests that it may imply universal bounds on the thermody-

namic properties of living systems.

This idea inspired a 2013 paper by England on the thermody-

namics of self-replicating systems [1]. In this paper, England

considered a population of replicators that evolves according

to a stochastic master equation [Eq. (9) in Ref. [1]],

ṗn(t) ≈ ng(pn−1(t)− pn(t)) − δn(pn(t)− pn+1(t)), (1)

where pn(t) is the probability of n replicators, g is the per-

capita replication rate, and δ is the per-capita decay rate, de-

fined as the “reversion of the replicator back into the exact set

of reactants in its environment out of which it was made”. For

large population sizes, fluctuations can be neglected and n(t),
the population at time t, will grow exponentially as

n(t) ≈ n(0)e(g−δ)t. (2)

This shows how the per-capita replication and decay rates in the

master equation are related to long-term population dynamics.

We will refer to replication and decay with per-capita rates g
and δ as first-order replication and first-order decay.

The main result of England’s paper is a thermodynamic

bound on the ratio of growth and decay rates [Eq. (10) in

Ref. [1]],

∆stot ≥ ln
g

δ
, (3)

where ∆stot is the entropy production incurred when a sin-

gle replicator makes a copy of itself. As we explain below,

the quantity ∆stot is proportional to the free energy dissipated
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during replication. England illustrates the bound using two

real-world systems of interest: an RNA-based molecular repli-

cator constructed by Lincoln and Joyce [3] and an E. coli

bacterium.

The bound (3) appears to bridge two different worlds: the

physical world of thermodynamic dissipation and the biolog-

ical world of replicator dynamics. From an intellectual per-

spective, we find England’s proposal stimulating and elegant.

However, by studying the thermodynamics of simple molec-

ular replicators [4], we have come to find that the bound (3)

must be interpreted with great care.

In this paper, we argue that, contrary to standard interpreta-

tions of this result, inequality (3) does not provide a thermo-

dynamic bound on the growth and decay rates of replicators.

In fact, we argue that there cannot be a bound of this type. We

begin by proving a general “impossibility theorem” that shows

that it is thermodynamically infeasible for a first-order replica-

tor to undergo first-order decay back into reactants. Instead, a

replicator can decay either by undergoing the reverse process

of autocatalysis, in which case decay is not first-order, or by

decaying into a different set of waste products, in which case

there cannot be a universal relationship between properties of

the two independent processes of replication and decay.

Nonetheless, we emphasize that the bound (3) is valid as

long as ∆stot, g and δ are appropriately interpreted. Specifi-

cally, the bound applies to the forward and reverse transitions

between two fixed macrostates of an arbitrary physical system,

which may or may not be a replicator. However, as we show

below, considering transitions between two fixed macrostates

is not enough to capture the kinetics and thermodynamics of

replication.

II. BACKGROUND

We begin with a high-level summary of the derivation of

England’s bound (3). For details, we refer the reader to Ref. [1].

England considers an undriven system coupled to a heat

bath at temperature T . The system is associated with two

arbitrary macrostates I and II, i.e., two subsets of microstates.

Macrostate I is associated with a probability distribution over

microstates, pI(i), whose support is restricted to I. Macrostate

II is also associated with a probability distribution pII(i) with
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support restricted to II, defined by propagating the distribution

pI under the microscopic stochastic dynamics over time dt and

then conditioning on membership in macrostate II.

The entropy produced when going from macrostate I to

macrostate II is

∆stot(I → II) = 〈Q〉/kBT +∆sint . (4)

Here, 〈Q〉 is the expected amount of heat released to the bath

during the transition I → II, kB is Boltzmann constant, and

∆sint = S(pII)− S(pI)

is the increase of the internal Shannon entropy in going from

macrostate I to II. We may also write the entropy production

in terms of the dissipated free energy,

∆stot(I → II) = (FI −FII)/kBT, (5)

where FI = 〈E〉pI
− kBT S(pI) is the free energy of

macrostate I given energy function E, and similarly for FII.

Eqs. (4) and (5) are equivalent since 〈Q〉 = 〈E〉pI
−〈E〉pII

by

the first law of thermodynamics.

To derive a bound on the entropy production, England cal-

culates the (conditional) transition probability π(I → II) that

the final microstate belongs to macrostate II, given that the

initial microstate is drawn from pI. He also calculates the

transition probability π(II → I) that the final microstate be-

longs to macrostate I, given that the initial microstate is drawn

from pII. England shows that the entropy production involved

in going from I to II is bounded by the log ratio of these two

transition probabilities,

∆stot(I → II) ≥ ln
π(I → II)

π(II → I)
. (6)

This result is derived by assuming overdamped dynamics and

invoking the principle of LDB, along with some mathematical

manipulation. It is a useful and general inequality that applies

to many types of physical processes.

To make the connection to self-replication, England defines

macrostate I as the set of microstates that contain a single

replicator, plus reactants needed for successful replication.

Macrostate II is defined as the set of microstates that contain

two replicators: the parent replicator found in microstate I

and its new offspring. We emphasize that although the overall

system is undriven,macrostate Imay nonetheless contain high-

energy reactants that drive the replication transition I → II

forward. The transition probability π(I → II) of replication

is approximated using a first-order replication rate g as π(I →
II) ≈ g dt. The transition probability π(II → I), which

corresponds to the reversion of the offspring replicator back

into “the exact set of reactants in its environment out of which

it was made”, is approximated using a first-order decay rate δ
as π(II → I) ≈ δ dt (see also [5]).

III. IMPOSSIBILITY THEOREM

We now point out an issue with the above analysis which

arises from the fact that it is not possible for a system to

undergo both first-order replication and first-order decay back

into reactants.

To introduce our argument, we consider another macrostate

0 whose microstates do not contain any replicator but only

the reactants needed for replication. The transition probability

π(I → 0) refers to the reversion of the single replicator in I

back into reactants, while the transition probability π(0 → I)
refers to the spontaneous (uncatalyzed) formation of repli-

cator from reactants. Applying the inequality (6) to these

macrostates yields a bound on the entropy produced during

the transition I → 0:

∆stot(I → 0) = (FI −F0)/kBT ≥ ln
π(I → 0)

π(0 → I)
, (7)

where F0 is the free energy of macrostate 0.

At the same time, the defining property of self-replication is

autocatalysis, meaning that the formation of a new replicator

in the presence of an existing replicator should be much faster

than spontaneous formation directly from reactants. Thus, we

may say that a system is self-replicating only if

π(0 → I) ≪ π(I → II). (8)

If this condition did not hold, we should not interpret the

transition I → II as “replication”, since the new offspring can

arise due to spontaneous formation from reactants. Also, we

could not describe replication with a first-order rate constant

g as in the master equation (1), since the growth term would

not be linear in population size.

Suppose that each replicator undergoes first-order decay

with rate δ, as in the master equation (1). Then, the tran-

sition probability of ending in macrostate 0 after starting in

macrostate I should be approximately δ dt, the same as the

transition probability of ending in I after starting in II:

π(I → 0) ≈ δ dt ≈ π(II → I). (9)

Observe also that FI −F0, the decrease of free energy when

a replicator undergoes reversion back into reactants, should be

the opposite of FI − FII, the decrease of free energy when

reactants are converted into a new replicator during a repli-

cation event. This implies that the entropy production for the

two transitions should be related as

∆stot(I → 0) ≈ −∆stot(I → II) (10)

Plugging (9) and (10) into (7) gives

∆stot(I → II) ≤ ln
π(0 → I)

π(II → I)
.

This can be combined with (6) and simplified to give

π(0 → I) ≥ π(I → II). (11)

However, we have arrived at a contradiction with the necessary

condition for self-replication (8).

The idea behind this argument can also be illustrated using a

simple but concrete model. Consider an autocatalytic chemical

reaction such as

X +A
κ1

⇋

κ
−

1

2X , (12)
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where X is a replicator molecule and A is a substrate reactant.

For simplicity, we assume that the reaction is elementary with

mass-action kinetics, and that the molecular counts are suffi-

ciently large such that the system can be described in terms of

deterministic number concentrations, n = [X ] and a = [A].
Reaction (12) exhibits forward flux κ1na with forward rate

constant κ1, and reverse flux κ−

1 n
2 with backward rate con-

stant κ−

1 . We note that the reverse flux is second-order in

n. For convenience, we will sometimes use the term uncopy-

ing to refer to the reverse direction of autocatalysis, that is

the catalyzed reversion of the replicator back into substrate

(2X → X +A).

Suppose that X can also decay back into reactant in an

uncatalyzed fashion,

X
κ2

⇋

κ
−

2

A . (13)

This decay reaction will have forward flux κ2n and reverse

flux κ−

2 a. The two reactions (12) and (13) have opposite

stoichiometry and therefore opposite free energy of reaction

−∆G. The principle of LDB states that −∆G (in units of J

per reaction) can be expressed as the log ratio of forward and

backward fluxes [6],

−∆G/kBT = ln
κ1na

κ−

1 n
2
= ln

κ−

2 a

κ2n
. (14)

Now, in order for the system to exhibit first-order replication

rather than uncatalyzed formation, it must be that κ1na ≫
κ−

2 a, such that the creation of replicators is dominated by

autocatalysis, not the reverse of the decay reaction. In order

for the system to undergo first-order decay, rather than second-

order uncopying, it must be that κ2n ≫ κ−

1 n
2. It can be seen

that these two inequalities are incompatible with Eq. (14),

highlighting the thermodynamic inconsistency.

In essence, replication (X + A → 2X) is thermodynam-

ically favored over uncopying (2X → X + A) to the same

extent that uncatalyzed formation (A → X) is favored over

first-order decay (X → A). Thus, if first-order decay is the

dominant pathway for destruction, uncatalyzed formationmust

be the dominant pathway for formation.

Of course, if the first-order decay reaction (13) occurs at

negligible rates, then the system would exhibit first-order repli-

cation via the forward direction of (12). In addition, decay

back into reactants would occur due to uncopying, the reverse

direction of the catalyzed reaction (12). In terms of the tran-

sition probabilities between macrostates, π(II → I) would be

non-zero due to uncopying, while π(I → 0) would be negli-

gible since decay would only occur if two or more replicators

are present. Equality would no longer hold in (9), thereby

avoiding the undesirable conclusion that replicators must form

spontaneously from reactants.

However, in the case of uncopying (catalyzed decay), the

decay rate of any particular replicator will depend on how many

other replicators it encounters, and so decay cannot be first-

order (e.g., the elementary autocatalytic reaction (12) leads to

second-order decay, κ−

1 n
2). This kind of decay is inconsistent

with the master equation (1), which has the first-order term

δn, as well as the exponential growth equation (2), which only

holds for first-order replication and first-order decay.

To summarize, a thermodynamically consistent replicator

cannot simultaneously exhibit first-order replication and first-

order decay back into reactants. Of course, many replicators

do exhibit both first-order replication and first-order decay. As

we discuss in the next section, they do so by decaying into

different waste products, not reverting back into their original

reactants.

IV. ALTERNATIVE DEGRADATION PATHWAYS

Until now, we followed England in assuming that the de-

cay transition II → I involves “reversion of the replicator

back into the exact set of reactants in its environment out of

which it was made”. However, in most replicators of interest,

the decay process that is actually observed is not reversion

back into reactants, but rather degradation into different waste

products. Such a system can exhibit both first-order replication

and decay. However, as we argue here, if there is no general

relationship between the processes of replication and decay,

then there cannot be a universal relationship between thermo-

dynamics of replication and decay rates. We note that some

related issues were raised in an insightful paper by Saakian

and Qian [7].

As a concrete example, consider again the autocatalytic

replicator discussed in the previous section. Imagine that

the dominant decay process is neither uncatalyzed reversion

back to reactants, as in reaction (13), nor uncopying, as in

the reverse of reaction (12). Rather, decay involves a separate

reaction

X
κ3

⇋

κ
−

3

W, (15)

where W is a waste product different from the substrate reac-

tant A. Let us consider the RNA replicator [3][8] discussed

in England’s paper [1]. In this system, the replication reac-

tion consumes a reactant RNA molecule with a triphosphate

group and releases an inorganic pyrophosphate as a side prod-

uct. Decay can proceed in one of two ways. The first is

the reverse of replication, known as pyrophosphorolysis in

the literature [9–11], in which a pyrophosphate is consumed

and a triphosphate-charged RNA molecule is produced. The

second is spontaneous hydrolysis of the RNA phosphodiester

bond. Hydrolysis is a separate reaction that does not involve

pyrophosphate and it produces a “waste” RNA molecule, with

the triphosphate group replaced by a monophosphate group.

We use the term degradation to refer to the decay of the

replicator into different waste products, as opposed to rever-

sion into the initial reactants. Because replication and degra-

dation are independent processes, not reverse directions of

the same process, in general they have independent thermody-

namic properties. For this reason, Eq. (10) does not apply, and

both replication and degradation may be thermodynamically

favored in the forward direction, allowing simultaneous first-

order replication and first-order degradation. For instance,

for an autocatalytic replicator with reactions (12) and (15),
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the per-capita replication rate may be taken as g = κ1a (over

timescales where the reactant concentrationa is approximately

constant) and the per-capita degradation rate may be taken as

δ = κ3.

Notably, when considering actual examples [1], England

calculates the decay rate as the rate of degradation into waste

products, rather than the rate of reversion back into reactants.

For example, for the RNA replicator, it is estimated as the rate

of RNA hydrolysis, not pyrophosphorolysis. For the E. coli, it

is estimated in terms of the time required for all peptide bonds

in a single cell to undergo hydrolysis. This differs from the

rate of reversion back into reactants, which would involve the

reverse reaction of protein bond formation, de-respiration of

released carbon dioxide into glucose and oxygen, etc.

In the original LDB-type bound (6), the reverse transition

probability π(II → I) refers to reversion back into original

reactants, not degradation into other waste products. In order

to connect this bound to degradation, England assumes that

reversion is slower than degradation, so

π(II → I) ≤ δ′ dt. (16)

where δ′ is the degradation rate. The result (3) then follows

from (6), with δ taken to be the degradation rate δ′. However,

there are some problems with this approach.

For one, there is no a priori reason that reversion must be

slower than degradation. For example, for the RNA replicator,

England assumes that hydrolysis (degradation) is faster than

pyrophosphorolysis (reversion), but this is questionable since

there is no universal relationship between these the rates of two

processes. Moreover, the rate of pyrophosphorolysis depends

on the concentration of pyrophosphate [9–11], while that of

hydrolysis does not. At increased pyrophosphate concentra-

tions, pyrophosphorolysis can proceed as fast as a minute per

nucleotide, at least in the context of the bacterial polymerase

system where it has been studied [10]. This can be order of

magnitude faster than hydrolysis, which is on the order of 4

years per nucleotide [1].

Even for the E. coli bacterium, it seems debatable whether

degradation is always faster than reversion of an offspring cell

into starting reactants. There are various scenarios that can be

imagined that accelerate reversion, for instance the parent cell

might run its Krebs cycle in reverse. Of course, reversion is

a hyper-astronomically unlikely, but one may ask whether it is

necessarily more unlikely than hydrolysis of all peptide bonds,

whose probability England estimates at e−6.7×1010 per 20

minute generation time (in decimal notation, this number has

billions of zeros after the decimal point) [1]. Common-sense

intuitions about the relative likelihood of such astronomically-

unlikely events should be treated with caution.

The best way to demonstrate that degradation is faster than

reversion is to observe how a replicator actually decays. In

many cases, degradation will be the dominant decay process

and (16) is mathematically valid. However, even in such cases,

there is no meaningful thermodynamic relationship between

dissipation and growth and degradation rates, because the two

sides of (16) refer to two independent physical processes and

their difference is completely uncontrolled. Consider again

the E. coli. Bacteria are never observed to undergo hydrolysis

of all peptide bonds, but are instead observed to die at the rate

of ≈ 5 × 10−4 per generation [12]. This death rate can be

related to England’s estimate of the entropy produced during

replication, ∆stot(I → II) ≈ 3.3 × 1011 [1]. Plugging these

numbers into (3) gives

∆stot(I → II) = 3.3× 1011 ≥ 7.6 ≈ − ln(5× 10−4). (17)

This inequality is not biologically or physically meaningful

because the two sides differ by a factor of about 50 billion.

To put things in perspective, the inequality predicts that no

less than 7.6 kBT of free energy must be dissipated in order

to replicate a bacterium. This is a tiny amount, less than

the dissipation produced by the hydrolysis of a single ATP

molecule (≈ 20 kBT ).

Above, we argued that the inequality (16) between the prob-

ability of reversion π(II → I) and degradation δ′ dt may be

violated, or it may hold but be so weak that it is irrelevant.

One may wonder if the transition probability π(II → I) may

be defined to also account for degradation, such that (16) ap-

proaches equality. In fact, whether π(II → I) does or does

not account for degradation depends in a subtle way on the

definition of macrostates I and II. Consider a replicator that

undergoes degradation into waste speciesW , and imagine two

different ways of defining these macrostates. Under the first

definition, the microstates in I and II all contain the same fixed

number of waste molecules. Since degradation increases the

number of waste molecules, the transition II → I will not in-

clude degradation and, as assumed by England, the transition

probability π(II → I) will only account for reversion back

to reactants. Under the second, and arguably more realistic,

definition, the precise number of waste molecules fluctuates

among different microstates in I and/or II. Then, the transi-

tion probability π(II → I) will account for both reversion and

degradation.

Now suppose that degradation is many orders of magnitude

more likely than reversion,as in the E. coli that undergoes death

at the rate of δ′ = 5 × 10−4 per generation. Under the first

definition of the macrostates, π(II → I)will be tiny compared

to δ′ dt, so the inequalities (16) and (17) will be incredibly

weak. This is the case considered above. Under the second

definition of the macrostates, π(II → I) will be much larger,

and the inequality (16) may be nearly tight. However, the

entropy production ∆stot(I → II) and transition probability

π(I → II) associated with replication do not depend much

on whether the waste products are allowed to fluctuate or not,

since they are not involved in replication. Therefore, to the

extent that π(II → I) becomes much larger and (16) tighter,

LDB-type bound (6) must become much looser. At the end of

the day, we end up with the same very weak thermodynamic

bound (17). Thus, our general conclusions are not affected by

the particular way that macrostates are defined.

V. CONCLUSION

In this paper, we considered England’s proposed bound on

the thermodynamics of replication, ∆stot ≥ ln(g/δ). As we

showed, this bound has physical meaning if the decay rate δ
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refers to the reverse of replication, in which the offspring repli-

cator reverts back to its original reactants due to interactions

with the parent replicator. However, this reverse process can-

not be first-order, hence δ cannot be interpreted as a per-capita

decay rate. In fact, in general, a thermodynamically consis-

tent replicator cannot exhibit both first-order replication and

first-order replication back to reactants.

Alternatively, the decay rate may be defined in terms of

the per-capita rate of degradation into waste products δ′. In

this case, however, there is no universal physical relationship

between the degradation rate δ′ and properties of replication,

such as g and ∆stot(I → II). Therefore, the resulting bound

(3) is not physically meaningful and can be violated.
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