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Age of Information in a Single-Source
Generate-at-Will Dual-Server Status Update System

Nail Akar, Senior Member, IEEE, and Sennur Ulukus, Fellow, IEEE

Abstract—We study age of information (AoI) in a single-source
dual-server status update system for the generate at will (GAW)
scenario, consisting of an information source, dual servers, and a
monitor. For this system, the method of stochastic hybrid systems
(SHS) was used to obtain the mean AoI for the work-conserving
ZW (zero wait) policy with out-of-order packet discarding at the
monitor. In this paper, we propose a non-work-conserving F/P
(freeze/preempt) policy for which the sampling and transmission
process is frozen for an Erlang distributed amount of time
upon each transmission, and out-of-order packets are preempted
immediately at the source, rather than being discarded at the
monitor upon reception. We use the absorbing Markov chain
(AMC) method to obtain the exact distributions of AoI and also
the peak AoI (PAoI) processes, for both ZW and F/P policies.
Numerical results are presented for the validation of the proposed
analytical model and a comparative evaluation of ZW and F/P
policies.

I. INTRODUCTION

PROVIDING timely status updates from physical processes
to remote monitors or controllers, over wireless commu-

nication networks, has become a key research topic of interest
for the deployment of successful internet of things (IoT)
applications and services [1], [2]. For example, in autonomous
driving, status information from a number of physical pro-
cesses including velocity, acceleration, position, trajectory, etc.
are to be sent in a timely fashion to a network controller for
successfully controlling the vehicle [3]. Examples for other
well-known status update systems are environment monitoring
applications and wireless body sensor networks [4].

Designing network protocols, systems and applications for
timely status updates requires the quantification of information
freshness by suitable metrics. One well-established source-
agnostic freshness metric, i.e., one that does not depend on
the source dynamics, is derived from the age of information
(AoI) process that was introduced in [5] for quantifying the
timeliness of information freshness in status update systems.
The AoI for a given information source is a random process
denoted by ∆(t) = t−g(t) where g(t) refers to the generation
time of the freshest status update packet received at the
destination. This process increases with unit slope except that
it is subject to abrupt drops upon a fresher (than the ones
previously received) packet reception. On the other hand, the
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peak AoI (PAoI) process Φl, l ∈ Z+ is obtained by taking
samples from the AoI process at only pre-reception instances
[6]. We refer the reader to [4], [7], [8] and the references
therein, for recent surveys on AoI-related research. In most
existing work, the particular performance metric is chosen
to be the mean AoI (or equivalently the time-averaged AoI)
for single-source models, or the weighted mean AoI for their
multi-source counterparts, whereas the distribution of AoI has
also attracted the attention of researchers, but to a much lesser
extent [9], [10].

One basic mechanism to improve information freshness is to
use network (or path) diversity for which information sources
use multiple independent network routes for transmitting their
status update packets to the remote monitor [11]. We study the
exact distributions of both AoI and PAoI processes in a status
update system involving a single information source composed
of a sensor sampling a corresponding random process, two
independent heterogeneous servers representative of two com-
munication paths, and a remote monitor. The goal of the source
is to keep the information as fresh as possible at the monitor
by effectively using both of the servers for transmission of its
status update packets. We assume a generate at will (GAW)
scenario in which the source decides when to simultaneously
sample the process and transmit the associated information
packet. We call the system of interest GAW-2, stemming from
dual servers. The case of sampling and transmission decisions
belonging to two separate agents, where sampling takes place
according to a random process from the perspective of the
transmission agent, also known as the random arrival (RA)
model [10], [12], is left outside the scope of the paper.

In this paper, we investigate two particular policies. The
first policy is the work-conserving ZW (zero wait) policy [13]
where the information source always keeps the servers busy by
immediate transmission of a fresh packet whenever the servers
become available, and the monitor discards the out-of-order
packets at the monitor, upon reception. The second policy is
a non-work-conserving F/P (freeze/preempt) policy that we
propose in this paper. In F/P policy, sampling and transmission
process is frozen (or halted) for an Erlang-k, k = 1, 2, . . . ,
distributed amount of time upon each transmission, i.e., freeze
component of the F/P policy. Moreover, out-of-order packets
are preempted immediately at the source, rather than being
discarded at the monitor upon reception, which is the preempt
component of the F/P policy. These two components are inde-
pendent and one may enable only one of the two components,
for a given scenario, if desired.

We study both policies (ZW and F/P) with exponentially
distributed service times for the two servers with potentially
different service rates. In the absence of a freezing duration,
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it is possible that information packets with timestamps close
to each other, would be transmitted over the two servers,
which might be wasteful of network resources in terms of AoI.
However, large freezing durations are also wasteful of physical
resources, giving rise to a trade-off between information
freshness and freeze duration. The reason for the particular
Erlang-k freezing is two-fold: First, the Erlang-k distribution
is suitable as the freezing model for the analytical method
making use of absorbing CTMCs, since this distribution is
obtained from time to absorption in a CTMC with k tran-
sient states. Second, as k → ∞, the Erlang-k distribution
converges to deterministic freezing in distribution. Therefore,
the analytical method developed for Erlang-k freezing can
be used with sufficiently large k in order to determine how
long, i.e., deterministically, the transmission process should be
frozen as a function of the system parameters. The method of
using Erlang-k distributions to mimic deterministic variables
for reasons of analytical tractability is known as Erlangization
in the applied probability literature [14], [15].

The contributions of this paper are as follows.
• For ZW, we adopt the absorbing Markov chain (AMC)

method of [10] to obtain the distribution and moments
of AoI (in addition to its mean obtained in [13]) and
also that of the PAoI process. The obtained distributions
are shown to be in matrix exponential form leading to
expressions for higher order moments involving matrix
inversion, for the GAW-2 system employing ZW policy.

• We propose a non-work conserving F/P (freeze/preempt)
policy for the GAW-2 system and use the AMC method
to derive the exact distribution of AoI for the GAW-2
system employing F/P policy in matrix exponential form,
and we show that preemption by the source improves the
AoI performance in comparison to ZW. We obtain further
performance improvements with freezing provided the
mean freezing time is chosen appropriately.

• For both ZW and F/P policies, the exact distribution and
moments of PAoI are also obtained in closed form by
employing the AMC method.

The remainder of this paper is organized as follows. Section II
summarizes the related work. Section III presents preliminaries
needed to follow the paper. In Section IV, detailed system
models for the ZW and F/P policies for the GAW-2 system
are given. Section V presents the analytical models for the
ZW and F/P policies, in two separate sub-sections. Validation
of the analytical models and comparative evaluation of the
proposed F/P policy is presented in Section VI. Conclusions,
open problems and future research directions are given in
Section VII.

II. RELATED WORK

Early results on AoI were obtained in a single-source single-
server setting. [5] derives the average AoI for various queuing
systems under the FCFS discipline, whereas [16] studies the
LCFS variation of the same problem. The authors of [17] study
the M/M/1/2∗ queue for which the packet waiting in the queue
is to be replaced by a fresh packet arrival. Reference [18]
considers the average age of information for a G/G/1/1 system

with blocking or preemption. The authors of [19] obtain the
exact distribution of AoI in a bufferless status update system
with probabilistic preemption, and also single-buffer systems
with probabilistic replacement of the buffered packet with a
newcoming fresh packet.

There has also been interest in queuing models for multi-
source status update systems. Stochastic hybrid systems (SHS)
approach was proposed in [20] for obtaining the mean AoI for
a single-buffer server handling status update packets randomly
arriving from multiple sources. This method has later been
extended to obtain the moment generating function (MGF)
and also the higher order moments of AoI, in various settings.
In [9], differential equations are derived for the temporal
evolution of both the moments and the MGF of the age vector
components for a variety of status update systems using the
SHS approach. The MGF of AoI has been obtained for a
bufferless multi-source non-preemptive or globally preemptive
status update system [21]. In [10], the authors propose the
AMC method to obtain the distribution of AoI for both GAW
and single-buffer servers, the latter allowing probabilistic
replacement of the packet in the waiting room.

Another line of research related to AoI is the presence of
path diversity in a status update system for which there are
multiple servers handling the transmission of status update
packets from a single source or from multiple sources. The
authors of [11] study the FCFS M/M/2 dual-server RA model
and propose a method to obtain the mean AoI as well as its
approximation and lower/upper bounds whereas [22] considers
a system with multiple paths where each path is modeled
as a preemptive LCFS M/M/1/1 queue and derives the mean
AoI using the SHS approach. Reference [23] studies a multi-
server RA system for which stale packets in the queue are not
dropped, and they show that the preemptive last generated first
serve (LGFS) policy simultaneously optimizes performance in
terms of data freshness, throughput, and delay when service
times are iid and exponentially distributed. The authors of [24]
derive the mean AoI for the LCFS RA model using SHS for a
single source and two heterogeneous servers, and also general
number of sources with either two or three homogeneous
servers.

The focus of this paper is a GAW status update system with
two heterogeneous servers, i.e., GAW-2, which is different
than the RA models studied above. The most relevant work to
our study is reference [13] which uses SHS to obtain the mean
AoI for the GAW-2 system employing the work-conserving
ZW policy, i.e., when a transmission is complete on a given
server, the successive transmission gets to start immediately,
and with out-of-order packets discarded at the monitor, when
the service times are exponentially distributed. The authors of
[25] additionally study the case when one of the service times
is deterministic and they derive closed-form expressions for
the average AoI and average peak AoI.

III. PRELIMINARIES

In the following, we describe an absorbing Markov chain
(AMC), its absorption probabilities, and distribution of time
until absorption, based on [26] and [27], that are needed to
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follow the proposed analytical method. We use bold letters
for vectors and matrices. Consider a continuous-time Markov
chain (CTMC) X(t), t ≥ 0, with N transient and M absorbing
states. Let the generator of this CTMC X(t) be written as,

Q =

[
S V
0 0

]
, (1)

where the N ×N matrix S and N ×M matrix V are
composed of the transition rates among the transient states, and
from the transient states to the absorbing states, respectively.
When all the absorbing states are merged into one single
absorbing state, the distribution of time until absorption to
any of these absorbing states, denoted by Θ, is known to have
a phase-type (PH-type) distribution with probability density
function (pdf) in the form,

fΘ(x) = σeSxν, (2)

where σ = {σj} is a 1×N row vector, σj denotes the initial
probability of being in transient state j, ν = V 1 = −S1
and 1 denotes a column vector of ones of appropriate size.
In this case, we say Θ ∼ PH(σ,S) of order N , i.e., Θ
is characterized with a vector σ, and a matrix S, with N
being the size of the characterizing matrices. The states are
also called phases of a PH-type distribution. The cumulative
distribution function (cdf) of Θ can be written as,

FΘ(x) = σ(eSx − I)S−1ν. (3)

Following the expression (2), the ith non-central moment of
Θ is written as,

E[Θi] =

∫ ∞

x=0

xkfΘ(x) dx = (−1)i+1i!σS−(i+1)ν. (4)

In particular,

E[Θ] = σS−2ν = −σS−11. (5)

The probability of absorption in state m, m = 1, . . . ,M , is
given by,

pm = −σS−1Vm, (6)

where Vm is the mth column of V . An exponentially dis-
tributed random variable X with mean λ−1 is PH-type of
order 1, i.e., X ∼ PH(1, λ). An Erlang-k distributed random
variable Xk ∼ Erl(λ, k) with mean λ−1 is the sum of k
independent exponentially distributed random variables each
with mean 1

kλ with Var(Xk) = 1
kλ2 , and hence as k → ∞,

Xk converges to a deterministic variable in distribution. For
the Erlang-k distribution, we are in phase 1 initially, and when
the corresponding AMC X(t) is in phase ℓ < k (resp. phase
k), then we transition to phase ℓ + 1 (resp. absorbing state)
both with intensity kλ, and the time until absorption is said
to possess an Erlang-k distribution with mean λ−1. Thus,
Xk ∼ PH(σk,Sk) with order k where

σk =
[
1 0 · · · 0

]
,

µ2

µ1

monitor

random process

sensor

server 2

server 1

Fig. 1. A status update system with one source, two heterogeneous servers,
and a monitor. In ZW, sampling/transmission takes place upon a service
completion, whereas it is governed by the freeze policy in F/P.

and

Sk =


−kλ kλ

−kλ kλ
. . . . . .

−kλ kλ
−kλ

 . (7)

IV. SYSTEM MODEL

We consider a single information source that samples a ran-
dom process and generates an information packet containing
the sample value, at will. There are two servers handling the
transmission of the source packets to the monitor, termed as
the GAW-2 model. The service time of server 1 (resp. 2) is
exponentially distributed with parameter µ1 (resp. µ2) and
without loss of generality we assume µ1 ≥ µ2. When a
transmission is over, the source is immediately acknowledged.
Packet errors during transmission are not assumed in this work.
The GAW-2 system is illustrated in Fig. 1.

In the zero wait (ZW) policy studied in [13], the source
immediately feeds any one of the servers with a fresh status
update packet immediately when it becomes available for
transmission. Therefore, ZW is work-conserving, i.e., the
server never idles. Since the two servers are independent, it is
possible that packets can reach the destination out-of-order. In
ZW, in order for a received information packet to be accepted
at the monitor, it needs to have been sampled at a later time
than the most recently accepted packet, since otherwise it
would not reduce the AoI. Otherwise, this out-of-order packet
is discarded.

We propose to have the following modifications on ZW with
the F/P (freeze/preempt) policy introduced in this paper:

• Whenever a transmission starts on one of the servers,
the sampling and transmission process is frozen for
an Erlang-k duration Xk which reduces to exponential
freezing for k = 1 and deterministic freezing for k → ∞.
The motivation behind freezing stems from the observa-
tion that, if two packets with close-by timestamps are
to be transmitted over the two servers, one of these
packets, even in case it is not discarded, will have a low
contribution to the AoI at the monitor. As a consequence
of freezing, F/P is non-work conserving, i.e., servers may
occasionally be idle in F/P.

• If both servers turn out to be available when a freeze
period ends for F/P, the newly generated status update
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Fig. 2. Sample path of the AoI process ∆(t). Only generation and reception
instances of successful packets are shown.

packet is sent over the faster server 1. This situation does
not arise for ZW.

• When a packet is acknowledged with a time stamp
later than the one in service, then the packet in service
becomes obsolete. In the F/P policy, an obsolete packet
is preempted by the source while in service. This is in
contrast to the ZW scheme of [13], where an obsolete
packet is discarded at the monitor after its transmission
is complete.

We now describe the AoI process for the GAW-2 system
that applies to both ZW and F/P. Let tl and dl denote the
instances at which the lth successful packet is generated by the
source and received by the monitor, respectively. Unsuccessful
packets are those that are generated but not received by the
monitor due to discarding at the monitor (resp. preemption at
the source) for ZW (resp. F/P). Successful packets are the ones
that are accepted by the monitor (resp. received at the monitor)
for ZW (resp. F/P). Let ul denote the system time of the lth
successful packet, i.e., ul = dl − tl. Fig. 2 presents a sample
path of the AoI process ∆(t) (thick red solid curve). During
cycle-l, ∆(t) increases with unit slope from the value ul at
time dl until the value Φl at time dl+1 when it drops down
to ul+1. The random process Φl, l ≥ 1 is called the peak AoI
(PAoI) process. ∆ (resp. Φ) denotes the steady-state random
variable for the random process ∆(t) (resp. Φl) with cdf F∆,
i.e., F∆(x) = limt→∞ P(∆(t) ≤ x), x ≥ 0, (resp. FΦ, i.e.,
FΦ(x) = liml→∞ P(Φl ≤ x), x ≥ 0) and f∆ (resp. fΦ)
denotes its pdf.

V. ANALYTICAL MODELS FOR GAW-2

A. Zero Wait (ZW) Policy

The AMC-based method we propose for GAW-2 is based
on [10] and is composed of the following three steps. We
observe from Fig. 2 that, a single AoI cycle (e.g., cycle-l)
starts with the reception of a successful packet (e.g., at time
dl) and continues until the reception of the next successful
packet (e.g., at dl+1). In the first step of the AMC method,
we construct an AMC Y (t) with two absorbing states, which
starts operation at time t = 0 (corresponding to t = tl in

TABLE I
TRANSIENT AND ABSORBING STATES OF THE AMC PROCESS Y (t) FOR

ZW POLICY.

State Description
1 P∗ on S1, T2 ≤ T1

2 P∗ on S1, T2 > T1

3 P∗ on S2, T1 ≤ T2

4 P∗ on S2, T1 > T2

5 P1, P2 up to date
6 P1 up to date, P2 obsolete
7 P1 obsolete, P2 up to date
8 Successful absorbing state
9 Unsuccessful absorbing state

TABLE II
TRANSITION RATES FOR THE AMC PROCESS Y (t) FOR ZW.

Transition Rates Transition Rates
From To Value From To Value
1 6 µ1 2 5 µ1

2 µ2 9 µ2

3 4 µ1 4 9 µ1

7 µ2 5 µ2

5 8 µ1 + µ2 6 8 µ1

5 µ2

7 5 µ1

8 µ2

Fig. 2) with the generation of an arbitrary packet, say P∗. The
transient and absorbing states (resp. transition rates) of this
AMC are given in Table I (resp. Table II). Note that, when this
particular packet P∗ is successful (this happens when t = dl in
Fig. 2), then the AMC continues evolving until the reception of
the next successful packet upon which we reach the successful
absorbing state 8 (corresponding to t = dl+1 in Fig. 2). If this
packet is discarded or preempted, the AMC is absorbed into
the unsuccessful absorbing state 9. In these tables, Si stands
for server i, Pi stands for the packet transmitted on Si, and
Ti stands for the time stamp, i.e., packet generation instance,
of the packet in transmission on Si. In fact, we do not need
the actual Ti values, but instead we need to keep track of
whose time stamp is earlier to identify obsolete packets. A
packet in transmission becomes obsolete, when another packet
is received with a later time-stamp. Otherwise, the packet is
up to date. Note that Si, i = 1, 2 is always busy transmitting
a packet for the ZW policy due to its work-conserving nature.

We now explain the transition rates:
• When in state 1, either P∗ completes with intensity µ1,

in which case Y (t) will transition to state 6 since at
this point P2 becomes obsolete, or P2 completes with
intensity µ2 upon which a transition to state 2 takes place
with a fresh packet placed at server 2.

• In state 2, either P∗ completes with intensity µ1, in which
case Y (t) will transition to state 5, or P2 completes
with intensity µ2 upon which P∗ becomes obsolete and
absorption into state 9 occurs.



5

• The behaviors in states 3 and 4 are similar to states 1
and 2, respectively, except that P∗ resides in S2 instead
of S1.

• In states 5, 6, and 7, P∗ has been successfully received
and we need one more up to date packet to complete. In
state 5, neither of the packets in service is obsolete, and
upon a service completion, either on S1 or S2, the AMC
is absorbed into state 8.

• When in state 6 (resp. state 7), P2 (resp. P1) is obsolete
and will be discarded with intensity µ2 (resp. µ1), or with
intensity µ1 (resp. µ2), the up to date packet following
P∗ will be received at the monitor leading to absorption
into state 8.

Consequently, in this step, we obtain the 9×9 infinitesimal
generator Q of the AMC Y (t) as follows,

Q =



∗ µ2 0 0 0 µ1 0 0 0
0 ∗ 0 0 µ1 0 0 0 µ2

0 0 ∗ µ1 0 0 µ2 0 0
0 0 0 ∗ µ2 0 0 0 µ1

0 0 0 0 ∗ 0 0 µ1 + µ2 0
0 0 0 0 µ2 ∗ 0 µ1 0
0 0 0 0 µ1 0 ∗ µ2 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


,

(8)

where the 7× 7 north-west block is denoted by S, the 7× 2
north-east block is denoted by V , Vi, i = 1, 2 denoting the
ith column of V , and the ∗ symbol should be chosen to make
the row sums zero. Note that Q is in the same form as (1).

In the second step of the proposed method, we obtain
the initial probability vector of the AMC Y (t) which is
not difficult to find for the ZW policy since a new packet
generation occurs according to a Poisson process with rate
µ1 + µ2, i.e., when a server becomes available, and the new
packet will be placed at S1 (resp. S2) with probability µ1

µ1+µ2

(resp. µ2

µ1+µ2
). Therefore, the initial probability vector, σ, of

the AMC Y (t) is given by the 1× 7 row vector σ,

σ =
[ µ1

µ1+µ2
0 µ2

µ1+µ2
0 0 0 0

]
. (9)

In the third and final step, we first obtain the pdf of the
PAoI, and subsequently that of the AoI process. We observe
that the dashed black curve in Fig. 2 starting at tl until dl+1

amounts to the time spent before absorption for the AMC Y (t)
in successful absorption cycles. The portion of this curve from
tl until dl is spent in states 1 to 4 which does not overlap with
the AoI curve. On the other hand, the remaining portion of this
curve from dl until dl+1 spent in states 5 to 7 is the same as
the AoI curve in cycle-l. Revisiting Fig. 2, the distribution
of the time to absorption, denoted by Γ of the AMC Y (t),
conditioned on successful absorption, overlaps with that of
the steady-state PAoI, Φ. Also note that the distribution of Γ
conditioned on unsuccessful absorption, is not needed at all,
for AoI or PAoI distributions. Therefore,

FΦ(x) = P(Φ ≤ x), (10)
= P(Y (x) = 8|Y (∞) = 8), (11)

=
P(Y (x) = 8)

P(Y (∞) = 8)
, (12)

=
σ(eSx − I)S−1V1

−σS−1V1
. (13)

The pdf of the peak AoI, Φ, is obtained by differentiating the
above expression with respect to x,

fΦ(x) =
σeSxV1

−σS−1V1
, x ≥ 0, (14)

with its mean value given by,

E[Φ] =
σS−2V1

−σS−1V1
. (15)

Let us now turn our attention to the steady-state AoI, ∆.
For this purpose, we visit Fig. 2 to observe that the probability
P(x < ∆ ≤ x + dx) is proportional with dx times the value
x is exceeded for the AMC process Y (t), i.e., P(Y (x) ∈ A)
with A being the set of three transient states that overlap with
the AoI curve, i.e., A = {5, 6, 7} (see Fig. 2) conditioned
on absorption into the successful absorbing state 8. Actually,
P(x < ∆ ≤ x + dx) is P(Y (x) ∈ A|Y (∞ = 8)) dx divided
by the mean AoI cycle length. Mathematically, there is a
proportionality constant κ such that

f∆(x) = κ P(Y (x) ∈ A|Y (∞ = 8)), (16)

= κ
P(Y (x) ∈ A)

P(Y (∞) = 8)
. (17)

Noting that the above expression needs to integrate to one, we
have

f∆(x) =
σeSxθ

−σS−1θ
, x ≥ 0, (18)

where θ is a 7× 1 vector given by,

θ =
[
0 0 0 0 1 1 1

]⊤
, (19)

with the mean AoI written as,

E[∆] =
σS−2θ

−σS−1θ
. (20)

For ZW, the matrix structure of S allows one to explicitly
write the matrix inverse S−1 as,

S−1 = − 1

µ1+µ2



1 µ′
2 0 0 2µ′

1µ
′
2 µ′

1 0
0 1 0 0 µ′

1 0 0
0 0 1 µ′

1 2µ′
1µ

′
2 0 µ′

2

0 0 0 1 µ′
2 0 0

0 0 0 0 1 0 0
0 0 0 0 µ′

2 1 0
0 0 0 0 µ′

1 0 1


,

(21)

where µ′
i = µi/(µ1 +µ2), i = 1, 2, which consequently gives

the following closed form expressions for E[Φ] and E[∆],

E[Φ] =
2(µ1 + µ2)

µ2
1 + µ1µ2 + µ2

2

, (22)

E[∆] =
2(µ2

1 + 3µ1µ2 + µ2
2)

(µ1 + µ2)3
, (23)

and the latter expression for mean AoI overlaps with the result
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TABLE III
TRANSIENT AND ABSORBING STATES OF THE AMC PROCESS Z(t) FOR
THE GAW-2 SYSTEM EMPLOYING F/P POLICY. IF (RESP. NIF) STANDS

FOR IN FREEZE (RESP. NOT IN FREEZE).

State Description
(1, ℓ), 1 ≤ ℓ ≤ k P∗ on S1, S2 idle, IF
(2, ℓ), 1 ≤ ℓ ≤ k P∗ on S2, S1 idle, IF

3 P∗ on S1, S2 busy, T1 < T2, NIF
(4, ℓ), 1 ≤ ℓ ≤ k P∗ on S1, S2 busy, T1 < T2, IF

5 P∗ on S1, S2 busy, T1 > T2, NIF
(6, ℓ), 1 ≤ ℓ ≤ k P∗ on S1, S2 busy, T1 > T2, IF

7 P∗ on S2, S1 busy, T1 > T2, NIF
(8, ℓ), 1 ≤ ℓ ≤ k P∗ on S2, S1 busy, T1 > T2, IF

9 P∗ on S2, S1 busy, T1 < T2, NIF
(10, ℓ), 1 ≤ ℓ ≤ k P∗ on S2, S1 busy, T1 < T2, IF
(11, ℓ), 1 ≤ ℓ ≤ k Both servers are idle, IF
(12, ℓ), 1 ≤ ℓ ≤ k P1 on S1, S2 idle, IF
(13, ℓ), 1 ≤ ℓ ≤ k P2 on S2, S1 idle, IF

14 P1 on S1, P2 on S2

15 Successful absorbing state
16 Unsuccessful absorbing state

obtained in [13] for mean AoI for the ZW policy. We note
that the distribution, and hence the higher order moments of
AoI, and additionally of PAoI, are further obtained for the ZW
policy, with the AMC method presented in this paper.

B. Freeze/Preempt (F/P) Policy

For the first step of the AMC method for the F/P policy,
we construct an AMC Z(t) with two absorbing states, similar
to the case of the ZW policy, which starts operation at time
t = 0 (corresponding to t = tl in Fig. 2) with the generation
of an arbitrary packet, say P∗. The transient and absorbing
states (resp. transition rates) of the proposed AMC are given in
Table III (resp. Table IV). IF (in freeze) states are the ones that
a new transmission cannot be initiated, whereas NIF (not in
freeze) states are the ones a transmission can be initiated upon
availability of either of the two servers. An IF state is visited
after the F/P policy forces a freeze upon a new transmission
in which case we need to keep track of the phase ℓ of the
Erlang-k freeze duration which gives rise to the transient
states (j, ℓ), j ∈ F = {1, 2, 4, 6, 8, 10, 11, 12, 13} in which
the system is in a freeze period modeled with an Erlang-k
distribution with mean λ−1 and order k. This is in contrast to
ZW where we did not have any freeze states.

The explanation for the transition rates related to freezing
are as follows:

• When Z(t) is in state (j, ℓ), 1 < ℓ < k, j ∈ F , then a
transition to (j, ℓ + 1) occurs with intensity kλ and the
phase of the freeze period is incremented by one.

• When in state (j, k), j ∈ F , the freeze period ends with
intensity kλ. In this situation, when there are no idle
servers, i.e., j ∈ {4, 6, 8, 10}, then a state transition from
the IF state (j, k) to the corresponding NIF state j − 1,
takes place. When there are idle servers, then a fresh
packet will be generated and will be placed on the free

TABLE IV
TRANSITION RATES FOR THE AMC PROCESS Z(t) FOR THE GAW-2

SYSTEM EMPLOYING F/P POLICY.

Transition Rates
From To Value
(1, ℓ) (1, ℓ+ 1) when ℓ < k kλ

(4, 1) when ℓ = k kλ
(11, ℓ) µ1

(2, ℓ) (2, ℓ+ 1) when ℓ < k kλ
(8, 1) when ℓ = k kλ

(11, ℓ) µ2

3 14 µ1

16 µ2

(4, ℓ) (4, ℓ+ 1) when ℓ < k kλ
3 when ℓ = k kλ

(13, ℓ) µ1

16 µ2

5 (12, 1) µ1

(4, 1) µ2

(6, ℓ) (6, ℓ+ 1) when ℓ < k kλ
5 when ℓ = k kλ

(11, ℓ) µ1

(1, ℓ) µ2

7 16 µ1

14 µ2

(8, ℓ) (8, ℓ+ 1) when ℓ < k kλ
(7, 1) when ℓ = k kλ

16 µ1

(12, ℓ) µ2

9 (8, 1) µ1

(12, 1) µ2

(10, ℓ) (10, ℓ+ 1) when ℓ < k kλ
(9, 1) when ℓ = k kλ

(2, ℓ) µ1

(12, ℓ) µ2

(11, ℓ) (11, ℓ+ 1) when ℓ < k kλ
(12, 1) when ℓ = k kλ

(12, ℓ) (12, ℓ+ 1) when ℓ < k kλ
14 when ℓ = k kλ

15 µ1

(13, ℓ) (13, ℓ+ 1) when ℓ < k kλ
14 when ℓ = k kλ

15 µ2

14 15 µ1 + µ2

server (on server 1 if both are idle). While doing so, a
new freeze period is initiated and the phase of the freeze
period is set to one. These observations lead the CTMC
Z(t) to transition from state (1, k) to (4, 1), from state
(2, k) to (8, 1), and from state (11, k) to (12, 1).

• The transitions to state 14 are from states (12, k) and
(13, k), at which there is no need to keep track of the
phase of the freeze period since the successful absorbing
state is reached upon a service completion from either of
the two servers at this state.

We explain the transition rates related to absorption into either
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one of the two absorbing states 15 and 16 as follows:
• When Z(t) is visiting state 3 or (4, ℓ), P∗ is on S1, S2 is

busy transmitting a fresher packet item than P∗ at which a
service completion at S2 occurs with intensity µ2. In this
case, P∗ is discarded at the source leading to absorption
into state 16.

• When Z(t) is visiting state 7 or (8, ℓ), P∗ is on S2, S1 is
busy transmitting a fresher packet item than P∗ at which a
service completion at S1 occurs with intensity µ1. Then,
P∗ is discarded and Z(t) is absorbed into state 16.

• In states (12, ℓ), (13, ℓ), and 14, P∗ was already success-
fully transmitted, and with transition intensities, µ1, µ2

and µ1+µ2, respectively, the packet following P∗ is to be
successfully transmitted leading to absorption into state
15.

We explain the transition rates for the NIF states:
• At NIF state 3 (resp. state 7), S1 (resp. S2) completes

its transmission of P∗ with intensity µ1 (resp. µ2) and
the timestamp of P∗ is smaller than the other packet in
transmission. Thus, S2 (resp. S1) continues transmitting
its packet, and a fresh packet is transmitted on the free
server S1 (resp. S2) leading to a state transition to state
14.

• At NIF state 5 (resp. state 9), S1 (resp. S2) completes its
transmission of P∗ with intensity µ1 (resp. µ2) and since
the timestamp of P∗ is larger than the other packet in
transmission, packet on S2 (resp. S1) is discarded, both
servers become idle, and a fresh packet is thus transmitted
on the free server S1 leading to a state transition to state
(12, 1) in both cases.

• At NIF state 5, S2 completes the transmission with
intensity µ2 and a new transmission on S2 is immediately
initiated which leads a transition to state (4, 1). Similarly,
at NIF state 9, S1 completes the transmission with
intensity µ1 and a new transmission on S1 is immediately
initiated which leads a transition to state (8, 1).

Using Table IV, at this point, we have obtained the generator
Q of size 9k + 7 where the north-west block of size 9k + 5
is denoted by S, the 9k + 5 × 2 north-east block is denoted
by V , Vi, i = 1, 2 denoting the ith column of V , in line with
the general form of the generator given in Eqn. (1).

In the second step of the algorithm, we need to obtain
1 × 9k + 5 initial probability vector β of the AMC Z(t).
However, one cannot write this vector directly as was the case
for ZW. For this purpose, we first construct a recurrent, i.e., no
transient states, CTMC W (t), t ≥ 0 whose state space is very
different from that of Z(t). With the construction of W (t)
and its steady-state probabilities, we would know exactly the
view of the system from the perspective of a newly generated
packet. The states of the recurrent MC (RMC) are given in
Table V and its transition rates are given in Table VI.

Now, let π(j, ℓ), 1 ≤ ℓ ≤ k (resp. π(i), i = 6, 7) denote the
steady-state probability of being in state (j, ℓ) (resp. state i),
at an arbitrary time. These probabilities can be found from the
stationary probabilities of the generator P with size 5k + 2
constructed out of the transition rates given in Table VI. Let f
denote the overall intensity of new packets joining the GAW-2

TABLE V
STATES OF THE RMC W (t) FOR THE GAW-2 SYSTEM EMPLOYING F/P

POLICY. IF (RESP. NIF) STANDS FOR IN FREEZE (RESP. NOT IN FREEZE).

State Description
(1, ℓ), 1 ≤ ℓ ≤ k both servers are idle
(2, ℓ), 1 ≤ ℓ ≤ k S1 busy, S2 idle
(3, ℓ), 1 ≤ ℓ ≤ k S1 idle, S2 busy
(4, ℓ), 1 ≤ ℓ ≤ k P1 on S1, P2 on S2, T1 < T2, IF
(5, ℓ), 1 ≤ ℓ ≤ k P1 on S1, P2 on S2, T1 > T2, IF

6 P1 on S1, P2 on S2, T1 < T2, NIF
7 P1 on S1, P2 on S2, T1 > T2, NIF

TABLE VI
TRANSITION RATES FOR THE RMC PROCESS W (t) FOR THE GAW-2

SYSTEM EMPLOYING F/P POLICY.

Transition Rates
From To Value
(1, ℓ) (1, ℓ+ 1) when ℓ < k kλ

(2, 1) when ℓ = k kλ
(2, ℓ) (2, ℓ+ 1) when ℓ < k kλ

(4, 1) when ℓ = k kλ
(1, ℓ) µ1

(3, ℓ) (3, ℓ+ 1) when ℓ < k kλ
(5, 1) when ℓ = k kλ

(1, ℓ) µ2

(4, ℓ) (4, ℓ+ 1) when ℓ < k kλ
6 when ℓ = k kλ

(3, ℓ) µ1

(1, ℓ) µ2

(5, ℓ) (5, ℓ+ 1) when ℓ < k kλ
7 when ℓ = k kλ

(1, ℓ) µ1

(2, ℓ) µ2

6 (5, 1) µ1

(2, 1) µ2

7 (2, 1) µ1

(4, 1) µ2

system. It is not difficult to see that new packet arrivals can
only be generated at NIF states, and therefore,

f = kλ

3∑
j=1

π(j, k) + (µ1 + µ2)

7∑
i=6

π(i). (24)

Now, we are ready to link the RMC W (t) to the AMC Z(t).
For this purpose, we need to find out which state of the AMC
Y (t) a new packet P∗ will be at, just after joining the GAW-2
system. We observe the following:

• Let the probability p1 be defined as p1 = (kλπ(1, k) +
µ2π(6)+µ1π(7))/f . With probability p1, the new packet
P∗ will join the system at state (1, 1) of the AMC Z(t).

• Let the probability p2 be defined as p2 = (kλπ(2, k) +
µ2π(7))/f . With probability p2, the new packet P∗ will
join the system at state (10, 1) of the AMC Z(t).

• Let the probability p3 be defined as p3 = (kλπ(3, k) +
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µ1π(6))/f . With probability p3, the new packet P∗ will
join the system at state (6, 1) of the AMC Z(t).

Based on these observations, the initial probability vector
β is found as a row vector of zeros except for the entries
corresponding to states (1, 1), (10, 1), and (6, 1) (of the AMC
Z(t)) with the values p1, p2, and p3, respectively.

At the beginning of the final step, we have obtained the
characterizing matrices β, S, and V1 of the AMC Z(t). We
observe that the dashed black curve in Fig. 2 starting at tl
until dl+1 amounts to the time spent before absorption for the
AMC Z(t) in successful absorption cycles. The portion of this
curve from tl until dl is spent in states (1, ·)-(10, ·) at which
P∗ is always present and this portion of the curve does not
overlap with the AoI curve. On the other hand, the portion
of this curve from dl until dl+1 spent in states (11, ·)-(13, ·)
and state 14 is the same as the AoI curve in cycle-l. Similar
to the analysis of ZW, we construct a column vector h being
all zeros except for a unit entry corresponding to the states
(j, ℓ), 11 ≤ j ≤ 13, 1 ≤ ℓ ≤ k, and also the state 14. Finally,
the density of peak AoI, the mean peak AoI, the density of
AoI, and the mean AoI, are given by the same expressions
(14),(15),(18) and (20), respectively, which were obtained for
the ZW policy. We omit the proofs which are identical to those
presented for ZW once the AMC Z(t) is constructed.

VI. NUMERICAL EXAMPLES

In the first numerical example, we validate the analytical
model developed for the F/P policy by simulations. For this
purpose, we fix µ1 = 0.5, µ2 = 0.1, λ = 1. For three values of
the parameter k ∈ {1, 10, 50}, we employ Erlang-k freezing
and using the analytical model (A) and simulations (S), we
obtain the cdf of PAoI and AoI, namely FΦ(x) and F∆(x),
respectively, which are depicted in Fig. 3 which shows that
the analytical and simulation results are in perfect agreement.
Moreover, the PAoI and AoI distributions obtained with k =
10 and k = 50 are very close which shows that an Erlang-
10 freezing time can quite accurately be used to obtain an
approximation of the actual AoI distribution with deterministic
freezing in dual status update systems.

In the second numerical example, we fix k = 50 and study
the performance of the F/P policy in terms of mean PAoI
and mean AoI as a function of the freezing rate λ. As in the
previous example, we fix µ2 = 0.1. The mean PAoI (resp.
mean AoI) is plotted in Fig. 4 (resp. Fig. 5) for the F/P policy
as a function of λ for two values of µ1 ∈ {0.1, 0.5}. The
results show that freezing does not improve the mean PAoI
performance and needs to be avoided if one is interested in the
minimization of mean PAoI only. However, preemption-only
policy (obtained from F/P as λ → ∞) is shown to be beneficial
in terms of mean PAoI in comparison to ZW, especially when
the service rates of the two servers are close to each other.
This situation is different when the mean AoI is taken as the
performance metric; see Fig. 5. For small values of λ, the
mean freezing time is long and therefore the servers are not
efficiently utilized leading to a rise in mean AoI. However,
there appears to be a value of λ, called λ∗, at which the
mean AoI takes its minimum value. When λ > λ∗, the mean

AoI rises to its asymptotic value as λ → ∞, i.e., freezing is
abandoned. Therefore, with proper choice of the mean freezing
time, F/P outperforms ZW not only with preemption at the
source feature, but also with freezing. Moreover, mean AoI
appears to be a unimodal function (see [28] of the freezing
rate λ which means that there is exactly one point λ∗ on
the interval λ ∈ (0,∞) for which the mean AoI takes its
minimum value and when λ < λ∗ (resp. λ > λ∗), mean
AoI is a strictly decreasing function (resp. strictly increasing
function) of λ. There are efficient search algorithms for finding
the minimum of unimodal functions such as the Golden section
search algorithm [28], [29] which does not require the use of
derivatives.

In the final numerical example, for the case of µ1 = 1, we
compare ZW against the preemption-only policy, i.e., freezing
disabled, and also with Erlang-k freezing for three choices
of k ∈ {1, 10, 50} each employing the optimum freezing
rate λ∗ using the analytical model developed in this paper
along with the Golden section search algorithm detailed in
[28], [29]. The optimum mean freezing time is denoted by
F ∗ which is the reciprocal of λ∗. Mean AoI is obtained for
the preemption-only policy by setting k = 1 and a very large
freezing rate, i.e., λ = 108, without having to construct a
separate AMC-based model for this specific scenario. For each
of the studied policies, we compute the percentage reduction
in mean AoI with respect to the ZW policy for varying values
of µ2 ∈ [0.01, 1]. The results are depicted in Fig. 6. We have
the following observations. We observe that a reduction in
mean AoI of up to % 10 is possible with the preemption-only
policy. By enabling freezing using the mean freezing time
F ∗, larger reductions in mean AoI up to % 13.60 (attained
when µ2 equals 0.7943) are possible for larger choices of k,
which leads us to conclude that deterministic freezing appears
to be more advantageous than random freezing. The optimum
freezing time F ∗ is plotted in Fig. 7 as a function of µ2 for
the three F/P policies corresponding to k ∈ {1, 10, 50}. We
observe that F ∗ increases when heterogeneity increases, i.e.,
µ2 ≪ µ1. On the other hand, when µ1 = µ2, F ∗ = 0.2894
for k = 50 which is significantly different than zero.

VII. CONCLUSIONS AND FUTURE WORK

We propose a non-work conserving F/P (freeze/preempt)
policy for a status update system with one information source
and dual servers. For the conventional ZW (zero wait) policy
as well as F/P policy with Erlang-k distributed freezing under
the assumption of exponentially distributed service times,
we propose an analytical model based on absorbing Markov
chains to exactly obtain the distributions of AoI and PAoI. We
validate the analytical model with simulations. We also show
that freezing is not advantageous for mean PAoI. However,
freezing can be quite beneficial for mean AoI reduction with
the appropriate choice of the freezing time, which is shown to
be possible thanks to the developed analytical model in con-
junction with the use of the Golden section search algorithm.
It is also shown that preemption at the source is beneficial
for both mean PAoI and AoI, in contrast to discarding at
the monitor, a feature that belongs to the ZW policy. Future
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Fig. 3. (a) CDF of PAoI, FΦ(x), (b) CDF of AoI, F∆(x), depicted as a function of x for Erlang-k distributed freeze time with k ∈ {1, 10, 50}. (S) and
(A) refer to results obtained with simulations and the analytical method, respectively.
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Fig. 4. Mean PAoI obtained with F/P policy as a function of λ when µ2 = 0.1
and (a) µ1 = 0.1 (b) µ1 = 0.5. The mean PAoI for the ZW policy obtained
with (22) is also depicted as reference.
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with (23) is also depicted as reference.

work could investigate the possibility of developing analytical
models using absorbing Markov chains, for status update
systems involving more than two servers, packet errors, non-
exponentially distributed service times, and random arrivals.
Another future extension may involve the study of multiple
sources and multiple servers.
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