
AIOps Solutions for Incident Management: Technical
Guidelines and A Comprehensive Literature Review
YOUCEF REMIL, University of Lyon, INSA Lyon, France and Infologic, France
ANES BENDIMERAD, Infologic, France
ROMAIN MATHONAT, Infologic, France
MEHDI KAYTOUE, University of Lyon, INSA Lyon, France and Infologic, France

The management of modern IT systems poses unique challenges, necessitating scalability, reliability, and
efficiency in handling extensive data streams. Traditional methods, reliant on manual tasks and rule-based
approaches, prove inefficient for the substantial data volumes and alerts generated by IT systems. Artificial
Intelligence for Operating Systems (AIOps) has emerged as a solution, leveraging advanced analytics like
machine learning and big data to enhance incident management. AIOps detects and predicts incidents, identifies
root causes, and automates healing actions, improving quality and reducing operational costs. However, despite
its potential, the AIOps domain is still in its early stages, decentralized across multiple sectors, and lacking
standardized conventions. Research and industrial contributions are distributed without consistent frameworks
for data management, target problems, implementation details, requirements, and capabilities. This study
proposes an AIOps terminology and taxonomy, establishing a structured incident management procedure and
providing guidelines for constructing an AIOps framework. The research also categorizes contributions based
on criteria such as incident management tasks, application areas, data sources, and technical approaches. The
goal is to provide a comprehensive review of technical and research aspects in AIOps for incident management,
aiming to structure knowledge, identify gaps, and establish a foundation for future developments in the field.

CCS Concepts: • General and reference → Surveys and overviews; • Computing methodologies →
Artificial intelligence; • Computer systems organization →Maintainability and Maintenance.

1 INTRODUCTION
1.1 Context and Motivation
IT environments of today are constantly becoming larger and more complex as new technologies
emerge and new work methods are adopted. They encounter challenges in ensuring efficiency and
reliability. Many organizations are transitioning from product delivery to service releases, shifting
from traditional static infrastructures to dynamic blends of on-premises, managed, private, and
public cloud environments. Due to factors like device mobility, evolving runtime environments,
frequent updates, upgrades, and online repairs, these systems are increasingly vulnerable to fail-
ures [66, 73, 196, 220]. According to Lin et al. [153], Microsoft’s Azure cloud system experiences
failures in approximately 0.1% of its server nodes daily. Such failures can lead to reduced system
availability, financial losses, and negative user experiences [64]. Surveys conducted by the Interna-
tional Data Corporation (IDC) reveal that application downtime can cost businesses up to $550,000
per hour [52, 88, 108]. These significant losses trigger the need for autonomic and self-managing
systems to address the root causes of failures and enhance the quality and responsiveness of IT
services [46, 89, 213].
Traditional IT management solutions, relying on expert systems and rule-based engines, fre-

quently encounter shortcomings in adaptiveness, efficiency, and scalability [136, 205]. These solu-
tions often overlook the real-time state of a system, leading to inaccurate predictive analysis based

Authors’ addresses: Youcef Remil, yre@infologic.fr, University of Lyon, INSA Lyon, CNRS UMR 5205, FR-69621, Lyon, France
and Infologic, 99 avenue de Lyon, FR-26500, Bourg-Lès-Valence, France; Anes Bendimerad, abe@infologic.fr, Infologic, 99
avenue de Lyon, FR-26500, Bourg-Lès-Valence, France; Romain Mathonat, rma@infologic.fr, Infologic, 99 avenue de Lyon,
FR-26500, Bourg-Lès-Valence, France; Mehdi Kaytoue, mka@infologic.fr, University of Lyon, INSA Lyon, CNRS UMR 5205,
FR-69621, Lyon, France and Infologic, 99 avenue de Lyon, FR-26500, Bourg-Lès-Valence, France.

ar
X

iv
:2

40
4.

01
36

3v
1

 [
cs

.O
S]

 1
 A

pr
 2

02
4

2 Remil et al.

on its current condition. Additionally, they are rooted in a conventional engineering mindset that
emphasizes manual execution of repetitive tasks and individual case analysis, often relying on bug
reproduction steps or detailed logs [73].

These factors have sparked interest in replacing multiple conventional maintenance tools with
an intelligent platform capable of learning from large volumes of data to proactively respond to
incidents. Accordingly, organizations are turning to AIOps to prevent and mitigate high-impact
incidents. The term AIOps was initially introduced in 2017 by Gartner to address the AI challenges
in DevOps [205]. Initially, AIOps stemmed from the concept of IT Operations Analytics (ITOA).
However, with the growing popularity of AI across various domains, Gartner later redefined AIOps
based on public opinion, characterizing it as Artificial Intelligence for Operating systems [226].
AIOps involves the application of big data and machine learning techniques to intelligently enhance,
strengthen, and automate various IT operations [73, 196, 205]. AIOps learns from a diverse range
of data collected from services, infrastructures, and processes. Subsequently, it autonomously
takes initiatives to detect, diagnose, and remediate incidents in real-time, leveraging this acquired
knowledge [66, 73, 205].
To date, a universally accepted formal definition of AIOps is yet to emerge due to its novelty

and its expansive scope bridging research and industry. While some definitions focus solely on the
capabilities and benefits of AIOps, without delving into its conceptual framework and operational
processes, several research efforts have taken the initiative to propose a comprehensive definition
(refer to Table 1). These definitions commonly converge on two key points [196]. Firstly, AIOps
entails the application of artificial intelligence to enhance, fortify, and automate a wide range of
IT operating systems. Secondly, AIOps emphasizes the provision of complete visibility, control,
and actionable insights into the past, present, and potentially future states of the system. Other
definitions also emphasize the importance of various aspects such as robust data collection, data
ingestion and effective querying capabilities, scalable infrastructure, and real-time operations. It
is highly important to note that AIOps extends beyond the management of incidents and the
automation of maintenance processes. We concur with the findings of [196] that AIOps includes
two primary subareas: incident management and resource management, as depicted in Figure 1.
While the resource management procedure covers techniques for optimal allocation and utilization
of resources for IT operations, our study specifically focuses on exploring the capabilities of AIOps
to assist the incident management procedure. Our objective is to redesign and categorize the entire
maintenance workflow routines related to incident management. This is achieved by considering
the diverse array of contributions made in AIOps and aligning them with the industrial needs
through clearly defined phases.

1.2 Focus of this Review: AIOps for Incident Management
Building upon the work of [205, 226], we propose that a prototypical AIOps system comprises six
fundamental abilities that give rise to various tasks within the incident management procedure.
Perception. This capability centers on the ability to gather heterogeneous data sources, including
log and event data, key performance metrics, network traffic data, and more, from a multitude of
sources, such as networks, infrastructure, and applications. It is essential that the ingestion process
accommodates both real-time streaming and historical data analysis. Additionally, powerful data
visualization, querying, and indexing mechanisms are also necessary elements.
Prevention. This process entails actively identifying potential failures and forecasting high-severity
outages in the system. Preventing incidents is crucial for maintaining a healthy and robust system.
Therefore, implementing an automated system that continuously monitors system health and
promptly alerts administrators about potential problems is essential.

AIOps Solutions for Incident Management: Technical Guidelines and A Comprehensive Literature Review 3

Table 1. Available AIOps definitions with corresponding capabilities.

Work Provided Definition Capabilities

[205] "AIOps platforms combine big data and machine learning functionality to
support all primary IT operations functions through the scalable ingestion and
analysis of the ever-increasing volume, variety, and velocity of data generated
by IT. The platform enables the concurrent use of multiple data sources, data
collection methods, and analytical and presentation technologies"

Performance Analysis, Anomaly
Detection, Event Correlation, IT
Service Management, and
Automation

[73] "AIOps is about empowering software and service engineers (e.g., developers,
program managers, support engineers, site reliability engineers) to efficiently
and effectively build and operate online services and applications at scale with
artificial intelligence (AI) and machine learning (ML) techniques"

High Service Intelligence, High
Customer Satisfaction, High
Engineering productivity

[216] "AIOps is a methodology that is on the frontier of enterprise IT operations.
AIOps automates various aspects of IT and utilizes the power of artificial
intelligence to create self-learning programs that help revolutionize IT
services"

Improving human-AI collaboration,
Monitoring and Proactive IT work,
Efficient time saving, Faster Mean
Time To Repair

[46] "AIOps is an emerging interdisciplinary field arising in the intersection
between the research areas of machine learning, big data, streaming analytics,
and the management of IT operations"

Efficient Resource Management
and Scheduling, Complex failure
management

Fig. 1. Exploring the research landscape of AIOps subareas with a focus on Incident Management.

Detection. If errors occur, it is imperative for the system to detect the associated anomalies or
symptoms. This is achieved by analyzing vast amounts of perceptual and historical data to identify
abnormal content in either the time domain or spatial domain, or both. This process includes
discovering abnormal patterns in data and detecting flexible abnormal conditions that exceed static
thresholds, while minimizing noise in data, such as false alarms or redundant events.
Location. The objective of this process is to identify and analyze potential root causes and faulty
actions responsible for the underlying incidents by conducting a causality and correlation study. This
study must be contextualized within a unified topology to ensure its accuracy. Without the context
and constraint of topology, the detected patterns, while valid, may be unhelpful and distracting. By
deriving patterns from data within a topology, the number of recurrent and redundant patterns can
be reduced, exceptionalities in data can be highlighted, and hidden dependencies can be identified.

4 Remil et al.

Action. This includes conducting reactive triage on problems and prioritizing incidents once
detected or predicted, as well as implementing a series of corrective actions based on the current
scenario and past solutions that have already been provided. However, it is important to note that
automatic healing actions need to be executed safely.
Interaction. It is referred to as human-computer intelligent interaction. This involves bidirectional
interactive analysis between the intelligent models and the expertise of users. For instance, the
system can integrate human expertise to enhance its models or similarly leverage model insights to
enrich and update the user background knowledge. Furthermore, this includes facilitating commu-
nication and collaboration between different maintenance teams and with customers, promoting
efficient information sharing and effective issue escalation.
Drawing of these capabilities, several companies have started dispensing AIOps tools as com-

modities within the last few years, while a number of technology giants have adopted an AIOps
algorithmic viewpoint to maintain their on-premises or cloud computing infrastructures and man-
age incidents [66, 73, 136, 143, 145, 152, 206], thereby inducing the academic field to evolve and
deliver more ingenious and innovative solutions. In actuality, the notion of utilizing AI to refine
IT and maintenance operations, despite its recent emergence as a research field, is not entirely
novel [46, 196]. Beginning in the mid-1990s, some research work explored software defects in source
code by employing statistical models founded on source code metrics [49, 67, 124]. Since the start
of the new decade, various techniques have been proposed to tackle online software [204, 287, 293]
and hardware [138, 272, 298] failure prediction and anomaly detection [68, 189, 256]. Multiple other
domains of AIOps, such as event correlation [154, 163, 263], bug triage [60, 266, 277, 278], and root
cause analysis [115, 126, 139, 159], have also witnessed significant contributions over the last two
decades. In fact, the reliability and maintainability of hardware and software systems have always
been a prominent research focus. However, we have recently witnessed an increased interest in this
field. This phenomenon is driven by two main factors: firstly, the remarkable advances achieved in
the field of artificial intelligence, and secondly, the shift of numerous IT organizations from product
delivery to service release, coupled with the transition from traditional to dynamic infrastructures.
Despite the promising benefits that AIOps offers, it remains federated and unstructured as a

research and practical topic [46, 196, 216]. It involves a diverse array of contributions stemming
from various specialized disciplines involving both industry and academia. Given its novelty
and cross-disciplinary nature, AIOps contributions are widely dispersed, lacking standardized
taxonomic conventions for data management, targeted areas, technical implementation details,
and requirements. As such, discovering and comparing these contributions has proven to be
challenging [196]. The lack of a unified terminology results in the absence of guidelines and a clear
roadmap for addressing the gaps in the state-of-the-art within AIOps. In fact, while various data-
driven approaches may be attributed to the AIOps research area, findings from disparate domains,
such as machine learning, may not necessarily apply to software analytics domains like AIOps [165].
Therefore, it is important to determine within the purview of AIOps, the optimal taxonomy that
must be driven by an industrial need necessitating domain expertise in both IT operations and AI.
It is also highly important to outline the requirements (desiderata) to construct effective AIOps
models, including interpretability, scalability and robustness among others. Additionally, one must
also inquire about the metrics that should be employed to compare AIOps methods that belong to
the same category, such as anomaly detection or root cause analysis. Metrics based on machine
learning, such as contingency metrics, do not always reflect the real accuracy of models when
deployed in actual scenarios and hence require contextual and/or temporal adaptation. Multiple
other factors and particularities should be taken into account (e.g., human involvement in the loop.).

AIOps Solutions for Incident Management: Technical Guidelines and A Comprehensive Literature Review 5

1.3 Outline and Contributions
Our work focuses on providing a holistic framework to the knowledge base of AIOps including
technical and research facets. This framework is explicitly designed to address the challenge of
adeptly managing incidents within IT environments. In pursuit of this objective, our contributions
can be outlined as follows:

❏ We have established a unified and agnostic terminology to define the most relevant terms and
key concepts that have been variably adopted in the existing research work within the field of
incident management (e.g., hardware/software failure management, anomaly detection, bug
triage, fault localization, etc.). Furthermore, we have expounded upon various dimensions of
this process, including maintenance protocols levels.

❏ This effort has led us to reveal existing challenges and pain points and define the fundamental
building blocks required to achieve a systematic AIOps approach for an intelligent and
effective incident management procedure. This includes providing technical specifications
for data management such as data collection, storage, and visualization, establishing clearly
defined incident management tasks, and emphasizing crucial requirements to be considered
when adopting this approach.

❏ Following this, based on the provided terminology, we establish a comprehensive taxonomy
to categorize the notable research contributions from prominent conferences and journals
in machine learning, data mining, and software engineering. This taxonomy is proposed
considering clearly delineated data sources, specific research areas, properties of models and
evaluation metrics.

❏ The proposed taxonomy also sets itself apart from previous work by closely aligning with the
distinct requirements of both industry and research. It facilitates the discovery, implementa-
tion, and comparison of various methods and tools, while also addressing existing gaps in the
field and hence highlighting potential areas for improvement.

❏ We also provide publicly available datasets across various incident tasks and application areas.
This represents a valuable contribution, given that identifying the most appropriate datasets
for a specific task can be a non-trivial endeavor. Moreover, it facilitates the replication and
comparison of techniques within the same research area. It is noteworthy that none of the
existing surveys provide such extensive coverage of datasets.

Roadmap. The paper is structured as follows. In Section 2, we begin by providing an overview
of the incident management procedure, which includes clear definitions, terminology, existing
protocols, and targeted maintenance layers. Next, in Section 3, we delve into the usage of AIOps to
standardize the incident management process, emphasizing important considerations in designing
and implementing AIOps solutions. Moving on, Section 4 introduces the taxonomy, outlining its
components such as data sources and evaluation metrics. Following that, in Section 5, we review
the most relevant works in the field of incident management based on the proposed taxonomy.
Additionally, Section 6 presents publicly available AIOps datasets and benchmarks used for evalu-
ating AIOps approaches. Finally, the paper concludes with a discussion that includes concluding
remarks, open challenges, and areas for improvement in AIOps research.

2 STREAMLINING INCIDENT MANAGEMENT PROCEDURE
2.1 Terminology and Definitions
In the following, we aim to provide an easy-to-understand explanation of various terms that are
commonly and interchangeably used in incident management and AIOps. Taking inspiration from

6 Remil et al.

Fig. 2. Comprehensive chronological schema highlighting the distinctions and key connections among Faults,
Bugs, Errors, Anomalies, Failures, and Outages.

the work of Salfner et al. [220], we build upon their terminology by offering a formal definition
that helps clarify the meaning and relevance of these terms in the field.
Various terms related to incidents, such as fault, error, bug, failure, outage, and anomaly, have

been widely used in the field, often without a thorough examination of their precise meanings. For
instance, the most commonly used term in the literature is failure to indicate system downtime,
hardware and software crashes, service disruptions, network traffic disturbances, etc. [138, 204,
287, 298]. On the other hand, some other methods utilize the term outage to refer to the most
severe cases that can significantly reduce system availability and impact user experience [64, 293].
However, there are also studies that focus on anomaly detection, which deals with identifying
abnormal behaviors that are already present in the data, often in system metrics [68, 189, 256].
Regarding the analysis of root causes, the majority of research falls under the category of fault
localization, which generally identifies faulty components in the source code [22, 215, 264]. It may
also extend to faulty actions [148], but it is agreed that this can be the initial point that ultimately
leads to failures. The distinctions between these terms based on faulty behavior, underlying causes,
and resulting consequences have not received sufficient attention. Although some attempts have
been proposed to categorize and differentiate these terms, such as the work of [34, 220], they do
not provide a comprehensive framework. In order to establish a precise terminology that clarifies
the meaning of each interrelated term, we propose a coherent lexicon that covers a broader range
of concepts compared to the framework proposed by [220]. Moreover, we present a chronological
schema in Figure 2 illustrating the key relationships among these terms. We also identify the actors
involved in initiating faulty behaviors within a system. Subsequently, we provide formal definitions
for each term from our perspective.
Failures. A failure refers to an event that occurs when a system, a component, or a service is
unable to fulfill its intended primary function and deviates from it. Failures are often evident and
can be observed by either the user or the system, typically stemming from errors or anomalies that
give rise to observable issues or malfunctions. Note that within systems, various issues may arise,
but unless they result in an undesired output, they do not qualify as failures. Users typically report
failures, which can prompt the need for troubleshooting or repairs to prevent outages.

AIOps Solutions for Incident Management: Technical Guidelines and A Comprehensive Literature Review 7

Outages. An outage refers to a period in which a system, a service, or a network becomes entirely
inaccessible or unavailable to users. Outages can stem from failures such as hardware malfunctions
or software glitches indicating complete interruptions and unavailability of the required service.
These situations often necessitate immediate palliative measures to restore normal operations
before delving into the underlying problem for a curative maintenance.
Errors. Errors signify instances where the system deviates from its correct and normal state,
indicating the presence of an actual issue. These errors may not always be immediately apparent to
the user and can remain implicit until they manifest as failures, especially if they are not accurately
detected at the opportune moment. Alternatively, errors can be identified through the use of
specialized tools or specific algorithms designed for detection purposes.
Anomalies. Anomalies are defined as unexpected or abnormal behaviors of patterns that deviate
from the expected state. They represent irregularities or unusual occurrences that may or may not
indicate an error. Unlike errors, anomalies can serve as early indications of underlying issues, but
they can also be harmless or temporary deviations that do not directly result in failures. Various
factors, such as unusual data patterns or external influences like cyber attacks, can contribute to the
emergence of anomalies. These anomalies can be identified and detected through the monitoring
and analysis of system metrics.
Faults and Bugs. A fault pertains to an abnormality or defect discovered in a hardware or software
component that exhibits incorrect behavior, potentially leading to errors and failures if not promptly
detected. These faults generally arise from inherent problems or weaknesses within the system’s
components. They can be caused by various factors, including human interventions by end-users
or administrators, design flaws, system settings, or improper handling. In software development,
faults manifest as bugs, which stem from coding mistakes. Identifying faults that lead to bugs often
takes place during the testing phase. Conversely, in the case of hardware or setup issues, faults
directly result in errors during system operation.
Alerts. In addition to leading to failures, both undetected and detected errors and anomalies
can cause system to deviate from normal behavior as a side effect. This condition is commonly
referred to as symptoms [97]. These symptoms typically manifest as alerting reports, indicating a
specific event or condition that demands attention or action. Alerts are usually triggered based on
predefined rules or thresholds associated with the symptoms, particularly in the case of anomalies.
Figure 2 illustrates the progression of a fault or anomaly, stemming from internal or external

factors, towards a failure and potentially an outage. To illustrate this, let’s consider a scenario of
a fault-tolerant system with a memory leak problem. The fault in this system is a missing free
statement in the source code, which prevents the proper deallocation of memory. As long as the
specific part of the software responsible for memory deallocation is never executed, the fault
remains dormant and does not affect the system’s operation. However, when the piece of code that
should free memory is executed, the software enters an incorrect state, turning into an error. In
this case, memory is consumed but never freed, even though it is no longer needed. Initially, if the
amount of unnecessarily allocated memory is small, the system may still deliver its intended service
without any observable failures from the outside. As the code with the memory leak is executed
repeatedly, the amount of free memory gradually decreases over time. This out-of-norm behavior,
where the system’s parameter free-memory deviates from the expected state, can be considered as
a symptom of the error. It serves as an indication that something is amiss within the system. At
some point, when the memory leak has consumed a significant amount of available memory, there
may not be enough resources left for certain memory allocations. This leads to the detection of the
error, as the system encounters a situation where it cannot allocate memory when required. In a
fault-tolerant system, even if a failed memory allocation occurs, it does not necessarily result in a
service failure. The system may employ mechanisms such as spare units to complete the operation

8 Remil et al.

and maintain service delivery. Therefore, a single failed memory allocation, by itself, may not cause
a service failure or outage. However, if the entire system becomes incapable of delivering its service
correctly due to a series of errors or significant resource depletion, a failure occurs. This failure
indicates that the system is no longer able to fulfill its intended function, impacting its users and
potentially leading to an outage. During an outage, the system becomes completely unavailable,
and its services cannot be accessed or utilized by users. In the context of the given example, an
outage could happen if the memory leak issue is not addressed in a timely manner, leading to severe
resource exhaustion that renders the system inoperable. In summary, the presence of a fault and
subsequent error can be indicated by symptoms like memory consumption or depletion. Anomaly
detection and monitoring can help identify deviations from expected system behavior. Alerts can
be generated to notify system administrators or developers about these anomalies, allowing them
to take corrective actions. If the errors and issues persist and prevent the system from delivering
its services correctly, a failure occurs, potentially resulting in an outage.
Aiming to provide unified terminology and avoid confusion, in the following, we will refer to

all these terms as incidents. This term comprises a broader scope and universally applies to any
unplanned event or occurrence that disrupts the normal state, behavior, or output of a system, a
network, or a service.

2.2 Existing Maintenance Protocols in Incident Management
The incident management process should adhere to standardized maintenance protocols and
strategies that are universally accepted by IT organizations. These protocols dictate how incidents
should be handled based on their occurrence time and the available physical and human resources.
They also measure the impact of incidents based on key factors such as availability, performance,
and quality. These protocols serve as a framework for assessing the impact of various incident
management tasks depicted in Figure 1. Unlike some previous works that classified different incident
management methods based on these protocols [75, 90], we present them as abstractions of how
incident management tasks help achieve optimal and effective strategies. We do not consider these
protocols as standalone phases in the incident management process since our taxonomy primarily
focuses on using data-driven approaches to handle reported, detected, or predicted incidents in
a phased manner, from reporting to mitigation, regardless of the chosen protocol. The different
maintenance strategies can be categorized into two main approaches, Reactive and Proactive
maintenance

Reactivemaintenance is performed in response to incidents that are detected or reported by end
users or internal maintenance staff (see detecting and tracking zones in Figure 2). On the other hand,
Proactive maintenance aims to prevent potential problems from occurring and intervenes proac-
tively to rectify them, typically through auditing and testing (as illustrated in Figure 2). Figure 3
provides a visual representation of the distinct patterns of maintenance strategies analyzed in our
study. In reactive maintenance, there is often a time constraint, leading to palliative measures that
partially or completely resolve the issue, allowing the affected activity to proceed (especially in the
case of outages). For instance, a temporary technical configuration can be implemented. However,
curative maintenance must be conducted to implement a stable solution and prevent the issue from
recurring for the same or other customers (in the case of failures and/or outages). Proactive mainte-
nance, on the other hand, uses a range of measures, including scheduled maintenance routines and
conditional maintenance protocols. These protocols assess system functionality, identify anom-
alies and errors, and mitigate potential performance degradation and malfunctions (see detecting,
auditing, and monitoring zones). This approach heavily relies on AIOps and leverages advanced
machine learning algorithms and big data mining to forecast potential system malfunctions by
analyzing historical data patterns. Prescriptive maintenance surpasses predictive maintenance by

AIOps Solutions for Incident Management: Technical Guidelines and A Comprehensive Literature Review 9

Fig. 3. Behavioral scheme of the different maintenance protocols. Adapted and improved from [90].

taking a proactive approach to intelligently schedule and plan asset maintenance. Unlike predictive
maintenance, which relies solely on historical data, prescriptive maintenance incorporates cur-
rent equipment conditions to provide precise instructions for repairs or replacements. Moreover,
prescriptive maintenance has the capability to recommend optimal palliative or curative actions.

2.3 Target Maintenance Strata
The approach to both proactive maintenance and reactive diagnosis involves a comprehensive
examination of its components across multiple layers.

❏ Technical or Physical layer. This layer focuses on the machines and their various com-
ponents. For instance, the technical layer would involve monitoring the application server
machine, the database, and elements such as RAM, SWAP, processor and disk usage, net-
work identities, and connectors. It also involves monitoring and analyzing the hardware
and infrastructure aspects of the system (e.g., remaining useful lifetime of physical compo-
nents). Examples of checks within this layer include analyzing CPU utilization to ensure it
stays within acceptable limits, monitoring disk space to prevent potential storage issues, and
checking network connectivity to ensure smooth communication between components.

❏ Application Layer. This layer centers around the key components of the software application.
It includes the application server, the database server, and user workstations. For example,
the application layer examination would involve analyzing factors such as heap utilization,
cache code performance, resource consumption, launch configuration controls, and dump
files. This can help to identify incident such as memory leaks, inefficient cache utilization, or
misconfigured launch settings that may impact the application performance.

❏ Functional Layer. This layer focuses on evaluating the processes executed by the software
application to ensure efficient smooth data exchanges, optimal latency, accurate statistics

10 Remil et al.

execution, and more. For instance, the maintenance team might analyze the response time of
data retrieval or the accuracy of statistical calculations performed by the application.

❏ Business Layer. This layer assesses the control of critical business parameters. It involve
evaluating key metrics and business-related aspects of the system to ensure that it aligns with
the overall goals and objectives such as the number of transactions processed, the success
rate of data transfers, or the adherence to predefined service-level agreements.

3 TOWARDS AN AUTOMATED AIOPS SOLUTION FOR INCIDENT MANAGEMENT
The application of AIOps to revolutionize incident management is a complex procedure, requir-
ing a shift from traditional and conventional practices to a fully automated process. Designing,
implementing, and deploying machine learning models in real-world software systems scenarios
is not a simple task and requires careful consideration. To unlock the full potential of an inte-
grally intelligent solution for incident management and transfer knowledge from AI models to
the operating systems domain, a thorough evaluation of the current landscape is necessary. This
evaluation should anticipate potential roadblocks stemming from human, resource, or knowledge
factors that may arise during implementation. It is also essential to identify areas for improvement
and determine the cost associated with transitioning from old practices to a new methodology
while considering feedback, reviews, and the trust of practitioners. In the following, we will outline
a comprehensive list of pain points and challenges that need to be addressed before building AIOps
solutions to manage incidents.

3.1 Pain points and Challenges
Within the software industry, there is ongoing development and adoption of AIOps solutions, but it
is still in its early stages [73]. Building and implementing AIOps solutions in real-world scenarios
continues to pose challenges from both technical and non-technical standpoints [46, 65, 66, 161,
208, 216]. To elaborate further, we outline the significant challenges involved in constructing AIOps
solutions.
Novelty of AIOps. AIOps remains a relatively new and unstructured area of research that lacks a
clear and comprehensive definition [73, 196]. It involves various research domains such as system
and pattern design, software engineering, big data, machine learning, distributed computing,
and information visualization, among others. Due to its novelty and interdisciplinary nature,
AIOps contributions and methods are widely scattered, lacking standardized conventions for data
management, target areas, implementation details, and requirements. Consequently, selecting the
most suitable techniques from these diverse contributions to achieve specific objectives has proven
to be challenging. Hence, it is essential to identify the appropriate methods and tools based on
defined goals, and establish an objective procedure to compare between them. Additionally, these
methods should align with the IT organization’s policies, such as interpretability and trustability,
while also considering the available resources and scalability issues. According to Dang et al. [73],
the domain of AIOps presents several unique challenges that require a comprehensive understanding
of the overall problem space, including considerations of business value, data, models, as well as
system and process integration.
Data Management. Efficient data management is the most critical component for the successful
implementation of an AIOps framework. To achieve high observability and real-time analysis, it
is essential to integrate and process large volumes of data from diverse sources. However, this
integration presents several challenges that need to be addressed. The foremost challenge is to
ensure that real-time or near-real-time data collection does not adversely affect the performance of
the monitored applications. It is crucial to prevent overwhelming the memory or network resources

AIOps Solutions for Incident Management: Technical Guidelines and A Comprehensive Literature Review 11

of these applications. Therefore, the data management system employed must exhibit optimal
performance in terms of data storage, ingestion, compression, and querying capabilities across
different data types.
Data Normalization.AIOps models have specific data requirements that differ from those typically
used in general machine learning models. Despite the vast amount of telemetry data collected by
major cloud services, which can reach terabytes or even petabytes on a daily or monthly basis, the
quality and quantity of available data still fall short of meeting the needs of AIOps solutions. Studies
by Dang et al. [73], Levin et al. [136] and Chen et al. [65] highlight the challenges of working with
diverse data from various sources, which often come in disparate formats and structures, making
normalization and cleaning complex. This data can be unstructured or semi-structured, including
logs, execution traces, source code, hierarchical and graph data, and network traffic, requiring
specific preprocessing techniques. Moreover, AIOps models that heavily rely on supervised machine
learning algorithms require labeled data for training. However, data often contains noise or missing
values, and obtaining labeled data can be challenging. This makes it difficult to build accurate and
robust AIOps models. In many AIOps scenarios, constructing supervised machine learning models
poses challenges due to data quality issues, such as the absence of clear ground truth labels, the
need for manual efforts to obtain high-quality labels, imbalanced datasets, and high levels of noise.
Overcoming data quality limitations and managing noise and imbalanced datasets are key areas to
focus on when building AIOps models.
Human Interaction with AIOps. One of the main challenges in this context is the difficulty of
shifting the mindset of IT practitioners towards abandoning old maintenance routines and adopting
entirely new approaches [73]. AIOps-oriented engineering is still at a very early stage, and the
establishment of recognized best practices and design patterns for AIOps in the industry is far
from complete. Experienced practitioners struggle to let go of their manual activities that are based
on adaptation and auditing tasks. Meanwhile, the fundamental methodology of AIOps solutions
revolves around learning from historical data to predict the future. The traditional engineering
mindset on the other hand, which involves investigating individual cases and reproducing incident
steps based on log data, is inefficient or even impractical in large-scale service scenarios.
In fact, there are two distinct perspectives and opinions among practitioners when it comes

to AIOps. On one hand, there is a belief that AI can address all challenges, but this expectation
is not grounded in reality [73]. On the other hand, some express doubts about the efficiency of
machine learning models in the industry [216]. This skepticism stems from the fact that AIOps
solutions primarily rely on learning from past experiences to predict future trends using large
datasets. However, experienced IT professionals question the effectiveness of these models, even
after recognizing the need for digital transformation. They may argue that past experiences do not
always provide sufficient coverage to accurately forecast system states, necessitating always human
interventions and checking. They might also cite instances where similar past experiences yielded
different outcomes. Consequently, businesses require additional time to build confidence in the
reliability and dependability of AIOps recommendations. Therefore, it is crucial to invest significant
effort in both directions to simplify this transition. Ensuring trust, involving humans in the decision-
making process, and providing interpretability and explainability of AIOps solutions are essential to
instill confidence in these approaches [165]. Additionally, setting realistic expectations and clearly
defining the scope and goals of AIOps are also crucial considerations.
Implementation and Integration of AI models. Building machine learning models for AIOps
applications presents unique challenges that are not commonly encountered in other ML/AI
scenarios [73]. For instance, natural language processing models, often used in machine learning,
tend to generate inaccurate results when applied to software engineering-related data according

12 Remil et al.

to Menzies [174] and Ray et al. [207]. On the other hand, constructing a supervised machine learning
model faces challenges related to data quality and availability, as mentioned earlier. These challenges
include imbalanced datasets and the absence of clear ground truth labels. To address these issues,
unsupervised or semi-supervised machine learning models can be explored. However, acquiring
sufficient labels to understand the "what is abnormal" pattern proves difficult because of the dynamic
nature of system behavior and shifting customer requirements and infrastructure. Furthermore,
developing high-quality unsupervised models is difficult due to the intricate dependencies and
relationships among components and services [46, 61, 161]. Lou et al. [161] argue that the diagnosis
of service incidents cannot solely rely on learning models, but rather requires substantial knowledge
about the service system. However, in practice, this type of knowledge is often poorly organized or
inadequately documented. Moreover, the need for frequent model updates and online learning poses
challenges to DevOps/MLOps practices, when it comes to complex feature engineering efforts.
Another challenge is to ensure that the behavior of the model during the training phase is

consistent with its performance in the testing phase. Traditional metrics used to assess models are
susceptible to the contamination zone phenomenon [91], which may lead to erroneous assessments.
Indeed, Fourure et al. [91], highlight that by parameterizing the proportion of data between training
and testing sets, the F1-score of anomaly detection models can be artificially increased.
Finally, the effectiveness of machine learning models is often proportional to their complexity.

Highly accurate models, known as black box models, lack transparency and fail to provide explana-
tions of their decision-making process [98, 182]. This lack of transparency significantly hampers
their adoption by industry practitioners who require a clear understanding of maintenance pro-
cesses and tool behavior. While leveraging robust models for cost optimization and task automation
is valuable, it comes at the expense of transparency. Recent studies in the field of AIOps suggest that
interpretable models, even with slightly lower performance, are preferred over high-performing
yet non-interpretable models [165]. Thus, successfully automating incident management processes
necessitates establishing practitioners’ trust by providing explanations for model decisions, aligning
with the concept of eXplainable Artificial Intelligence (XAI) [98].

3.2 AIOps Framework for Data and Incident Management Procedure
Implementing intelligent solutions for incident management procedures is a complex task that
does not solely rely on implementing and training machine learning models on extensive data
sets to uncover actionable patterns. One of the significant challenges in adopting AIOps is tran-
sitioning from an existing architectural platform that relies on separate modules and executing
scripts [73, 208, 226]. This transition involves the adoption and integration of various digital
technologies to fundamentally transform the delivery of maintenance and incident management
services to end customers or internal maintenance staff. To accomplish this transformation, a
reliable, scalable, and secure infrastructure architecture needs to be designed. Such an architecture
should be capable of effectively collecting, ingesting, and managing large volumes of data from
diverse sources with varying formats. Then, it leverages artificial intelligence approaches to extract
meaningful insights from this data, following an iterative and standardized procedure that will
be discussed in Section 3.3. Furthermore, this architecture needs to facilitate user interaction,
catering to data scientists and engineers, MLOps engineers, and end users. The purpose is to aid in
incident management by providing corrective or preemptive actions, predictive alerts, and other
valuable insights. Hence, successful implementation of intelligent incident management solutions
requires addressing numerous factors, including architectural transformations, digital technology
integration, robust data management, and user-friendly interfaces, to fully leverage the power
of AIOps in managing incidents, enhancing operational efficiency, and driving better business
outcomes.

AIOps Solutions for Incident Management: Technical Guidelines and A Comprehensive Literature Review 13

Fig. 4. Comprehensive AIOps reference architecture for Incident Management Procedure [13, 205]

Figure 4 presents an overview of a layered AIOps reference architecture designed to support
intelligent incident management procedures and seamlessly integrate key tools and modules. This
architecture is suitable for both traditional in-house and cloud-based application environments,
providing a flexible framework for implementing AIOps solutions. In the following, we provide
a brief overview of the essential modules that are part of this framework, while also covering
potential available and existing open-source tools that can be used to perform the underlying tasks.
Data Collection and Ingestion. Dynamic infrastructures generate vast amounts of operational
and performance data including infrastructure health, application performance, activity logs,
event notifications, network traffic flows, user interactions, and more. Understanding the diverse
formats, protocols, and interfaces employed by various data sources is crucial in this context.
Extracting monitoring data typically involves installing and configuring a collection agent on the
monitored servers. Numerous components within the infrastructures can be effectively monitored,
including hardware components, application servers, associated databases, operating systems,
virtual machines, and business trends. These components align with the maintenance layers
previously discussed in Section 2.3.
Numerous open-source collection agents have been introduced to facilitate monitoring tasks.

For example, InfluxData offers Telegraf [20], a versatile tool capable of connecting with over 300
popular applications. The ELK stack provides the Beats suite [6], which enables the collection
and transmission of metrics to ElasticSearch. Another notable agent is Fluentd [10], offering the
capability to collect data events and send them to various destinations such as files or DBMS.
These open-source tools come with several advantages, including their popularity and ease of
deployment and configuration. They have gained significant traction in the industry as they are
widely accessible and customizable. However, in some cases, it may be beneficial to develop custom
collection agents. This allows organizations to collect specific use-case data, leverage pre-built data
manipulation libraries, and utilize existing BI tools within their infrastructure [43]. Furthermore,
custom agents provide the flexibility to tailor the configuration according to specific requirements.

14 Remil et al.

To handle data from different sources with varying formats, it is essential to implement a data
ingester module. This module ensures efficient and reliable capture and aggregation of received
data into a unified format that can be easily understood by the system. The process involves
normalizing data structures, resolving data inconsistencies, and ensuring seamless interoperability.
In some cases, appropriate transformations are performed to ensure consistency and compatibility
across different data sources before persisting them. This may include data parsing, normalization,
filtering, and enrichment. Data ingestion can be achieved through various tools and techniques,
including ETL (extract, transform, load) processes, API integrations, or specialized data ingestion
platforms. A range of tools and technologies are available to assist with data ingestion in AIOps
systems. Open-source platforms like Kafka [2], Apache NiFi [3], RabbitMQ [18], or RocketMQ [19]
offer capabilities for data streaming, message queuing, data routing, and reliable data ingestion
from diverse sources. Additionally, there are proprietary/managed service tools such as AWS
Kinesis [1], Azure Event Hubs [5], and Google Cloud Pub/Sub [11], among others, which provide
similar functionalities for data ingestion.

Data Storage and Organization. Data collected in the context of AIOps can be categorized
into structured, semi-structured, and unstructured data. This encompasses a range of data types,
such as time series data that represent system metrics or performance indicators, event logs,
sequential templates, network traffic that can be visualized as graphs, and incident tickets reported
by end-users in text form. Due to the diversity in data characteristics, it becomes challenging
to store all this data in a single warehouse using a "one size fits all" approach. To address this
challenge, organizations need to understand and organize the data before feeding it into AI models.
Depending on specific requirements and use cases, different approaches to store and query the
data are available. Historically, there were two primary options for data persistence: Database
Management Systems (DBMS) for structured data and data lakes for unprocessed data. DBMS
solutions, like relational databases, are designed for structured data with predefined schemes. They
offer predefined structures, enforce data integrity through tables, columns, and relationships, and
provide ACID properties (Atomicity, Consistency, Isolation, Durability), ensuring transactional
consistency. On the other hand, data lakes serve as storage repositories for vast amounts of raw
and unprocessed data in its native format, accommodating semi-structured and unstructured data.
The choice between data lakes and DBMS depends on factors such as data volume, variety, velocity,
query requirements, data governance needs, and the organization’s specific use cases and goals.

In the context of AIOps as shown in Figure 4, to support business intelligence, machine learning,
and big data mining techniques, it is often beneficial to maintain both data structures simultaneously
and link the systems together. Adopting a hybrid approach that combines a data lake and a data
warehouse is preferable, which is referred to as a data lakehouse architecture. This approach
allows organizations to leverage the strengths of each method for different aspects of their data
management requirements. Figure 5 illustrates the data lakehouse architecture and highlights its
key components and workflow. A data lakehouse is a centralized, powerful, and flexible big-data
storage architecture that integrates various data types from multiple sources, assuming different
formats. It combines the best features of data warehouses and data lakes. Initially, data lakehouses
start as data lakes containing raw data in its original format, with no constraints on account size
or file. This raw data is later processed, transformed, and structured as needed for analysis and
querying, creating a data mart repository. To achieve this, data lakehouses leverage technologies like
Delta Lake (built on Apache Parquet and Apache Avro) [7] to provide capabilities such as schema
evolution, ACID transactions, and efficient data indexing. Additionally, they maintain a data catalog
and metadata repository, which holds information about available datasets, their schemes, and other
relevant details, ensuring data governance and assisting users in discovering and understanding

AIOps Solutions for Incident Management: Technical Guidelines and A Comprehensive Literature Review 15

Fig. 5. Data lakehouse reference architecture

the data. Data-oriented personnel, along with other users, can access the data through SQL or other
querying languages. The data lakehouse enables fast and efficient data retrieval and analysis by
optimizing data for querying while preserving the raw data for exploration.

Various tools have been proposed to efficiently store and organize data, catering to different needs
and use cases. For instance, Elasticsearch [9] stands out as a distributed and open-source search full-
text search engine. With an HTTP web interface and schema-free JSON documents, Elasticsearch
offers powerful search and indexing capabilities. It excels in managing log and event data in AIOps
systems. Similarly, InfluxDB [14] serves as a time series database designed to handle high write and
query loads of time-stamped data. A popular choice for storing and analyzing metrics and sensor
data in AIOps systems. These databases come equipped with their own domain-specific languages
(DSL). InfluxDB employs the language flux, while Elasticsearch uses ESQL. On the other hand,
Clickhouse [8] has recently emerged as an open-source columnar database management system.
It stands apart with its specific optimization for online analytical processing (OLAP) workloads,
making it highly suitable for real-time analytics and reporting. Clickhouse distinguishes itself
with its high performance, scalability, and low-latency query capabilities. Furthermore, its SQL
support which is familiar to many data analysts and engineers, making it easier to integrate with
existing data warehouse repositories like PostgreSQL and Oracle. In a recent study [43], the authors
provided specific criteria to choose the most suitable solution for a given context. These criteria
include license, notoriety and popularity, adaptability, and performance.
Data Visualization and Monitoring. In data management, whether data is organized in a data
mart repository or kept within a data lake, the potential for deriving valuable insights is required
through data visualization dashboards. These tools play a pivotal role in facilitating a comprehensive
understanding of data, enabling in-depth inspections, and supporting data-driven decision-making
processes. These visualization tools lies in their ability to offer a user-friendly interface, coupled with
a range of visualization panels including versatile options like time series graphs, gauges, dynamic
topologies, and more, catering to the diverse needs of IT professionals engaged in monitoring
activities. By utilizing such tools, we gain the ability to continuously monitor the infrastructure,
diagnose potential problems, adeptly identify intricate relationships between various components,
navigate to the root causes of incidents, leading to quicker resolution times. Moreover, the tools

16 Remil et al.

excel in anomaly detection by visually representing abnormal behavior, thus allowing for the early
identification of potential issues and threats. Among the plethora of available data visualization
tools, some noteworthy open-source options include Grafana [12], Kibana [15], Metabase [17] and
Apache Superset [4].
Intelligent Incident Management Procedure. AIOps insights are founded on intelligent algo-
rithms that operate on both historical and real-time data, aiming to provide actionable patterns and
prescriptive recommendations. These insights are designed to optimize operational performance,
enhance situational awareness, and improve incident management procedures. More specifically,
the incident management procedure can be viewed as a systematic approach that encompasses a
predefined sequence of steps and processes to be consistently followed, whether incidents occur
unexpectedly or are foreseen. Its primary objective is to ensure a consistent and well-coordinated
response, regardless of the source of the incident report. This procedure involves the use of ro-
bust artificial intelligence algorithms to aid in reporting, classification, prioritization, assignment,
diagnosis, and resolution of incidents. Throughout the entire process, it is essential to establish
clear communication channels to keep stakeholders informed about the incident’s status, progress
in resolution, and any pertinent actions taken. Time sensitivity is also crucial, and every effort is
naturally directed towards minimizing various time-related metrics, which include time to detect
(TTD)1, time to engage (TTE), time to acknowledge or diagnose (TTA), and time to repair or
mitigate (TTR). Furthermore, upon the successful resolution of incidents, an essential post-incident
review is initiated to record the corrective or preventive actions taken for a specific incident. This
phase also plays a pivotal role in identifying valuable lessons learned and proactively preventing
similar incidents in the future.

3.3 Intelligent Incident Management Procedure Tasks
Drawing from the capabilities of AIOps for incident management, our proposal aims to organize
maintenance routines within a standardized approach to conduct incidents from creation through
diagnosis to resolution. This redesigned process involves a sequential workflow, guiding incidents
through four well-defined phases, starting from initial reporting and resulting in mitigation and
postmortem analysis. Indeed, the objective is to automate as many maintenance tasks as possible,
with a view to optimize the reporting time, diagnosis and triage time, and resolution time. Such
a protocol should not only facilitate the resolution of incidents but also serve to document the
maintenance context. Figure 6 provides a clear visual representation of this categorization2. It
should be noted that an incident typically goes throughmany sub-phases in the illustrated workflow,
but there may be instances where certain phases may not be necessary. In such cases, a phase may
be skipped if it is considered unnecessary or doesn’t contribute to resolving the reported issue. For
example, if an incident is categorized in a manner that has already undergone prior investigation,
there might be no need for a root cause analysis phase.
In the following, we provide from our perspective an extensive review of the essential subcat-

egories within the incident management procedure. Our goal is to examine the most relevant
approaches proposed for each of these phases. It is worth mentioning that some previous work has
already defined certain terms related to incident management. For instance, Chen et al. [66] defined
the incident management procedure as a three-step process involving incident reporting, triage,
and mitigation. However, their definition remains generic and does not delve into the subcategories
of these phases, such as addressing the problem of incident classification and correlation. On the
other hand, Notaro et al. [196] focused on studying failures and developed a taxonomy based on

1Also known as time to report, accounting for both manual reporting and predicted incidents
2For clarity, detection involves both detection and prediction, while classification also includes deduplication.

AIOps Solutions for Incident Management: Technical Guidelines and A Comprehensive Literature Review 17

Fig. 6. Standardized end-to-end procedure proposed for Incident Management in the context of AIOps.

Fig. 7. Time relations in online failure prediction.

proactive and reactive approaches, with significant emphasis on the reporting phase. However,
their research appears to neglect other important phases. Additionally, Zhang et al. [286] provided
a formal definition that includes detailed phases like assignment, prioritization, fault localization,
and mitigation. However, this survey solely concentrates on software bugs and does not generalize
to other specific areas. In this work, our aim is to cover all these use cases under a unified taxonomy,
regardless of the terminology used (failures, bugs, anomalies, etc.) or the specific industry focus.
Incident Detection. Incident detection refers to the process of identifying and recognizing de-
viations from normal operations indicating the presence of abnormal behavior or faulty events
that may indicate the occurrence of an incident (e.g., error or anomaly). This process involves
monitoring and analyzing various data sources (e.g., KPI metrics, system logs, and user reports).
For instance, the anomaly detection research domain falls within this subcategory.
Incident Prediction. Incident prediction refers to the process of forecasting, anticipating, or
estimating the likelihood of potential incidents, primarily failures, before they occur. It involves
leveraging available historical data, along with other relevant factors, to proactively identify and
assess potential risks and vulnerabilities. By analyzing patterns, trends, abnormal events, and
anomalies in historical and current data using advanced analytics techniques, incident prediction
aims to take preventive actions and minimize the impact of future incidents. Incident prediction
can be categorized into offline and online methods. The offline category includes Software Defect
Prediction (SDP) [79, 137], which entails assessing failure risks by executing specific functional units
or analyzing portions of the source code. Another technique in this category is fault injection [190,
227], where deliberate faults are introduced into a functioning system through stress-testing to

18 Remil et al.

evaluate its fault tolerance level. Conversely, online prediction occurs during system runtime. It
involves techniques like software rejuvenation [26, 246], which addresses resource exhaustion and
prevents unexpected system failures caused by aging or accumulated faults in software systems.
Additionally, online prediction involves estimating the remaining useful lifetime of the system. This
category also involves real-time predictions of hardware and software failures, taking into account
time constraints, as depicted in Figure 7. For a prediction to be considered valid, it must be made
with a lead-time (Δ𝑡𝑙) greater than the minimal warning time (Δ𝑡𝑤). Moreover, the prediction is
only considered valid if the failure occurs within a specific time period called the prediction period
(Δ𝑡𝑝). To make these predictions, data up to a certain time horizon (Δ𝑡𝑑), referred to as the data
window size, is used.
Incident Prioritization. Incident prioritization is the process of categorizing and ranking incidents
based on their urgency, impact, and business priorities. It involves evaluating the severity of the
incident, considering factors such as the affected systems, services, and the potential business
impact. Incident prioritization ensures as well that resources are allocated appropriately, with
relatively critical incidents receiving immediate attention and resources.
Incident Assignment. Incident assignment entails the allocation of incidents to the relevant
individuals or teams responsible for investigating and resolving them. This process involves ana-
lyzing the information contained in incident reports, considering factors such as the nature and
complexity of the incident, as well as the skills and availability of the assigned personnel. This
process is commonly referred to as incident triage in several work [60, 290]. However, triage in a
general sense, does not refer only to assignment but also to other tasks such as classification and
identification of duplicate incidents.
Incident Classification. Incident classification involves the systematic grouping and/or catego-
rization of incidents based on their distinct characteristics, symptoms, or impact. This classification
process establishes a structured framework that enhances the understanding and effective manage-
ment of incidents. This process can be seen as a refinement of the assignment procedure. In fact, it
is necessary to categorize incidents and assign them to specific teams based on their respective
topics, whenever possible. For instance, the technical service team within an IT organization may
be tasked with resolving incidents related to resource saturation, processes that put a significant
demand on the CPU and SWAP, security vulnerabilities, etc. To efficiently manage these issues,
the technical team should assign knowledgeable staff to each topic. As such, it would be optimal,
once an incident is assigned to the responsible team, to promptly identify the appropriate topic
as the initial step in the procedure. Surprisingly, despite its crucial role in optimizing incident
management time response, incident classification has not received sufficient coverage or extensive
attention. While some studies, such as [27, 203], have approached this issue by treating it as a
content optimization problem, others have included it as part of prioritization [131, 242]. Some
researchers have even considered it within the scope of duplicate detection [36, 112]. However,
we believe that there are inherent differences between these categories. Incident classification
primarily focuses on associating the incident with a specific topic or category, regardless of the
assigned personnel, incident priority, presence of similar incidents, or whether it is a new incident.
Incident Deduplication. Near-duplicate incident detection is the process that efficiently identifies
incidents that are closely related or exhibit significant similarities, grouping them into specific
buckets that correspond to distinct problems. This process involves real-time analysis of incoming
incidents to determine their similarities, overlaps, and commonalities with historical incidents that
pertain to the same topic. By identifying duplicates, incident deduplication reduces redundancy
and incident management efforts and prevents unnecessary resource allocation. In fact, Anvik et al.
[28] conducted a comprehensive empirical study using bug repositories from Eclipse and Firefox,

AIOps Solutions for Incident Management: Technical Guidelines and A Comprehensive Literature Review 19

Fig. 8. Distinction between Root Cause Analysis, Anomaly Detection, and Failure Prediction.

which revealed that a significant portion (20%-40%) of bug reports are flagged as duplicates by
developers. This study provides concrete evidence of the necessity to detect duplicate incidents.
This process can also be considered as a further refinement of the incident classification problem.

Root Cause Analysis. Root cause analysis (RCA), also known as root cause diagnosis, plays a
pivotal role in the incident management procedure. It is a systematic process that aims to investigate
and identify the underlying causes and contributing factors of incidents, which we commonly refer
to as faults. As depicted in Figure 8, RCA delves into the fundamental fault behind the occurrence
of an incident, recognizing that it may not necessarily stem from a faulty manipulation or defective
source code. Its objective goes beyond addressing the symptoms. Instead, it seeks to uncover and
understand the root cause, even if it originates from external factors. In related studies, this process
is often referred to as Fault Localization [261]. These studies focus on pinpointing the specific set
of components (such as devices, network links, hosts, software modules, etc.) that are associated
with a fault that has caused or may cause a particular failure. However, root cause analysis goes
beyond component localization and extends its investigation to faulty actions or risky external
factors that may lead to abnormal behaviors within the system.

Incident Correlation. Incident correlation study involves the analysis of multiple incidents or
events with the aim of identifying relationships, dependencies, or shared characteristics among
them. Through this process, a holistic perspective of the incident landscape can be achieved,
allowing to uncover potential hidden patterns or trends. Incident correlation works alongside root
cause analysis to assess how the underlying causes and faulty components or behaviors can affect
other incidents. This helps in facilitating more efficient incident resolution. The task is considered
challenging due to the inherent complexity and interdependence among components in software
systems [31].

Incident Mitigation. Incident mitigation also known as remediation, refers to the process of
minimizing the impact and severity of an incident. It involves taking proactive and automatic
measures to contain, resolve, or reduce the effects of the incident. Incident mitigation can include
implementing temporary workarounds, applying fixes or patches, activating backup systems, or
engaging specialized resources or teams to restore normal operations. As mentioned in [196],
contributions related to remediation actions have been relatively fewer compared to incident
prediction, detection, triage, and diagnosis tasks. This could be attributed to the fact that once the
underlying problem is identified through diagnosis, the necessary recovery steps become readily

20 Remil et al.

identifiable and achievable. In many cases, historical incidents with similar resolutions can be
referenced, eliminating the need for using complex models.

3.4 Desiderata for Effective Intelligent Incident Management
Creating intelligent, data-driven strategies for incident management is an intricate endeavor that
extends beyond the design of effective machine learning techniques. Simply relying on high-
performing machine learning or big data mining models is insufficient for successfully adopting
AIOps solutions. To ensure the effectiveness of such solutions, they must adhere to a set of es-
tablished criteria, which we refer to as desiderata. Drawing from numerous reviewed studies,
including [73, 143, 161, 165, 296], we have compiled a comprehensive list of requirements that
should be considered, either fully or partially, when constructing AIOps solutions. These require-
ments are as follows:

❏ Trustablity and Human in the loop. The literature claims that the requirements for
employees skills and mindsets change with the introduction of AIOps [208]. Manual activities
tend to shift towards adaptation and auditing tasks while dealing with AI requires a different
approach focused on recognizing patterns from raw data, deviating from the traditional
developer mindset. This transition raises questions about trust in AI capabilities and what it
can offer. Consequently, adopted AIOps approaches should incorporate years of field-tested
engineer-trusted domain expertise iteratively and interactively into the learning, updating,
and explanation phases of sophisticated machine learning models built on raw data. IT
professionals possess valuable domain knowledge and insights acquired through years of
experience in managing and troubleshooting IT systems. While not all of their best practices
may scale with the AIOps trends, their expertise often extends beyond raw data analysis.
They have a deep understanding of the underlying technology, infrastructure, applications,
and business requirements. Hence, it is crucial to fully leverage and model this expertise into
AIOps solutions. This can be achieved by providing mechanisms that incorporate the human
in the loop, allowing for interaction, updates, and corrections to the models when necessary.
Active Learning [214] can be specifically beneficial in this context.

❏ Interpretability. AIOps solutions should prioritize interpretability, even if it comes at the
expense of model performance. In the context of AIOps, interpretable models are preferred
when high-performing models lack interpretability. Model transparency enables users to
fully understand, interact with, and reason about the recommendations made by the model,
which can help gain support from upper management in following those recommendations.
However, interpreting AIOps models comes with certain constraints and requirements. In
a study by [165], different factors influencing AIOps model interpretation are investigated
across three key dimensions. (1) Internal Consistency which assesses the similarity between
interpretations derived from AIOps models trained under the same setup. It examines whether
the interpretations obtained from an AIOps model are reproducible when the model is
trained with the same data and implementation across multiple executions. (2) External
Consistency which focuses on the similarity between interpretations derived from similar-
performing AIOps models on a given dataset. Intuitively, interpretations derived from a
low-performing interpretable model could be trustworthy only if the interpretable model
has the same interpretation as other machine learning models on a given dataset. (3) Time
Consistency which captures the similarity between interpretations derived from an AIOps
model across different time periods. AIOps models should not only reflect the trends observed
in the most recent training data but also capture and reflect trends observed over a longer
period. It is important to note that some previous work, such as [38] in defect prediction,

AIOps Solutions for Incident Management: Technical Guidelines and A Comprehensive Literature Review 21

has shown that models trained on one time period may not generalize well when tested on
a different time period. Additionally, the size of the training data can impact the derived
interpretations of the models.

❏ Scalability. AIOps solutions must efficiently handle large-scale data in complex IT environ-
ments where significant amounts of monitoring and log data are expected. These environments
can encompass thousands to millions of components, including servers, network devices, and
applications. To go beyond effective modeling and accurate results, it is crucial for AIOps
solutions to be implemented within robust architectures that excel at ingesting, storing, and
processing big data efficiently. Scalable architectures and data processing frameworks play
a key role in distributing the workload and effectively handling the high volume of data.
Additionally, when considering the adopted approaches, AIOps solutions should leverage
scalable computing techniques, such as distributed and federated learning, as discussed in
studies like [41, 83, 191], to enable parallel processing and distributed data analysis. Scalability
also involves optimizing the utilization of computational resources. AIOps solutions should
possess the capability to dynamically allocate and distribute resources based on the data
volume and processing requirements.

❏ Maintainability and Adaptability. The concepts of maintainability and adaptability are
crucial in AIOps, as they aim to minimize the need for ongoing maintenance and repetitive
fine-tuning. This consideration is essential because DevOps engineers, who are responsible
for managing and maintaining these solutions, often have a multitude of responsibilities
and may not possess extensive expertise in machine learning. Therefore, AIOps solutions
should strive for a high degree of automation and self-management of routine tasks such as
data preprocessing and regular model training to reduce the reliance on continuous manual
interventions. To achieve this, self-adjusting algorithms and automated pipelines can be
employed [43]. In addition, leveraging advanced machine learning techniques such as transfer
learning [199] and one-shot learning [249] can greatly benefit AIOps solutions. Instead of
training models from scratch, pre-trained models that have been developed and fine-tuned by
machine learning experts can be utilized to handle new data patterns.

❏ Robustness. AIOps solutions need to be built upon robust and stable machine learning
models that can handle a wide range of scenarios and exhibit resilience to variations in data
patterns. These models should be designed to be less sensitive to the noisy and incomplete
data commonly encountered in real-world IT environments [73]. To ensure the reliability
of the modeling process, robust preprocessing techniques, such as systematic data cleaning
and effective imputation methods, can be employed. In addition, AIOps solutions must be
capable of detecting and adapting to concept drift, which refers to the shifts in underlying
data distributions that occur in dynamic IT environments [164]. Robust algorithms and
models, such as those based on online learning, can be leveraged to handle concept drift
and maintain up-to-date insights in the face of evolving data patterns [51, 53]. Furthermore,
AIOps solutions should generalize well across different IT environments. To achieve this, they
should be trained on diverse and representative data that captures the underlying patterns
and relationships applicable across various scenarios.

❏ In-context Evaluation. Unlike conventional machine learning evaluation scenarios, such
as cross-validation, which are often not directly applicable to AIOps due to the unique
characteristics of real-world IT environments, the concept of in-context evaluation emphasizes
the need to assess the solution’s performance in a context that closely resembles its actual
production usage. Traditional evaluation methods typically assume that the data used for

22 Remil et al.

Table 2. Proposed taxonomy to categorize AIOps approaches for Incident Management.

Context

Incident
Task

Refers to the specific research area in which the proposed approach fits within the
incident management procedure. More precisely, it addresses one of the distinct
phases when handling the incident, as identified in our categorization, including
reporting, triage, diagnosis, or mitigation.

Focus Area
Refers to the specific application area. Some methods may be exclusively dedicated to
a particular application domain. Different applications have varying requirements
and constraints, and the reviewed method may need to be tailored accordingly.

Maintenance
Layer

Refers to one of the different layers of the system as highlighted in Section 2.3 that
are targeted by the reviewed method.

Data

Data Source

Refers to the nature of data that the method is built upon. The proposed taxonomy
includes various types of data sources, such as log metrics, source code, key
performance indicators, topology (environmental characteristics), alerting signals,
execution traces, network traffic, etc.

Data Type

Consideration should be attributed to how data is represented. Even when using the
same data source, different representations are possible and then imply different
methodologies (e.g., source code can be represented as an Abstract Syntax Tree
(AST), a sequence of predefined frames, or plain natural language text). To facilitate
this understanding, a taxonomy of data types has been adopted. This taxonomy
includes structured data, sequential data, graph data, time series (both univariate and
multivariate), textual data, hierarchical data, etc.

Model

Approach

Represents the principal approach employed to address the problem at hand, taking
into consideration the context and the data utilized. It elucidates the way in which
the authors formalized and tackled the problem (e.g., clustering, nearest neighbor
search, dimensionality reduction, deep learning, transformers, etc).

Paradigm

Provides an abstract demonstration of how the method was approached to attain its
objective. For instance, in the case of training predictive models, it may involve
discerning whether the approach was supervised, semi-supervised, or unsupervised,
or whether it entailed one-shot, multitasking, reinforcement, or transfer learning, etc.

Evaluation
Metrics

Relates to the evaluation metrics used to assess how well the method performs
compared to other techniques currently used in the field.

Package
Availability

This factor is highly important to reveal the accessibility of both data and model
packages for reproducibility purposes.

Particularities
The final category of our taxonomy concerns essential factors that highlight specific
attributes and desired outcomes associated with AIOps which aligns with the
requirements detailed in Section 3.4.

evaluation is identically distributed, which may not hold true in IT environments. Real-
world data often exhibits temporal dependencies, concept drift, and dynamic patterns, which
require specialized evaluation techniques that consider these factors. To conduct in-context
evaluation, it is important to create evaluation frameworks that capture the particularities of
the production environment. This involves using datasets with a broad range of scenarios,
including normal operations, various types of incidents, and different environmental and
temporal conditions. In addition to dataset selection, evaluating AIOps solutions in context
also requires defining appropriate evaluation metrics and benchmarks that align with the
desired outcomes and objectives. (See Section 4.2 for more details)

AIOps Solutions for Incident Management: Technical Guidelines and A Comprehensive Literature Review 23

4 PROPOSED TAXONOMY
In this paper, we present a comprehensive taxonomy that categorizes research work related to
AIOps for incident management. Our taxonomy encompasses primary groups, covering diverse
factors that are essential to consider when evaluating the necessity, design, implementation, and
reproducibility of the reviewed methods. Carefully choosing these categories enables us to analyze
many dimensions that significantly impact AIOps for incident management. These dimensions
include the context, representing environmental factors that drive and surround the proposed
approach. Additionally, we examine factors pertaining to the characteristics of the data and their
representation. Moreover, we explore the requisite measures necessary to render the data actionable
for efficient analysis and interpretation. Of utmost importance is the detailed exploration of the
design and implementation of the approach. We clarify the methodology adopted, the learning
paradigm or research area employed, and how the approach was evaluated. Furthermore, we
highlight particularities exhibited and interesting requirements validated by the proposed approach.
Each of these categories is explained in detail in Table 2 to ensure inclusiveness and brings together
all relevant aspects in a structured manner. Concerning the specific attributes highlighted for each
method, which correspond to the requirements outlined for constructing AIOps models, our focus is
solely on instances where a method explicitly addresses these criteria in the paper (e.g., robustness
to noise or incorporating mechanisms for explainability). To illustrate, the adherence of a method
to contextual evaluation criteria is established only if the experimental study explicitly aligns with
the temporal requisites outlined in the evaluation protocol (refer to Section 4.2 for more details).
An example of this would involve ensuring that anomalies within the test set must strictly postdate
anomalies observed in both the training and validation sets.
In the following, we will delve into major factors that are exclusively relevant to our studied

domain. Our focus is specifically to explore the different data sources and outline the evaluation
methods employed for the proposed AI approaches.

4.1 Data Sources and Types
Data plays the most crucial role in incident management, serving as the fundamental building
block that guides the design of the approach used to identify predictive or descriptive patterns
within it. The primary objective is to use this data to effectively accomplish the desired task at
hand. In an industrial setting, data is derived from a multitude of sources, including physical or
software components, and can also be generated or edited by humans. One key characteristic of
this data is its unstructured nature, lacking a standardized format and displaying non-homogeneity.
Consequently, data collected from different sources require a pre-processing stage to perform
subsequent analysis. Furthermore, data from the same source can be represented in various ways.
We categorize data sources based on the following convention.

Source Code. It represents the fundamental building block of software, including various units
such as functions, file codes, classes, and modules. It reflects the design, structure, and logic of
different functionalities and services within the software system. In previous works, source code
has been represented in diverse ways, including code metrics, which are handcrafted features
derived directly from the source code. Code metrics play a critical role in software defect prediction
by quantifying different aspects of the codebase that can impact software quality. These metrics
cover a wide range, from static module-level metrics [172] for procedural languages, such as Lines
of Code (LOC), Coupling Between Objects (CBO), Lack of Cohesion in Methods (LCOM), and Depth
of Inheritance Tree (DIT), which provide insights into module complexity and potential defect-
proneness. At the class level [67], metrics like Number of Methods (NOM), Weighted Methods per
Class (WMC), and Response for a Class (RFC) offer indications of class complexity and the potential

24 Remil et al.

Fig. 9. Sample Java method and its Abstract Syntax Tree (AST).

Fig. 10. Log parsing example [276].

occurrence of defects. Machine learning algorithms are trained using these metrics to identify
patterns and relationships between code quality and defects. Another representation of source
code is in the form of Abstract Syntax Trees (AST) [253], which capture the syntactic structure of
the code by breaking it down into constituent elements such as expressions, statements, functions,
classes, and variables (Figure 9). Source code has been modeled using the program spectrum [22, 55],
which provides execution information from specific perspectives, such as conditional branches
or loop-free intra-procedural paths and also as a sequence of tokens [193, 282] in many research
works, particularly in Software Fault Localization.
Topology (Environment Features). Topology refers to the structure, either physical or logical,
of the IT environment. It includes information about the components, connections, and spatial
relationships within the system. This data source offers valuable insights into the overall archi-
tecture, providing details about servers, network devices, databases, etc. Additionally, topology
data may include configuration settings, software versions, and other relevant features of the
system. The presence of topology is important as it establishes the context necessary for identify-
ing actionable and contextualized patterns within the data. Without the constraints and context
provided by the topology, the detected patterns, while valid, may be misleading or distracting [205].
Topology has found extensive use in various areas, such as determining causality and localizing
faults [154, 210], ranking incident [153], prediction of incident [143], as well as enhancing models
explainability [212].

AIOps Solutions for Incident Management: Technical Guidelines and A Comprehensive Literature Review 25

Event Logs. Logs consist of human-readable statements generated by software applications, oper-
ating systems, or devices to describe events or actions. They serve as valuable records, providing
information about system activities, errors, warnings, and other relevant events. Timestamps are
typically included in logs, along with details such as the event’s source, severity, and description. An-
alyzing logs is essential for understanding the sequence of events leading to an incident, identifying
abnormal behaviors, debugging issues, and ultimately pinpointing the root cause. In general, logs
are semi-structured text that is produced by logging statements (e.g., printf(), logger.info())
within the source code. Once logs are collected, they need to be parsed to be utilized in various
downstream log mining tasks, such as incident detection.
Parsing log messages is a crucial step in making logs usable for different analytical tasks. This

process aims to transform the semi-structured log messages into structured log events by extracting
constant parts and variables [104]. In the given example depicted in Figure 10, a log parsing
scenario is presented, showcasing a log message obtained from the Hadoop Distributed File System
(HDFS) [276]. A log message consists of two main components, the message header, and the
message content. The message header, which is determined by the logging framework, is relatively
straightforward to extract, including details like verbosity levels (e.g., INFO). On the other hand,
extracting essential information from the message content proves to be more challenging due to
its unstructured nature, primarily consisting of free-form natural language written by developers.
Typically, the message content comprises both constants and variables. Constants represent fixed
text provided by developers (e.g., the word "Received"), describing a particular system event. On
the other hand, variables correspond to the dynamic runtime values of program variables, carrying
contextual information. The set of constants forms the event template.
Numerous log parsing techniques have been proposed, including clustering-based approaches

(e.g., LKE [93], LogSig [241]), heuristic-based methods (e.g., iPLoM [170], SLCT [245]), Evolutionary
Algorithms such as MoLFI [177], and Frequent Pattern Mining techniques like Logram [71]. These
algorithms are evaluated based on factors such as offline or online parsing mode, coverage, and
alignment with domain knowledge. Parsed logs have been used in log mining algorithms with
different approaches, including structured features [106, 276], log sequences [85, 173], graphs [189]
and Finite State Automata (FSA) [160]. For more details, please refer to the work of [104, 106].

Key Performance Indicators (KPIs). These metrics serve as performance indicators for assessing
the health status of IT infrastructures and services. They provide quantitative measurements that
offer insights into system performance, availability, reliability, and response times. Examples of these
metrics include service response time, error rates, disk reads, resource utilization (such as CPU, Swap,
andmemory consumption), etc. Typically, thesemetrics are represented as univariate ormultivariate
time series, which are utilized for various purposes such as detecting abnormal trends [150, 256],
predicting failures by monitoring certain measures [138, 162], estimating the remaining useful
lifetime of physical components, or storage capacity [298], identifying recurrent and unknown
performance issues [151], and conducting root cause analysis and incident correlations [115, 223].

Network Traffic. This type of data involves the analysis of data packet flow within a computer
network, including source and destination IP addresses, ports, protocols, and packet sizes. This data
source provides valuable insights into communication patterns, network congestion, anomalies,
and potential security threats. By analyzing network traffic, it is possible to identify and address
network-related issues, pinpoint performance bottlenecks, and detect signs of malicious activities
that could lead to significant incidents. Different approaches have been employed to model network
traffic data. For instance, in one study [129], SNMP data was utilized to monitor network links and
diagnose anomalies in network traffic. The authors treated flow measurements as multivariate time
series collected over time, enabling the separation of traffic into normal and anomalous subspaces.

26 Remil et al.

Fig. 11. Example of an incident report for a bug in Eclipse. This bug is about a missing node of XML files in
Product Web Tools Platform [277].

In a subsequent work by the same authors [130], static features such as source and target destination
addresses or ports were incorporated into the traffic data to detect and diagnose security threats
and service outages. Another approach, presented in [255], involved representing network traffic
as image-like structures using the IDX file format for encrypted traffic classification. This process
involved mapping the network traffic data onto a 2D grid, where each grid cell represented a specific
traffic attribute, such as packet size, source IP address, or destination port. The intensity or color
of each pixel in the image reflected the value or frequency of the corresponding network traffic
attribute at that particular location. Furthermore, network traffic has been represented as graphs
by [35] to localize the sources of performance problems in networks. Probabilistic inference graphs
were constructed from the observation of packets exchanged in the network infrastructure. Nodes
of the inference graph are divided into root cause nodes (corresponding to internal IP entities),
observation nodes (corresponding to clients), and meta-nodes, which model the dependencies
between the first two types of nodes. Each node is also associated with a categorical random
variable modeling the current state (up, troubled, down), which is influenced by other nodes via
the dependency probabilities.
Incident Reports. Incident reports are valuable sources of information that comprehensively
document the details, impact, discussions, and resolution of incidents. These reports are typically
initiated by developers, testers, or end-users, capturing crucial information to aid incident man-
agement. As illustrated in Figure 11, incident reports commonly include an identification number
and a title, along with contextual features such as the timeline of when the incident was reported
and modified, the affected system or service’s topology, the severity or importance of the incident,
the assigned programmer responsible for resolution, and the incident’s resolution status (e.g., new,
unconfirmed, resolved). Of utmost importance, incident reports contain a detailed description of

AIOps Solutions for Incident Management: Technical Guidelines and A Comprehensive Literature Review 27

Fig. 12. [Left] Example of an alert on memory consumption from [295]. [Right] Explanation of alert template
extraction.

the issue, including information on how to reproduce the problem, stack traces (in the case of a
bug), and the expected behavior. Additional comments within the report may include discussions
about potential solutions, diagnosis and root cause analysis, and actions taken to mitigate the
incident. Attachments such as proposed patches, test cases, or screenshots may also be included to
provide further context and support. Furthermore, incident reports should offer historical context
to leverage past knowledge from similar incidents. Tagging relevant information from previous
incidents enables the application of valuable lessons learned in the current resolution processes.
The challenge in processing incident reports lies in the diversity of data types, including struc-

tured, semi-structured, and unstructured data. For example, environment characteristics are typi-
cally presented in structured or tabular formats [66, 202, 277], while stack traces, problematic SQL
queries and user traces fall into the category of semi-structured data [202, 286]. On the other hand,
the description of the problem and the comments section dedicated to the analysis and diagnosis
of the problem consist of unstructured natural language text [60, 132, 277], which requires data
normalization. Various approaches have been employed to encode these different data types. For
instance, both Chen et al. [60] and Pham et al. [202] utilized the FastText algorithm [47] for text
encoding. Another approach employed in [132] was the use of Word2Vec [179], which builds
pretrained subword vectors based on an external corpus and then fine-tunes them using historical
incident data. Contextualization data, on the other hand, was handled using exponential family
embeddings in the work of Pham et al. [202]. In addition, some researchers explored assignment
information in incident reports to create what is referred to as a Tossing Graph, aiming to reduce
the need for reassigning incidents to other developers [45, 114, 266].
Alerting Signals. Alerting signals are notifications generated by monitoring systems or tools when
specific thresholds on time series metrics or conditions on event occurrences are violated. These
signals serve as indications of abnormal behaviors, potential issues, or breaches of established
thresholds. Examples of triggering events include high CPU usage, low disk space, high latency
time, or application errors. Alerting signals act as an early warning system, allowing proactive
identification and resolution of emerging problems before they escalate into failures. It is important
to note that alerting signals are not raw or unprocessed data directly collected from monitored
systems, such as KPI metrics or event logs. Instead, they are refined data derived from metrics or
events based on a set of predefined rules. For example, Figure 12 (left) illustrates an example alert
generated by the AlertRank Framework [295], indicating that the current memory utilization has
exceeded the threshold of 79%, leading to a P2-error severity. This alert is derived from the analysis

28 Remil et al.

Table 3. Contingency table.

True Failure True Non-failure Sum

Prediction: Failure
(Failure Warning)

True positive (TP)
(Correct Warning)

False positive (FP)
(False Warning)

Positives
(POS)

Prediction: No failure
(No Failure Warning)

False Negative (FN)
(Missing Warning)

True Negative (TN)
(Correctly no Warning)

Negatives
(NEG)

Sum Failures (F) Non-Failures (NF) Total (N)

of memory consumption over time and generated using alert templates within the source code,
similar to log events, as shown in Figure 12 (right). Alerting signals are commonly used to identify
and prioritize critical issues within a system [295]. They can also be utilized for categorizing similar
or identical problems into specific categories [292], as well as deducing correlations among multiple
simultaneous events [180].

Execution Traces. In addition to the main data sources mentioned above, which are utilized in the
incident management process to develop data-driven approaches for incident detection, diagnosis,
triage, and resolution, there are other data sources that are specifically relevant to certain tasks. One
such example is code traces, which provide a hierarchical description of the modules and services
invoked to fulfill a user request and are employed in the diagnosis task. These traces capture the
flow of control, method invocations, input/output data, and interactions with external dependencies.
Execution traces are particularly valuable for diagnosing complex or intermittent problems that are
challenging to reproduce. Stack traces, for example, are detailed reports that provide information
about the executed methods and their associated packages during a crash. They can be obtained
through system calls in various programming languages. Stack traces have primarily been utilized in
the context of crash deduplication, which involves identifying near-duplicate reports that indicate
the same bug or error. Stack traces have been modeled using graphical representations [127].,
sequence-based approaches [50, 82], or vectorization techniques such as n-grams and TF-IDF for
information retrieval purposes [135, 219]. Another prominent type of execution trace comprises
SQL queries executed to retrieve a service or important data. Parsing SQL queries efficiently is
crucial for feeding them into analytical models to extract essential components such as tables,
predicates, and projections [25, 29]. This enables their utilization as static features to identify
schema issues in data models within databases and improve performance, such as recommending
and selecting indexes [59, 78, 210], detecting anti-patterns [63], and identifying insider threats [128].
Alternatively, some methods treat SQL queries as natural language, employing techniques such
as Query2Vec [111] to capture their semantic meaning. Heap dumps in Java memory analysis are
another type of data that can be considered. They are snapshots of the Java heap memory taken
at a specific moment in time. The Java heap is the region of memory where objects are allocated
and deallocated during the execution of a Java application. A heap dump captures the complete
state of the Java heap, including all objects and their attributes, such as instance variables and
references. This provides a detailed view of the memory usage within the Java application. Heap
dumps are particularly useful for analyzing memory-related issues, such as memory leaks [119, 273].
In the related literature, heap dumps are commonly represented as trees [133], graphs [171], or
hierarchies [209].

AIOps Solutions for Incident Management: Technical Guidelines and A Comprehensive Literature Review 29

Table 4. Metrics obtained from the contingency table.

Metric Formula Other names

Precision TP
TP+FP Confidence

Recall TP
TP+FN

Support
Sensitivity

True positive rate (TPR)

False positive rate (FPR) FP
FP+TN Fall-out

Specificity TN
TN+FP True negative rate (TNR)

False negative rate (FNR) FN
FN+TP 1 - recall

Negative predictive value TN
TN+FN

False positive error rate FP
FP+TP 1 - precision

Accuracy TP+TN
TP+TN+FP+FN

Odds ratio TP×TN
FP×FN

4.2 Evaluation Metrics
To comprehensively evaluate the quality and performance of data-driven approaches in incident
management tasks, it is crucial to assess them using appropriate metrics, also known as figures
of merit. While machine learning metrics are commonly used to evaluate predictive models, it
is important to note that relying solely on these metrics, such as contingency metrics, may not
accurately reflect the models’ performance in real-world scenarios, especially when considering
time constraints. For example, in the case of incident prediction, the goal is to predict incidents
while minimizing false alarms and maximizing the coverage of actual incidents. However, predicting
incidents after the designated prediction period (Δ𝑡𝑝) is not considered accurate since the incident
has already occurred, leading to suboptimal allocation of time and resources. Therefore, we introduce
a set of established metrics, focusing primarily on twomain tasks: detecting and predicting incidents.
It is worth mentioning that these metrics can be adapted for other tasks as well, and several
other metrics have been proposed to evaluate triage, diagnosis, and the effectiveness of automated
remediation actions, which will be briefly covered. To organize the metrics effectively, we categorize
them based on the nature of the model output.

Classification Metrics. Classification metrics are commonly derived from four cases, as shown in
Table 3. A prediction is classified as a true positive if an incident occurs within the prediction period
and a warning is raised. Conversely, if no incident occurs but a warning is given, the prediction is
considered a false positive. If the algorithm fails to predict a true incident, it is categorized as a
false negative. Finally, if no true incident occurs and no incident warning is raised, the prediction
is labeled as a true negative. To compute metrics like precision and recall, the contingency table is
populated with the number of true positives (TP), false positives (FP), false negatives (FN), and true
negatives (TN). The prediction algorithm is applied to test data that was not used to determine the
parameters of the prediction method. This allows the comparison of prediction outcomes against the
actual occurrence of incidents. The four possible cases are illustrated in Figure 13. It’s worth noting
that the prediction period (Δ𝑡𝑝) is instrumental in determining whether an incident is counted as

30 Remil et al.

predicted or not. Therefore, the choice of Δ𝑡𝑝 also has implications for the contingency table and
should align with the requirements of subsequent steps in the incident management process.

Fig. 13. A timeline showing true incidents and all four types of predictions TP, FP, FN, TN.

The metrics presented in Table 4 are derived from the contingency table (see Table 3). They
are commonly used in pairs, such as precision/recall, true positive rate/false positive rate, sensi-
tivity/specificity, and positive predictive value/negative predictive value. Different research areas
may use different names for the same metrics, hence, the leftmost column indicates the commonly
used terminology, while the rightmost column lists alternative names. It’s important to note that
improving precision (reducing false positives) often results in a decrease in recall (increasing false
negatives) and vice versa. To balance the trade-off between precision and recall, the F-Measure is
used as the harmonic mean of the two, assuming equal weighting. One limitation of precision and
recall is that they don’t consider true negative predictions. Therefore, it is necessary to consider
other metrics in combination with precision and recall. The false positive rate is the ratio of in-
correctly predicted incidents to the total number of non-incidents. A lower false positive rate is
desirable, provided that the other metrics do not deteriorate.

Accuracy appears to be an appropriate metric for incident prediction due to the rarity of incidents.
Achieving high accuracy by always classifying the system as non-faulty may be misleading because
it fails to capture any incidents, resulting in a recall of zero. However, it is important to consider
true negatives when assessing incident prediction techniques. Let’s consider an example from [220].
Two prediction methods perform equally well in terms of true positives (TP), false positives (FP),
and false negatives (FN), resulting in the same precision and recall. However, one method makes
ten times more predictions than the other because it operates on more frequent measurements.
The difference between these methods is reflected only in the number of true negatives (TN),
which becomes apparent in metrics that include TN. True negatives are counted by considering
predictions made when no incident was imminent and no warning was issued.

It is noteworthy that the quality of predictions does not depend only on algorithms but also on
factors such as the data window size (Δ𝑡𝑑), lead-time (Δ𝑡𝑙), and prediction period (Δ𝑡𝑝). Predicting
incidents at an exact point in time is highly unlikely, so predictions are typically made within
a specific time interval (prediction period). The number of true positives is influenced by (Δ𝑡𝑝):
a longer prediction period captures more incidents, increasing the number of true positives and
impacting metrics like recall. Incident predictors often utilize an adjustable decision threshold.
When the threshold is set low, incident warnings are raised easily, increasing the chances of
capturing true incidents (resulting in high recall). However, a low threshold also leads to many
false alarms, resulting in low precision. Conversely, if the threshold is set very high, the situation is
reversed. To visualize this trade-off, precision/recall curves are used, plotting precision over recall
for various threshold levels. Similarly, the receiver operating characteristic (ROC) curve plots the
true positive rate versus the false positive rate (sensitivity/recall versus 1-specificity, respectively).
This curve assesses the model’s ability to distinguish between incidents and non-incidents. The

AIOps Solutions for Incident Management: Technical Guidelines and A Comprehensive Literature Review 31

Table 5. Metrics used for regression tasks in incident management tasks.

Metric Formula

Mean Absolute Error (MAE) 1
𝑛

∑𝑛
𝑖=1 |𝑦𝑖 − 𝑦𝑖 |

Root Mean Squared Error (RMSE)
√︃

1
𝑛

∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦𝑖)2

Mean Absolute Percentage Error (MAPE) 1
𝑛

∑𝑛
𝑖=1

��� �̂�𝑖−𝑦𝑖𝑦𝑖

��� × 100%

R-squared (R2) 1 −
∑𝑛

𝑖=1 (𝑦𝑖−�̂�𝑖)2∑𝑛
𝑖=1 (𝑦𝑖−𝑦)2

Explained Variance Score 1 − Var(𝑦−�̂�)
Var(𝑦)

closer the curve is to the upper-left corner of the ROC space, the more accurate the model is. The
Area Under the Curve (AUC) is defined as the area between the ROC curve and the x-axis and
measures the probability that a data point from an incident-prone situation receives a higher score
than a data point from a non-incident-prone situation. By summarizing the capacity of a prediction
algorithm to discriminate between incidents and non-incidents, the AUC converts the ROC curve
into a single number. A random predictor has an AUC of 0.5, while a perfect predictor achieves an
AUC of 1.

Regression Metrics. Regression metrics are commonly used in tasks such as remaining useful
lifetime estimation or anomaly detection, particularly when applied to time series metric data to
identify outliers. Unlike classification metrics, the metrics used for regressors remain consistent
across conventional machine learning models, as shown in Table 5. Mean Absolute Error (MAE) is a
metric that represents the average absolute difference between the predicted values𝑦𝑖 and the actual
values𝑦𝑖 . It provides a measure of the average magnitude of errors. Several works have utilized MAE
for regression tasks [197]. Root Mean Squared Error (RMSE) is similar toMAE, but it takes the square
root of the average squared differences between the predicted values and the actual values. RMSE
penalizes larger errors more significantly. It has been used, for example, in anomaly detection [134].
Mean Absolute Percentage Error (MAPE) measures the average percentage difference between
the predicted values and the actual values. It is particularly useful when evaluating the accuracy
of predictions relative to the scale of the target variable [146]. R-squared (R2) is a metric used
to represent the proportion of variance in the target variable that is explained by the predicted
values. R2 ranges from 0 to 1, where a value of 1 indicates a perfect fit and a value of 0 indicates
no improvement over a naive baseline [227]. Finally, the explained variance score, similar to R2,
measures the proportion of variance in the target variable that is explained by the predicted values.
However, it is based on the variance of the residuals and can be used as an alternative metric for
evaluation [227].

Other Metrics. In addition to the commonly used regression and classification metrics, there
exists a set of specialized metrics that are particularly relevant for evaluating the effectiveness and
performance of specific incident management tasks, such as fault localization, incident correlation,
and incident deduplication. These metrics are often specifically designed for incident management
purposes and may have limited applicability outside this domain. Some of these metrics have
been developed in alignment with specific research studies, while others are unique to the field of
incident management. For example, Wang et al. [251] have introduced the metric of "normality"
for detecting anomalies within a network traffic flow sequence.

32 Remil et al.

In fault localization research, several specific metrics are used to evaluate the effectiveness of
different techniques. One such metric is T-Score, which estimates the percentage of code that a
programmer can ignore before identifying the first faulty location in the program [157, 215]. Another
metric commonly used is EXAM (Expense metric), which measures the percentage of program
statements that need to be examined before encountering the first faulty statement [116, 118].
In addition to these metrics, other research work have also employed the Wilcoxon signed-rank
test [258, 259] as a statistical evaluation method. This test serves as an alternative to the paired
Student’s t-test when the assumption of a normal distribution in the population cannot be made to
compare the effectiveness of two techniques, denoted as 𝛼 and 𝛽 . The test examines the one-tailed
alternative hypothesis that 𝛽 requires the examination of an equal or greater number of statements
compared to 𝛼 .

In software defect prediction, there are cases where it is more useful to evaluate the classes based
on their predicted number of defects in a ranking manner. One approach to assess the performance
of the prediction model is by calculating Spearman’s correlation coefficient [232], as demonstrated
in the study conducted by [72]. Another method used in this context is the cumulative lift chart,
which compares the performance of two different models or strategies by plotting the cumulative
gain against the number of cases. This approach has been also employed by [86].

In intrusion detection systems within practical network settings, Mirheidari et al. [180] conducted
a comprehensive comparison of alert correlation algorithms. The study aimed to evaluate the
performance of these algorithms using both quantitative and qualitative measures. The quantitative
assessment focused on accuracy, while the qualitative evaluation delved into additional aspects
such as extendibility and flexibility. These aspects refer to the algorithm’s adaptability, localizability,
and capacity to adjust to new conditions. Furthermore, the evaluation considered the algorithm’s
ability to parallelize tasks and the associated memory requirements. This evaluation aligns with
the desirable attributes emphasized in Section 3.4, which outlines the desired characteristics for
AIOps solutions in incident management.

In the context of incident triage and deduplication approaches, specific performance metrics have
been adopted to improve the evaluation of these processes. These metrics include Mean-reciprocal
rank [70, 211], Recall rate of order k [125, 222, 248], and Average Hit Ratio [23]. It is noteworthy
that there are some metrics specifically designed to assess the process, rather than a particular
algorithm or data-driven approach. While we previously discussed metrics such as Mean Time To
Repair (MTTR), Mean Time To Engage (MTTE), and Mean Time to Detect (MTTD), other research
works [66, 205] have introduced alternative terminology. For example, MTTR may be referred to
as Mean Time to Repair, and MTTD as Mean Time to Detect. Furthermore, there are additional
valuable measures that have been considered, such as Mean Time Between Failures (MTBF) [48],
which evaluates the average duration between consecutive incidents or failures to assess system
reliability.

5 A COMPREHENSIVE REVIEW OF AIOPS-BASED DATA-DRIVEN APPROACHES
In the following sections, we present a review of research efforts centered around AIOps-driven
data-centric approaches tailored specifically for incident management. We begin with an insightful
overview of related and analogous studies, serving as an invaluable compass for those keenly
interested in specific incident phases or application domains. We also review noteworthy surveys
that offer targeted insights into particular facets of the field. Subsequently, we delve into an in-
depth examination of the pioneering techniques that have found their place within the incident
management literature. Each facet of incidentmanagement tasks is described based on our taxonomy
through summaries and evaluations featured in dedicated tables. These tables serve as efficient

AIOps Solutions for Incident Management: Technical Guidelines and A Comprehensive Literature Review 33

reference points, providing readers with a clear and concise overview of each task. Furthermore,
we assess the extent to which the reviewed papers meet the requisite criteria.

5.1 Prior Research Efforts in AIOps and Incident Management

Table 6. Summary and categorization of Incident Management related papers

Ref. Year
Study

Approach
AIOps

Classif.
Taxonomy

Focus Area Findings Practical Adoption

D
et
ec
ti
on

Pr
ed

ic
ti
on

R
an

ki
ng

A
ss
ig
na

ti
on

C
la
ss
ifi
ca
ti
on

D
ed

up
li
ca
ti
on

R
oo

tC
au

se

C
or
re
la
ti
on

M
it
ig
at
io
n

T
re
nd

s

C
ap

ab
il
it
ie
s

C
ha

ll
en

ge
s

D
es
id
er
at
a

Im
pl
em

en
ta
ti
on

D
et
ai
ls

Sp
ec
ia
li
ze
d

Te
ch

ni
qu

es

R
es
ea
rc
h

In
no

va
ti
on

[161] 2013 Experience • • • • • • • • • • • •
[286] 2015 Survey • • • • • • • • •
[290] 2016 Review • • • • • • • • • •
[140] 2017 Survey • • • • • • •
[185] 2018 Review • • • • • • • • •
[205] 2018 Report • • • • • • • • • • • • • •
[73] 2019 Experience • • • • •
[66] 2020 Experience • • • • • • • • • • • • • •
[226] 2020 Experience • • • • • • • •
[46] 2021 Survey • • • • • •
[208] 2021 Review • • • • • • • • • • • • •
[196] 2021 Survey • • • • • • • • • • •
[165] 2021 Case Study • • • • • •
[216] 2022 Review • • • •

Our Survey 2023 Review • • • • • • • • • • • • • • • • • •

Over the past two decades, numerous research endeavors have been dedicated to effectively
tackling the automated incident management procedure. This becomes particularly important
given the rise of expansive IT systems and the continually expanding scale of their infrastructures.
These advancements have led to the generation of various incident types spanning multiple
target domains, necessitating swift reporting, comprehension, and mitigation. Numerous research
initiatives, motivated by industrial imperatives, have been engaged in structuring the incident
management procedure. These efforts involve the formulation of taxonomies or comprehensive
frameworks, thoughtfully considering an array of requirements and challenges, while including
a review of existing methods that can be adapted to address specific aspects of the proposed
framework [46, 140, 185, 195, 208, 286, 290]. Others channel their focus into practical insights
gained from real-world industrial scenarios through experience papers and use case studies, offering
effective implementation details, specialized techniques and research innovations [66, 73, 165].

As AIOps emerges as a novel and cross-disciplinary research frontier involving diverse domains
and applications, it’s worth noting that earlier works [140, 161, 185, 286, 290], particularly predating
2018, do not expressly reference the term AIOps, despite aligning with its conceptual framework and
scoop. Additionally, some of these works may introduce non-data-drivenmethodologies, thus falling
beyond the boundaries of the AIOps domain. In the following, we present a comparative analysis
of related research that is either closely aligned or shares some similarities to our comprehensive
examination of AIOps in incident management. The objective is to pinpoint key differentiating
criteria, including their focal areas, whether a taxonomy is proposed, notable findings, and the
provision of practical insights to facilitate effective implementation. Furthermore, we delve into

34 Remil et al.

Table 7. Summary and categorization of specific data-driven surveys and reviews with a focus on particular
Incident Management phases

Ref. Year
Focus

and Scoop
Area

Target Area Data sources

Type of AI Techniques Evaluation Metrics
Te

ch
ni
ca
l

A
pp

li
ca
ti
on

Fu
nc

ti
on

al

B
us

in
es
s

So
ur

ce
C
od

e

To
po

lo
gy

Ev
en

tL
og

s

K
PI
s/
SL

O
s

T
ra
ffi
c
N
et
w
or
k

R
ep

or
ts

A
le
rt
s

T
ra
ce
s

[57] 2009 Cyber Intrusion
Detection • • • •

Statistical Models
Conventional ML Classifiers
Clustering

N/A

[251] 2013
Network
Anomaly
Detection

• •
Statistical Models
Conventional ML Classifiers
Clustering

Domain-specific
metrics

[109] 2015 Bottleneck
Identification • • • • •

Statistical Models
Conventional ML Classifiers
Bayesian Models
Conventional ML Regressors
Rule-based Models
Clustering

Contingency metrics

[109] 2019
IoT Systems
Anomaly
Detection

• • • •

Statistical Models
Conventional ML Classifiers
Bayesian Models
Conventional ML Regressors
Deep Learning Models
Auto Encoders
Dimensionality Reduction
Clustering
Pattern Mining

N/A

[104] 2021 Log Anomaly
Detection • • • •

Statistical Models
Conventional ML Classifiers
Deep Neural Networks
Dimensionality Reduction
Clustering
Pattern Mining

N/A

[296] 2021 Log Anomaly
Detection • • • •

Conventional ML Classifiers
Deep Learning Models
Dimensionality Reduction
Clustering
Pattern Mining

[220] 2010 Online Failure
Prediction • • • • • • • •

Statistical Models
Conventional ML Classifiers
Bayesian Models
Conventional ML Regressors
Dimensionality Reduction
Rule-based Models
Clustering
Pattern Recognition

Contingency metrics
ROC/AUC

[86] 2012 Software Defect
Prediction • • • Conventional ML Classifiers

Ranking-based Models
ROC/AUC

Spearman correlation
Friedman yest

[121] 2017 Software Defect
Prediction • • •

Statistical Models
Conventional ML Classifiers
Bayesian Models

Contingency metrics

[113] 2019 Faults Prediction • • • • • • •

Statistical Models
Conventional ML Classifiers
Bayesian Models
Conventional ML Regressors
Deep Learning Models
Rule-based Models

Contingency metrics

AIOps Solutions for Incident Management: Technical Guidelines and A Comprehensive Literature Review 35

Ref. Year
Focus

and Scoop
Area

Target Area Data sources

Type of AI Techniques Evaluation Metrics

Te
ch

ni
ca
l

A
pp

li
ca
ti
on

Fu
nc

ti
on

al

B
us

in
es
s

So
ur

ce
C
od

e

To
po

lo
gy

Ev
en

tL
og

s

K
PI
s/
SL

O
s

T
ra
ffi
c
N
et
w
or
k

R
ep

or
ts

A
le
rt
s

T
ra
ce
s

[75] 2021 Railway Failures
Prediction • • •

Conventional ML Classifiers
Bayesian Models
Conventional ML Regressors
Deep Learning Approaches
Auto-Encoders
Generative Adversarial Model

Contingency metrics
Regression metrics

[44] 2022 Remaining Useful
Lifetime • •

Statistical Models
Conventional ML Regressors
Deep Learning Approaches
Auto-Encoders
Generative Adversarial Models
Transfer Learning
Reinforcement Learning

Regression metrics

[23] 2014 Bug Triage • • • •

Conventional ML Classifiers
Bayesian Models
EM models
Information Retrieval

Contingency metrics

[231] 2014 Memory Leak
Diagnosis • • • Statistical Models

Graph Mining N/A

[94] 2015 Fault Diagnosis • • N/A Statistical Models
Signal-based Models N/A

[261] 2016 Fault Localization • • •

Program Spectrum-based Models
Statistical Models
Conventional ML Classifiers
Rule-based approaches
Pattern Mining

[230] 2017 Root Cause
Analysis • • • • N/A

Statistical Models
Conventional ML Classifiers
Bayesian Models
Rule-based Models
Pattern Mining

Complexity
Domain-specific

metrics

[180] 2013 Intrusion Alerts
Correlation • • •

Statistical Models
Conventional ML Classifiers
Similarity-based Models

Accuracy
Domain-specific

metrics

surveys and reviews that are centered on specific phases within incident management, such as
failure prediction or root cause analysis, without offering an exhaustive examination of the entire
process [23, 44, 57, 75, 86, 94, 104, 109, 109, 113, 121, 180, 220, 230, 231, 251, 261, 296]. Additionally,
we explore works that target specific data sources, such as anomaly detection in log event data.

Table 6 compiles an overview of the most significant AIOps and Incident Management research
papers. Our objective is to assist readers in locating pertinent works aligned with their specific
inquiries and research subjects. Moreover, we aim to pinpoint research gaps and derive innovative
ideas from existing literature. We classify the selected research into distinct factors. This classifica-
tion assists readers in various approaches, including survey papers that provide a holistic snapshot
of the current state-of-the-art, literature reviews that delve into analyzed literature and conduct
technical comparisons based on objective criteria, and studies that offer practical insights such
as industrial experience papers and use cases. Notably, since 2018, pioneering studies in incident
management have increasingly incorporated the AIOps acronym. For each of these papers, we
assess the extent to which they cover all phases of incident management as defined in Section 3.3.
While a majority of these works concentrate on the reporting phase (detection and prediction),
along with root cause analysis and mitigation, a clear void exists in the coverage of aspects such
as ranking, assignment, and deduplication. It is also noteworthy to highlight that some research

36 Remil et al.

papers have a limited scope concerning the broad concept of incidents. For example, Zhang et al.
[286] address solely software bug management, thereby overlooking other areas like remaining
useful lifetime estimation. Our analysis also extends to insights into the implementation of AI
models in real-world scenarios. We report whether these papers provide a comprehensive depiction
of related challenges, requirements, and articulate gaps for potential future research. The study
conducted by Notaro et al. [196] aligns closely with our work. Nevertheless, it exhibits gaps in
addressing certain aspects, such as assignment and deduplication. Furthermore, it lacks an in-depth
technical exploration of the challenges and requirements for establishing AIOps in production
scenarios.

In Table 7, we present an overview of the most relevant surveys and reviews that focus on specific
phases within the incident management procedure, rather than offering a comprehensive analysis of
the entire process. These surveys delve into particular aspects, such as anomaly detection [57, 251],
online failure prediction [220], and more. We organize this research into categories based on
their primary focal points and scopes. For instance, certain surveys narrow their scope to specific
industries, such as the work by [75] concentrating solely on predicting failures within the railway
sector. Meanwhile, Mirheidari et al. [180] address the issue of correlating alerts for cyber intrusion
detection systems. Importantly, this does not exclude the potential applicability of the reviewed
approaches in other practical domains. Furthermore, we outline the targeted maintenance levels,
available data sources, and data-driven methodologies employed in these surveys. Some of these
studies also emphasize the evaluation metrics used to assess the reviewed methods. In specific
cases, like the research conducted by [230] focusing on root cause analysis, domain-specific metrics
are employed, as discussed in Section 4.2 (e.g., these particular metrics assess aspects such as the
ability to pinpoint multiple faults simultaneously, in identifying unknown faults, etc.).

5.2 Incident Detection Methods
Incident detection approaches are reactive methods of incident management that aim to track and
identify abnormal states or behaviors in a system. Their purpose is to either anticipate failures
before they occur or mitigate the consequences of failures after they have happened. This is driven
by the understanding that, despite employing advanced prediction techniques, it is impossible to
completely eliminate the occurrence of failures. These methods also aid in comprehending the
causal relationships, as well as understanding the temporal characteristics that lead to incidents.
Incident detection methods often leverage unsupervised learning approaches, primarily because
acquiring high-quality, sufficient, and balanced data labels poses significant challenges. Among the
notable techniques employed in this context, we find clustering methods, dimensionality reduction
techniques, and auto-encoders. Additionally, other approaches, such as graph mining, and statistical
models, have been employed in this context.
At the network level, Lakhina et al. [129] propose an anomaly detection method for network

traffic analysis using SNMP data. The authors apply Principal Component Analysis (PCA) to link
flow measurements collected over time to separate traffic into normal and anomalous subspaces.
Anomalies are identified by reconstructing new observations using abnormal components. If the
reconstruction error exceeds a predefined threshold based on explained variance, the data point is
considered anomalous. In a subsequent work [130], the same authors argue that by analyzing the
distributions of packet features (IP addresses and ports) in flow traces, it is possible to reveal the
presence and structure of various anomalies in network traffic. They use entropy as a summarization
tool to quantify the randomness or irregularity in these feature distributions. The method has
demonstrated its ability to adapt to new kinds of anomalies. However, Ringberg et al. [217] have
raised concerns about the application of PCA in [129] by identifying its susceptibility of false
positive rates to small normal subspace noises. Thus, Pascoal et al. [200] introduce another approach

AIOps Solutions for Incident Management: Technical Guidelines and A Comprehensive Literature Review 37

Table 8. Summary of reviewed AIOps Incident Detection methods.

Ref. Year Focus

Target Area Data sources

Approach Paradigm
Evaluation
Metrics C

od
e

D
at
as
et

Te
ch

ni
ca
l

A
pp

li
ca
ti
on

Fu
nc

ti
on

al

B
us

in
es
s

So
ur

ce
C
od

e

To
po

lo
gy

Ev
en

tL
og

s

K
PI
s/
M
et
ri
cs

T
ra
ffi
c
N
et
w
or
k

R
ep

or
ts

A
le
rt
s

T
ra
ce
s

[129] 2004 Network • • PCA UNSUP ACC, FPR •
[130] 2005 Network • • • FD UNSUP ACC, FPR •
[200] 2012 Network • • PCA UNSUP PREC, REC, FPR

[120] 2015 Network • • K-Means, PSO UNSUP F1, PREC, REC,
FPR •

[201] 2017 Network • • • ARIMA, PL,
ACODS UNSUP REC, FPR, ROC •

[37] 2017 Network • • HsMM UNSUP FPR, FNR, TNR
[270] 2017 Network • • • KL-Div UNSUP FPR, ACC, ROC •
[80] 2021 Network • • • GNN UNSUP F1, PREC, REC • •
[283] 2018 Edge Strm • • AE, K-Means UNSUP AUC • •

[281] 2019 Edge Strm • • Anomalousness
Score UNSUP PREC • •

[58] 2021 Edge Strm • • Frequency
Factorization UNSUP AUC • •

[225] 2013 Cloud • • • KNN, HMMs,
K-Means UNSUP PREC, REC, ACC,

FPR •

[247] 2014 Cloud • • • • ESD Test UNSUP F1, PREC, REC •
[158] 2015 Cloud • • RF SUP AUC
[228] 2017 N/A • • • EV Theory UNSUP ROC • •

[274] 2018 Web Apps • • VAE, KDE UNSUP F1, AUC, Alert
Delay • •

[150] 2018 Web Apps • • DBSCAN UNSUP NMI, F1 •
[213] 2019 Cloud • • • SR-CNN UNSUP F1, PREC, REC • •

[294] 2021 Software
Changes • • • • • Multimodel

LSTM UNSUP F1, PREC, REC,
MTTD • •

[256] 2022 Software
Changes • • • LSTM SELFSUP F1, PREC, REC • •

[233] 2019 N/A • • • Stochastic
RNN UNSUP F1, PREC, REC • •

[285] 2019 N/A • • • CNN-LSTM UNSUP F1, PREC, REC • •
[33] 2020 N/A • • • GAN Adversial F1, PREC, REC • •

[149] 2021 N/A • • • Hierarchical
VAE, MCMC UNSUP F1, Interpretation

Score • •

[93] 2009 Log Anom • • • FSM UNSUP FPR • •
[276] 2009 Log Anom • • • • PCA UNSUP ACC • •

[160] 2010 Log Anom • • • Mining
Invariants UNSUP ACC, FPR • •

[105] 2018 Log Anom • • • Hierarchical
Clustering UNSUP F1, PREC, REC •

[85] 2017 Log Anom • • • LSTM UNSUP F1, PREC, REC,
FPR, FNR • •

[173] 2019 Log Anom • • • Template2VEC,
LSTM UNSUP F1, PREC, REC • •

[291] 2019 Log Anom • • • Word2VEC,
biLSTM UNSUP F1, PREC, REC • •

[267] 2021 Log Anom • • • LSTM-based
GAN

UNSUP,
Adversial F1, PREC, REC •

[99] 2021 Log Anom • • • BERT SELFSUP F1, PREC, REC • •

38 Remil et al.

Table 9. Study of particularities of AIOps Incident Detection methods.

Ref. Interpretability Scalability Robustness Temporal Evaluation Human-in-the-loop

[37, 129] • •
[130] •
[200] • • •

[120, 201] • • •
[270] • • • •
[80] • •
[283] • •
[281] • • •
[58] • • • •

[150, 225, 228, 247] • • • •
[158, 213] • • • • •
[274] • • •
[294] • • •
[256] • •

[233, 285] • •
[33] • • •
[149] • • •
[93] • •
[276] • • • • •

[105, 160] • • •
[85] • • •
[173] • •
[291] • • •
[267] •

that incorporated a resilient PCA detector combined with a robust feature selection technique
in order to obtain adaptability to distinct network contexts and circumstances. Moreover, this
approach eliminates the need for flawless ground-truth data during training, addressing a limitation
highlighted in the conventional PCA approach present in [129]. Karami and Guerrero-Zapata [120]
introduce a clustering approach for identifying attacks and anomalies, ranging from Denial of
Service (DoS) to privacy breaches, within content-centric networks. This approach operates through
two distinct phases. Firstly, a unique hybridization of the Particle Swarm Optimization (PSO) and
K-means algorithm is employed in the training phase to accurately determine the optimal number
of clusters and avoid being trapped in a locally optimal solution. In the subsequent detection phase,
a fuzzy approach is employed by combining two distance-based methods, to effectively identify
anomalies within newly monitored data in which false positive rates are reduced with reliable
detection of intrusive activities.
Statistical approaches have also been leveraged within this context. For instance, Pena et al.

[201] propose a Correlational Paraconsistent Machine (CPM) that employs non-classical paracon-
sistent logic (PL) in conjunction with two unsupervised traffic characterization techniques. These
techniques involve Ant Colony Optimization for Digital Signature (ACODS) and Auto-Regressive
Integrated Moving Average (ARIMA). The purpose of these methods is to analyze historical network
traffic data and generate two distinct network profiles, known as Digital Signatures of Network
Segment using Flow Analysis (DSNSF), which describe normal traffic behavior. The detection of
anomalies is linked to the degrees of certainties and contradictions produced by paraconsistent logic
when correlating two prediction profiles with real traffic measurements. In a different study, Bang
et al. [37] propose an Intrusion Detection System (IDS) utilizing a Hidden Semi-Markov Model

AIOps Solutions for Incident Management: Technical Guidelines and A Comprehensive Literature Review 39

(HsMM) tailored specifically for detecting advanced LTE signaling attacks on Wireless Sensor
Networks (WSNs). The authors argue that traditional Hidden Markov Models (HMM) are limited in
representing various potential transition behaviors, while HsMM overcomes this limitation due to
its arbitrary state sojourn time, making it more suitable for analyzing time-series behavior. HsMM is
effectively employed to model the spatial-temporal characteristics of the wake-up packet generation
process. The detector then compares observed spatiotemporal features of a server’s wake-up packet
generation with the normal criteria established by the HsMM. Subsequently, an alert is triggered
whenever a significant divergence occurs. Xie et al. [270] present an algorithm to detect long-term
anomalies in WSNs, where a group of neighboring nodes is consistently affected by such anomalies
over a substantial time frame, particularly in the presence of DoS and sinkhole attacks. To achieve
this, the authors employ the Kullback-Leibler (KL) divergence to measure the differences between
the global Probability Density Functions (PDFs) across consecutive time intervals. The resulting
time series derived from this function was subject to analysis based on an adaptive threshold to
identify any noteworthy deviations from the norm.
More recently, Deng and Hooi [80] address the challenge of detecting anomalous events in the

context of cybersecurity attacks by analyzing high-dimensional time series data, specifically sensor
data. The authors propose an approach that combines structure learning with an attention-based
graph neural network, which learns a graph of the dependence relationships between sensors and
identifies and explains deviations from these relationships. In order to provide useful explanations
for anomalies, a forecasting-based approach is used to predict the expected behavior of each sensor
at each time based on the past. This allows the user to easily identify the sensors which deviate
greatly from their expected behavior. Moreover, the user can compare the expected and observed
behavior of each sensor, to understand why the model regards a sensor as anomalous. The approach
is also highly versatile, offering extendibility for application across a wide array of use cases beyond
just cybersecurity attacks.
Another concern lies in detecting anomalies in edge streams, which exhibit some specificities

since they are commonly used to capture interactions in dynamic and evolutionary networks. Yu
et al. [283] introduce NetWalk, a novel approach for real-time detection of structural anomalies
in dynamic networks prevalent in fields like social media, security, and public health. Unlike
traditional methods designed for static networks, NetWalk focuses on dynamic environments
where the network representations need constant updating. The proposed approach employs a new
embedding approach to encode vertices into vector representations. This process minimizes the
pairwise distance between vertex representations derived from dynamic network walks and utilizes
deep autoencoder reconstruction error as global regularization. The vector representations are
computed efficiently using a sampling technique that requires constant memory space. Based on
the learned low-dimensional vertex representations, NetWalk employs a clustering-based technique
to detect network anomalies incrementally and in real-time as the network evolves. This approach
can be applied to various types of networks, making it flexible for different application domains.
In the same context, Yoon et al. [281] introduced AnomRank to specifically address the challenge
of detecting sudden anomalous patterns, like link spam and follower boosting in dynamic graph
streams by employing a unique two-pronged approach, introducing novel metrics for measuring
anomalousness. These metrics track derivatives of node scores or importance functions, enabling the
detection of abrupt changes in node significance. AnomRank demonstrates through the experiments
its scalability, processing millions of edges in mere seconds, as well as theoretical soundness by
providing guarantees for its two-pronged approach. F-Fade [58] is another approach to detect
anomalies in edge streams which proposes a frequency-factorization technique to model the time-
evolving distributions of interaction frequencies between node pairs. Anomalies are then detected

40 Remil et al.

based on the probability of the observed frequency of each incoming interaction. This approach has
also proven to effectively operate in an online streaming setting while requiring constant memory.
Numerous alternative methods involve the analysis of Key Performance Indicators and metric

observations to effectively identify anomalies occurring across both technical, application and
functional levels. Typically, these methods employ unsupervised models that are trained on either
univariate or multivariate time series data. For instance, CloudPD [225] is a fault management frame-
work for clouds that introduced conventional machine learning techniques for anomaly detection
in cloud environments, addressing both the physical and application layers. The approach involved
utilizing various measures at the virtual machine (VM) and application machine levels, including
operating system variables and application performance metrics. The paper proposed to combine
three unsupervised machine learning methods: k-nearest neighbors(k-NN), HMMs, and K-means
clustering. Similarly, Vallis et al. [247] addressed the challenge of detecting long-term anomalies
in cloud computing environments on Twitter. The authors proposed a new statistical learning
approach using the generalized Extreme Studentized Deviate test (ESD) and incorporated time
series decomposition and robust statistics to identify anomalies such as a piecewise approximation
of the underlying long-term trend reducing the number of false positive while taking into account
both intra-day and weekly seasonalities to further minimize false positives. The proposed technique
is applicable to various types of time series data, including application metrics like Tweets Per
Second and system metrics like CPU utilization. On the other hand, Liu et al. [158] introduced a
novel supervised approach called Opprentice (Operators’ apprentice). In this approach, operators
need to periodically label anomalies in performance data using a user-friendly tool. Then, multiple
existing detectors are applied to the data in parallel to extract anomaly features. These features,
along with the labeled data, are used to train a random forest classifier. This classifier automates
the selection of suitable detector-parameter combinations and thresholds. In [228], the authors
propose a novel approach that employs Extreme Value Theory for identifying outliers in streaming
univariate KPIs. The proposed approach eliminates the need for manual threshold setting and does
not assume any specific data distribution. The key parameter in this method is the risk level, which
controls the rate of false positives. Apart from outlier detection, the approach can also automatically
set thresholds, making it applicable to a wide range of scenarios including intrusion detection.

Donut [274] addresses the challenge of detecting anomalies in seasonal Key Performance In-
dicators (KPIs) within Web applications of large Internet companies. The authors proposed an
unsupervised approach based on Variational Autoencoders (VAE) and window sampling. Impor-
tantly, the paper also introduces a novel interpretation of Kernel Density Estimation (KDE) for
reconstructing anomalies in Donut, providing a solid theoretical foundation and making it the
first VAE-based anomaly detection method with a well-defined theoretical explanation. In [150],
the authors propose a KPI clustering-based strategy wherein millions of KPIs are grouped into
a smaller number of clusters, allowing models to be selected and trained on a per-cluster basis.
This approach addresses various challenges due to the unique nature of KPIs, such as their ex-
tended length and susceptibility to various distortions like noise, anomalies, phase shifts, and
amplitude differences. Therefore, the paper presents a framework named ROCKA, which involves
time series preprocessing, baseline extraction, density-based spatial clustering of applications with
noise (DBSCAN) with Dynamic Time Warping (DTW) distance, and assignment steps. Ren et al.
[213] introduced a sophisticated time-series anomaly detection service developed at Microsoft,
emphasizing its role in continuous monitoring and incident alerting. The paper offers a detailed
insight into the service’s underlying pipeline and algorithm, highlighting three key modules: data
ingestion, an experimentation platform, and online computation. Notably, the paper introduces a
novel algorithm that combines Spectral Residual (SR) and Convolutional Neural Network (CNN)
techniques on univariate KPIs.

AIOps Solutions for Incident Management: Technical Guidelines and A Comprehensive Literature Review 41

In a slightly similar context, Zhao et al. [294] conducted a study utilizing real-world data from a
prominent commercial bank to quantify the substantial impact of software changes on incidents,
including code defects, configuration errors, resource conflicts, and software version discrepancies.
This quantitative analysis is complemented by qualitative insights that expose limitations in current
detection practices, particularly when dealing with heterogeneous multi-source data inherent in
software modifications. Building upon these insights, the paper introduces an approach dubbed
SCWarn that leverages multimodal learning using LSTM model to identify detrimental changes
and generate interpretable alerts. The authors also quantitatively demonstrate the efficiency of
their approach in reducing the mean time required to detect adverse changes. Wang et al. [256]
addressed a similar problem by introducing Kontrast, a self-supervised and adaptive approach that
employs contrastive learning. This approach focuses on comparing KPI time series before and after
a software change to ensure the system’s stability post-change. To facilitate contrastive learning, a
unique data augmentation technique inspired by self-supervised learning is proposed, generating
data with pseudo labels. Through the experiments conducted in the paper, the proposed model has
shown impressive processing speeds and cross-dataset adaptability.
More recently, a plethora of approaches have emerged to address the challenge of anomaly

detection in multivariate time series data. Two benefits of conducting a multi-dimensional analysis
include the capacity to depict the interconnections among diverse metrics and the generation of
understandable findings for root-cause investigation [196]. OmniAnomaly [233] focuses on cap-
turing normal patterns in multivariate time series using a stochastic recurrent neural network
framework, by learning robust representations through techniques like stochastic variable con-
nection and planar normalizing flow. The approach involves reconstructing input data based on
these representations and using reconstruction probabilities to identify anomalies. Additionally,
OmniAnomaly provides insightful interpretations for detected anomalies by analyzing the recon-
struction probabilities of constituent univariate time series. Multi-Scale Convolutional Recurrent
Encoder-Decoder (MSCRED) [285] constructs multi-scale signature matrices to represent different
system statuses at various time steps. It utilizes a convolutional encoder to capture inter-sensor
correlations and an attention-based Convolutional Long-Short Term Memory (ConvLSTM) network
to identify abnormal time steps by capturing temporal patterns. The utilization of residual signature
matrices aids in anomaly detection and diagnosis. USAD [33] employs adversarial training in the
auto-encoder architecture to effectively isolate anomalies while maintaining fast training speeds.
Experimental results focus also on the scalability and robustness of the approach. Li et al. [149]
introduced InterFusion that employs a hierarchical variational auto-encoder with two stochastic
latent variables to capture normal patterns, learning low-dimensional inter-metric and temporal
embeddings. The paper also presents a Markov chain Monte Carlo (MCMC) method to obtain
meaningful reconstructions for interpreting anomalies.
Log-based approaches have surfaced as efficient means for detecting anomalies in application,

functional, and business services. Fu et al. [93] proposed a clustering-based technique in which log
entries are mapped to their corresponding template versions, enabling the identification of line
templates. Subsequently, a Finite State Machine (FSM) was learned to model program workflows
based on the log evidence. This FSM-based model facilitated the verification of correct program
execution and the detection of software problems. In another study by [276], text analysis and
information retrieval techniques were applied to console logs and source code for anomaly detection
in large-scale data centers. State variables and object identifiers were automatically extracted from
parsed logs, and their frequency across different documents was analyzed using PCA and term
inverse-document frequency (TF-IDF). Anomalies were detected using a threshold-based rule on the
reconstruction error. Lou et al. [160] were the first to explore mining invariants from log messages
for system anomaly detection. They identified two types of invariants that capture relationships

42 Remil et al.

among different log messages: invariants in textual logs describing equivalence relations, and
invariants expressed as linear equations representing linear independence relations. Log3C [105]
presents a cascading clustering algorithm designed to efficiently detect significant system issues by
utilizing both log sequences and system KPIs. This method involves iterative sampling, clustering,
and matching of log sequences. Subsequently, the correlation between clusters of log sequences
and system KPIs is employed to pinpoint and prioritize impactful problems through the application
of a multivariate linear regression model.

Significant efforts have been directed towards exploring sequential Recurrent Neural Networks
(RNNs) and their variations. DeepLog [85] introduced the use of LSTM networks to learn patterns
from logs and predict the probability distribution of the next log key based on the observation of
previous log keys. The identification of an anomalous log key occurred when it failed to appear
among the top-k keys ranked by probability. Furthermore, the research introduced an online learning
approach based on user feedback and tried to provide explanations using a finite-state machine.
LogAnomaly [173] is a semantic-aware representation framework, that employed the language
model method and used template embeddings (template2vec) to automatically combine similar log
keys. This approach eliminated the requirement for human input. The issues of log-specific word
embedding and out-of-vocabulary are both addressed. Zhang et al. [291] discovered that log data
frequently include log events or sequences that have not been encountered before, indicating log
unpredictability and noise in log processing. To address this issue, they introduced LogRobust, a
method that extracts the meaning of log events using readily available word vectors. Subsequently,
they employed a bidirectional LSTM model and attention mechanisms to compute an anomaly
score directly, rather than predicting the next probable log keys. Xia et al. [267] proposed logGAN,
an LSTM-based generative adversarial network framework, incorporating permutation event
modeling for log-level anomaly detection. This approach addresses both sequential characteristics
and out-of-order issues of logs, while the generative adversarial network component counteracts
class imbalance, thereby enhancing anomaly detection performance. More recently, a novel self-
supervised framework known as LogBERT [99] has been introduced, harnessing the power of
Bidirectional Encoder Representations from Transformers (BERT). This approach introduces two
innovative self-supervised training tasks: masked logmessage prediction and volume of hypersphere
minimization. These tasks enable LogBERT to capture patterns inherent in normal log sequences.
As a result, LogBERT identifies anomalies by detecting deviations from these established patterns.

5.3 Incident Prediction Methods
Incident prediction approaches are proactive methods designed to prevent failures (outages in
extreme cases) by addressing both static aspects, such as source code, and dynamic aspects, such as
the availability of computing resources. The ultimate objective is to suggest preventive measures
or take immediate action as early as possible. These strategies vary extensively regarding the
taxonomy we proposed (i.e., data used, area of application, etc.).

Software Defect Prediction. SDP is an approach used to estimate the likelihood of encountering
a software bug within a functional unit of code, such as a function, class, file, or module. The core
assumption linking SDP to failure occurrence is that code with defects leads to errors and failures
during execution. Traditionally, defect-prone software is identified using code metrics to construct
defect predictors, as discussed in 4.1. Nagappan et al. [187] propose an SDP approach based on code
complexity metrics. However, they highlight the challenge of multicollinearity among these metrics,
making the problem more complex. To address this, they employ PCA to obtain a reduced set of
uncorrelated features and use linear regression models for post-release defect prediction. They also

AIOps Solutions for Incident Management: Technical Guidelines and A Comprehensive Literature Review 43

Table 10. Summary of reviewed AIOps Incident Prediction methods.

Ref. Year Focus

Target Area Data sources

Approach Paradigm
Evaluation
Metrics C

od
e

D
at
as
et

Te
ch

ni
ca
l

A
pp

li
ca
ti
on

Fu
nc

ti
on

al

B
us

in
es
s

So
ur

ce
C
od

e

To
po

lo
gy

Ev
en

tL
og

s

K
PI
s/
M
et
ri
cs

T
ra
ffi
c
N
et
w
or
k

R
ep

or
ts

A
le
rt
s

T
ra
ce
s

[187] 2006 SDP • • • PCA, Lin. Reg SUP Spearmann,
Pearson, R2

[175] 2007 SDP • • • Naive Bayes SUP ROC •

[87] 2008 SDP • • • SVM SUP F1, ACC, PREC,
REC •

[79] 2013 SDP • • • Bayesian Nets SUP AUC •
[198] 2005 SDP • • • Poisson GLM SUP ACC

[184] 2008 SDP • • • Ensemble
Model SUP PREC, REC, FPR,

ROC •

[188] 2013 SDP • • • Log. Reg Transfert F1, PREC, REC •
[253] 2016 SDP • • • DBN SUP F1, PREC, REC •
[137] 2017 SDP • • • CNN SUP F1, PREC, REC •

[169] 2020 SDP • • • LSTM SUP F1, PREC, REC,
ACC • •

[275] 2021 SDP • • • LDA, GNN SUP F1, PREC, REC,
ACC, AUC •

[244] 2022 SDP • • • biLSTM,
BERT SUP F1, PREC, REC •

[95] 1998 Software
Aging • • Kendall-test,

Lin. Reg Forecast Autocorrelation
Plots

[246] 1999 Software
Aging • • SMM, Lin.

Reg, K-Means Forecast time to
exhaustion

[26] 2010 Software
Aging • • • Lin. Reg

Ensemble Forecast MAE •

[235] 2014 Software
Rejuv. • • • Neural

Network SUP MAPE

[30] 2014 Software
Rejuv. • • • MLP SUP MAPE

[297] 2010 Disk Fail. • • HMM, HSMM SUP ROC •
[257] 2013 Disk Fail. • • mRMR SUP ROC •
[272] 2016 Disk Fail. • • RNN SUP REC •
[269] 2018 Disk Fail. • • Online RF SUP REC, FPR •

[76] 2017 Datacenter
Networks • • MLP, RNN SUP ACC •

[288] 2017 Switch
Fail. • • FT-Tree,

HsMM SUP F1, PREC, REC

[237] 2019 DRAM
Fail. • • • TCNN SUP F1, PREC, REC •

[123] 2020 Circuit
Fail. • • • FFT, PCA,

CNN SUP F1, PREC, REC,
ACC

[298] 2017 RUL • • LSTM Forecast RMSE •
[265] 2018 RUL • • Vanilla-LSTM Forecast MSE •
[166] 2020 RUL • • CNN-LSTM Forecast RMSE, MAE •

[42] 2019 RUL • • Sequential
Decision

Transfer,
Reinforc. Reward

[142] 2020 RUL • • GAN Adversial RMSE, MAE,
MAPE •

44 Remil et al.

Ref. Year Focus

Target Area Data sources

Approach Paradigm Evaluation
Metrics C

od
e

D
at
as
et

Te
ch

ni
ca
l

A
pp

li
ca
ti
on

Fu
nc

ti
on

al

B
us

in
es
s

So
ur

ce
C
od

e

To
po

lo
gy

Ev
en

tL
og

s

K
PI
s/
M
et
ri
cs

T
ra
ffi
c
N
et
w
or
k

R
ep

or
ts

A
le
rt
s

T
ra
ce
s

[69] 2004 Web Apps • • TAN SUP ACC, FPR, TPR

[56] 2012 Datacenters • • ARMA UNSUP RMSE, PREC,
REC, FPR

[92] 2013 Log Fail. • • SVM SUP FPR, TPR, TNR
[287] 2016 Log Fail. • • LSTM SUP AUC

[110] 2017 Cloud • • • • LSTM SUP F1, ACC, PREC,
TPR, TNR, FPR •

[204] 2018 Cloud • • • • Bayesian
Nets, ARIMA SUP AUC, PREC, REC,

FPR • •

[153] 2018 Cloud • • • LSTM, RF SUP F1, PREC, REC

[293] 2020 Cloud • • Xgboost,
LIME SUP F1, PREC, REC

Table 11. Study of particularities of AIOps Incident Prediction methods.

Ref. Interpretability Scalability Robustness Temporal Evaluation Human-in-the-loop

[79, 187, 188, 198] • •
[175] • •
[87] •
[184] •
[253] • •
[137] •

[169, 275] •
[26, 95] • • •
[246] • •
[297] • •

[257, 269] • • •
[272] • •
[76] • •
[288] • • •
[237] • •
[123] • • • •

[265, 298] • •
[166] •
[42] • • •
[142] • •
[69] • • • • •
[56] • • • •
[92] • • •
[287] • • • •
[110] • •
[204] • •
[153] •
[293] • • •

try to employ models learned from one project when testing on different projects to evaluate cross-
project applicability. This yields varied outcomes, leading to the assertion that project similarity is a
crucial factor for successful transfer learning. Menzies et al. [175], shift their focus from static code

AIOps Solutions for Incident Management: Technical Guidelines and A Comprehensive Literature Review 45

metrics to the choice of prediction models, advocating for the use of Naive Bayes with logarithmic
features. In [87], the authors examined the effectiveness of SVM in predicting defect-prone software
modules, including functions in procedural software and methods in object-oriented software.
They rely on code metrics, particularly McCabe metrics[172] and Halstead metrics [101], and
compare its predictive performance with eight well-known statistical and machine learning models
across four NASA datasets. Dejaeger et al. [79] explored 15 different bayesian network classifiers to
identify alternatives to Naive bayes that could lead to simpler networks with fewer nodes and arcs
while maintaining or improving predictive performance. The study also examines the applicability
of the Markov blanket principle for feature selection within the BN framework. Through the
conducted evaluations, the paper demonstrates that these alternative BN classifiers can yield
simpler, yet comprehensible networks with competitive predictive performance compared to the
Naive Bayes classifier. The findings also emphasize the importance of balancing the interpretability
and predictive power of these models.

While the previously mentioned SDP contributions mainly centered around single-release view-
points, another set of studies, referred to as changelog approaches, emphasize the significance of
software history as a more impactful element for predicting defect density. For instance, factors
like code age or the count of previous defects can serve as indicators for estimating the occurrence
of new bugs [96]. Ostrand et al. [198] delve into the analysis of changes within extensive software
systems and their correlation with previous faults, aiming to anticipate the count of defects in
upcoming releases. They employ a Poisson generalized linear model, utilizing maximum likelihood
estimates of model parameters to assess the significance of diverse metrics. The model is evaluated
within the release cycle of an internal inventory system, encompassing various new file-level
metrics such as programming language, edit flags, and age. Findings conclude that the top 20%
of files with the highest projected fault count encompassed an average of 83% of subsequently
identified faults. Conducting a comparative assessment of two sets of SDP metrics (code and change
metrics), Moser et al. [184] explored the Eclipse project repository. They employed three distinct
machine learning methods including Naïve Bayes, logistic regression, and decision trees. The
analysis demonstrated that individual usage of change metrics is more effective than relying solely
on code metrics to identify defective source files. Furthermore, a combined approach shows modest
enhancements or comparable results to a change metric-oriented approach.

Nam et al. [188] tackled the cross-project defect prediction challenge, specifically focusing on
scenarios involving new or resource-limited projects. In such cases, the authors sought to leverage
training data from established source projects and adapt it to target projects. To achieve this,
they employed a cutting-edge transfer learning technique known as TCA (Transfer Component
Analysis) to harmonize feature distributions across the source and target projects. Additionally, they
introduced an extended version called TCA+ that incorporates these aligned features into a logistic
regression model for accurate prediction of faulty module files. The approach has been evaluated
on a benchmark SDP dataset AEEM proposed by D’Ambros et al. [86]. Critiques of traditional
code metrics point out their handcrafted and simplistic nature. An alternative approach involves
parsing the source code using ASTs. Wang et al. [253] question the ability of code metrics to
capture semantics and distinguish between code regions with the same structure but different
semantics. They propose using latent semantic representations and training a Deep Belief Network
(DBN) on AST-parsed code to learn semantic features in an unsupervised fashion. Li et al. [137]
presented DP-CNN, a novel framework called Defect Prediction via Convolutional Neural Network.
This approach involves the extraction of a subset of AST nodes that capture diverse semantic
operations during parsing. These nodes are then transformed into numerical features through
mapping and word embedding processes. Subsequently, the transformed features are inputted into
a 1D convolutional architecture, to automatically learn semantic and structural program features.

46 Remil et al.

Unlike existing techniques that operate on coarse-grained units such as modules, classes, or files,
Majd et al. [169] introduced a novel approach called SLDeep, which aims to identify fault-prone
areas of code at a much finer-grained statement level. SLDeep defines a comprehensive suite of 32
statement-level metrics, encompassing factors like the utilization of binary and unary operators
within a statement. The selected learning model for implementation is the LSTM model. The
experiments were conducted on a diverse set of 119,989 C/C++ programs from the Code4Bench
benchmark Majd et al. [168]. In another study, Xu et al. [275] proposed an approach for charac-
terizing software defects using defect subtrees in ASTs. This approach incorporates information
from fix-inducing changes and code concepts. Initially, a topic model is developed to summarize
functional concepts related to defects. Each node within the defect subtrees is enriched with at-
tributes such as types, fix-inducing changes, and code concepts. Subsequently, a GNN classifier
is employed, where subtrees are represented as directed acyclic graph structures. More recently,
Uddin et al. [244] utilized a BiLSTM model in conjunction with a BERT-based semantic feature
approach (SDP-BB) to predict defects within software. This combination captures semantic features
of the code by extracting contextual information from token vectors learned by the BERT model
using the BiLSTM. An attention mechanism is also integrated to capture the most crucial features
for prediction. This methodology is enhanced by a data augmentation technique that generates
supplementary training data. The evaluation involves both within-project defect prediction and
cross-project defect prediction experiments.

Software Aging and Rejuvenation. Software aging describes a phenomenon in which a software
system experiences a gradual decline in performance and reliability as time passes. Recognized
causes of software aging include memory leaks, bloats, unreleased file locks, data fragmentation,
and the accumulation of numerical errors [54, 196]. Conversely, software rejuvenation pertains to
proactive or corrective actions taken to eliminate accumulated error conditions and liberate system
resources. These actions may include garbage collection, flushing kernel tables, re-initializing
internal data structures, and similar strategies. Garg et al. [95] propose a method for estimating the
time-to-exhaustion of various system resources, including free memory, file, and process table sizes,
and used swap space. They utilize regression techniques and seasonal testing to identify trends
and quantify the exhaustion time. In a related study, Vaidyanathan and Trivedi [246] explore the
impact of software aging resulting from the current system workload. They develop a semi-Markov
reward model based on available workload and resource data, where different workload scenarios
are represented as model states. The association to a specific state is determined using k-means
clustering. To estimate the time-to-exhaustion of memory and swap space, a non-parametric
regression technique is employed separately for each workload state. The challenge of non-linear
and piece-wise linear resource consumption is tackled by [26] by utilizing an ensemble of linear
regression models. These models are selected using a decision tree based on the same input features
as the regression model, which consists of a combined set of hardware and software host metrics.
In the study by Sudhakar et al. [235], the authors advocate the utilization of a neural network
architecture to capture intricate non-linear connections between resource usage and time to failure
in cloud systems.

Hardware Failures Prediction. In large-scale computing infrastructures, ensuring hardware
reliability is crucial for achieving service availability goals. However, due to the sheer number of
components involved and the necessity to use commodity hardware in data centers, hardware fail-
ures pose a significant challenge. For example, Google has reported that 20-57% of disks experience
at least one sector error over a 4-6 year period [178]. Hard drives are the most frequently replaced
components in large cloud computing systems, and they are a leading cause of server failure [250].
To address this, hard-drive manufacturers have implemented self-monitoring technologies like

AIOps Solutions for Incident Management: Technical Guidelines and A Comprehensive Literature Review 47

SMART metrics in their storage products. In the approach presented by Zhao et al. [297], Hidden
Markov and Semi-Markov Models are used to estimate likely event sequences based on SMARTmet-
ric observations from a dataset of around 300 disks (with approximately two-thirds being healthy).
Two models, one trained from healthy disk sequences and the other from faulty disk sequences, are
used to estimate the sequence log-likelihood at test time, with the class being determined by the
highest score. Wang et al. [257] propose a similarity-based detection algorithm that selects relevant
SMART features using Minimum Redundancy Maximum Relevance (mRMR) and projects the input
data into a Mahalanobis space constructed from the healthy disk population. This approach aims
to detect faulty disks that deviate more from the distribution. Xu et al. [272] introduce the use of
RNNs to model the long-term relationships in SMART data. Unlike binary classification approaches,
their model is trained to predict the health status of disks, providing additional information on the
remaining useful life and serving as a ranking approach. These approaches are typically used in
an online setting after an offline training step. However, integrating additional data and updating
the characteristics of faulty disks as new failures occur presents a challenge. To address this, the
approach presented by [269] proposes the use of online random forests, a model that can adaptively
evolve with changing data distributions through online labeling.
Regarding other hardware components, FailureSim [76] presents an approach to evaluate the

status of hardware in cloud data centers by employing both multi-layer perceptrons and RNNs.
The proposed method concentrates on assessing 13 distinct host failure states associated with
specific components such as CPU, memory, and I/O. On the other hand, addressing switch failures
within datacenter networks, Zhang et al. [288] introduced a novel model termed the frequent
template tree (FT-tree). This model identifies frequent word combinations within the historical
system log and employs them as message templates, which are then correlated with faulty behavior.
Subsequently, a Hidden Semi-Markov Model is trained using the identified templates to predict
failures. Sun et al. [237] put forward a proactive hardware failure prediction scheme based on
deep learning. This scheme primarily focuses on disk and memory faults, utilizing both SMART
data and system logs. Overcoming the challenge of effectively handling discrete time-series data,
the scheme normalizes attribute distributions from diverse vendors. The authors introduce a
specialized Temporal Convolution Neural Network (TCNN) model designed to handle temporal
noise, incorporating a tailored loss function for training with highly imbalanced samples. On a
different note, Khalil et al. [123] introduced an approach aimed at anticipating potential hardware
failures attributed to aging or varying conditions of Open circuits. The approach employs Fast
Fourier Transform (FFT) to capture fault frequency signatures, utilizes Principal Component
Analysis (PCA) to distill critical data with reduced dimensionality, and employs a CNN for learning
and classifying faults. This noteworthy work stands out as the first to address fault prediction at the
transistor level for hardware systems, encompassing aging, short-circuit, and open-circuit faults.

Remaining Useful Lifetime Estimation. The Remaining Useful Life (RUL) stands as a pivotal
real-time performance indicator for operating systems throughout their operational lifespan, repre-
senting the time remaining until the system ceases to function. Similar to software aging techniques,
precise RUL estimation holds significant importance in planning condition-based maintenance tasks,
with the aim of minimizing system downtime. A multitude of data-driven approaches have emerged
to model the intricate behavior of system components. As highlighted in [44], LSTM emerges as
a highly suitable tool for handling dynamic data in RUL problems. For instance, an LSTM model
presented by Zheng et al. [298] adeptly harnesses sensor sequence information to uncover latent
patterns tied to various operating conditions, faults, and degradation models. Another study by Wu
et al. [265] delves into a vanilla LSTM model, a prevalent variant of LSTM often applied in language
processing, for predicting the RUL of aircraft engines. Ma and Mao [166] conducted a novel hybrid

48 Remil et al.

approach called convolution-based long short-term memory (CLSTM). This approach combines
CNNwith LSTM networks and is designed to predict the RUL of rotating machinery, a crucial aspect
of prognostics and health management (PHM). The CLSTM architecture retains the advantages of
LSTM while simultaneously integrating time-frequency features. This enables the model to capture
long-term dependencies and extract time-frequency domain features concurrently. Through the
stacking of multiple CLSTM layers and the creation of an encoding-forecasting architecture, a deep
learning model is formulated for RUL prediction. Notably, Reinforcement Learning has also found
application in enhancing model adaptability through learning from experiences, even in cases of
erroneous decisions. Simulation environments prove particularly advantageous in this context. For
instance, a transfer learning approach developed in [42] leverages states, actions, and rewards to
generate an optimal reward policy. These algorithms are specifically geared towards sequentially
predicting RUL for a specific type of pumping system. Addressing the challenges surrounding the
determination of initial prediction times for remaining useful life, Li et al. [142] introduced a GAN
approach that learns data distributions from healthy machine states. A health indicator is used
to determine the initial prediction time, and adversarial training is employed to align data from
various machines, thereby extracting generalized prognostic knowledge.

Software Failure Prediction. Predicting system failures from an application perspective involves
exploring potential failures thatmay arise across various dimensions, including jobs, tasks, processes,
VMs, containers, or nodes. Existing approaches to address this issue predominantly rely on system
metrics, service states, traces, and topology. For instance, Cohen et al. [69] presented an approach
centered on Tree-augmented Bayesian Networks (TANs) to establish connections between observed
variables and abstract service states. This strategy facilitates the anticipation and prevention of
Service Level Objective (SLO) breaches and failures in the context of three-tiered Web services. The
system monitors crucial system metrics such as CPU time, disk reads, and swap space, constructing
a model that captures the intricate dependencies between them. By employing a heuristic selection
process, the optimal graph structure, encompassing the most relevant input metrics, is determined.
An approach to forecast system availability within datacenters has been introduced in a study
by [56]. This framework employs ARMA model and fault-tree analysis. The framework identifies
symptoms at the component level, such as elevated CPU temperature, malfunctioning disk sectors,
andmemory depletion, which function as the terminal points of the fault tree. By incorporating these
symptoms and the underlying tree structure, a model encompassing dependencies in combinational
logic deterministically establishes the availability state. This enables the proactive detection of
errors before they escalate into failures.
In [92], the authors addressed the task of predicting system failures through a log file analysis

approach. This involves processing log files using the Random Indexing technique, which effectively
captures intricate contextual information embedded within sequences of log messages. This ensures
a nuanced representation of changes in the system’s state over time. Subsequently, a weighted
Support Vector Machine (SVM) approach is implemented to classify these sequences, assigning
them to either impending failure scenarios or non-failure instances. Notably, the method accounts
for the common challenge of imbalanced datasets, particularly emphasizing the need to maintain
robust true positive rates. Similarly, the work by Zhang et al. [287] unveils a method for predicting
system failures through real-time analysis of console logs. This novel approach introduces log
pattern extraction via clustering, which groups together log formats and content sharing similarities.
Treating log patterns as analogous to words and organizing them into discrete time intervals as
documents, this approach significantly simplifies the feature space, providing valuable insights into
the system’s current state. These identified states are then utilized as inputs to an LSTM model,
facilitating the prediction of potential failures. LSTM networks also find application in an extensive

AIOps Solutions for Incident Management: Technical Guidelines and A Comprehensive Literature Review 49

Table 12. Summary of reviewed AIOps Incident Priorization methods.

Ref. Year Focus

Target Area Data sources

Approach Paradigm
Evaluation
Metrics C

od
e

D
at
as
et

Te
ch

ni
ca
l

A
pp

li
ca
ti
on

Fu
nc

ti
on

al

B
us

in
es
s

So
ur

ce
C
od

e

To
po

lo
gy

Ev
en

tL
og

s

K
PI
s/
M
et
ri
cs

T
ra
ffi
c
N
et
w
or
k

R
ep

or
ts

A
le
rt
s

T
ra
ce
s

[243] 2013 Software
Bugs • • • • Lin. Reg SUP F1, PREC, REC •

[156] 2018 N/A • • • Hierarchical
Bayesian Net SUP ROC, PRC

[102] 2019 IDS • • • Diffusion
Model UNSUP ROC

[295] 2020 N/A • • • • • • • • XGBoost SUP F1, PREC, REC

[61] 2020 Software
Bugs • • • • • • • CNN SUP AUC, PREC, REC • •

[100] 2022 Software
Bugs • • • • TOPSIS,

BFOA, BAR SUP F1, PREC, REC •

characterization study carried out by Islam and Manivannan [110] on a workload trace dataset
obtained from Google. Within this study, the focus lies on predicting failures at both the job and
task levels. A job comprises multiple tasks, wherein each task corresponds to a single-machine
command or program. Failures are forecasted by leveraging resource usage, performance metrics,
and task particulars, encompassing completion status as well as attributes linked to users, nodes,
and jobs.
Drawing on a holistic strategy, the HORA prediction system [204] capitalizes on architectural

knowledge along with live KPIs data to forecast potential Quality of Service (QoS) violations and
service disruptions within distributed software systems. Central to this approach are Bayesian
Networks, which play a pivotal role in constructingmodels that depict component interdependencies
and the propagation of failures. These models establish connections between anticipated component
failures, derived through auto-regressive predictors from system metrics, and larger-scale systemic
challenges. Lin et al. [153] introduced an approach called MING to predict potential node failures
within cloud service systems, which integrates LSTM and Random Forest models to incorporate both
temporal and spatial data. Additionally, the technique employs a ranking model and a cost-sensitive
function to effectively assess and rank nodes based on their susceptibility to failure. Demonstrating
its practical effectiveness, the approach finds successful application in industrial scenarios, notably
within the context of Microsoft services. eWarn [293] is an approach tailored for online service
systems that capitalizes on historical data and real-time alert information to forecast the likelihood
of upcoming incidents. This is achieved through a combination of innovative techniques: effective
feature engineering to represent pertinent alert patterns, integration of multi-instance learning to
mitigate the influence of irrelevant alerts, and the generation of interpretable prediction reports
using the LIME explanation technique.

5.4 Incident Prioritization Methods
As a large number of incidents can be reported simultaneously, it becomes time-consuming and
resource-intensive to handle all of them at once. However, certain incidents require immediate
attention due to their importance or severity. To address this issue, various data-driven approaches
have been proposed to rank incidents or alerts based on prioritization factors. Some of these

50 Remil et al.

Table 13. Study of particularities of AIOps Incident Prioritization methods.

Ref. Interpretability Scalability Robustness Temporal Evaluation Human-in-the-loop

[243] •
[156] • • •

[102, 295] • • • • •
[61] • • • •
[100] • •

techniques can also be applied to other scenarios, as they are not solely dedicated to ranking, but
also involve detection or diagnosis mechanisms.
In their work, Tian et al. [243] introduced the DRONE framework, which provides recommenda-

tions for prioritizing bug reports. This is achieved by considering a multitude of factors, including
temporal information, textual content, author details, related reports, severity, and product in-
formation. These factors are extracted as features from incident reports and subsequently used
to train a discriminative model adept at handling ordinal class labels and imbalanced data. The
model employs linear regression to capture the connection between the features and priority levels,
followed by a thresholding approach to calibrate class labels (i.e., priority levels). In response to
the challenge of characterizing and ranking diverse categorical alerts from an anomaly detection
system, Lin et al. [156] introduced Collaborative Alert Ranking (CAR). CAR addresses both mining
alert patterns and reducing false positives. Initially, a hierarchical Bayesian model is constructed to
capture short-term and long-term dependencies within alert sequences. An entity embedding-based
model is then devised to uncover content correlations among alerts based on their categorical
attributes. By integrating temporal and content dependencies within a unified optimization frame-
work, CAR provides rankings for individual alerts as well as their associated patterns. Similarly,
aiming to mitigate threat alert fatigue and prioritize true attacks over false alarms, Hassan et al.
[102] introduced NODOZE. This ranking system constructs causal dependency graphs for alert events
using contextual and historical information. Anomaly scores are assigned to edges based on event
frequency and are propagated using a novel network diffusion algorithm.

AlertRank, proposed by Zhao et al. [295], is an automatic and adaptive framework for identifying
severe alerts. This approach leverages a variety of interpretable features, including textual and
temporal alert features, as well as domain knowledge-based univariate and multivariate KPIs. The
XGBoost ranking algorithm is employed to identify severe alerts, with continuous labeling utilized to
obtain ground-truth labels for training and testing. Chen et al. [61] conducted a large-scale empirical
analysis of incidents from real-world online service systems. Their findings highlight a category
of incidents labeled as Incidental Incidents, often considered less significant and not prioritized
for immediate resolution. To address this, the authors proposed DeepIP (Deep learning-based
Incident Prioritization), which employs an attention-based CNN to identify and prioritize incidental
incidents using historical incident descriptions and topology information. On a distinct note, Gupta
et al. [100] adopted a unique approach by combining the multi-criteria fuzzy Technique for Order
of Preference by Similarity to Ideal Solution (TOPSIS) with the Bacterial Foraging Optimization
Algorithm (BFOA) and Bar Systems (BAR) optimization. This amalgamation serves to rank software
bugs and simultaneously select suitable developers.

5.5 Incident Assignment Methods
Numerous data-driven approaches have been proposed to optimize the process of incident as-
signment (referred also to as routing, or triaging) by automatically assigning incidents to the

AIOps Solutions for Incident Management: Technical Guidelines and A Comprehensive Literature Review 51

Table 14. Summary of reviewed AIOps Incident Assignment methods.

Ref. Year Focus

Target Area Data sources

Approach Paradigm
Evaluation
Metrics C

od
e

D
at
as
et

Te
ch

ni
ca
l

A
pp

li
ca
ti
on

Fu
nc

ti
on

al

B
us

in
es
s

So
ur

ce
C
od

e

To
po

lo
gy

Ev
en

tL
og

s

K
PI
s/
M
et
ri
cs

T
ra
ffi
c
N
et
w
or
k

R
ep

or
ts

A
le
rt
s

T
ra
ce
s

[186] 2004 Software
Bugs • • • Bayesian Net SUP ACC •

[224] 2008 N/A • • • • • Markov
Model SUP ACC

[278] 2010 Software
Bugs • • • Bayesian Net,

EM SemiSUP ACC •

[45] 2010 Software
Bugs • • • • Naive Bayes SUP ACC •

[24] 2013 Software
Bugs • • • Naive Bayes SUP F1, PREC, REC •

[254] 2014 Software
Bugs • • • • Similarity

Computation UNSUP ACC, Diversity •

[266] 2019 Software
Bugs • • • • GRU SUP ACC •

[132] 2017 Software
Bugs • • • CNN SUP ACC

[60] 2019 N/A • • • • • • CNN, GRU SUP ACC
[202] 2020 N/A • • • • • • CNN SUP ACC

[212] 2021 N/A • • • • • • • • Subgroup
Discovery SUP F1, Fidelity •

Table 15. Study of particularities of AIOps Incident Assignment methods.

Ref. Interpretability Scalability Robustness Temporal Evaluation Human-in-the-loop

[186] •
[212, 224] • • •
[278] • •
[45] • • • • •
[24] • •
[254] • • •
[266] • • •

[132, 202] •
[60] • • •

appropriate service team and individual. Typically, these approaches involve training a classifier
using historical incident reports that contain textual information, topology data, or prioritization
scores. The trained classifier is then used to assign new incidents.

The preceding works have primarily relied on text preprocessing methods and supervised clas-
sification models within traditional machine learning and statistical frameworks. For instance,
Murphy and Cubranic [186] employed a Bayesian learning approach to incident reports, represent-
ing them as a bag of words from a predefined vocabulary, which conveniently adapts to multi-class
classification. However, this method’s accuracy in predicting report assignments to developers
was found to be limited, achieving only 30% correct predictions. In [224], a unique perspective
is taken by solely utilizing incident resolution sequences without accessing the incident ticket

52 Remil et al.

content. This is achieved by developing a Markov model that captures the decision-making process
behind successful problem resolution paths. The order of the model is thoughtfully chosen based on
conditional entropy derived from ticket data. Addressing the challenge of limited labeled incident
reports, Xuan et al. [278] presented a semi-supervised text classification technique. They combine
a Naive Bayes classifier with expectation-maximization, leveraging both labeled and unlabeled
incident reports. An iterative process involves initial classifier training with labeled bug reports,
followed by iterative labeling of unlabeled bug reports to enhance classifier training. A weighted
recommendation list further refines performance, utilizing multiple developer weights during
classifier training.
Bhattacharya and Neamtiu [45] tackled the task by employing various techniques, including

refined classification with additional attributes, intra-fold updates during training, a precise ranking
function for recommending developers in tossing graphs, and multi-feature tossing graphs. Results
not only exhibit a noteworthy accuracy but also demonstrate a substantial reduction in tossing
path lengths. Similarly, Alenezi et al. [24] employed a series of selection term techniques to allocate
software bugs to experienced developers. The process is initiated with the application of a con-
ventional text processing methodology, transforming textual data into a coherent and meaningful
representation. Subsequently, a bug-term matrix was crafted, incorporating term frequency weights.
Various term selection methods were then employed to effectively mitigate both data dimensionality
and sparsity issues. These included techniques like Log Odds Ratio, Term Frequency Relevance
Frequency, and Mutual Information. Following this, a Naive Bayes classifier was trained on the
resulting representations. Wang et al. [254] introduced FixerCache, an unsupervised approach that
leverages developers’ component-specific activeness to create dynamic developer caches for each
product component. When a new bug report arises, FixerCache recommends highly active fixers
from the developer cache to participate in resolving the bug. The developer cache is dynamically
updated following the verification and resolution of each bug report. Xi et al. [266] emphasized
the role of tossing sequence paths in predicting suitable service teams or individuals for handling
software bugs. Their proposal, iTriage, employs a sequence-to-sequence model to jointly capture
features from textual content and tossing sequences, integrating them through an encoder-decoder
classification model.

In recent times, the focus has shifted towards advanced natural language processing techniques
combined with sophisticated deep learning approaches. For example, Lee et al. [132] pioneered
the use of a convolutional neural network and pre-trained Word2Vec embeddings for incident
assignment. DeepCT [60] presents an approach that views incident triage as a continuous pro-
cess involving intensive discussions among engineers. It employs a GRU-based model with an
attention-based mask strategy and a revised loss function to learn knowledge from discussions and
update triage results incrementally. DeepTriage [202] was devised to address incident assignment
challenges such as imbalanced incident distribution, diverse input data formats, scalability, and
building engineers’ trust. This approach employs CNN models to recommend the responsible team
for each incident. Focusing on interpretability, Remil et al. [212] proposed a framework that includes
preprocessing steps like lemmatization using a pre-trained transformer model. Incident textual
information is vectorized using TF-IDF and fed into an LSTM-based attention model for predicting
the suitable service team. Furthermore, a Subgroup Discovery approach groups predicted incident
tickets and labels into subgroups supporting the same explanation of the model’s decision-making
process.

5.6 Incident Classification Methods
As discussed earlier, the primary objective of incident classification is to enhance the diagnosis
of incidents, thereby centralizing the efforts of the maintenance team. However, this category

AIOps Solutions for Incident Management: Technical Guidelines and A Comprehensive Literature Review 53

Table 16. Summary of reviewed AIOps Incident Classification methods.

Ref. Year Focus

Target Area Data sources

Approach Paradigm
Evaluation
Metrics C

od
e

D
at
as
et

Te
ch

ni
ca
l

A
pp

li
ca
ti
on

Fu
nc

ti
on

al

B
us

in
es
s

So
ur

ce
C
od

e

To
po

lo
gy

Ev
en

tL
og

s

K
PI
s/
M
et
ri
cs

T
ra
ffi
c
N
et
w
or
k

R
ep

or
ts

A
le
rt
s

T
ra
ce
s

[280] 2014 Software
Bugs • • • LDA UNSUP F1, PREC, REC,

MRR •

[151] 2014 N/A • • HMRF UNSUP PREC, REC •

[268] 2016 Software
Bugs • • • • MTM UNSUP ACC •

[284] 2017 N/A • • • • • • Hierarchical
Classification SUP F1, PREC, REC

[292] 2020 N/A • • • • EVT,
DBSCAN UNSUP F1, PREC, REC

Table 17. Study of particularities of AIOps Incident Classification methods.

Ref. Interpretability Scalability Robustness Temporal Evaluation Human-in-the-loop

[280] • •
[151] • • •
[268] • • • •
[284] • • •
[292] • • •

has often been overlooked in the review process and is generally associated with deduplication,
triage, or prioritization. Nevertheless, there exist few research works that align perfectly with this
category, offering approaches to organize a large volume of incidents into representative sets of
issues or topics.
Yang et al. [280] employed LDA to extract topics from bug reports and identify relevant bug

reports corresponding to each topic. Their methodology involves initially determining the topics
of a new bug report and subsequently employing multiple features (such as component, product,
priority, and severity) to identify reports with shared features as the new bug report. Another
notable contribution, presented by [151], proposes a Hidden Markov Random Field (HMRF) based
approach for automatically identifying recurrent performance issues in large-scale software systems.
Their approach formulates the problem as an HMRF-based clustering problem, which involves
learning metric discretization thresholds and optimizing the clustering process. Xia et al. [268]
introduced an innovative bug-triaging framework utilizing a specialized topic modeling algorithm
known as a multi-feature topic model (MTM). MTM extends LDA by incorporating product and
component information from bug reports, effectively mapping the term space to the topic space.
Additionally, they introduced an incremental learning method named TopicMiner, which exploits
the topic distribution of a new bug report to assign an appropriate fixer based on their affinity with
the topics.
In another context, Zeng et al. [284] developed a methodology to identify the underlying cat-

egories of IT problems from ticket descriptions. To achieve this, they employed a hierarchical
multi-label classification technique for categorizing monitoring tickets, introducing a novel contex-
tual hierarchy. A new greedy algorithm, GLabel, is employed to address the optimization challenge.

54 Remil et al.

Table 18. Summary of reviewed AIOps Incident Deduplication methods.

Ref. Year Focus

Target Area Data sources

Approach Paradigm
Evaluation
Metrics C

od
e

D
at
as
et

Te
ch

ni
ca
l

A
pp

li
ca
ti
on

Fu
nc

ti
on

al

B
us

in
es
s

So
ur

ce
C
od

e

To
po

lo
gy

Ev
en

tL
og

s

K
PI
s/
M
et
ri
cs

T
ra
ffi
c
N
et
w
or
k

R
ep

or
ts

A
le
rt
s

T
ra
ce
s

[107] 2006 Software
Bugs • • • K-Means UNSUP F1, PREC, REC •

[218] 2007 N/A • • • • • • Cosine
Similarity UNSUP RR@k

[239] 2010 Software
Bugs • • • N-gram

similarity UNSUP RR@k •

[236] 2011 Software
Bugs • • • • BM25F

Measure SUP RR@k •

[36] 2012 Software
Bugs • • • LCS Measure UNSUP RR@k •

[299] 2012 Software
Bugs • • • • LTR SemiSUP MRR, RR@k •

[271] 2018 Software
Bugs • • • • CNN SUP F1, ACC •

[103] 2020 Software
Bugs • • • • BERT SUP F1, ACC, AUC •

[176] 2022 Software
Bugs • • • BERT, MLP SUP F1, PREC, REC •

Table 19. Study of particularities of AIOps Incident Assignment methods.

Ref. Interpretability Scalability Robustness Temporal Evaluation
[107, 218, 236] • • •

[239] • • •
[36, 299] • •

The approach also leverages domain expert knowledge alongside ticket instances to guide the hier-
archical multi-label classification process. In addressing the issue of alert storms, Zhao et al. [292]
presented a two-stage approach: alert storm detection and alert storm summary. During the alert
storm summary phase, an alert denoising method filters out irrelevant alerts by learning patterns
from the system’s normal states. Subsequently, alerts indicating service failures are clustered based
on textual and topological similarities. From each cluster, the most representative alert is selected,
thereby forming a concise set of alerts for further investigation.

5.7 Incident Deduplication Methods
Incident deduplication aims to identify the most similar incidents among a set of historical inci-
dents, which exhibit slight differences but primarily address the same problem. This work can be
categorized into two main categories. The first category of research is centered around techniques
for detecting duplicate incident reports based on their descriptions and characteristics.

In [107], an initial attempt was made to identify duplicate bug reports using textual information.
Their approach involved building a model that clustered similar reports, represented as document
vectors via TF-IDF, into representative centroids. When a new incident report is submitted, the
method calculates cosine similarity to each centroid, looking for instances of high similarity to

AIOps Solutions for Incident Management: Technical Guidelines and A Comprehensive Literature Review 55

identify potential duplicates. Runeson et al. [218] adopted a similar approach, enhancing it by
considering additional textual features such as software versions, testers, and submission dates.
Effective preprocessing steps like stemming and stop word removal were also incorporated. Sureka
and Jalote [239] proposed a distinctive N-gram-based model, setting it apart from the previous
word-based methods. This study explored the utility of low-level character features, offering
benefits like resilience against noisy data and effective handling of domain-specific term variations.
Incorporating a comprehensive similarity assessment, Sun et al. [236] introduced a retrieval function
(REP). This function considered textual content similarity in summary and description fields as
well as the similarity of non-textual attributes such as product, component, and version. The paper
extended the frequently used BM25F similarity measure in information retrieval.
Recognizing the limitations of word-based approaches that may identify reports discussing

different problems as duplicates due to shared common words, Banerjee et al. [36] introduced
FactorLCS approach that employed common sequence matching when calculating the textual
similarity between incident reports. Zhou and Zhang [299] introduced BugSim, leveraging a learning-
to-rank concept by incorporating both textual and statistical features. A similarity function for bug
reports was established based on these features. The model was trained using a set of duplicate and
non-duplicate report pairs, adjusting feature weights with the stochastic gradient descent algorithm.
Candidate duplicate reports for a new bug report were retrieved using this trained model.
Recently, deep learning techniques have gained traction. Xie et al. [271] introduced DBR-CNN,

utilizing a CNN model and word embedding techniques to assess semantic similarities between
pairs of incident reports. This approach departed from prior methods that primarily relied on
common words or sequences of words for lexical similarity computation. Similarly, He et al. [103]
incorporated a CNN while introducing a unique bug report pair representation known as the
dual-channel matrix. This matrix was formed by concatenating two single-channel matrices, each
representing a bug report. These pairs were then fed into a CNN model named DC-CNN, designed to
capture interconnected semantic relationships. In Messaoud et al. [176], BERT-MLP was proposed.
This approach utilized a pre-trained language model, BERT, to process unstructured bug report
data and capture contextual relationships. The BERT model’s output was then input to a multilayer
perceptron classifier to predict duplicate bug reports.
The second category primarily relies on designing similarity metrics that can reflect the se-

mantic crash similarity between execution reports, specifically for stack traces, which we dis-
cuss briefly. Lerch and Mezini [135] employed the TF-IDF-based scoring function from Lucene
library [16]. Sabor et al. [219] proposed DURFEX system which uses the package name of the
subroutines and then segment the resulting stack traces into N-grams to compare them using the
Cosine similarity. Some alternative techniques propose to compute the similarity using derivatives
of the Needleman-Wunsch algorithm [192]. In [50], the authors suggested adjusting the similarity
based on the frequency and the position of the matched subroutines. Dang et al. [74] proposed a
new similarity measure called PDM in their framework Rebucket to compute the similarity based
on the offset distance between the matched frames and the distance to the top frame. More recently,
TraceSim [248] has been proposed to take into consideration both the frame position and its global
inverse frequency. Moroo et al. [183] present an approach that combines TF-IDF coefficient with
PDM. Finally, we outline some earlier approaches that used edit distance, as it is equivalent to
optimal global alignment [39, 181].

5.8 Root Cause Analysis Methods
Root cause analysis approaches aim to determine the underlying faults that give rise to software
bugs, errors, anomalies, or hardware failures. More concretely, root cause analysis is a diagnostic
task that needs to be performed when reporting incidents, either after or in parallel with the triage

56 Remil et al.

Table 20. Summary of reviewed AIOps Root Cause Analysis methods.

Ref. Year Focus

Target Area Data sources

Approach Paradigm
Evaluation
Metrics C

od
e

D
at
as
et

Te
ch

ni
ca
l

A
pp

li
ca
ti
on

Fu
nc

ti
on

al

B
us

in
es
s

So
ur

ce
C
od

e

To
po

lo
gy

Ev
en

tL
og

s

K
PI
s/
M
et
ri
cs

T
ra
ffi
c
N
et
w
or
k

R
ep

or
ts

A
le
rt
s

T
ra
ce
s

[35] 2007 Network
Faults • • • • Inference

Graph UNSUP Qualitative Eval.

[31] 2012 Software
Faults • • • • DIFT UNSUP FPR

[194] 2013 Cloud • • • • Makrov
Model UNSUP PRC

[62] 2014 Cloud • • • Causality
Graph UNSUP PREC, REC

[154] 2016 Cloud • • • FPM UNSUP F1, PREC, REC
[238] 2018 Cloud • • • MCTS UNSUP F1, PREC, REC
[147] 2019 Cloud • • • • FPM UNSUP F1 • •
[221] 2019 Cluster • • HHMM UNSUP REC, FNR, FPR •

[115] 2019 Datacenters • • Causality
Graph UNSUP Ranking ACC,

Success rate
[167] 2020 Databases • • • • Bayesian Net UNSUP F1, PREC, REC

[210] 2021 Databases • • • • • • Subgroup
Discovery SUP PREC,

Confidence • •

[148] 2022 Cloud • • • • CNN-GRU SUP MAR, RR@k • •
[139] 2022 Cloud • • • Bayesian Net UNSUP RR@k • •

[215] 2003 SFL • • • K-NN SUP ScoreU, ScoreNN

[259] 2013 SFL • • • Suspiciousness
Score SUP EXAM, Wilcoxon

Signed-Rank Test • •

[279] 2014 SFL • • • RankBoost SUP Wasted effort •

[157] 2006 SFL • • • Statistical
Debugging SUP T-Score •

[22] 2009 SFL • • • Bayesian Net SUP Wasted effort • •

[81] 2005 SFL • • • Association
Rules SUP −

[55] 2008 SFL • • • FCA SUP −
[289] 2014 SFL • • • Markov Logic SUP ACC •

[229] 2017 SFL • • • Genetic Prog.
SVM SUP ACC, Waster

Effort, PREC

[141] 2019 SFL • • • RNN, MLP SUP MAR, RR@k,
MFR • •

[144] 2021 SFL • • • CNN-GRU SUP MAR, RR@k,
MFR • •

process. In complex systems, it is necessary to first isolate and restrict the analysis to the faulty
component or functionality, a process known as Fault Localization in many research communities.
Specifically, Fault Localization involves identifying a set of components (devices, hosts, software
modules, etc.) that serve as the initial trigger for an error within the system. It is important to note
that fault localization can operate at different layers, including the technical, application, functional,
and business layers. To simplify, we can distinguish between two types of fault localization. The first
is technical and applicative fault localization or troubleshooting, which spans network, hardware,
and application layers (e.g., faulty components in cloud environments). The second is software fault
localization, which revolves around the functional and business layers, essentially addressing flaws

AIOps Solutions for Incident Management: Technical Guidelines and A Comprehensive Literature Review 57

Table 21. Study of particularities of AIOps Root Cause Analysis methods.

Ref. Interpretability Scalability Robustness Temporal Evaluation Human-in-the-loop

[35, 147, 194, 238] • • •
[31] • • • •
[154] • • •

[210, 221] • • •
[62, 115, 139, 148, 167] • • • •
[55, 81, 215, 229, 259] •

[22, 279, 289] • •
[157] • • •
[141] •

that lead to bugs. In the context of software fault localization, the central focus lies in analyzing the
source code, whether the software is deployed across numerous machines or a more limited set.

Technical and Application Troubleshooting. The study conducted by Bahl et al. [35] intro-
duced the Sherlock approach, which focuses on localizing performance issues within enterprise
networks. This is achieved by constructing probabilistic inference graphs based on packet exchange
observations in the network infrastructure. These graphs consist of three node types: root cause
nodes (representing internal IP entities), observation nodes (representing clients), and meta-nodes
that capture dependencies between these types. Each node is associated with a categorical random
variable indicating its state (up, troubled, down). The state is influenced by other nodes through
probability dependencies. The learning process of the inference graph involves monitoring packet
exchanges between nodes during regular network operations. Once established, the graph enables
the utilization of data from observation nodes to derive sets of state-node assignment vectors,
reflecting the anticipated network operational state. X-Ray [31] addresses the challenge of trou-
bleshooting performance issues by providing insights into the reasons behind specific events during
performance anomalies. The key contribution is a performance summarization technique, achieved
by instrumenting binaries while applications execute. This technique attributes performance costs
to each basic block and utilizes dynamic information flow tracking to estimate the likelihood that a
block was executed due to each potential root cause. The overall cost of each potential root cause
is then summarized by aggregating the per-block cost multiplied by the cause-specific likelihood
across all basic blocks. This technique can also be differentially applied to explain performance
differences between two similar activities.

FChain [194] is a fault localization system designed for identifying faulty components in online
cloud environments. It operates as a black-box solution, leveraging low-level system metrics to
detect performance anomalies. Anomalies are sorted based on manifestation time, and a discrete
Markov model is used to sequentially examine these components. Techniques such as analyzing
interdependencies between components and studying the propagation trend are employed to filter
out spurious correlations. Similarly, CauseInfer [62] is a black-box cause inference system that
constructs a two-layered hierarchical causality graph to aid in identifying performance problem
causes. The system employs statistical methods, including a novel Bayesian change point detection
method, to infer potential causes along the causal paths present in the graph.

Lin et al. [155] proposed LogCluster, where a knowledge base is used to expedite the retrieval of
logs associated with recurring issues, thus streamlining the process of problem identification. The
methodology treats logs as sequences consisting of discrete log events, which are then subjected
to an initial transformation into a vector format through the application of Inverse Document

58 Remil et al.

Frequency (IDF), where these individual events are considered as terms. Following this, an agglom-
erative hierarchical clustering technique is employed to group these logs, resulting in the selection
of representative instances for each cluster. During the system’s operational phase, queries are
directed towards this condensed set of representatives, significantly alleviating the effort required
for log retrieval based on similarity.
Lin et al. [154] proposed iDice, a pattern mining approach based on frequent pattern mining

and change detection within time series data. The approach is applied to identify effective attribute
combinations associated with emerging issues in topology data. Given a volume of customer issue
reports over time, the goal is to identify an attribute combination that divides the multi-dimensional
time series dataset into two partitions: one with a significant increase in issue volume and the
other without such an increase. Similarly, Sun et al. [238] introduced HotSpot, which employs
Monte Carlo Tree Search (MCTS) to efficiently explore attribute combinations and measure their
correlation with sudden changes in the Page View metric. The approach proposes a potential
score based on the ripple effect, quantifying how anomalies propagate through different attribute
combinations. A hierarchical pruning strategy is used to narrow down the search space, focusing
on attribute combinations with the highest potential to be the root cause. Another akin approach,
Squeeze by Li et al. [147], applies a pattern mining approach to structured logs for identifying
attribute combinations responsible for abnormal behaviors. Squeeze utilizes a bottom-up, then
top-down searching strategy, efficiently exploring the multi-dimensional search space by first
identifying potentially relevant attributes and then pinpointing the root cause.
Another work conducted by [221] employed Hierarchical Hidden Markov Models (HHMM) to

associate resource anomalies with root causes in clustered resource environments. Markov models
are constructed on different levels and trained with the Baum-Welch algorithm using response
time sequences as observations. Jeyakumar et al. [115] introduced ExplainIt, an approach for
unsupervised root-cause analysis in complex systems like data centers, utilizing KPIs data. This
system enables operators to articulate causal hypotheses systematically ranked to identify root
causes behind significant events. Using a declarative language akin to SQL, ExplainIt facilitates
generating hypotheses that probe the complex probabilistic graphical causal model in the system.

The iSQUAD framework, introduced by Ma et al. [167], addresses the detection and diagnosis of
Intermittent Slow Queries (iSQs) in cloud databases. These queries, arising from external intermit-
tent performance issues, can pose significant risks to users. Unlike typical slow queries, iSQs are less
predictable and present more intricate diagnostic challenges. Employing a machine learning-based
approach, iSQUAD leverages Anomaly Extraction, Dependency Cleansing, Type-Oriented Pattern
Integration Clustering (TOPIC), and Bayesian Case Model components. In their work, Remil et al.
[210] focused on SQL workload analysis for identifying schema issues and automatically pinpoint-
ing subsets of queries that share specific properties while targeting certain performance measures.
These measures encompass slow execution times, concurrency issues, high I/O communications,
and more. The approach involves parsing queries to extract key attributes (such as tables, fields,
and predicates), and augmenting queries with pertinent information such as performance metrics,
environmental features, and anomaly alerts. Utilizing a pattern mining approach dubbed Subgroup
Discovery, the authors uncover a subset of queries exhibiting anomalies within patterns formed by
conjunctions of conditions on these attributes. Furthermore, the integration of a visual tool allows
iterative and interactive learning from the obtained outcomes.
The proposed methodology by Li et al. [148] introduces DejaVu, an interpretable approach de-

signed to localize recurring failures within online service systems. These recurring failures manifest
as repeated instances of the same type across various locations. Engineers can identify indicative
metrics for each failure type, aiding in recognizing underlying issues and guiding mitigation ac-
tions based on domain expertise. These sets of indicative metrics facilitate the identification of

AIOps Solutions for Incident Management: Technical Guidelines and A Comprehensive Literature Review 59

candidate failure units associated with recurring issues. To capture intricate system dependencies, a
failure dependency graph (FDG) is established, linking failure units with interdependencies. When
a failure occurs, the monitoring system triggers DejaVu, which is trained on historical failures.
DejaVu then utilizes the latest FDG and metric data to recommend suspicious failure units from the
candidate set on the FDG, streamlining the fault localization process. Li et al. [139] proposed Causal
Inference-based Root Cause Analysis (CIRCA), which frames the root cause analysis challenge as
intervention recognition within a novel causal inference task. The core principle centers around
a sufficient condition for monitoring variables to serve as root cause indicators. This involves a
probability distribution change conditioned on parents within a Causal Bayesian Network (CBN).
Specifically tailored to online service systems, CIRCA constructs a graph of monitoring metrics
based on system architecture knowledge and a set of causal assumptions.

Software Fault Localization. A conventional software fault localization strategy generally yields
a collection of statements or source code blocks that could potentially be linked to bugs. Unlike
the SDP strategy, this approach relies on failure patterns observed during production runs and
unit tests, rather than predictions regarding the probability of a code component transitioning
into a faulty state. Numerous approaches have been developed to tackle the problem of software
fault localization. One prominent category is program spectrum-based techniques, which rely on
the similarity between program execution profiles obtained from execution traces. These profiles
represent both successful and faulty runs of programs. For example, Renieres and Reiss [215]
employs nearest neighbor search to compare a failed test with a similar successful test, using the
Hamming distance as a measure of similarity. Another well-known technique, Tarantula [117],
utilizes coverage and execution results to compute the suspiciousness score of each statement.
This score is based on the number of failed and successful test cases covering the statement,
as well as the total number of successful and failed test cases. Subsequent research in this field
has proposed refinements to the suspiciousness scoring also known as ranking metrics, such as
Ochiai [21], Crosstab [260] and DStar [259]. Xuan and Monperrus [279] addressed the challenge
of finding an optimal ranking metric for fault identification by combining multiple existing metrics.
The approach dubbed MULTRIC employs a two-phase process involving learning and ranking:
it learns from faulty and non-faulty code elements to build a ranking model and then applies
this model to compute the suspiciousness score for program entities when new faults emerge.
Statistical debugging approaches have also been explored. Liu et al. [157] introduce a statistical
debugging method called SOBER, which analyzes predicate evaluations in failing and passing
runs. By estimating the conditional probability of observing a failure given the observation of a
specific predicate, the approach identifies predicates with higher probabilities, indicating their
potential involvement in software bugs or their proximity to them. Abreu et al. [22] later proposes a
Bayesian reasoning approach known as BARINEL, which incorporates a probabilistic framework for
estimating the health probability of components. This model, based on propositional logic, captures
the interaction between successful and failed components. Furthermore, data mining techniques
have shown promise in fault localization due to their ability to unveil hidden patterns in large data
samples.

Denmat et al. [81] introduced an approach that reinterprets Tarantula as a data-mining challenge.
In this method, association rules denoting the connection between an individual statement and a
program failure are extracted using coverage information and test suite execution outcomes. The
significance of these rules is assessed through twowell-known classical data miningmetrics, namely,
confidence and lift. These values can be understood as indicators of the potential for a statement to
be suspicious, hinting at the presence of bugs. Cellier et al. [55] discussed a data mining approach
that relies on a combination of association rules and Formal Concept Analysis (FCA) as a mean to

60 Remil et al.

Table 22. Summary of reviewed AIOps Incident Correlation methods.

Ref. Year Focus

Target Area Data sources

Approach Paradigm
Evaluation
Metrics C

od
e

D
at
as
et

Te
ch

ni
ca
l

A
pp

li
ca
ti
on

Fu
nc

ti
on

al

B
us

in
es
s

So
ur

ce
C
od

e

To
po

lo
gy

Ev
en

tL
og

s

K
PI
s/
M
et
ri
cs

T
ra
ffi
c
N
et
w
or
k

R
ep

or
ts

A
le
rt
s

T
ra
ce
s

[163] 2014 N/A • • • K-NN UNSUP F1

[234] 2019 N/A • • Cross-
Correlation UNSUP F1, PREC, REC,

PRC

[240] 2013 IDS • • Mahalanobis
Distance UNSUP REC, FPR, ACC •

[40] 2013 IDS • • CART UNSUP Completeness,
Soundness, FCR •

assist in fault localization. This technique aims to identify rules that associate statement coverage
with corresponding execution failures, measuring the frequency of each rule. A threshold is set to
determine the minimum number of failed executions covered by a selected rule. The generated
rules are then partially ranked using a rule lattice, and the ranking is examined to locate the fault.
In [289], the authors proposed an approach that utilizes multi-relational data mining techniques
for fault localization. Specifically, this technique utilizes Markov logic, combining first-order logic
and Markov random fields with weighted satisfiability testing for efficient inference, alongside a
voted perceptron algorithm for discriminative learning. When applied to fault localization, Markov
logic integrates various information sources including statement coverage, static program structure
details, and prior bug knowledge to enhance the accuracy of fault localization efforts.
Recently, there has been a notable shift towards employing machine and deep learning ap-

proaches to tackle the software fault localization problem. For instance, Sohn and Yoo [229]
extended spectrum-Based Fault Localization with code and change metrics, to enhance fault local-
ization precision. They applied Genetic Programming (GP) and linear rank Support Vector Machines
for learning to rank, utilizing both suspiciousness values and additional metrics. Li et al. [141]
introduced DeepFL, a deep learning approach designed for learning-based fault localization. It ad-
dresses challenges posed by increasing feature dimensions in advanced fault localization techniques,
by automatically identifying effective existing and latent features. DeepFL is demonstrated using
suspiciousness-value-based, fault-proneness-based, and textual-similarity-based features collected
from fault localization, defect prediction, and information retrieval domains. DeepRL4FL [144]
is another deep learning approach that treats fault localization as an image pattern recognition
problem. It locates buggy code at statement and method levels by introducing code coverage repre-
sentation learning and data dependencies representation learning for program statements. These
dynamic information types in a code coverage matrix are combined with static code representation
learning of suspicious source code. Inspired by crime scene investigation, the approach simulates
analyzing crime scenes (failed test cases and statements), related individuals (statements with
dependencies), and usual suspects (similar buggy code). DeepRL4FL organizes test cases, marks
error-exhibiting statements, and leverages data dependencies for comprehensive fault identification.
A Convolutional Neural Network classifier is employed, utilizing fused vector representations from
multiple sources to detect faulty statements/methods effectively.

AIOps Solutions for Incident Management: Technical Guidelines and A Comprehensive Literature Review 61

Table 23. Study of particularities of AIOps Incident Correlation methods.

Ref. Interpretability Scalability Robustness

[40, 163] • •
[234, 240] • • •

Table 24. Summary of reviewed AIOps Incident Mitigation methods.

Ref. Year Focus

Target Area Data sources

Approach Paradigm
Evaluation
Metrics C

od
e

D
at
as
et

Te
ch

ni
ca
l

A
pp

li
ca
ti
on

Fu
nc

ti
on

al

B
us

in
es
s

So
ur

ce
C
od

e

To
po

lo
gy

Ev
en

tL
og

s

K
PI
s/
M
et
ri
cs

T
ra
ffi
c
N
et
w
or
k

R
ep

or
ts

A
le
rt
s

T
ra
ce
s

[300] 2016 - • • • • • • K-NN, LDA UNSUP ACC, MAP,
avgSim

[252] 2017 - • • • • • • Ontology
Model SUP F1, PREC, REC

[152] 2018 - • • • • • • • FastText UNSUP −
[84] 2012 - • • • • FCA UNSUP REC, ROC

5.9 Incident Correlation Methods
Incident correlation research typically concentrates on analyzing correlations among alerting
signals, occurring incidents, or the associations between alerting signals and incidents. Existing
correlation algorithms primarily evaluate raw key performance indicators, or they transform these
KPIs into events and then analyze their correlations.

Luo et al. [163] focused on correlating events with KPIs data. They formulated the correlation
problem as a two-sample problem to assess the correlation between KPI time series and event
sequences in online service systems. They employ the nearest neighbors method to evaluate the
existence of the correlation and analyze temporal relationships and monotonic effects. CoFlux [234]
is an unsupervised approach for correlating KPIs in internet service operations management. It
introduced the concept of KPI flux-correlation, which involves identifying interactions between KPIs
through fluctuations, especially under anomalous situations. The study emphasized the challenge
of accurately distinguishing fluctuations from normal variations in KPIs with various structural
characteristics. The proposed approach automatically determines flux-correlation between two
KPIs, including temporal order and direction of fluctuations, without manual algorithm selection
or parameter tuning through robust feature engineering and cross-correlation.
Tan et al. [240] proposed a multivariate correlation analysis system for attack detection by

extracting geometric correlations between characteristics of network traffic. Their solution utilizes
the Mahalanobis distance to measure the similarity between traffic records. Bateni and Baraani [40]
presented an Enhanced Random Directed Time Window (ERDTW) alert selection policy based on
sliding time windows analysis. ERDTW classifies time intervals into relevant (safe) and irrelevant
(dangerous) based on attributes described in mathematical logic rules. For example, if a time interval
contains numerous alerts with the same IP address, it is more likely to be flagged as dangerous.

5.10 Incident Mitigation Methods
Through the triage and diagnosis steps of incident management, valuable knowledge is gained,
including the identification of incident scope, retrieval of historical duplicates, and analysis of root

62 Remil et al.

Table 25. Study of particularities of AIOps Incident Mitigation methods.

Ref. Year Interpretability Scalability Robustness Temporal Evaluation Human-in-the-loop

[300] 2016 • •
[252] 2017 • • • • •
[84] 2012 • •

causes. This knowledge enables the initiation of automatic repair actions known as mitigation or
remediation actions. Incident mitigation has received less attention compared to reporting and
diagnosis tasks, as it is often a consequence of the outcomes of those processes. Once the underlying
problem is clarified through diagnosis, the recovery steps become readily identifiable and attainable
without the need for complex models. However, our commitment extends to providing a list of
research works that focus on resolution tasks, even when triage or diagnosis are involved.
In a study conducted by [300], similarity-based algorithms are proposed to suggest resolutions

for recurring problems based on incident tickets. The approach retrieves k suggestions for ticket
resolution using a k-NN approach. The similarity between tickets is evaluated using a combination
of numerical, categorical, and textual data, with individual and aggregate similarity measures
defined. The solution is further extended to address false-positive tickets in both historical and
incoming data. This is achieved by classifying tickets using a binary classifier and weighing
ticket importance based on the prediction outcome. The final solution recommendation considers
both importance and similarity. The paper also explores ideas for improving feature extraction,
such as topic discovery and metric learning. Wang et al. [252] propose a cognitive framework
based on ontologies to construct domain-specific knowledge and suggest recovery actions for IT
service management tickets. The approach involves analyzing free-form text in ticket summaries
and resolution descriptions. Domain-specific phrases are extracted using language processing
techniques, and an ontology model is developed to define keywords, classes, relations, and a
hierarchy. This model is then utilized to recommend resolution actions by matching concept
patterns extracted from incoming and historical tickets using similarity functions like the Jaccard
distance. Lin et al. [152] employed natural language processing techniques to predict repair actions
for hardware failures based on closed incident tickets. Through the analysis of raw text logs, up
to five repair actions are recommended. Ding et al. [84] proposed an automated mining-based
approach for suggesting appropriate healing actions. The method involves generating signatures of
an issue using transaction logs, retrieving historical issues based on these signatures, and suggesting
a suitable healing action by adapting actions used for similar past issues.

6 PUBLICLY AVAILABLE DATASETS AND BENCHMARKS FOR AIOPS METHODS
In this section, we present a comprehensive overview of the key publicly available datasets and
benchmarks relevant to the field of AIOps, specifically in the context of incident management
procedures across various application areas. Table 26 serves as a valuable resource, not only
listing datasets used in prior research methodologies but also highlighting additional datasets
that have remained untapped in previous studies, yet hold significance for the respective research
application domains. We organize these datasets by incident task or application area, specifying
their data sources, cross-referencing them with the methodologies they have been utilized in, and,
importantly, providing direct links to access the datasets along with detailed descriptions. It’s worth
noting that datasets designed for incident triage can also serve incident prioritization purposes and
sub-categories, including assignment, classification, and deduplication.

AIOps Solutions for Incident Management: Technical Guidelines and A Comprehensive Literature Review 63

Table 26. Publicly Available Datasets and Benchmarks for AIOps Methods.

Application Area Dataset/Bench Data Source Refs. Link for data and description

Intrusion Detection Systems ABILENE Network Traffic [129, 130] https://tinyurl.com/2p8d3ufb
Intrusion Detection Systems SNDLIB Network Traffic [130] https://tinyurl.com/yc6dfdkd
Intrusion Detection Systems SWAT/WADI Network Metrics [33, 80, 149] https://tinyurl.com/5n87td8c
Intrusion Detection Systems CIC-IDS2017 Network Traffic N/A https://tinyurl.com/bdezufhc
Denial of Service Attacks CIC-DDoS2019 Network Traffic N/A https://tinyurl.com/8ywj34sf
Packet Injection Attacks NETRESEC Network Traffic N/A https://tinyurl.com/cf3a42m9

Edge Streams SNAP Network Traffic [283] https://tinyurl.com/2nv4h37s
Edge Streams DBLP Network Traffic [58, 283] https://tinyurl.com/34n576wp
Edge Streams DARPA Network Traffic [58, 281] https://tinyurl.com/55ev547r
Edge Streams ENRON Network Traffic [58, 281] https://tinyurl.com/3k96xfat

Traffic Anomaly Detection MAWI Network Metrics [228] https://tinyurl.com/4n2uc2te
Anomaly Detection Yahoo Univariate TS [213] https://tinyurl.com/5awjuj85

Software Changes Alibaba Univariate TS [294] https://tinyurl.com/mrjddhvk
Software Changes AIOps2018 Univariate TS [256] https://tinyurl.com/bdzzeuwz

Anomaly Detection NASA-SMAP Multivariate TS [33, 233] https://tinyurl.com/m8pnwvkf
Anomaly Detection SMD Multivariate TS [33, 149, 233] https://tinyurl.com/yj5au5me
Anomaly Detection ASD Multivariate TS [149] https://tinyurl.com/yj5au5me
Anomaly Detection NASA-MSL Multivariate TS [233] https://tinyurl.com/ypcafk99
Anomaly Detection Power Plant Multivariate TS [285] https://tinyurl.com/ynuz78s8

Log Anomaly Detection OpenStack Log Events [85] https://tinyurl.com/yhhckue3
Log Anomaly Detection HFDS/ Hadoop Log Events All log methods https://tinyurl.com/2j8ebupx
Log Anomaly Detection BGL Log Events [99, 173, 267] https://tinyurl.com/2j8ebupx
Log Anomaly Detection Thunderbird Log Events [99] https://tinyurl.com/2j8ebupx
Log Anomaly Detection Spark/Apache/HPC Log Events N/A https://tinyurl.com/2j8ebupx

Software Defect Prediction PROMISE Code Metrics [137, 175, 244, 253] https://tinyurl.com/bd9zz34m
Software Defect Prediction Eclipse Code Metrics [79, 184] https://tinyurl.com/2p899sdd
Software Defect Prediction NASA Code Metrics [79, 87] https://tinyurl.com/2a5869vz

Software Defect Prediction Code4BENCH Defect Code
Benchmark [168] https://tinyurl.com/3bk7fnu3

Software Defect Prediction AEEM Code and
Process Metrics [188] https://tinyurl.com/zr6cmsb9

Software Defect Prediction GHPR Java Code and
Metrics [275] https://tinyurl.com/3zpp4d7a

Software Defect Prediction JIRA Open Source
Project N/A https://tinyurl.com/zr6cmsb9

Disk Failures SMART Multivariate TS [257, 272, 297] https://tinyurl.com/2vexmjmu
Disk Failures Backblaze Multivariate TS [269] https://tinyurl.com/rfp4j8jw
DRAM Failures DRAM Multivariate TS [237] https://tinyurl.com/3yyz7e67

Remaining Useful Lifetime C-MAPSS Multivariate TS [166, 265, 298] https://tinyurl.com/sbyu5584
Remaining Useful Lifetime Milling Multivariate TS [298] https://tinyurl.com/2p8zjevy
Remaining Useful Lifetime PHM2008 Multivariate TS [142, 298] https://tinyurl.com/2r2955ss
Remaining Useful Lifetime XJTU-SY Multivariate TS [142] https://tinyurl.com/272nxd3v
Remaining Useful Lifetime PRONOSTICA Multivariate TS N/A https://tinyurl.com/4c8exsk9

Software Prediction Google Cluster Traces and Metrics [110] https://tinyurl.com/4abzuz8m

Bug Triage Eclipse Bug Reports [45, 100, 186, 243, 278] https://tinyurl.com/352v7ddc
[24, 254, 266, 280]
[107, 236, 239, 268]
[36, 103, 176, 299]

Bug Triage Mozilla Bug Reports [45, 61, 254, 266, 280] https://tinyurl.com/352v7ddc
[176, 236, 239, 268]

Bug Triage HFDS/ Hadoop Bug Reports [271] https://tinyurl.com/352v7ddc
Bug Triage Thunderbird Bug Reports [176] https://tinyurl.com/352v7ddc
Bug Triage NetBeans Stack Traces [248] https://tinyurl.com/ycxxyjfd

Bug Triage Cassandra/Mesos/
JDT/Spark Bug Reports N/A https://tinyurl.com/352v7ddc

Database Issues Infologic SQL Queries
Alerts, ASH [210] https://tinyurl.com/3fyb2s76

Software Fault Localization Defect4JS Bug Reports [144] https://tinyurl.com/4uvcu24y
Software Fault Localization MEGA Bug Reports [141] https://tinyurl.com/mpas9yan
Intrusion Detection Systems KDDCup1999 Network Metrics [240] https://tinyurl.com/mrxxfftu

https://tinyurl.com/2p8d3ufb
https://tinyurl.com/yc6dfdkd
https://tinyurl.com/5n87td8c
https://tinyurl.com/bdezufhc
https://tinyurl.com/8ywj34sf
https://tinyurl.com/cf3a42m9
https://tinyurl.com/2nv4h37s
https://tinyurl.com/34n576wp
https://tinyurl.com/55ev547r
https://tinyurl.com/3k96xfat
https://tinyurl.com/4n2uc2te
https://tinyurl.com/5awjuj85
https://tinyurl.com/mrjddhvk
https://tinyurl.com/bdzzeuwz
https://tinyurl.com/m8pnwvkf
https://tinyurl.com/yj5au5me
https://tinyurl.com/yj5au5me
https://tinyurl.com/ypcafk99
https://tinyurl.com/ynuz78s8
https://tinyurl.com/yhhckue3
https://tinyurl.com/2j8ebupx
https://tinyurl.com/2j8ebupx
https://tinyurl.com/2j8ebupx
https://tinyurl.com/2j8ebupx
https://tinyurl.com/bd9zz34m
https://tinyurl.com/2p899sdd
https://tinyurl.com/2a5869vz
https://tinyurl.com/3bk7fnu3
https://tinyurl.com/zr6cmsb9
https://tinyurl.com/3zpp4d7a
https://tinyurl.com/zr6cmsb9
https://tinyurl.com/2vexmjmu
https://tinyurl.com/rfp4j8jw
https://tinyurl.com/3yyz7e67
https://tinyurl.com/sbyu5584
https://tinyurl.com/2p8zjevy
https://tinyurl.com/2r2955ss
https://tinyurl.com/272nxd3v
https://tinyurl.com/4c8exsk9
https://tinyurl.com/4abzuz8m
https://tinyurl.com/352v7ddc
https://tinyurl.com/352v7ddc
https://tinyurl.com/352v7ddc
https://tinyurl.com/352v7ddc
https://tinyurl.com/ycxxyjfd
https://tinyurl.com/352v7ddc
https://tinyurl.com/3fyb2s76
https://tinyurl.com/4uvcu24y
https://tinyurl.com/mpas9yan
https://tinyurl.com/mrxxfftu

64 Remil et al.

Table 27. Summary of all reviewed AIOps methods for Incident Management Procedure.

Incident Task Application Area Type of AI Techniques

Incident
Detection

Auto-Encoders (Others) [149, 274, 283]
Auto-Regressive Models [201]
Clustering [105, 120, 150, 225, 283]
CNNs [213, 285]
Combinatorial Optimization [120]
Conventional Classifiers [158]
Dimensionality Reduction [129, 200, 276]
Fourier Transform [213]

FSM [93]
GANs [33, 267]
Graph Models [80, 160]
Language Models [99, 173, 291]
Markov Models [37, 225]
Nearest Neighbors Search [225]
RNNs [85, 173, 233, 256, 267, 285, 291, 294]
Statistical Models [130, 201, 270, 281]
Continued ... [58, 228, 247, 274]

Incident
Prediction

SDP

Bayesian Models [79, 175, 184, 253]
CNNs [137]
Conventional Classifiers [87, 188]
Convention Regressors [187, 198]
Dimensionality Reduction [187]

Graph Models [275]
Language Models [244]
RNNs [169, 244]
Topic Modeling [275]

Hardware Failures
Aging/Rejuv.

RUL

Clustering [246]
CNNs [123, 166, 237]
Conventional Classifiers [76, 269]
Conventional Regressors [26, 30, 95, 235, 246]
Dimensionality Reduction [123]
Fourier Transform [123]

GANs [142]
Markov Models [246, 288, 297]
Pattern Mining [288]
RL [42]
RNNs [76, 166, 265, 272, 298]
Statistical Models [95, 257]

Software Failures Auto-Regressive Models [56]
Bayesian Models [69, 204]

Conventional Classifiers [92, 153, 293]
RNNs [110, 153, 287]

Incident
Prioritization

Bayesian Models [102, 156]
CNNs [61]
Ranking Models [295]

Combinatorial Optimization [100]
Conventional Regressors [243]

Incident
Assignment

Bayesian Models [24, 45, 186, 278]
CNNs [60, 132, 202]
Markov Models [224]

Pattern Mining [212]
RNNs [60, 212, 266]
Similarity-based [254]

Incident
Classification

Clustering [292]
Conventional Classification [284]

Markov Models [151]
Topic Modeling [268, 280]

Incident
Deduplication

Clustering [107]
CNNs [271]
Language Models [103, 176]

Ranking Models [299]
Similarity-based [36, 218, 236, 239]
Other Similarity-based [50, 74, 135, 219]
Continued ... [39, 181, 183, 248]

Root Cause
Analysis

Technical
Troubleshooting

Bayesian Models [139, 167]
CNNs [148]
Graph Models [31, 35, 62, 115]

Markov Models [194, 221]
Pattern Mining [147, 154, 210, 238]
RNNs [148]

SFL

Bayesian Models [22]
CNNs [144]
Combinatorial Optimization [229]
Conventional Classifiers [141, 229]
Markov Models [289]

Nearest Neighbors Search [215]
Pattern Mining [55, 81]
Ranking Models [279]
RNNs [141, 144]
Statistical Models [157, 259]

Incident
Correlation

Conventional Classifiers [40]
Nearest Neighbors Search [163] Similarity-based [234, 240]

Incident
Mitigation

Language Models [152]
Nearest Neighbors Search [300]

Pattern Mining [84, 252]
Topic Modeling [300]

We acknowledge the paramount importance of this information, both for newcomers venturing
into the domain of AIOps and for practitioners seeking to replicate existing research findings, make
informed comparisons among similar techniques within the same research domain, and evaluate
their own contributions. While some previous surveys have offered lists of datasets tailored to
specific domains, our contribution, to the best of our knowledge, represents the first comprehensive
compilation spanning multiple application areas.

AIOps Solutions for Incident Management: Technical Guidelines and A Comprehensive Literature Review 65

Fig. 14. Distribution of analyzed AIOps papers across incident tasks and their subcategories.

7 CONCLUSION AND OPEN CHALLENGES
As stated in the introduction, we have observed a notable surge of interest in the AIOps domain in
recent years, bothwithin the research and industry sectors. However, it is imperative to acknowledge
that this field still lacks centralization and a structured framework. This arises from the need to
combine diverse specialized disciplines, encompassing software engineering, machine learning,
big data analysis, optimization, and more. AIOps, characterized by its novelty and inherently
interdisciplinary nature, has yet to establish a distinct and cohesive identity as a clearly defined
area of study. This presents substantial challenges for both practitioners and researchers to fully
comprehend the current state of the art and identify potential limitations and gaps. The absence of
standardized terminology and conventions for aspects such as data management, problem targeting,
focus areas, implementation details, requirements, and capabilities further exacerbates the situation.
This absence not only result in the absence of technical guidelines and a coherent roadmap for
implementing effective AIOps solutions but also makes it difficult for new researchers entering the
field to discover and compare contributions from various disciplines addressing the same problems.
As a result, this survey serves as an introductory resource to the AIOps domain, specifically

tailored for incident management procedures. Our primary goal was to establish a foundational
knowledge base for AIOps, which can benefit both industries looking to transition to AIOps
infrastructures and future research endeavors. In addition to presenting the fundamentals, including
the essential building blocks required for a systematic AIOps approach in intelligent and effective
incident management, while addressing pain points and desired outcomes, we offer a comprehensive
exploration of existing approaches designed to handle various tasks within the defined incident
management process.

In Figure 14, we analyze the distribution of AIOps papers reviewed in this survey across incident
tasks and their subcategories. It is evident that certain research categories have garnered more
attention than others, resulting in an imbalance in contributions across each phase. This disparity
can be attributed to several factors. For instance, the incident prediction and detection phases
collectively constitute more than half of the papers analyzed in this survey, sourced from presti-
gious conferences and journals. Conversely, categories such as incident classification, correlation,
and mitigation have received relatively less attention. This discrepancy aligns logically with the
fundamental requirements of an AIOps framework, where detection, prediction, and root cause

66 Remil et al.

analysis are of paramount importance. Furthermore, as discussed earlier, some categories may not
be as critical to pursue. For example, if the root cause can be efficiently identified by referencing a
past duplicate incident, there may be no need for an automated mitigation technique. Similarly,
some categories may become less essential based on specific use cases. For instance, if an incident is
already routed to a qualified individual with no competing priorities, the ranking process may be of
reduced significance. However, it remains beneficial to encourage diverse contributions employing
various techniques and the latest algorithms to ensure that tasks, when required, can be executed
accurately and swiftly.
In relation to each incident task, we observed specific aspects that have garnered considerable

research focus. This includes identifying prevalent contexts within the related research, extensively
utilized data for those contexts, as well as the most commonly employed model types and learning
paradigms, among other factors. For example, when examining incident detection methods, a
predominant focus emerges on addressing technical aspects, including hardware and network
layers, as well as application layers. This is typically accomplished by analyzing Key Performance
Indicators (KPIs), system metrics, network traffic data, and event logs. The prevailing models
tend to be unsupervised, with significant attention placed on statistical models, dimensionality
reduction approaches, and general auto-encoders like Recurrent Neural Networks (RNNs). In
incident prediction tasks, research efforts have also addressed failures occurring in the functional
strata. Many of these methods are supervised and leverage patterns from past failures or outages.
They frequently make use of forecasting methods, especially for time series data, particularly in
contexts like software aging and estimating remaining useful lifetimes.
When it comes to incident prioritization, topology and alerting signals data play a prominent

role, often using supervised techniques. In contrast, incident reports serve as the primary source of
information for tasks related to assignment and deduplication. However, for these latter two tasks,
most methods predominantly focus on addressing software-related issues, particularly software
bugs. In terms of root cause analysis methods, interpretability is a key consideration. For software
fault localization, the approach predominantly involves analyzing source code through supervised
methods. On the other hand, technical fault localization methods tend to be unsupervised and draw
from descriptive models in pattern mining, often incorporating topology data to contextualize
faults.

In addition to the significant challenge addressed in this survey, which involves organizing the
body of knowledge within the AIOps research area, we have identified several other concerns, pain
points, and open challenges that require attention. These include aspects related to the design,
unique characteristics, availability, and reproducibility of AIOps models.

To begin, our initial observation highlights that despite the myriad challenges faced by predictive
models, including issues like the absence of clear ground truth labels, the need for manual efforts to
obtain high-quality data, extremely imbalanced datasets, and the complexity of dependencies and
relationships among components and services, AIOps continues to place a significant emphasis on
the development of predictive models, particularly for incident detection and prediction. However,
there exists a lesser-known yet highly valuable approach that has been underutilized. This ap-
proach involves employing descriptive models, such as pattern mining in general, and specifically,
techniques like supervised rule discovery [32, 262] and formal concept analysis [55, 122]. These
models harness the power of data mining to extract informative patterns from data, which can be
instrumental in detecting, diagnosing, and resolving issues. Descriptive models offer distinct advan-
tages when it comes to tackling challenges related to data diversity, complexity, and quality. This
makes them particularly valuable in scenarios involving tasks like deduplication of incidents and
dealing with intricate dependencies. Therefore, it is imperative to shift our focus towards enhancing

AIOps Solutions for Incident Management: Technical Guidelines and A Comprehensive Literature Review 67

descriptive models in conjunction with predictive models, recognizing the unique strengths they
bring to the AIOps landscape.
Additionally, it is crucial to emphasize the importance of evolving the evaluation methods for

these models. While the majority of research examined in this survey has centered on contingency
tablemetrics, only a few have considered the contextual and temporal aspects outlined in Sections 4.2
and 3.4. For instance, the challenge also is to ensure that the behavior of the model during the
training phase is consistent with its performance in the testing and production phases. Traditional
metrics used to assess models are susceptible to the contamination zone phenomenon [91], which
may lead to erroneous assessments. Indeed, Fourure et al. [91], highlight that by parameterizing
the proportion of data between training and testing sets, the F1-score of anomaly detection models
can be artificially increased.

When it comes to addressing interpretability concerns, many research efforts that employ black
box models to carry out their tasks acknowledge the importance of incorporating an interpretation
layer into their methods. They claim that the output of their models is accompanied by explanations
regarding the reasons behind their predictions. However, several critical questions persist in this
regard. It remains unclear how these interpretations remain internally consistent when the model
encounters new data, or how they compare externally when different models produce the same
results but with differing interpretations. Additionally, the stability of model interpretations over
time, particularly with updates and improvements, raises important questions (see Section 3.4
for further details). Furthermore, only a limited number of methods involve human expertise
in the process. In reality, practitioners’ insights can significantly guide both the learning and
implementation of these models. Interestingly, in the context of pattern mining approaches, several
techniques, such as Subjective Interestingness [77], can facilitate the process of updating a user’s
knowledge about the most interesting data over time. Scalability is another major concern. In AIOps
environments, it is essential not only to focus on the efficiency of the model but also on its overall
performance. While optimizing (TTx) times (including detection, engagement, and mitigation),
which have received comparatively less attention, is crucial for the successful implementation of
automated incident management procedures, performance evaluation is often overlooked when
comparing different models addressing the same research field. In practical scenarios, a model that
takes less time to execute while maintaining a 90% F-Score for detection may be preferred over a
model with a 95% F-Score that requires a longer execution time. This emphasizes the need to strike
a balance between model performance and efficiency in real-world AIOps applications.
Finally, to advance this field significantly, it is imperative to advocate for a closer partnership

between academia and industry. Furthermore, open-sourcing initiatives should be encouraged.
While it is totally understandable that publishing datasets may raise potential rights or confiden-
tiality concerns, and sharing models employed in production scenarios could be susceptible to
reverse-engineering, there is a critical need to find common ground, especially in the research com-
munity. Facilitating the reproducibility of certain results can be a significant catalyst for advancing
research in this field. This collaborative approach, where academia and industry work together and
contribute to open-source initiatives, can pave the way for the development of more robust and
impactful AIOps solutions.

68 Remil et al.

REFERENCES
[1] 2023. Amazon Kinesis. https://aws.amazon.com/fr/kinesis/
[2] 2023. Apache Kafka. https://kafka.apache.org/
[3] 2023. Apache Nifi. https://nifi.apache.org/
[4] 2023. Apache Superset. https://superset.apache.org/
[5] 2023. Azure Event Hubs. https://learn.microsoft.com/fr-fr/azure/event-hubs/
[6] 2023. Beats from the ELK stack. https://www.elastic.co/fr/beats/
[7] 2023. Build Lakehouses with Delta Lake. https://delta.io/
[8] 2023. Clickhouse. https://clickhouse.com/
[9] 2023. Elasticsearch. https://www.elastic.co/
[10] 2023. Fluentd. https://www.fluentd.org/
[11] 2023. Google Cloud Pub/Sub. https://cloud.google.com/pubsub
[12] 2023. Grafana. https://grafana.com/
[13] 2023. IBM. https://www.ibm.com/cloud/architecture/architectures/sm-aiops/reference-architecture/
[14] 2023. InfluxDB. https://www.influxdata.com/
[15] 2023. Kibana from the ELK stack. https://www.elastic.co/fr/kibana/
[16] 2023. Lucene Apache. https://lucene.apache.org/
[17] 2023. Metabase. https://www.metabase.com/
[18] 2023. RabbitMQ. https://www.rabbitmq.com/
[19] 2023. RocketMQ. https://rocketmq.apache.org/
[20] 2023. Telegraf from InfluxData. https://www.influxdata.com/time-series-platform/telegraf/
[21] Rui Abreu, Peter Zoeteweij, and Arjan JC Van Gemund. 2006. An evaluation of similarity coefficients for software

fault localization. In 2006 12th Pacific Rim International Symposium on Dependable Computing (PRDC’06). IEEE, 39–46.
[22] Rui Abreu, Peter Zoeteweij, and Arjan JC Van Gemund. 2009. Spectrum-based multiple fault localization. In 2009

IEEE/ACM International Conference on Automated Software Engineering. IEEE, 88–99.
[23] V Akila, G Zayaraz, and V Govindasamy. 2014. Bug triage in open source systems: a review. International Journal of

Collaborative Enterprise 4, 4 (2014), 299–319.
[24] Mamdouh Alenezi, Kenneth Magel, and Shadi Banitaan. 2013. Efficient Bug Triaging Using Text Mining. J. Softw. 8, 9

(2013), 2185–2190.
[25] Julien Aligon, Matteo Golfarelli, Patrick Marcel, Stefano Rizzi, and Elisa Turricchia. 2014. Similarity measures for

OLAP sessions. Knowledge and information systems 39, 2 (2014), 463–489.
[26] Javier Alonso, Jordi Torres, Josep Ll Berral, and Ricard Gavalda. 2010. Adaptive on-line software aging prediction

based on machine learning. In 2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN). IEEE,
507–516.

[27] Giuliano Antoniol, Kamel Ayari, Massimiliano Di Penta, Foutse Khomh, and Yann-Gaël Guéhéneuc. 2008. Is it a bug
or an enhancement? A text-based approach to classify change requests. In Proceedings of the 2008 conference of the
center for advanced studies on collaborative research: meeting of minds. 304–318.

[28] John Anvik, Lyndon Hiew, and Gail C Murphy. 2005. Coping with an open bug repository. In Proceedings of the 2005
OOPSLA workshop on Eclipse technology eXchange. 35–39.

[29] Kamel Aouiche, Pierre-Emmanuel Jouve, and Jérôme Darmont. 2006. Clustering-based materialized view selection in
data warehouses. In East European conference on advances in databases and information systems. Springer, 81–95.

[30] Jean Araujo, Rubens Matos, Vandi Alves, Paulo Maciel, F Vieira de Souza, Rivalino Matias Jr, and Kishor S Trivedi.
2014. Software aging in the eucalyptus cloud computing infrastructure: characterization and rejuvenation. ACM
Journal on Emerging Technologies in Computing Systems (JETC) 10, 1 (2014), 1–22.

[31] Mona Attariyan, Michael Chow, and Jason Flinn. 2012. X-ray: Automating root-cause diagnosis of performance
anomalies in production software. In Presented as part of the 10th {USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 12). 307–320.

[32] Martin Atzmueller. 2015. Subgroup discovery. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 5, 1 (2015), 35–49.
[33] Julien Audibert, Pietro Michiardi, Frédéric Guyard, Sébastien Marti, and Maria A Zuluaga. 2020. Usad: Unsupervised

anomaly detection on multivariate time series. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. 3395–3404.

[34] Algirdas Avizienis, J-C Laprie, Brian Randell, and Carl Landwehr. 2004. Basic concepts and taxonomy of dependable
and secure computing. IEEE transactions on dependable and secure computing 1, 1 (2004), 11–33.

[35] Paramvir Bahl, Ranveer Chandra, Albert Greenberg, Srikanth Kandula, David A Maltz, and Ming Zhang. 2007.
Towards highly reliable enterprise network services via inference of multi-level dependencies. ACM SIGCOMM
Computer Communication Review 37, 4 (2007), 13–24.

https://aws.amazon.com/fr/kinesis/
https://kafka.apache.org/
https://nifi.apache.org/
https://superset.apache.org/
https://learn.microsoft.com/fr-fr/azure/event-hubs/
https://www.elastic.co/fr/beats/
https://delta.io/
https://clickhouse.com/
https://www.elastic.co/
https://www.fluentd.org/
https://cloud.google.com/pubsub
https://grafana.com/
https://www.ibm.com/cloud/architecture/architectures/sm-aiops/reference-architecture/
https://www.influxdata.com/
https://www.elastic.co/fr/kibana/
https://lucene.apache.org/
https://www.metabase.com/
https://www.rabbitmq.com/
https://rocketmq.apache.org/
https://www.influxdata.com/time-series-platform/telegraf/

AIOps Solutions for Incident Management: Technical Guidelines and A Comprehensive Literature Review 69

[36] Sean Banerjee, Bojan Cukic, and Donald Adjeroh. 2012. Automated duplicate bug report classification using
subsequence matching. In 2012 IEEE 14th International Symposium on High-Assurance Systems Engineering. IEEE,
74–81.

[37] June-ho Bang, Young-Jong Cho, and Kyungran Kang. 2017. Anomaly detection of network-initiated LTE signaling
traffic in wireless sensor and actuator networks based on a Hidden semi-Markov Model. Computers & Security 65
(2017), 108–120.

[38] Abdul Ali Bangash, Hareem Sahar, Abram Hindle, and Karim Ali. 2020. On the time-based conclusion stability of
cross-project defect prediction models. Empirical Software Engineering 25, 6 (2020), 5047–5083.

[39] Kevin Bartz, Jack W. Stokes, John C. Platt, Ryan Kivett, David Grant, Silviu Calinoiu, and Gretchen Loihle. 2008.
Finding Similar Failures Using Callstack Similarity. In SysML.

[40] Mehdi Bateni and Ahmad Baraani. 2013. Time Window Management for Alert Correlation using Context Information
and Classification. International Journal of Computer Network & Information Security 5, 11 (2013).

[41] Soeren Becker, Florian Schmidt, Anton Gulenko, Alexander Acker, and Odej Kao. 2020. Towards aiops in edge
computing environments. In 2020 IEEE International Conference on Big Data (Big Data). IEEE, 3470–3475.

[42] Luca Bellani, Michele Compare, Piero Baraldi, and Enrico Zio. 2019. Towards developing a novel framework for
practical phm: A sequential decision problem solved by reinforcement learning and artificial neural networks.
International Journal of Prognostics and Health Management 10, 4 (2019).

[43] Anes Bendimerad, Youcef Remil, Romain Mathonat, and Mehdi Kaytoue. 2023. On-premise Infrastructure for AIOps
in a Software Editor SME: An experience report. In 31st ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESECFSE.

[44] Tarek Berghout and Mohamed Benbouzid. 2022. A systematic guide for predicting remaining useful life with machine
learning. Electronics 11, 7 (2022), 1125.

[45] Pamela Bhattacharya and Iulian Neamtiu. 2010. Fine-grained incremental learning and multi-feature tossing graphs
to improve bug triaging. In 2010 IEEE International Conference on Software Maintenance. IEEE, 1–10.

[46] Jasmin Bogatinovski, Sasho Nedelkoski, Alexander Acker, Florian Schmidt, Thorsten Wittkopp, Soeren Becker, Jorge
Cardoso, and Odej Kao. 2021. Artificial Intelligence for IT Operations (AIOPS) Workshop White Paper. arXiv preprint
arXiv:2101.06054 (2021).

[47] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. Enriching word vectors with subword
information. Transactions of the association for computational linguistics 5 (2017), 135–146.

[48] Marcello Braglia, Gionata Carmignani, Marco Frosolini, and Francesco Zammori. 2012. Data classification and MTBF
prediction with a multivariate analysis approach. Reliability Engineering & System Safety 97, 1 (2012), 27–35.

[49] Lionel C. Briand, John W. Daly, and Jurgen K Wust. 1999. A unified framework for coupling measurement in
object-oriented systems. IEEE Transactions on software Engineering 25, 1 (1999), 91–121.

[50] Mark Brodie, Sheng Ma, Guy M. Lohman, Laurent Mignet, Natwar Modani, Mark Wilding, Jon Champlin, and Peter
Sohn. 2005. Quickly Finding Known Software Problems via Automated Symptom Matching. In Second International
Conference on Autonomic Computing (ICAC 2005). IEEE Computer Society, 101–110.

[51] Zaharah A Bukhsh, Hajo Molegraaf, and Nils Jansen. 2023. A maintenance planning framework using online and
offline deep reinforcement learning. Neural Computing and Applications (2023), 1–12.

[52] D Cappuccio. 2013. Ensure cost balances out with risk in highavailability data centers. Gartner, July (2013).
[53] Saul Carliner. 2004. An overview of online learning. (2004).
[54] Vittorio Castelli, Richard E Harper, Philip Heidelberger, Steven W Hunter, Kishor S Trivedi, Kalyanaraman

Vaidyanathan, and William P Zeggert. 2001. Proactive management of software aging. IBM Journal of Research and
Development 45, 2 (2001), 311–332.

[55] Peggy Cellier, Mireille Ducassé, Sébastien Ferré, and Olivier Ridoux. 2008. Formal concept analysis enhances fault
localization in software. In Formal Concept Analysis: 6th International Conference, ICFCA 2008, Montreal, Canada,
February 25-28, 2008. Proceedings 6. Springer, 273–288.

[56] Thanyalak Chalermarrewong, Tiranee Achalakul, and Simon Chong Wee See. 2012. Failure prediction of data centers
using time series and fault tree analysis. In 2012 IEEE 18th International Conference on Parallel and Distributed Systems.
IEEE, 794–799.

[57] Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly detection: A survey. ACM computing surveys
(CSUR) 41, 3 (2009), 1–58.

[58] Yen-Yu Chang, Pan Li, Rok Sosic, MH Afifi, Marco Schweighauser, and Jure Leskovec. 2021. F-fade: Frequency
factorization for anomaly detection in edge streams. In Proceedings of the 14th ACM International Conference on Web
Search and Data Mining. 589–597.

[59] Surajit Chaudhuri, Ashish Kumar Gupta, and Vivek Narasayya. 2002. Compressing SQL workloads. In Proceedings of
the 2002 ACM SIGMOD international conference on Management of data. 488–499.

70 Remil et al.

[60] Junjie Chen, Xiaoting He, Qingwei Lin, Hongyu Zhang, Dan Hao, Feng Gao, Zhangwei Xu, Yingnong Dang, and
Dongmei Zhang. 2019. Continuous incident triage for large-scale online service systems. In 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 364–375.

[61] Junjie Chen, Shu Zhang, Xiaoting He, Qingwei Lin, Hongyu Zhang, Dan Hao, Yu Kang, Feng Gao, Zhangwei Xu,
Yingnong Dang, et al. 2020. How incidental are the incidents? characterizing and prioritizing incidents for large-
scale online service systems. In Proceedings of the 35th IEEE/ACM International Conference on Automated Software
Engineering. 373–384.

[62] Pengfei Chen, Yong Qi, Pengfei Zheng, and Di Hou. 2014. Causeinfer: Automatic and distributed performance
diagnosis with hierarchical causality graph in large distributed systems. In IEEE INFOCOM 2014-IEEE Conference on
Computer Communications. IEEE, 1887–1895.

[63] Tse-Hsun Chen, Weiyi Shang, Zhen Ming Jiang, Ahmed E Hassan, Mohamed Nasser, and Parminder Flora. 2014.
Detecting performance anti-patterns for applications developed using object-relational mapping. In Proceedings of
the 36th International Conference on Software Engineering. 1001–1012.

[64] Yujun Chen, Xian Yang, Qingwei Lin, Hongyu Zhang, Feng Gao, Zhangwei Xu, Yingnong Dang, Dongmei Zhang,
Hang Dong, Yong Xu, et al. 2019. Outage prediction and diagnosis for cloud service systems. In The World Wide Web
Conference. 2659–2665.

[65] Zhuangbin Chen, Yu Kang, Feng Gao, Li Yang, Jeffrey Sun, Zhangwei Xu, Pu Zhao, Bo Qiao, Liqun Li, Xu Zhang,
et al. 2020. Aiops innovations of incident management for cloud services. (2020).

[66] Zhuangbin Chen, Yu Kang, Liqun Li, Xu Zhang, Hongyu Zhang, Hui Xu, Yangfan Zhou, Li Yang, Jeffrey Sun, Zhangwei
Xu, et al. 2020. Towards intelligent incident management: why we need it and how we make it. In Proceedings of the
28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 1487–1497.

[67] Shyam R Chidamber and Chris F Kemerer. 1994. A metrics suite for object oriented design. IEEE Transactions on
software engineering 20, 6 (1994), 476–493.

[68] Michael Chow, David Meisner, Jason Flinn, Daniel Peek, and Thomas F Wenisch. 2014. The mystery machine:
End-to-end performance analysis of large-scale internet services. In 11th {USENIX} symposium on operating systems
design and implementation ({OSDI} 14). 217–231.

[69] Ira Cohen, Jeffrey S Chase, Moises Goldszmidt, Terence Kelly, and Julie Symons. 2004. Correlating Instrumentation
Data to System States: A Building Block for Automated Diagnosis and Control.. In OSDI, Vol. 4. 16–16.

[70] Nick Craswell. 2009. Mean Reciprocal Rank. Springer US, 1703–1703.
[71] Hetong Dai, Heng Li, Che-Shao Chen, Weiyi Shang, and Tse-Hsun Chen. 2020. Logram: Efficient Log Parsing Using

𝑛 n-Gram Dictionaries. IEEE Transactions on Software Engineering 48, 3 (2020), 879–892.
[72] Marco D’Ambros, Michele Lanza, and Romain Robbes. 2010. An extensive comparison of bug prediction approaches.

In 2010 7th IEEE working conference on mining software repositories (MSR 2010). IEEE, 31–41.
[73] Yingnong Dang, Qingwei Lin, and Peng Huang. 2019. AIOps: real-world challenges and research innovations. In 2019

IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings (ICSE-Companion). IEEE,
4–5.

[74] Yingnong Dang, Rongxin Wu, Hongyu Zhang, Dongmei Zhang, and Peter Nobel. 2012. ReBucket: A method
for clustering duplicate crash reports based on call stack similarity. In 34th International Conference on Software
Engineering, ICSE. 1084–1093.

[75] Narjes Davari, Bruno Veloso, Gustavo de Assis Costa, Pedro Mota Pereira, Rita P Ribeiro, and João Gama. 2021. A
survey on data-driven predictive maintenance for the railway industry. Sensors 21, 17 (2021), 5739.

[76] Nickolas Allen Davis, Abdelmounaam Rezgui, Hamdy Soliman, Skyler Manzanares, and Milagre Coates. 2017.
Failuresim: a system for predicting hardware failures in cloud data centers using neural networks. In 2017 IEEE 10th
International Conference on Cloud Computing (CLOUD). IEEE, 544–551.

[77] Tijl De Bie. 2011. Maximum entropy models and subjective interestingness. Data Mining and Knowledge Discovery
23, 3 (2011), 407–446.

[78] Shaleen Deep, Anja Gruenheid, Paraschos Koutris, Jeffrey F. Naughton, and Stratis Viglas. 2020. Comprehensive and
Efficient Workload Compression. Proc. VLDB Endow. 14, 3 (2020), 418–430.

[79] Karel Dejaeger, Thomas Verbraken, and Bart Baesens. 2012. Toward comprehensible software fault prediction models
using bayesian network classifiers. IEEE Transactions on Software Engineering 39, 2 (2012), 237–257.

[80] Ailin Deng and Bryan Hooi. 2021. Graph neural network-based anomaly detection in multivariate time series. In
Proceedings of the AAAI conference on artificial intelligence, Vol. 35. 4027–4035.

[81] Tristan Denmat, Mireille Ducassé, and Olivier Ridoux. 2005. Data mining and cross-checking of execution traces: a
re-interpretation of jones, harrold and stasko test information. In Proceedings of the 20th IEEE/ACM International
Conference on Automated software engineering. 396–399.

AIOps Solutions for Incident Management: Technical Guidelines and A Comprehensive Literature Review 71

[82] Tejinder Dhaliwal, Foutse Khomh, and Ying Zou. 2011. Classifying field crash reports for fixing bugs: A case study of
Mozilla Firefox. In IEEE 27th International Conference on Software Maintenance, ICSM. 333–342.

[83] Josu Díaz-de Arcaya, Ana I Torre-Bastida, Raúl Miñón, and Aitor Almeida. 2023. Orfeon: An AIOps framework for
the goal-driven operationalization of distributed analytical pipelines. Future Generation Computer Systems 140 (2023),
18–35.

[84] Rui Ding, Qiang Fu, Jian-Guang Lou, Qingwei Lin, Dongmei Zhang, Jiajun Shen, and Tao Xie. 2012. Healing online
service systems via mining historical issue repositories. In Proceedings of the 27th IEEE/ACM International Conference
on Automated Software Engineering. 318–321.

[85] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. Deeplog: Anomaly detection and diagnosis from system
logs through deep learning. In Proceedings of the 2017 ACM SIGSAC conference on computer and communications
security. 1285–1298.

[86] Marco D’Ambros, Michele Lanza, and Romain Robbes. 2012. Evaluating defect prediction approaches: a benchmark
and an extensive comparison. Empirical Software Engineering 17 (2012), 531–577.

[87] Karim O Elish and Mahmoud O Elish. 2008. Predicting defect-prone software modules using support vector machines.
Journal of Systems and Software 81, 5 (2008), 649–660.

[88] Stephen Elliot. 2014. DevOps and the cost of downtime: Fortune 1000 best practice metrics quantified. International
Data Corporation (IDC) (2014).

[89] Mostafa Farshchi, Jean-Guy Schneider, Ingo Weber, and John Grundy. 2018. Metric selection and anomaly detection
for cloud operations using log and metric correlation analysis. Journal of Systems and Software 137 (2018), 531–549.

[90] Olga Fink. 2020. Data-driven intelligent predictive maintenance of industrial assets. Women in Industrial and Systems
Engineering: Key Advances and Perspectives on Emerging Topics (2020), 589–605.

[91] Damien Fourure, Muhammad Usama Javaid, Nicolas Posocco, and Simon Tihon. 2021. Anomaly detection: How to
artificially increase your f1-score with a biased evaluation protocol. In Machine Learning and Knowledge Discovery in
Databases. Applied Data Science Track: European Conference, ECML PKDD 2021, Bilbao, Spain, September 13–17, 2021,
Proceedings, Part IV. Springer, 3–18.

[92] Ilenia Fronza, Alberto Sillitti, Giancarlo Succi, Mikko Terho, and Jelena Vlasenko. 2013. Failure prediction based on
log files using random indexing and support vector machines. Journal of Systems and Software 86, 1 (2013), 2–11.

[93] Qiang Fu, Jian-Guang Lou, Yi Wang, and Jiang Li. 2009. Execution anomaly detection in distributed systems through
unstructured log analysis. In 2009 ninth IEEE international conference on data mining. IEEE, 149–158.

[94] Zhiwei Gao, Carlo Cecati, and Steven X Ding. 2015. A survey of fault diagnosis and fault-tolerant techniques—Part I:
Fault diagnosis with model-based and signal-based approaches. IEEE transactions on industrial electronics 62, 6 (2015),
3757–3767.

[95] Sachin Garg, Aad Van Moorsel, Kalyanaraman Vaidyanathan, and Kishor S Trivedi. 1998. A methodology for detection
and estimation of software aging. In Proceedings Ninth International Symposium on Software Reliability Engineering
(Cat. No. 98TB100257). IEEE, 283–292.

[96] Todd L Graves, Alan F Karr, James S Marron, and Harvey Siy. 2000. Predicting fault incidence using software change
history. IEEE Transactions on software engineering 26, 7 (2000), 653–661.

[97] Michael Grottke, Rivalino Matias, and Kishor S Trivedi. 2008. The fundamentals of software aging. In 2008 IEEE
International conference on software reliability engineering workshops (ISSRE Wksp). Ieee, 1–6.

[98] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca Giannotti, and Dino Pedreschi. 2019. A
Survey of Methods for Explaining Black Box Models. ACM Comput. Surv. 51, 5 (2019), 93:1–93:42.

[99] Haixuan Guo, Shuhan Yuan, and Xintao Wu. 2021. Logbert: Log anomaly detection via bert. In 2021 international
joint conference on neural networks (IJCNN). IEEE, 1–8.

[100] Chetna Gupta, Pedro RM Inacio, and Mário M Freire. 2022. Improving software maintenance with improved bug
triaging. Journal of King Saud University-Computer and Information Sciences 34, 10 (2022), 8757–8764.

[101] Maurice H Halstead. 1977. Elements of Software Science (Operating and programming systems series). Elsevier Science
Inc.

[102] Wajih Ul Hassan, Shengjian Guo, Ding Li, Zhengzhang Chen, Kangkook Jee, Zhichun Li, and Adam Bates. 2019.
Nodoze: Combatting threat alert fatigue with automated provenance triage. In network and distributed systems security
symposium.

[103] Jianjun He, Ling Xu, Meng Yan, Xin Xia, and Yan Lei. 2020. Duplicate bug report detection using dual-channel
convolutional neural networks. In Proceedings of the 28th International Conference on ProgramComprehension. 117–127.

[104] Shilin He, Pinjia He, Zhuangbin Chen, Tianyi Yang, Yuxin Su, and Michael R Lyu. 2021. A survey on automated log
analysis for reliability engineering. ACM computing surveys (CSUR) 54, 6 (2021), 1–37.

[105] Shilin He, Qingwei Lin, Jian-Guang Lou, Hongyu Zhang, Michael R Lyu, and Dongmei Zhang. 2018. Identifying
impactful service system problems via log analysis. In Proceedings of the 2018 26th ACM joint meeting on European
software engineering conference and symposium on the foundations of software engineering. 60–70.

72 Remil et al.

[106] Shilin He, Jieming Zhu, Pinjia He, and Michael R Lyu. 2016. Experience report: System log analysis for anomaly
detection. In 2016 IEEE 27th international symposium on software reliability engineering (ISSRE). IEEE, 207–218.

[107] Lyndon Hiew. 2006. Assisted detection of duplicate bug reports. Ph. D. Dissertation. University of British Columbia.
[108] Aaron Huff. 2015. Breaking down the cost. Commercial Carrier Journal (2015).
[109] Olumuyiwa Ibidunmoye, Francisco Hernández-Rodriguez, and Erik Elmroth. 2015. Performance anomaly detection

and bottleneck identification. ACM Computing Surveys (CSUR) 48, 1 (2015), 1–35.
[110] Tariqul Islam and Dakshnamoorthy Manivannan. 2017. Predicting application failure in cloud: A machine learning

approach. In 2017 IEEE International Conference on Cognitive Computing (ICCC). IEEE, 24–31.
[111] Shrainik Jain, Bill Howe, Jiaqi Yan, and Thierry Cruanes. 2018. Query2Vec: An Evaluation of NLP Techniques for

Generalized Workload Analytics. arXiv preprint arXiv:1801.05613 (2018).
[112] Nicholas Jalbert and Westley Weimer. 2008. Automated duplicate detection for bug tracking systems. In 2008 IEEE

International Conference on Dependable Systems and Networks With FTCS and DCC (DSN). IEEE, 52–61.
[113] David Jauk, Dai Yang, and Martin Schulz. 2019. Predicting faults in high performance computing systems: An in-depth

survey of the state-of-the-practice. In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. 1–13.

[114] Gaeul Jeong, Sunghun Kim, and Thomas Zimmermann. 2009. Improving bug triage with bug tossing graphs. In
Proceedings of the 7th joint meeting of the European software engineering conference and the ACM SIGSOFT symposium
on The foundations of software engineering. 111–120.

[115] Vimalkumar Jeyakumar, Omid Madani, Ali Parandeh, Ashutosh Kulshreshtha, Weifei Zeng, and Navindra Yadav.
2019. ExplainIt!–A declarative root-cause analysis engine for time series data. In Proceedings of the 2019 International
Conference on Management of Data. 333–348.

[116] James A Jones and Mary Jean Harrold. 2005. Empirical evaluation of the tarantula automatic fault-localization
technique. In Proceedings of the 20th IEEE/ACM international Conference on Automated software engineering. 273–282.

[117] James A Jones, Mary Jean Harrold, and John Stasko. 2002. Visualization of test information to assist fault localization.
In Proceedings of the 24th international conference on Software engineering. 467–477.

[118] Xiaolin Ju, Shujuan Jiang, Xiang Chen, Xingya Wang, Yanmei Zhang, and Heling Cao. 2014. HSFal: Effective fault
localization using hybrid spectrum of full slices and execution slices. Journal of Systems and Software 90 (2014), 3–17.

[119] Changhee Jung, Sangho Lee, Easwaran Raman, and Santosh Pande. 2014. Automated memory leak detection for
production use. In 36th International Conference on Software Engineering, ICSE ’14, Hyderabad, India - May 31 - June
07, 2014, Pankaj Jalote, Lionel C. Briand, and André van der Hoek (Eds.). ACM, 825–836.

[120] Amin Karami and Manel Guerrero-Zapata. 2015. A fuzzy anomaly detection system based on hybrid PSO-Kmeans
algorithm in content-centric networks. Neurocomputing 149 (2015), 1253–1269.

[121] Syaeful Karim, Harco Leslie Hendric Spits Warnars, Ford Lumban Gaol, Edi Abdurachman, Benfano Soewito, et al.
2017. Software metrics for fault prediction using machine learning approaches: A literature review with PROMISE
repository dataset. In 2017 IEEE international conference on cybernetics and computational intelligence (CyberneticsCom).
IEEE, 19–23.

[122] Mehdi Kaytoue, Sergei O. Kuznetsov, and Amedeo Napoli. 2011. Revisiting Numerical Pattern Mining with Formal
Concept Analysis. In IJCAI. IJCAI/AAAI, 1342–1347.

[123] Kasem Khalil, Omar Eldash, Ashok Kumar, andMagdy Bayoumi. 2020. Machine learning-based approach for hardware
faults prediction. IEEE Transactions on Circuits and Systems I: Regular Papers 67, 11 (2020), 3880–3892.

[124] Taghi M Khoshgoftaar and David L Lanning. 1995. A neural network approach for early detection of program
modules having high risk in the maintenance phase. Journal of Systems and Software 29, 1 (1995), 85–91.

[125] Aleksandr Khvorov, Roman Vasiliev, George A. Chernishev, Irving Muller Rodrigues, Dmitrij V. Koznov, and Nikita
Povarov. 2021. S3M: Siamese Stack (Trace) Similarity Measure. In 18th IEEE/ACM International Conference on Mining
Software Repositories, MSR. 266–270.

[126] Myunghwan Kim, Roshan Sumbaly, and Sam Shah. 2013. Root cause detection in a service-oriented architecture.
ACM SIGMETRICS Performance Evaluation Review 41, 1 (2013), 93–104.

[127] Sunghun Kim, Thomas Zimmermann, and Nachiappan Nagappan. 2011. Crash graphs: An aggregated view of
multiple crashes to improve crash triage. In Proceedings of the 2011 IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN. 486–493.

[128] Gokhan Kul, Duc Luong, Ting Xie, Patrick Coonan, Varun Chandola, Oliver Kennedy, and Shambhu Upadhyaya. 2016.
Ettu: Analyzing query intents in corporate databases. In Proceedings of the 25th international conference companion on
world wide web. 463–466.

[129] Anukool Lakhina, Mark Crovella, and Christophe Diot. 2004. Diagnosing network-wide traffic anomalies. ACM
SIGCOMM computer communication review 34, 4 (2004), 219–230.

[130] Anukool Lakhina, Mark Crovella, and Christophe Diot. 2005. Mining anomalies using traffic feature distributions.
ACM SIGCOMM computer communication review 35, 4 (2005), 217–228.

AIOps Solutions for Incident Management: Technical Guidelines and A Comprehensive Literature Review 73

[131] Ahmed Lamkanfi, Serge Demeyer, Quinten David Soetens, and Tim Verdonck. 2011. Comparing mining algorithms for
predicting the severity of a reported bug. In 2011 15th European Conference on Software Maintenance and Reengineering.
IEEE, 249–258.

[132] Sun-Ro Lee, Min-Jae Heo, Chan-Gun Lee, Milhan Kim, and Gaeul Jeong. 2017. Applying deep learning based automatic
bug triager to industrial projects. In ESEC/FSE 2017. ACM, 926–931.

[133] Sangho Lee, Changhee Jung, and Santosh Pande. 2014. Detecting memory leaks through introspective dynamic
behavior modelling using machine learning. In Proceedings of the 36th International Conference on Software Engineering.
814–824.

[134] Wan-Jui Lee. 2017. Anomaly detection and severity prediction of air leakage in train braking pipes. International
Journal of Prognostics and Health Management 8, 3 (2017).

[135] Johannes Lerch and Mira Mezini. 2013. Finding Duplicates of Your Yet Unwritten Bug Report. In 17th European
Conference on Software Maintenance and Reengineering, CSMR. 69–78.

[136] Anna Levin, Shelly Garion, Elliot K Kolodner, Dean H Lorenz, Katherine Barabash, Mike Kugler, and Niall McShane.
2019. AIOps for a cloud object storage service. In 2019 IEEE International Congress on Big Data (BigDataCongress).
IEEE, 165–169.

[137] Jian Li, Pinjia He, Jieming Zhu, and Michael R Lyu. 2017. Software defect prediction via convolutional neural network.
In 2017 IEEE international conference on software quality, reliability and security (QRS). IEEE, 318–328.

[138] Jing Li, Rebecca J Stones, Gang Wang, Zhongwei Li, Xiaoguang Liu, and Kang Xiao. 2016. Being accurate is not
enough: New metrics for disk failure prediction. In 2016 IEEE 35th Symposium on Reliable Distributed Systems (SRDS).
IEEE, 71–80.

[139] Mingjie Li, Zeyan Li, Kanglin Yin, Xiaohui Nie, Wenchi Zhang, Kaixin Sui, and Dan Pei. 2022. Causal Inference-Based
Root Cause Analysis for Online Service Systems with Intervention Recognition. arXiv preprint arXiv:2206.05871
(2022).

[140] Tao Li, Chunqiu Zeng, Yexi Jiang, Wubai Zhou, Liang Tang, Zheng Liu, and Yue Huang. 2017. Data-driven techniques
in computing system management. ACM Computing Surveys (CSUR) 50, 3 (2017), 1–43.

[141] Xia Li, Wei Li, Yuqun Zhang, and Lingming Zhang. 2019. Deepfl: Integrating multiple fault diagnosis dimensions
for deep fault localization. In Proceedings of the 28th ACM SIGSOFT international symposium on software testing and
analysis. 169–180.

[142] Xiang Li, Wei Zhang, Hui Ma, Zhong Luo, and Xu Li. 2020. Data alignments in machinery remaining useful life
prediction using deep adversarial neural networks. Knowledge-Based Systems 197 (2020), 105843.

[143] Yangguang Li, Zhen Ming Jiang, Heng Li, Ahmed E Hassan, Cheng He, Ruirui Huang, Zhengda Zeng, Mian Wang,
and Pinan Chen. 2020. Predicting node failures in an ultra-large-scale cloud computing platform: an aiops solution.
ACM Transactions on Software Engineering and Methodology (TOSEM) 29, 2 (2020), 1–24.

[144] Yi Li, Shaohua Wang, and Tien Nguyen. 2021. Fault localization with code coverage representation learning. In 2021
IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE, 661–673.

[145] Ze Li and Yingnong Dang. 2019. Aiops: Challenges and experiences in azure. USENIX Association, Santa Clara (2019),
51–53.

[146] Zhiguo Li and Qing He. 2015. Prediction of railcar remaining useful life by multiple data source fusion. IEEE
Transactions on Intelligent Transportation Systems 16, 4 (2015), 2226–2235.

[147] Zeyan Li, Chengyang Luo, Yiwei Zhao, Yongqian Sun, Kaixin Sui, Xiping Wang, Dapeng Liu, Xing Jin, Qi Wang,
and Dan Pei. 2019. Generic and robust localization of multi-dimensional root causes. In 2019 IEEE 30th International
Symposium on Software Reliability Engineering (ISSRE). IEEE, 47–57.

[148] Zeyan Li, Nengwen Zhao, Mingjie Li, Xianglin Lu, Lixin Wang, Dongdong Chang, Xiaohui Nie, Li Cao, Wenchi Zhang,
Kaixin Sui, et al. 2022. Actionable and interpretable fault localization for recurring failures in online service systems.
In Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 996–1008.

[149] Zhihan Li, Youjian Zhao, Jiaqi Han, Ya Su, Rui Jiao, Xidao Wen, and Dan Pei. 2021. Multivariate time series anomaly
detection and interpretation using hierarchical inter-metric and temporal embedding. In Proceedings of the 27th ACM
SIGKDD conference on knowledge discovery & data mining. 3220–3230.

[150] Zhihan Li, Youjian Zhao, Rong Liu, and Dan Pei. 2018. Robust and rapid clustering of kpis for large-scale anomaly
detection. In 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS). IEEE, 1–10.

[151] Meng-Hui Lim, Jian-Guang Lou, Hongyu Zhang, Qiang Fu, Andrew Beng Jin Teoh, Qingwei Lin, Rui Ding, and
Dongmei Zhang. 2014. Identifying recurrent and unknown performance issues. In 2014 IEEE International Conference
on Data Mining. IEEE, 320–329.

[152] Fan Lin, Matt Beadon, Harish Dattatraya Dixit, Gautham Vunnam, Amol Desai, and Sriram Sankar. 2018. Hardware
remediation at scale. In 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks
Workshops (DSN-W). IEEE, 14–17.

74 Remil et al.

[153] Qingwei Lin, Ken Hsieh, Yingnong Dang, Hongyu Zhang, Kaixin Sui, Yong Xu, Jian-Guang Lou, Chenggang Li,
Youjiang Wu, Randolph Yao, et al. 2018. Predicting node failure in cloud service systems. In Proceedings of the 2018
26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 480–490.

[154] Qingwei Lin, Jian-Guang Lou, Hongyu Zhang, and Dongmei Zhang. 2016. iDice: problem identification for emerging
issues. In Proceedings of the 38th International Conference on Software Engineering. 214–224.

[155] Qingwei Lin, Hongyu Zhang, Jian-Guang Lou, Yu Zhang, and Xuewei Chen. 2016. Log clustering based problem
identification for online service systems. In Proceedings of the 38th International Conference on Software Engineering
Companion. 102–111.

[156] Ying Lin, Zhengzhang Chen, Cheng Cao, Lu-An Tang, Kai Zhang, Wei Cheng, and Zhichun Li. 2018. Collaborative
alert ranking for anomaly detection. In Proceedings of the 27th ACM International Conference on Information and
Knowledge Management. 1987–1995.

[157] Chao Liu, Long Fei, Xifeng Yan, Jiawei Han, and Samuel P Midkiff. 2006. Statistical debugging: A hypothesis
testing-based approach. IEEE Transactions on software engineering 32, 10 (2006), 831–848.

[158] Dapeng Liu, Youjian Zhao, Haowen Xu, Yongqian Sun, Dan Pei, Jiao Luo, Xiaowei Jing, andMei Feng. 2015. Opprentice:
Towards practical and automatic anomaly detection through machine learning. In Proceedings of the 2015 internet
measurement conference. 211–224.

[159] Haopeng Liu, Shan Lu, Madan Musuvathi, and Suman Nath. 2019. What bugs cause production cloud incidents?. In
Proceedings of the Workshop on Hot Topics in Operating Systems. 155–162.

[160] Jian-Guang Lou, Qiang Fu, Shengqi Yang, Ye Xu, and Jiang Li. 2010. Mining Invariants from Console Logs for System
Problem Detection.. In USENIX annual technical conference. 1–14.

[161] Jian-Guang Lou, Qingwei Lin, Rui Ding, Qiang Fu, Dongmei Zhang, and Tao Xie. 2013. Software analytics for incident
management of online services: An experience report. In 2013 28th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 475–485.

[162] Sidi Lu, Bing Luo, Tirthak Patel, Yongtao Yao, Devesh Tiwari, and Weisong Shi. 2020. Making disk failure predictions
smarter!. In FAST. 151–167.

[163] Chen Luo, Jian-Guang Lou, Qingwei Lin, Qiang Fu, Rui Ding, Dongmei Zhang, and Zhe Wang. 2014. Correlating
events with time series for incident diagnosis. In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining. 1583–1592.

[164] Yingzhe Lyu, Heng Li, Mohammed Sayagh, Zhen Ming Jiang, and Ahmed E Hassan. 2021. An empirical study of the
impact of data splitting decisions on the performance of AIOps solutions. ACM Transactions on Software Engineering
and Methodology (TOSEM) 30, 4 (2021), 1–38.

[165] Yingzhe Lyu, Gopi Krishnan Rajbahadur, Dayi Lin, Boyuan Chen, and Zhen Ming Jiang. 2021. Towards a consistent
interpretation of aiops models. ACM Transactions on Software Engineering and Methodology (TOSEM) 31, 1 (2021),
1–38.

[166] Meng Ma and Zhu Mao. 2020. Deep-convolution-based LSTM network for remaining useful life prediction. IEEE
Transactions on Industrial Informatics 17, 3 (2020), 1658–1667.

[167] Minghua Ma, Zheng Yin, Shenglin Zhang, Sheng Wang, Christopher Zheng, Xinhao Jiang, Hanwen Hu, Cheng Luo,
Yilin Li, Nengjun Qiu, et al. 2020. Diagnosing root causes of intermittent slow queries in cloud databases. Proceedings
of the VLDB Endowment 13, 8 (2020), 1176–1189.

[168] Amirabbas Majd, Mojtaba Vahidi-Asl, Alireza Khalilian, Ahmad Baraani-Dastjerdi, and Bahman Zamani. 2019.
Code4Bench: A multidimensional benchmark of Codeforces data for different program analysis techniques. Journal
of Computer Languages 53 (2019), 38–52.

[169] Amirabbas Majd, Mojtaba Vahidi-Asl, Alireza Khalilian, Pooria Poorsarvi-Tehrani, and Hassan Haghighi. 2020.
SLDeep: Statement-level software defect prediction using deep-learning model on static code features. Expert Systems
with Applications 147 (2020), 113156.

[170] Adetokunbo Makanju, A Nur Zincir-Heywood, and Evangelos E Milios. 2011. A lightweight algorithm for message
type extraction in system application logs. IEEE Transactions on Knowledge and Data Engineering 24, 11 (2011),
1921–1936.

[171] Evan K Maxwell, Godmar Back, and Naren Ramakrishnan. 2010. Diagnosing memory leaks using graph mining on
heap dumps. In Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining.
115–124.

[172] Thomas J McCabe. 1976. A complexity measure. IEEE Transactions on software Engineering 4 (1976), 308–320.
[173] Weibin Meng, Ying Liu, Yichen Zhu, Shenglin Zhang, Dan Pei, Yuqing Liu, Yihao Chen, Ruizhi Zhang, Shimin Tao,

Pei Sun, et al. 2019. LogAnomaly: Unsupervised detection of sequential and quantitative anomalies in unstructured
logs.. In IJCAI, Vol. 19. 4739–4745.

[174] Tim Menzies. 2019. The five laws of SE for AI. IEEE Software 37, 1 (2019), 81–85.

AIOps Solutions for Incident Management: Technical Guidelines and A Comprehensive Literature Review 75

[175] Tim Menzies, Jeremy Greenwald, and Art Frank. 2006. Data mining static code attributes to learn defect predictors.
IEEE transactions on software engineering 33, 1 (2006), 2–13.

[176] Montassar Ben Messaoud, AsmaMiladi, Ilyes Jenhani, MohamedWiemMkaouer, and Lobna Ghadhab. 2022. Duplicate
bug report detection using an attention-based neural language model. IEEE Transactions on Reliability (2022).

[177] Salma Messaoudi, Annibale Panichella, Domenico Bianculli, Lionel Briand, and Raimondas Sasnauskas. 2018. A
search-based approach for accurate identification of log message formats. In Proceedings of the 26th Conference on
Program Comprehension. 167–177.

[178] Justin Meza, Qiang Wu, Sanjev Kumar, and Onur Mutlu. 2015. A large-scale study of flash memory failures in the
field. ACM SIGMETRICS Performance Evaluation Review 43, 1 (2015), 177–190.

[179] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation of word representations in
vector space. arXiv preprint arXiv:1301.3781 (2013).

[180] Seyed Ali Mirheidari, Sajjad Arshad, and Rasool Jalili. 2013. Alert correlation algorithms: A survey and taxonomy.
In Cyberspace Safety and Security: 5th International Symposium, CSS 2013, Zhangjiajie, China, November 13-15, 2013,
Proceedings 5. Springer, 183–197.

[181] Natwar Modani, Rajeev Gupta, Guy M. Lohman, Tanveer Fathima Syeda-Mahmood, and Laurent Mignet. 2007.
Automatically Identifying Known Software Problems. In Proceedings of the 23rd International Conference on Data
Engineering Workshops. IEEE Computer Society, 433–441.

[182] Christoph Molnar. 2019. Interpretable Machine Learning.
[183] Akira Moroo, Akiko Aizawa, and Takayuki Hamamoto. 2017. Reranking-based Crash Report Deduplication. In The

29th International Conference on Software Engineering and Knowledge Engineering, Xudong He (Ed.). KSI Research Inc.
and Knowledge Systems Institute Graduate School, 507–510.

[184] Raimund Moser, Witold Pedrycz, and Giancarlo Succi. 2008. A comparative analysis of the efficiency of change
metrics and static code attributes for defect prediction. In Proceedings of the 30th international conference on Software
engineering. 181–190.

[185] Mukosi Abraham Mukwevho and Turgay Celik. 2018. Toward a smart cloud: A review of fault-tolerance methods in
cloud systems. IEEE Transactions on Services Computing 14, 2 (2018), 589–605.

[186] G Murphy and Davor Cubranic. 2004. Automatic bug triage using text categorization. In Proceedings of the Sixteenth
International Conference on Software Engineering & Knowledge Engineering. Citeseer, 1–6.

[187] Nachiappan Nagappan, Thomas Ball, and Andreas Zeller. 2006. Mining metrics to predict component failures. In
Proceedings of the 28th international conference on Software engineering. 452–461.

[188] Jaechang Nam, Sinno Jialin Pan, and Sunghun Kim. 2013. Transfer defect learning. In 2013 35th international conference
on software engineering (ICSE). IEEE, 382–391.

[189] Animesh Nandi, Atri Mandal, Shubham Atreja, Gargi B Dasgupta, and Subhrajit Bhattacharya. 2016. Anomaly
detection using program control flow graph mining from execution logs. In Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining. 215–224.

[190] Roberto Natella, Domenico Cotroneo, Joao A Duraes, and Henrique S Madeira. 2012. On fault representativeness of
software fault injection. IEEE Transactions on Software Engineering 39, 1 (2012), 80–96.

[191] Sasho Nedelkoski, Jasmin Bogatinovski, Ajay Kumar Mandapati, Soeren Becker, Jorge Cardoso, and Odej Kao. 2020.
Multi-source distributed system data for ai-powered analytics. In Service-Oriented and Cloud Computing: 8th IFIP
WG 2.14 European Conference, ESOCC 2020, Heraklion, Crete, Greece, September 28–30, 2020, Proceedings 8. Springer,
161–176.

[192] Saul B Needleman and Christian D Wunsch. 1970. A general method applicable to the search for similarities in the
amino acid sequence of two proteins. Journal of molecular biology 48, 3 (1970), 443–453.

[193] S Nessa, M Abedin, W Eric Wong, L Khan, and Y Qi. 2009. Fault localization using N-gram analysis. In Proceedings of
the 3rd International Conference on Wireless Algorithms, Systems, and Applications. 548–559.

[194] Hiep Nguyen, Zhiming Shen, Yongmin Tan, and Xiaohui Gu. 2013. FChain: Toward black-box online fault localization
for cloud systems. In 2013 IEEE 33rd International Conference on Distributed Computing Systems. IEEE, 21–30.

[195] Paolo Notaro, Jorge Cardoso, and Michael Gerndt. 2020. A Systematic Mapping Study in AIOps. arXiv preprint
arXiv:2012.09108 (2020).

[196] Paolo Notaro, Jorge Cardoso, and Michael Gerndt. 2021. A survey of AIOps methods for failure management. ACM
Transactions on Intelligent Systems and Technology (TIST) 12, 6 (2021), 1–45.

[197] Celestino Ordóñez, Fernando Sánchez Lasheras, Javier Roca-Pardiñas, and Francisco Javier de Cos Juez. 2019. A
hybrid ARIMA–SVM model for the study of the remaining useful life of aircraft engines. J. Comput. Appl. Math. 346
(2019), 184–191.

[198] Thomas J Ostrand, Elaine J Weyuker, and Robert M Bell. 2005. Predicting the location and number of faults in large
software systems. IEEE Transactions on Software Engineering 31, 4 (2005), 340–355.

76 Remil et al.

[199] Sinno Jialin Pan and Qiang Yang. 2010. A survey on transfer learning. IEEE Transactions on knowledge and data
engineering 22, 10 (2010), 1345–1359.

[200] Cláudia Pascoal, M Rosario De Oliveira, Rui Valadas, Peter Filzmoser, Paulo Salvador, and António Pacheco. 2012.
Robust feature selection and robust PCA for internet traffic anomaly detection. In 2012 Proceedings Ieee Infocom. IEEE,
1755–1763.

[201] Eduardo HM Pena, Luiz F Carvalho, Sylvio Barbon Jr, Joel JPC Rodrigues, and Mario Lemes Proença Jr. 2017. Anomaly
detection using the correlational paraconsistent machine with digital signatures of network segment. Information
Sciences 420 (2017), 313–328.

[202] Phuong Pham, Vivek Jain, Lukas Dauterman, Justin Ormont, and Navendu Jain. 2020. DeepTriage: Automated
Transfer Assistance for Incidents in Cloud Services. In ACM SIGKDD. 3281–3289.

[203] Natthakul Pingclasai, Hideaki Hata, and Ken-ichi Matsumoto. 2013. Classifying bug reports to bugs and other requests
using topic modeling. In 2013 20Th asia-pacific software engineering conference (APSEC), Vol. 2. IEEE, 13–18.

[204] Teerat Pitakrat, Dušan Okanović, André van Hoorn, and Lars Grunske. 2018. Hora: Architecture-aware online failure
prediction. Journal of Systems and Software 137 (2018), 669–685.

[205] Pankaj Prasad and Charley Rich. 2018. Market Guide for AIOps Platforms. Retrieved March 12 (2018), 2020.
[206] Xianping Qu and Jingjing Ha. 2017. Next generation of devops: Aiops in practice@ baidu. SREcon17 (2017).
[207] Baishakhi Ray, Vincent Hellendoorn, Saheel Godhane, Zhaopeng Tu, Alberto Bacchelli, and Premkumar Devanbu.

2016. On the" naturalness" of buggy code. In Proceedings of the 38th International Conference on Software Engineering.
428–439.

[208] Lena Reiter and FH Wedel. 2021. AIOps–A Systematic Literature Review. (2021).
[209] Youcef Remil, Anes Bendimerad, Mathieu Chambard, Romain Mathonat, Marc Plantevit, and Mehdi Kaytoue. 2023.

Subjectively Interesting Subgroups with Hierarchical Targets: Application to Java Memory Analysis. In International
Conference on Data Mining Workshops, ICDMW. IEEE.

[210] Youcef Remil, Anes Bendimerad, Romain Mathonat, Philippe Chaleat, and Mehdi Kaytoue. 2021. "What makes
my queries slow?": Subgroup Discovery for SQL Workload Analysis. In 36th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2021, Melbourne, Australia, November 15-19, 2021. IEEE, 642–652.

[211] Youcef Remil, Anes Bendimerad, Romain Mathonat, Chedy Raissi, and Mehdi Kaytoue. 2024. DeepLSH: Deep
Locality-Sensitive Hash Learning for Fast and Efficient Near-Duplicate Crash Report Detection. In 46th International
Conference on Software Engineering, ICSE.

[212] Youcef Remil, Anes Bendimerad, Marc Plantevit, Céline Robardet, and Mehdi Kaytoue. 2021. Interpretable Summaries
of Black Box Incident Triaging with Subgroup Discovery. In 8th IEEE International Conference on Data Science and
Advanced Analytics, DSAA 2021, Porto, Portugal, October 6-9, 2021. IEEE, 1–10.

[213] Hansheng Ren, Bixiong Xu, Yujing Wang, Chao Yi, Congrui Huang, Xiaoyu Kou, Tony Xing, Mao Yang, Jie Tong,
and Qi Zhang. 2019. Time-series anomaly detection service at microsoft. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 3009–3017.

[214] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Brij B. Gupta, Xiaojiang Chen, and Xin Wang.
2022. A Survey of Deep Active Learning. ACM Comput. Surv. 54, 9 (2022), 180:1–180:40.

[215] Manos Renieres and Steven P Reiss. 2003. Fault localization with nearest neighbor queries. In 18th IEEE International
Conference on Automated Software Engineering, 2003. Proceedings. IEEE, 30–39.

[216] Laxmi Rijal, Ricardo Colomo-Palacios, and Mary Sánchez-Gordón. 2022. Aiops: A multivocal literature review.
Artificial Intelligence for Cloud and Edge Computing (2022), 31–50.

[217] Haakon Ringberg, Augustin Soule, Jennifer Rexford, and Christophe Diot. 2007. Sensitivity of PCA for traffic anomaly
detection. In Proceedings of the 2007 ACM SIGMETRICS international conference on Measurement and modeling of
computer systems. 109–120.

[218] Per Runeson, Magnus Alexandersson, and Oskar Nyholm. 2007. Detection of duplicate defect reports using natural
language processing. In 29th International Conference on Software Engineering (ICSE’07). IEEE, 499–510.

[219] Korosh Koochekian Sabor, Abdelwahab Hamou-Lhadj, and Alf Larsson. 2017. DURFEX: A Feature Extraction
Technique for Efficient Detection of Duplicate Bug Reports. In 2017 IEEE International Conference on Software Quality,
Reliability and Security, QRS 2017. 240–250.

[220] Felix Salfner, Maren Lenk, and Miroslaw Malek. 2010. A survey of online failure prediction methods. ACM Computing
Surveys (CSUR) 42, 3 (2010), 1–42.

[221] Areeg Samir and Claus Pahl. 2019. A controller architecture for anomaly detection, root cause analysis and self-
adaptation for cluster architectures. In Intl Conf Adaptive and Self-Adaptive Systems and Applications.

[222] Mark Sanderson. 2010. Test Collection Based Evaluation of Information Retrieval Systems. Found. Trends Inf. Retr. 4,
4 (2010), 247–375.

[223] Huasong Shan, Yuan Chen, Haifeng Liu, Yunpeng Zhang, Xiao Xiao, Xiaofeng He, Min Li, and Wei Ding. 2019.
e-diagnosis: Unsupervised and real-time diagnosis of small-window long-tail latency in large-scale microservice

AIOps Solutions for Incident Management: Technical Guidelines and A Comprehensive Literature Review 77

platforms. In The World Wide Web Conference. 3215–3222.
[224] Qihong Shao, Yi Chen, Shu Tao, Xifeng Yan, and Nikos Anerousis. 2008. Efficient ticket routing by resolution sequence

mining. In Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining.
605–613.

[225] Bikash Sharma, Praveen Jayachandran, Akshat Verma, and Chita R Das. 2013. CloudPD: Problem determination and
diagnosis in shared dynamic clouds. In 2013 43rd Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN). IEEE, 1–12.

[226] Shijun Shen, Jiuling Zhang, Daochao Huang, and Jun Xiao. 2020. Evolving from Traditional Systems to AIOps: Design,
Implementation and Measurements. In 2020 IEEE International Conference on Advances in Electrical Engineering and
Computer Applications (AEECA). IEEE, 276–280.

[227] Akbar Siami Namin, James H Andrews, and Duncan J Murdoch. 2008. Sufficient mutation operators for measuring
test effectiveness. In Proceedings of the 30th international conference on Software engineering. 351–360.

[228] Alban Siffer, Pierre-Alain Fouque, Alexandre Termier, and Christine Largouet. 2017. Anomaly detection in streams
with extreme value theory. In Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery
and data mining. 1067–1075.

[229] Jeongju Sohn and Shin Yoo. 2017. Fluccs: Using code and change metrics to improve fault localization. In Proceedings
of the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis. 273–283.

[230] Marc Solé, Victor Muntés-Mulero, Annie Ibrahim Rana, and Giovani Estrada. 2017. Survey on models and techniques
for root-cause analysis. arXiv preprint arXiv:1701.08546 (2017).

[231] Vladimir Sor and Satish Narayana Srirama. 2014. Memory leak detection in Java: Taxonomy and classification of
approaches. J. Syst. Softw. 96 (2014), 139–151.

[232] Charles Spearman. 1961. The proof and measurement of association between two things. (1961).
[233] Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei. 2019. Robust anomaly detection for multivariate

time series through stochastic recurrent neural network. In Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining. 2828–2837.

[234] Ya Su, Youjian Zhao, Wentao Xia, Rong Liu, Jiahao Bu, Jing Zhu, Yuanpu Cao, Haibin Li, Chenhao Niu, Yiyin Zhang,
et al. 2019. CoFlux: robustly correlating KPIs by fluctuations for service troubleshooting. In Proceedings of the
International Symposium on Quality of Service. 1–10.

[235] Chapram Sudhakar, Ishan Shah, and T Ramesh. 2014. Software rejuvenation in cloud systems using neural networks.
In 2014 International Conference on Parallel, Distributed and Grid Computing. IEEE, 230–233.

[236] Chengnian Sun, David Lo, Siau-Cheng Khoo, and Jing Jiang. 2011. Towards more accurate retrieval of duplicate
bug reports. In 2011 26th IEEE/ACM International Conference on Automated Software Engineering (ASE 2011). IEEE,
253–262.

[237] Xiaoyi Sun, Krishnendu Chakrabarty, Ruirui Huang, Yiquan Chen, Bing Zhao, Hai Cao, Yinhe Han, Xiaoyao Liang,
and Li Jiang. 2019. System-level hardware failure prediction using deep learning. In Proceedings of the 56th Annual
Design Automation Conference 2019. 1–6.

[238] Yongqian Sun, Youjian Zhao, Ya Su, Dapeng Liu, Xiaohui Nie, Yuan Meng, Shiwen Cheng, Dan Pei, Shenglin Zhang,
Xianping Qu, et al. 2018. Hotspot: Anomaly localization for additive kpis with multi-dimensional attributes. IEEE
Access 6 (2018), 10909–10923.

[239] Ashish Sureka and Pankaj Jalote. 2010. Detecting duplicate bug report using character n-gram-based features. In
2010 Asia Pacific software engineering conference. IEEE, 366–374.

[240] Zhiyuan Tan, Aruna Jamdagni, Xiangjian He, Priyadarsi Nanda, and Ren Ping Liu. 2013. A system for denial-of-service
attack detection based on multivariate correlation analysis. IEEE transactions on parallel and distributed systems 25, 2
(2013), 447–456.

[241] Liang Tang, Tao Li, and Chang-Shing Perng. 2011. LogSig: Generating system events from raw textual logs. In
Proceedings of the 20th ACM international conference on Information and knowledge management. 785–794.

[242] Yuan Tian, David Lo, and Chengnian Sun. 2012. Information retrieval based nearest neighbor classification for
fine-grained bug severity prediction. In 2012 19th Working Conference on Reverse Engineering. IEEE, 215–224.

[243] Yuan Tian, David Lo, and Chengnian Sun. 2013. Drone: Predicting priority of reported bugs by multi-factor analysis.
In 2013 IEEE International Conference on Software Maintenance. IEEE, 200–209.

[244] Md Nasir Uddin, Bixin Li, Zafar Ali, Pavlos Kefalas, Inayat Khan, and Islam Zada. 2022. Software defect prediction
employing BiLSTM and BERT-based semantic feature. Soft Computing 26, 16 (2022), 7877–7891.

[245] Risto Vaarandi. 2003. A data clustering algorithm for mining patterns from event logs. In Proceedings of the 3rd IEEE
Workshop on IP Operations & Management (IPOM 2003)(IEEE Cat. No. 03EX764). Ieee, 119–126.

[246] Kalyanaraman Vaidyanathan and Kishor S Trivedi. 1999. A measurement-based model for estimation of resource
exhaustion in operational software systems. In Proceedings 10th International Symposium on Software Reliability
Engineering (Cat. No. PR00443). IEEE, 84–93.

78 Remil et al.

[247] Owen Vallis, Jordan Hochenbaum, and Arun Kejariwal. 2014. A Novel Technique for {Long-Term} Anomaly Detection
in the Cloud. In 6th USENIX workshop on hot topics in cloud computing (HotCloud 14).

[248] Roman Vasiliev, Dmitrij V. Koznov, George A. Chernishev, Aleksandr Khvorov, Dmitry V. Luciv, and Nikita Povarov.
2020. TraceSim: a method for calculating stack trace similarity. In Proceedings of the 4th ACM SIGSOFT International
Workshop on Machine Learning Techniques for Software Quality Evaluation, FSE 2020. 25–30.

[249] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. 2016. Matching networks for one shot
learning. Advances in neural information processing systems 29 (2016).

[250] Kashi Venkatesh Vishwanath and Nachiappan Nagappan. 2010. Characterizing cloud computing hardware reliability.
In Proceedings of the 1st ACM symposium on Cloud computing. 193–204.

[251] Jing Wang, Daniel Rossell, Christos G Cassandras, and Ioannis Ch Paschalidis. 2013. Network anomaly detection: A
survey and comparative analysis of stochastic and deterministic methods. In 52nd IEEE Conference on Decision and
Control. IEEE, 182–187.

[252] Qing Wang, Wubai Zhou, Chunqiu Zeng, Tao Li, Larisa Shwartz, and Genady Ya Grabarnik. 2017. Constructing the
knowledge base for cognitive it service management. In 2017 IEEE International Conference on Services Computing
(SCC). IEEE, 410–417.

[253] Song Wang, Taiyue Liu, and Lin Tan. 2016. Automatically learning semantic features for defect prediction. In
Proceedings of the 38th International Conference on Software Engineering. 297–308.

[254] Song Wang, Wen Zhang, and Qing Wang. 2014. FixerCache: Unsupervised caching active developers for diverse bug
triage. In Proceedings of the 8th ACM/IEEE international symposium on empirical software engineering and measurement.
1–10.

[255] Wei Wang, Ming Zhu, Jinlin Wang, Xuewen Zeng, and Zhongzhen Yang. 2017. End-to-end encrypted traffic
classification with one-dimensional convolution neural networks. In 2017 IEEE international conference on intelligence
and security informatics (ISI). IEEE, 43–48.

[256] Xuanrun Wang, Kanglin Yin, Qianyu Ouyang, Xidao Wen, Shenglin Zhang, Wenchi Zhang, Li Cao, Jiuxue Han,
Xing Jin, and Dan Pei. 2022. Identifying Erroneous Software Changes through Self-Supervised Contrastive Learning
on Time Series Data. In 2022 IEEE 33rd International Symposium on Software Reliability Engineering (ISSRE). IEEE,
366–377.

[257] Yu Wang, Qiang Miao, Eden WM Ma, Kwok-Leung Tsui, and Michael G Pecht. 2013. Online anomaly detection for
hard disk drives based on mahalanobis distance. IEEE Transactions on Reliability 62, 1 (2013), 136–145.

[258] Frank Wilcoxon. 1992. Individual comparisons by ranking methods. Springer.
[259] W Eric Wong, Vidroha Debroy, Ruizhi Gao, and Yihao Li. 2013. The DStar method for effective software fault

localization. IEEE Transactions on Reliability 63, 1 (2013), 290–308.
[260] W Eric Wong, Vidroha Debroy, and Dianxiang Xu. 2011. Towards better fault localization: A crosstab-based statistical

approach. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 42, 3 (2011), 378–396.
[261] W Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A survey on software fault localization.

IEEE Transactions on Software Engineering 42, 8 (2016), 707–740.
[262] Stefan Wrobel. 1997. An Algorithm for Multi-relational Discovery of Subgroups. In Principles of Data Mining and

Knowledge Discovery, First European Symposium, PKDD ’97, Trondheim, Norway, June 24-27, 1997, Proceedings, Vol. 1263.
Springer, 78–87.

[263] Di Wu, Yiping Ke, Jeffrey Xu Yu, Philip S Yu, and Lei Chen. 2010. Detecting leaders from correlated time series. In
Database Systems for Advanced Applications: 15th International Conference, DASFAA 2010, Tsukuba, Japan, April 1-4,
2010, Proceedings, Part I 15. Springer, 352–367.

[264] Rongxin Wu, Hongyu Zhang, Shing-Chi Cheung, and Sunghun Kim. 2014. CrashLocator: locating crashing faults
based on crash stacks. In International Symposium on Software Testing and Analysis, ISSTA. 204–214.

[265] Yuting Wu, Mei Yuan, Shaopeng Dong, Li Lin, and Yingqi Liu. 2018. Remaining useful life estimation of engineered
systems using vanilla LSTM neural networks. Neurocomputing 275 (2018), 167–179.

[266] Sheng-Qu Xi, Yuan Yao, Xu-Sheng Xiao, Feng Xu, and Jian Lv. 2019. Bug triaging based on tossing sequence modeling.
Journal of Computer Science and Technology 34 (2019), 942–956.

[267] Bin Xia, Yuxuan Bai, Junjie Yin, Yun Li, and Jian Xu. 2021. Loggan: a log-level generative adversarial network for
anomaly detection using permutation event modeling. Information Systems Frontiers 23 (2021), 285–298.

[268] Xin Xia, David Lo, Ying Ding, Jafar M Al-Kofahi, Tien N Nguyen, and Xinyu Wang. 2016. Improving automated bug
triaging with specialized topic model. IEEE Transactions on Software Engineering 43, 3 (2016), 272–297.

[269] Jiang Xiao, Zhuang Xiong, Song Wu, Yusheng Yi, Hai Jin, and Kan Hu. 2018. Disk failure prediction in data centers
via online learning. In Proceedings of the 47th International Conference on Parallel Processing. 1–10.

[270] Miao Xie, Jiankun Hu, Song Guo, and Albert Y Zomaya. 2016. Distributed segment-based anomaly detection with
Kullback–Leibler divergence in wireless sensor networks. IEEE Transactions on Information Forensics and Security 12,
1 (2016), 101–110.

AIOps Solutions for Incident Management: Technical Guidelines and A Comprehensive Literature Review 79

[271] Qi Xie, Zhiyuan Wen, Jieming Zhu, Cuiyun Gao, and Zibin Zheng. 2018. Detecting duplicate bug reports with
convolutional neural networks. In 2018 25th Asia-Pacific Software Engineering Conference (APSEC). IEEE, 416–425.

[272] Chang Xu, Gang Wang, Xiaoguang Liu, Dongdong Guo, and Tie-Yan Liu. 2016. Health status assessment and failure
prediction for hard drives with recurrent neural networks. IEEE Trans. Comput. 65, 11 (2016), 3502–3508.

[273] Guoqing Xu and Atanas Rountev. 2013. Precise memory leak detection for java software using container profiling.
ACM Trans. Softw. Eng. Methodol. 22, 3 (2013), 17:1–17:28.

[274] Haowen Xu, Wenxiao Chen, Nengwen Zhao, Zeyan Li, Jiahao Bu, Zhihan Li, Ying Liu, Youjian Zhao, Dan Pei, Yang
Feng, et al. 2018. Unsupervised anomaly detection via variational auto-encoder for seasonal kpis in web applications.
In Proceedings of the 2018 world wide web conference. 187–196.

[275] Jiaxi Xu, Fei Wang, and Jun Ai. 2020. Defect prediction with semantics and context features of codes based on graph
representation learning. IEEE Transactions on Reliability 70, 2 (2020), 613–625.

[276] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I Jordan. 2009. Detecting large-scale system
problems by mining console logs. In Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles.
117–132.

[277] Jifeng Xuan, He Jiang, Yan Hu, Zhilei Ren, Weiqin Zou, Zhongxuan Luo, and Xindong Wu. 2014. Towards effective
bug triage with software data reduction techniques. IEEE transactions on knowledge and data engineering 27, 1 (2014),
264–280.

[278] Jifeng Xuan, He Jiang, Zhilei Ren, Jun Yan, and Zhongxuan Luo. 2010. Automatic Bug Triage using Semi-Supervised
Text Classification.. In SEKE. 209–214.

[279] Jifeng Xuan and Martin Monperrus. 2014. Learning to combine multiple ranking metrics for fault localization. In
2014 IEEE International Conference on Software Maintenance and Evolution. IEEE, 191–200.

[280] Geunseok Yang, Tao Zhang, and Byungjeong Lee. 2014. Towards semi-automatic bug triage and severity prediction
based on topic model and multi-feature of bug reports. In 2014 IEEE 38th Annual Computer Software and Applications
Conference. IEEE, 97–106.

[281] Minji Yoon, Bryan Hooi, Kijung Shin, and Christos Faloutsos. 2019. Fast and accurate anomaly detection in dynamic
graphs with a two-pronged approach. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 647–657.

[282] Zunwen You, Zengchang Qin, and Zheng Zheng. 2012. Statistical fault localization using execution sequence. In 2012
International Conference on Machine Learning and Cybernetics, Vol. 3. IEEE, 899–905.

[283] Wenchao Yu, Wei Cheng, Charu C Aggarwal, Kai Zhang, Haifeng Chen, and Wei Wang. 2018. Netwalk: A flexible
deep embedding approach for anomaly detection in dynamic networks. In Proceedings of the 24th ACM SIGKDD
international conference on knowledge discovery & data mining. 2672–2681.

[284] Chunqiu Zeng, Wubai Zhou, Tao Li, Larisa Shwartz, and Genady Ya Grabarnik. 2017. Knowledge guided hierarchical
multi-label classification over ticket data. IEEE Transactions on Network and Service Management 14, 2 (2017), 246–260.

[285] Chuxu Zhang, Dongjin Song, Yuncong Chen, Xinyang Feng, Cristian Lumezanu, Wei Cheng, Jingchao Ni, Bo Zong,
Haifeng Chen, and Nitesh V Chawla. 2019. A deep neural network for unsupervised anomaly detection and diagnosis
in multivariate time series data. In Proceedings of the AAAI conference on artificial intelligence, Vol. 33. 1409–1416.

[286] Jie Zhang, Xiaoyin Wang, Dan Hao, Bing Xie, Lu Zhang, and Hong Mei. 2015. A survey on bug-report analysis. Sci.
China Inf. Sci. 58, 2 (2015), 1–24.

[287] Ke Zhang, Jianwu Xu, Martin Renqiang Min, Guofei Jiang, Konstantinos Pelechrinis, and Hui Zhang. 2016. Automated
IT system failure prediction: A deep learning approach. In 2016 IEEE International Conference on Big Data (Big Data).
IEEE, 1291–1300.

[288] Shenglin Zhang, Weibin Meng, Jiahao Bu, Sen Yang, Ying Liu, Dan Pei, Jun Xu, Yu Chen, Hui Dong, Xianping Qu,
et al. 2017. Syslog processing for switch failure diagnosis and prediction in datacenter networks. In 2017 IEEE/ACM
25th International Symposium on Quality of Service (IWQoS). IEEE, 1–10.

[289] Sai Zhang and Congle Zhang. 2014. Software bug localization with markov logic. In Companion Proceedings of the
36th International Conference on Software Engineering. 424–427.

[290] Tao Zhang, He Jiang, Xiapu Luo, and Alvin TS Chan. 2016. A literature review of research in bug resolution: Tasks,
challenges and future directions. Comput. J. 59, 5 (2016), 741–773.

[291] Xu Zhang, Yong Xu, Qingwei Lin, Bo Qiao, Hongyu Zhang, Yingnong Dang, Chunyu Xie, Xinsheng Yang, Qian
Cheng, Ze Li, et al. 2019. Robust log-based anomaly detection on unstable log data. In Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 807–817.

[292] Nengwen Zhao, Junjie Chen, Xiao Peng, Honglin Wang, Xinya Wu, Yuanzong Zhang, Zikai Chen, Xiangzhong
Zheng, Xiaohui Nie, Gang Wang, et al. 2020. Understanding and handling alert storm for online service systems. In
Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering: Software Engineering in Practice.
162–171.

80 Remil et al.

[293] Nengwen Zhao, Junjie Chen, Zhou Wang, Xiao Peng, Gang Wang, Yong Wu, Fang Zhou, Zhen Feng, Xiaohui Nie,
Wenchi Zhang, et al. 2020. Real-time incident prediction for online service systems. In Proceedings of the 28th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering.
315–326.

[294] Nengwen Zhao, Junjie Chen, Zhaoyang Yu, Honglin Wang, Jiesong Li, Bin Qiu, Hongyu Xu, Wenchi Zhang, Kaixin
Sui, and Dan Pei. 2021. Identifying bad software changes via multimodal anomaly detection for online service systems.
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 527–539.

[295] Nengwen Zhao, Panshi Jin, Lixin Wang, Xiaoqin Yang, Rong Liu, Wenchi Zhang, Kaixin Sui, and Dan Pei. 2020.
Automatically and adaptively identifying severe alerts for online service systems. In IEEE INFOCOM 2020-IEEE
Conference on Computer Communications. IEEE, 2420–2429.

[296] Nengwen Zhao, Honglin Wang, Zeyan Li, Xiao Peng, Gang Wang, Zhu Pan, Yong Wu, Zhen Feng, Xidao Wen,
Wenchi Zhang, et al. 2021. An empirical investigation of practical log anomaly detection for online service systems.
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 1404–1415.

[297] Ying Zhao, Xiang Liu, Siqing Gan, and Weimin Zheng. 2010. Predicting disk failures with HMM-and HSMM-based
approaches. In Advances in Data Mining. Applications and Theoretical Aspects: 10th Industrial Conference, ICDM 2010,
Berlin, Germany, July 12-14, 2010. Proceedings 10. Springer, 390–404.

[298] Shuai Zheng, Kosta Ristovski, Ahmed Farahat, and Chetan Gupta. 2017. Long short-term memory network for
remaining useful life estimation. In 2017 IEEE international conference on prognostics and health management (ICPHM).
IEEE, 88–95.

[299] Jian Zhou and Hongyu Zhang. 2012. Learning to rank duplicate bug reports. In Proceedings of the 21st ACM
international conference on Information and knowledge management. 852–861.

[300] Wubai Zhou, Liang Tang, Chunqiu Zeng, Tao Li, Larisa Shwartz, and Genady Ya Grabarnik. 2016. Resolution
recommendation for event tickets in service management. IEEE Transactions on Network and Service Management 13,
4 (2016), 954–967.

AIOps Solutions for Incident Management: Technical Guidelines and A Comprehensive Literature Review 81

A LIST OF ABBREVIATIONS

Abbreviation Meaning

ACID Atomicity, Consistency, Isolation, Durability
ACODS Ant Colony Optimization for Digital Signature
AE Auto Encoder
AIOPS Artificial Intelligence for IT Operations
ARIMA Auto Regressive Integrated Moving Average
ASH Active Session History
AST Abstract Syntax Tree
AUC Area Under the Curve
BERT Bidirectional Encoder Representations from Transformers
BFOA Bacterial Foraging Optimization Algorithm
CAR Collaborative Alert Ranking
CART Classification and Regression Trees
CBN Causal Bayesian Network
CBO Coupling Between Objects
CNN Convolutional Neural Network
CPM Correlational Paraconsistent Machine
ConvLSTM Convolutional Long Short-Term Memory
DBMS Database Management System
DBN Deep Belief Network
DBSCAN Density-Based Spatial Clustering of Applications with Noise
DIFT Dynamic Information Flow Tracking
DIT Depth of Inheritance Tree
DRAM Dynamic Random Access Memory
DSL Domain-Specific Language
DSNSF Digital Signatures of Network Segment using Flow Analysis
DTW Dynamic Time Warping
DoS Denial of Service
EM Expectation-Maximization
ETL Extract, Transform, Load
FCA Formal Concept Analysis
FF Frequency-Factorization
FFT Fast Fourier Transform
FPM Frequent Pattern Mining
FSA Finite State Automaton
FSM Finite State Machine
FT-Tree Frequent Template Tree
GLM Generalized Linear Model
GNN Graph Neural Network
GP Genetic Programming
GRU Gated Recurrent Unit
HDFS Hadoop Distributed File System
HMM Hidden Markov Model
HMRF Hidden Markov Random Field
HsMM Hierarchical state-based Markov Model
IDC Internet Data Center
IDS Intrusion Detection System
IPS Intrusion Prevention System
ITOA Information Technology Operations Analytics

82 Remil et al.

Abbreviation Meaning

K-NN k-Nearest Neighbors
KPI Key Performance Indicator
LCOM Lack of Cohesion in Methods
LDA Latent Dirichlet Allocation
LIME Local Interpretable Model-Agnostic Explanations
LOC Lines of Code
LSTM Long Short-Term Memory
MLP Multi-Layer Perceptron
MRMR Minimum Redundancy Maximum Relevance
MTM Multi-Feature Topic Model
MTTx Mean Time To X
NOM Number of Methods
OLAP Online Analytical Processing
PCA Principal Component Analysis
PDF Probability Density Functions
PL Paraconsistent Logic
PRC Precision-Recall Curve
PSO Particle Swarm Optimization
Qos Quality of Service
RCA Root Cause Analysis
RFC Response for a Class
RNN Recurrent Neural Network
ROC Receiver Operating Characteristic
RUL Remaining Useful Life
SDP Software Defect Prediction
SLO Service Level Objective
SMART Self-Monitoring, Analysis and Reporting Technology
SMM Semi Markov Model
SR Spectral Residual
TAN Tree Augmented Naive Bayes
TCNN Temporal Convolutional Neural Network
TF-IDF Term Frequency-Inverse Document Frequency
TL Transfer Learning
TOPSIS Technique for Order of Preference by Similarity to Ideal Solution
WMC Weighted Methods per Class
WSN Wireless Sensor Network
XAI Explainable Artificial Intelligence

	Abstract
	1 Introduction
	1.1 Context and Motivation
	1.2 Focus of this Review: AIOps for Incident Management
	1.3 Outline and Contributions

	2 Streamlining Incident Management Procedure
	2.1 Terminology and Definitions
	2.2 Existing Maintenance Protocols in Incident Management
	2.3 Target Maintenance Strata

	3 Towards an Automated AIOps Solution for Incident Management
	3.1 Pain points and Challenges
	3.2 AIOps Framework for Data and Incident Management Procedure
	3.3 Intelligent Incident Management Procedure Tasks
	3.4 Desiderata for Effective Intelligent Incident Management

	4 Proposed Taxonomy
	4.1 Data Sources and Types
	4.2 Evaluation Metrics

	5 A Comprehensive Review of AIOps-based Data-Driven Approaches
	5.1 Prior Research Efforts in AIOps and Incident Management
	5.2 Incident Detection Methods
	5.3 Incident Prediction Methods
	5.4 Incident Prioritization Methods
	5.5 Incident Assignment Methods
	5.6 Incident Classification Methods
	5.7 Incident Deduplication Methods
	5.8 Root Cause Analysis Methods
	5.9 Incident Correlation Methods
	5.10 Incident Mitigation Methods

	6 Publicly Available Datasets and Benchmarks for AIOps Methods
	7 Conclusion and Open Challenges
	References
	A List of Abbreviations

